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Multimodal Mobile Sensing Systems for
Physiological and Psychological Assessment

Huynh Nguyen Phan Sinh

Abstract

Sensing systems for monitoring physiological and psychological states have been

studied extensively in both academic and industry research for different applications

across various domains. However, most of the studies have been done in the lab

environment with controlled and complicated sensor setup, which is only suitable

for serious healthcare applications in which the obtrusiveness and immobility can be

compromised in a trade-off for accurate clinical screening or diagnosing. The recent

substantial development of mobile devices with embedded miniaturized sensors are

now allowing new opportunities to adapt and develop such sensing systems in the

mobile context. The ability to sense physiological and psychological state using

mobile (and wearable) sensors would make its applications much more feasible and

accessible for daily use in different domains such as healthcare, education, security,

media and entertainment. Still, there are several research challenges remain in order

to develop mobile sensing systems that can monitor users’ physiological signals and

psychological conditions accurately and effectively.

This thesis will address three key aspects related to realizing the multimodal mo-

bile sensing systems for physiological and psychological state assessment. First, as

the mobile embedded sensors are not designed exclusively for physiological sensing

purpose, we attempt to improve the sensing capabilities of mobile devices to acquire

the vital physiological signals. Specifically, we study the feasibility of using mobile

sensors to measure a set of vital physiological signals, in particular, the cardiovas-

cular metrics including blood volume, heartbeat-to-heart beat interval, heart rate,

and heart rate variability. The changes in those physiological signals are essential

in detecting many psychological states. Second, we validate the importance of as-



sessing the physiological and psychological states in mobile context across various

domains. Lastly, we develop and evaluate a multimodal sensing system to measure

engagement level of mobile gamers. While the focus of our study was on mobile

gaming scenario, we believe the concept of such sensing system is applicable to im-

prove user experience in other mobile activities, including playing games, watching

advertisements, or studying using their mobile devices.
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Chapter 1

Introduction

1.1 Overview

The past few years have witnessed smartphones becoming the central computing

and communication device in people’s lives. Along with the increasingly powerful

computational resources, smartphones are now equipped with a rich and growing

set of general-purpose embedded sensors including motion sensors (accelerometer,

gyroscope, digital compass), location sensors (GPS, barometer), and audio-visual

sensors (microphone, camera) [95, 135]. Moreover, the fact that smartphone is

almost always with its users has made it a personal sensor hub that can serve to

collect, process and distribute individual sensing data continuously or opportunis-

tically [80]. Combination of these advancements is allowing new opportunities to

develop a wide range of innovative sensing systems and applications across many

domains such as healthcare [156, 48, 75], social behavior [151], environmental

monitoring [107, 123], safety, e-commerce and transportation [120, 61].

In particular of the healthcare domain, exploiting smartphone built-in sensors

to infer health condition indicators such as physiological signs and psychological

states could revolutionize the use of healthcare monitor system in daily-life context.

As for the physiological signals, sensing devices and methods to collect those sig-

nals are usually readily available, however, conventional methods and devices are
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typically obtrusive and inefficient for day-to-day use without the lab-setting. Tak-

ing an example of heart rate monitoring, a conventional measurement method such

as Electrocardiogram (ECG) would require the sensor electrodes to firmly attached

directly to the subject’s skin [74]. The subject also has to remain stationary during

the measurement process. While being able to acquire accurate signals, conven-

tional methods are not efficient for use in daily life with various activities involved.

In case of the psychological states including emotion, stress or depression, most

of the conventional assessing methods are subjective and in form of self-report sur-

vey [180, 157, 143]. An automatic system to recognize those states based on mobile

sensing data could potentially provide physicians and professionals an additional

subjective information to improve the diagnosis process.

Besides healthcare applications, human physiological and psychological states

are important contextual information to develop advanced personalized interaction

between a smart system and humans [178, 135]. Specifically, a system could poten-

tially optimize the interaction if it knows about user’s physical and mental condi-

tions such as whether the user is feeling well or not; and how the current interaction

is perceived by user). This is especially important in the mobile context where peo-

ple are spending more time on their smartphone doing various activities in their

daily life such as social network, working, gaming, studying. Knowing the psy-

chological state along with other contextual information (what user is doing under

a certain circumstance), the systems can potentially provide with the adaptive user

experience. Applications such as stress assessment, engagement measurement can

help mobile users to spend their time on the smartphone more efficiently.

This thesis aims to develop and evaluate new sensing techniques that can lever-

age smartphone’s built-in sensors for assessing vital physiological signals and psy-

chological states. In general, the ability of leveraging mobile sensors to measure

those physiological and psychological states enable an efficient, unobtrusive man-

ner. And it allows the technologies to be accessible by more people (thanks to the

widespread of mobile phone use) to monitor health conditions, putting mobile user

2



in a more central and proactive position of the healthcare delivery process.

1.2 Sensing Physiological Signal

Human body produces various physiological signals that can be measured, ranging

from electrical signs to biochemical, and be used to better understand the bodily

health status and reaction to external factors [37]. Those signals deliver relevant

information on the status of the human being regarding the functioning of physio-

logical systems such as the circulatory, neurological, and respiratory systems. For

instance, blood pressure, heart rate and heart rate variability are important parame-

ters reflecting the state of circulatory system and are used for diagnosing cardiovas-

cular diseases. Some of the most important and commonly measure physiological

signals including:

- Electrocardiography (ECG) and photoplethysmography (PPG) that measures

heart activity (heart rate, inter-beat-interval, heart rate variability).

- Electrodermal Activity (EDA) or skin conductance that measures the activity

of sweat gland in the epidermis and dermis of the skin. It is typically recorded from

the surface of the hand or wrists.

- Electroencephalography (EEG) that measures brain activity.

- Electromyography (EMG) that measures muscle activity.

- Electrooculogram (EOG) that measures eye pupil’s size and movement.

- Blood volume pulse (BVP) that measures blood pressure.

- Respiration that measures the rate and depth of breath.

Physiological sensing plays a key role in diagnosing and monitoring health con-

ditions to provide appropriate treatment. In particular, monitoring vital physiolog-

ical signals (e.g., blood pressure, heart rate variability, EEG signal) are crucial for

those who are hospitalized or need intensive healthcare. Frequent measurement and

long-term monitoring of such vital parameters, if available, are also very informa-

tive and helpful for early screening, supporting safe and healthy living. However,
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conventional techniques to measure physiological signals are usually inconvenient,

obtrusive, and inaccessible for daily use [32, 118]. Therefore, most of the tech-

niques are applicable only in the critical healthcare scenarios in which the obtru-

siveness and inconvenience can be compromised for the sensitivity or accuracy of

the diagnoses. In particular, most of the vital sensing techniques need additional

sensing instruments that are not available to most people. Besides, the sensing in-

struments usually requires an obtrusive or inconvenient setup for reliable signal ac-

quisition, making continuous daily measurements uncomfortable and tedious. For

example, electrocardiograph (ECG) recording devices require several electrodes to

be carefully attached to different body points, making it impractical as a general

daily use solution [174]. Such drawbacks of the conventional physiological sensing

techniques would limit their applicability out of the clinic and laboratory environ-

ment.

Recent technological advances in miniature and embedded sensor have opened

the possibility for monitoring a wide range of physiological parameters continu-

ously in an unobtrusive manner. Early attempts in this direction employed actigra-

phy, which uses inertial sensors embedded in wearable and mobile devices to mea-

sure the activity of various body parts with applications in sports science and general

health such as posture correction. More recent efforts have focused on recording

cardiac activity, either electrically with electrocardiograms (ECG) sensor, or opti-

cally via photoplethysmograms (PPG) sensor. These sensors are recently available

on commodity smartwatches and considered unobtrusive and comfortable to wear

for most people. Another example of the medical wearables is the development of

wristband with embedded Electrodermal Activity (EDA) sensor for the application

of epilepsy management by analyzing the skin conductance response from EDA

sensor reading to detect generalized tonic seizures. Even for the EEG signals (a

measure of brain activity) which previously can only be acquired in the laboratory

environment with a complicated setup, now can be measured by wearable headsets

for various applications such as the detection of epileptic seizures or diagnosing the
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sleep disorders. These sensors offer enormous potential in assessing and tracking

human physiological functions of a user continuously over long periods of time in

the daily life scenario. More importantly, multiple mobile and wearable sensors can

be connected to a personal computing device (e.g., smartphone) which are attached

to the user in their daily life continuously. This allows an opportunity for fusing

multiple physiological parameters with other contextual information captured by

other sensors to have a more comprehensive understanding of the human biological

states in context. In particular, to study the physiological functions in association

with the activity users are doing, occurring event, ambient or environmental param-

eters to understand how those factors affect the physiological states or how the body

responds to everyday activities and external events.

Although the wearable physiological sensing has great potential to develop sys-

tems to monitor physiological parameters, its adaptation is still limited and the de-

vices are not yet accessible to most people. We attempt to design sensing systems

with an assumption that the physiological wearable sensors are not always available,

and should be considered as additional sensing sources. On the other hand, smart-

phone, the most universal and unobtrusive sensing device, would play the central

role of the sensing system. As the smartphone is lack of sensors that designed ex-

clusively to measure physiological signals, one promising research direction is to

leverage the fundamental sensors available on mobile devices such as inertial sen-

sors, microphone, camera to estimate or infer the physiological state. A key com-

ponent of this thesis, VitaMon, is to develop a sensing technique that can measure

a set of vital physiological parameters (heart rate, heart rate variability and blood

pressure) using only the sensors available on commodity smartphone.
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1.3 Physiological Sensing System for Assessing Psy-

chological State

Psychological state is a general term used in psychology study that covers three sub-

concepts including affect, behavior, and cognition. While the latter two concepts

are quite straightforward, the definition of affect is slightly diverged and has an

overlapped use with the terms emotion and mood within and between disciplines

(e.g., psychology, affective computing, human-computer interaction). In this thesis,

these terms are used with the following definitions:

- Affect is the mental feeling from inside the body that underlies all emotional

experience [144]. It varies in valence (from unpleasant to pleasant or negative to

positive) and arousal (from deactivated to activated). The differentiation among the

concepts of affect, emotion, and mood in affect research is becoming increasingly

important, as consistent effort has been made to move out of the stage of using

these constructs interchangeably [41]. While affect is also a general term, it can be

considered as the fundamental components that constitute a basic emotional unit,

what they termed as a prototypical emotional episode, as proposed by Russell and

Barrett in their seminal work on dimensional emotion theory [143]. In other words,

emotion is a physical compound constituted by a number of more basic ingredients.

This view comes from the psychological constructionist tradition, a more recent

and theoretically rich approach. Mood distinguishes from emotion in duration and

intensity. Generally, mood is viewed as more persistent and less intense than the

emotional state, and as a result more stable. It falls between the fleeting emotional

states and more enduring trait.

- Behavior refers to the range of actions and mannerisms made by individuals

in conjunction with themselves or their environment, which includes the other indi-

viduals and systems around as well as the physical environment and external events

or stimuli.

- Cognition is the mental action or process of acquiring knowledge and under-
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standing through thought, experience, and the senses. It encompasses many aspects

of intellectual functions and processes such as attention, the formation of knowl-

edge, memory and working memory, judgment and evaluation, reasoning, problem-

solving and decision making, comprehension and production of language [126, 16].

Psychological state can be measured, diagnosed or inferred using subjective or

objective methods such as standardized self-assessment survey, observational study,

and interview conducted by psychology professionals (e.g., clinical and counseling

psychologist). Those traditional methods requires manual effort and usually are

limited in the clinic environment. On the other hand, researchers across disciplines

(e.g., psychology, affective computing, human-computing interaction) have been

developing prototypical system to make the psychological state more automatic and

unobtrusive. Many studies have shown great potential of correlating the physio-

logical parameters with the subjective psychological states [83, 20]. Measuring

physiological signals can be considered the first step toward creating a system that

can automatically and objectively recognize physiological patterns associated with

cognition and affective states [47, 140, 159, 60].

Rapid development of mobile and wearable sensing system are enabling oppor-

tunities to study the relationship between human physiological signals and the psy-

chological state that occurs and varies in daily life activities for various applications

in healthcare (mental well-being assessment), e-learning (adaptive lecture presenta-

tion/style based on learner’s engagement or attention), gaming and advertising (per-

sonalized experience based on user’s emotion and interest) and other applications

that support healthy living in general.

We identify the following key challenges in developing sensing system for au-

tomatic physiological state assessment:

- The first challenge is to determine the psychological state that best fits the

context and purpose of the application. For instance, a application to support safe

driving may require to measure driver’s attention, alertness while an advertising

recommendation system may need to assess users’ interest or engagement while
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watching the ads.

- With the assumption that users do not need to actively participate in the sensing

process (i.e., taking a sensor reading), the challenge is to find appropriate means that

allow collecting physiological readings in an opportunistic and unobtrusive manner

so that the user experience is not interrupted.

- Another challenge involved in designing multimodal sensing system is to fuse

sensing signals collected from different modalities and are different terms of infor-

mation, complexity, sampling rate and accuracy.

1.4 Thesis Statement

After discussing the opportunities and challenges of physiological sensing and

psychological state assessment studies in general, we now present the specific

problems we address in this thesis.

This thesis demonstrates that it is possible to measure vital physiological sig-

nals, specifically heart rate and heart rate variability, using sensors available

on commodity smartphone, and to develop mobile sensing systems to assess

psychological states that can be used for improving mobile user experience by

(1) developing a core sensing technique that leverages front camera on smart-

phone to remotely measure a set of cardiovascular signals; (2) combining mo-

bile and wearable sensors to assess important psychological states (e.g., emo-

tion, engagement) in mobile context.

A detailed problem statement is as follows:

First, by investigating the time delay of the pulse traveling on different facial

regions, it shows the potential to accurately measure a set of vital physiological

signals, in particular the cardiovascular parameters including heart rate, heart rate

variability, respiration rate, and blood pressure from the facial videos.

Second, it designs a remote heart rate variability monitoring system using videos
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of the user’s face captured by the smartphone’s front camera in which we applied

a novel estimation technique based on Convolutional Neural Networks (CNN) that

can estimate the heartbeat intervals with higher granularity than what limited by the

video’s frame rate of smartphone camera.

Third, it recognizes that that multiple factors in mobile application and game

such as the design, game difficulty level, player’s competence, and in-app inter-

action can elicit different psychological states of mobile users including different

emotion and different level of engagement. More importantly, through a study with

professional game developers and designers, it validates the importance of assessing

the psychological state (e.g., engagement) and the potential of using a sensing sys-

tem during the actual game development and testing cycle to augment and improve

upon current survey-based practices.

It examines variety of physiological signals including electroencephalogram

(EEG), photoplethysmography (PPG), and electrodermal activity (EDA) and shows

that the extracted features from those signals highly correlate with different emo-

tions and engagement of mobile users.

Finally, it demonstrates a multi-modal sensing system to automatically measure

the engagement state of users while they were playing mobile games. In particular,

the system combines multiple different sensing channels (i.e., physiological signals,

touch events, and upper-body motion) that can collectively capture the internal and

external changes of the player’s engagement level.
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Chapter 2

Literature Review

This chapter will discuss the embedded sensors on commodity mobile devices and

state-of-the-art physiological mobile sensing system and its applications in assess-

ing psychological or affective states of mobile users.

2.1 Mobile Device’s Built-in Sensors

First, I introduce the embedded sensors available on most modern smartphones. As

mobile devices have become a personal computing platform with higher functional-

ity, and better interface, these improvements have been made thanks to the advance-

ments of computing resources for portable device (e.g., CPU, memory, storage), and

also the introduction of a set of new miniatures sensors. Those sensors, with the ca-

pability of sensing user behavior and contextual information, are initially integrated

into the mobile devices to provide users with more application features and improve

user experience, and also could be used to estimate or infer users’ physiological and

psychological states (as discussed later in this Chapter). The sensors cover a wide

range of different sensing modalities, including motion/movement, location, vision,

audio, radio frequency (RF) and touch sensing:

Inertial measurement unit (IMU): is an electronic sensor unit that are com-

posed of accelerometer, gyroscope,and magnetometer to measure and acquire sig-
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nals related to specific force, the unit’s orientation and angular rate.

• Accelerometer: it is a sensor to measure proper acceleration or a rate of

change of velocity of a body in a 3-axis model. Accelerometer has become

more common after being initially introduced to improve the user interface

and use of the camera. It is used to automatically determine the orientation

in which the user is holding the phone and use that information to automati-

cally re-orient the display between a landscape and portrait view or correctly

orient captured photos during viewing on the phone [95]. As body move-

ments and gestures can be detected by accelerometer, long-term acquisition

of accelermoter signals could enable applications to detect and monitor body

movement, gestures, gaits and other human behaviors [110, 138].

• Gyroscope: gyroscope is a sensor device used for measuring orientation, an-

gular motion and rotating velocity. The sensor has been used since early

1900s in navigation and guidance system for vehicles in general (e.g., air-

plane, spacecraft). Gyroscope allows a smartphone to measure and maintain

orientation. The sensor commonly combined with accelerometer to achieve

better performance of gesture recognition on smartphone. Both accelerometer

and gyroscope are also available on most smart-watch and wristband devices

and can be used to track hand-gesture for interface-control and gaming appli-

cations [12, 53, 88].

• Magnetometer: magnetometer or digital compass is a sensor used for mea-

suring magnetic forces, especially the earth’s magnetism. The sensor allows

smartphone to identify its orientation relative to the earth’s magnetic field.

The digital compass sensor and gyroscope represent an extension of location,

providing the phone with increased awareness of its position in relation to the

physical world (e.g., its direction and orientation) to augment the location-

based services and applications [95].
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Location sensors: the location of a smartphone can be detected using GPS

(Global Positioning System) or via the (triangulation of) location of an associated

cell tower or WiFi networks, given a database of known locations for towers and

networks. The precision of location provided by GPS typically ranges from 10 to

50m depending on the number of available satellites. However, GPS does not work

indoors and can quickly drain the mobile device’s battery. Many alternative local-

ization systems based on RF or WiFi signal pattern (e.g., signal strength, angle of

arrival from multiple signal-transmitters with known locations) are proposed to es-

timate the phone’s location in indoor environments [114, 101, 31]. Related to GPS

positioning function, barometer (also embedded in most modern smartphone) can

facilitate the GPS chip to get faster lock by measuring the atmospheric pressure to

provide the altitude data. Additionally, with the recent advancement of indoor lo-

calization system and navigation system, the barometer, fused with other sensing

modalities, can assist in determining what floor a user is on in the indoor environ-

ment.

Audio-visual sensors: Available on almost all the modern mobile devices, cam-

era and microphone are arguably the most ubiquitous and powerful sensors that can

be used to capture the contextual information of mobile users.

• Microphone: Smartphone’s embedded microphone can be used for various

audio sensing applications such as voice recording, voice-command control,

and speech recognition [150]. Microphone also allows the smartphone to

identify the surrounding sound types (e.g., music playing, background noise

in public places) [142]; and to recognize the on-going events or situations

by analyzing the sound patterns that are unique to some certain events (e.g.,

having a conversation, attending a concert). For instance, Li et al. proposed

a smartphone system to detect approaching cars for the purpose of pedestrian

safety and traffic monitoring [98]. Another example is a fall-detection system

developed based on audio features captured by smartphone microphone [30].
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Moreover, user’s activity and location that associate with those events could

also be inferred [33].

• Camera: smartphones are equipped with multiple cameras to improve user

experience and applications’ functionality in terms of capturing and extract-

ing the visual information of the world around the phone. Smartphone camera

can be used for a wide range of vision sensing applications from traditional

tasks such as capturing image and scanning bar-code to more advanced com-

puter vision tasks such as object detection, facial landmark detection and eye

tracking [87, 73]. Some specific examples of applications developed using

smartphone camera including gesture recognition [57, 94] and location iden-

tification [175, 145]. Moreover, with the recent breakthrough of deep learn-

ing models for vision sensing applications [89] and its light-weight versions

for devices with limited computational resources [179], smartphones now can

perform many complicated tasks in real-time on mobile device such as object

detection and face recognition.

Touchscreen: Touchscreen-based mobile devices or smartphones can sense

user’s touch interaction with the screen using the proximity sensors under the

screen. Touchscreen provides smartphone users with a touch control interface and

make use of the screen space more efficiently compared to the keypad-based mobile

devices. The touchscreen measures the raw touch signals including interacted posi-

tion on the screen, the contact area between the screen and user’s finger. Many high-

level touch features can be inferred from the raw touch signals such as touch ges-

tures or trajectory, and touch pressure. Recent studies in psychology literature [62]

have shown that touch behavior may convey not only the valence of an emotion but

also the discrete type of emotion (e.g. happy, sad). Prior work also has shown that

the touch interaction of mobile users is affected by the emotional stimuli. For in-

stance, mobile users tend to perform a touch task slower but more accurately when

they are exposed to the positive stimuli [121].
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2.2 Mobile Physiological Sensing

This section provides an overview of physiological sensing systems that exploit

smartphone’s built-in sensors and other external hardware. In this case the exter-

nal hardware could be an add-on or electronic gadget (e.g., electrode, photodiode)

that is used to extend the sensing capability of smartphone to measure some certain

type of physiological signal and communicate the results to the smartphone. Physi-

ological mobile sensing systems present an exciting opportunity to measure human

physiologic parameters in a continuous, real-time, and non-intrusive manner. Fur-

thermore, given the widespread use of mobile devices, such sensing system could

allow more people to monitor their vital signals and enable many useful health-care

and well-being applications in daily-life scenarios. Hence, many prior studies have

investigated various techniques to exploit the mobile’s built-in sensors to extract

physiological signals. I summarize some of the state-of-the-art mobile physiologi-

cal sensing systems:

• One of the physiological sensing applications of mobile microphone is to

monitor lung function for the purposes of screening, diagnosing and treat-

ment of lung diseases as a potential alternative to portable spirometer. Larson

et al. [97] had shown that the smartphone built-in microphone can be used

to develop SpiroSmart, a low-cost mobile phone application that performs

spirometry sensing. The lung status is estimated based on breath flow fea-

tures extracted from audio signals (when user exhaling) such as Forced Vital

Capacity (FVC), Forced Expiratory Volume (FEV) and Peak Expiratory Flow

(PEF). The proposed system has been tested with 52 subjects and the results

have shown that the average error us 5.1% for general model and 4.6% for

personalized model as compared to a commercial clinical spirometer.

• Audio signal recorded by smartphone microphone can also be used to esti-

mate respiratory rate. In particular, Nam et al. [124] developed an accurate

breathing rate estimation system using nasal breath sound recordings from a
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smartphone. The system records nasal and tracheal breath sounds (airflow)

using the smartphone microphone at 44.1 kHz. The acquired audio signal

is processed and analyzed using Welch periodogram technique and auto re-

gressive power spectral analysis. The system was evaluated with data col-

lected from 10 subjects showing that an estimation error lower than 1% can

be achieved in the case of breathing rates in the range from 6 to 90 breaths

per minute.

• Among the basic vital signals, pulse rate is the most commonly monitored

as an important healthcare necessity. Adoption of the photoplethysmography

(PPG) technique to leverage smartphone camera for detecting pulse rate or

heart rate in an unobtrusive and convenient manner have been studied exten-

sively by many prior works [92, 158, 74, 36]. The principle of PPG tech-

nique is that the variations of blood volume will affect the transmission or

reflectance of light correspondingly and result in the change of light intensity

reflected from the skin [63, 119]. This light intensity is inversely related to

the blood volume, therefore, the pulsatile component of the PPG signal oscil-

lates with every heartbeat cycle and can be captured by camera. Most of the

mobile PPG-based heart rate estimation methods have been evaluated with

back-facing camera which requires users to put their finger tip on the cam-

era [158]. Remote PPG technique was also proposed to extract pulse signal

from facial video captured by smartphone front-facing camera. In particular,

Kwon et al.[92] has demonstrated the feasibility of using smartphone camera

(iPhone) to estimate heart rate from facial video recording and reported the

error of 1.08% (beat per minute).

• An related vital signal that can be extracted from PPG signal is blood oxy-

gen saturation level. The saturation level measures the percentage of oxide

hemoglobin and dioxide hemoglobin in blood. The basic idea of blood oxy-

gen level measurement is that oxide hemoglobin and dioxide hemoglobin ab-
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sorb different amount of light. Light from sources of different wavelengths

are also absorbed differently. The blood oxygen saturation level is derived

from the difference in the light absorption between diastolic and systolic

phases of blood pulse. Common approach is to use an oxymeter (in hospi-

tal) to measure blood oxygen level. SpO2 [22] is a phone-based oxymeter

using phone flash light and a specially designed finger holder mounted on

the phone case. SpO2 proposed to use a specially designed piece of glass

(mounted in front of the phone camera and flash light) to: (i) prevent external

light source, (ii) filter green and red light from the flash light, and (iii) drive

the reflected light to the camera.

• Blood pressure is one of the most critical signals related to the health condi-

tion of a person. Conventionally, people need to use an inflation blood mon-

itor, which requires operational skills, to measure blood pressure. Seismo

[173] is a smartphone-based blood pressure monitor which is less obtrusive.

Blood pressure is measured using the pulse transmit time from two arterial

sites which inversely related to blood pressure. For example, higher blood

pressure causes a pulse starting at the heart to propagate faster to the finger.

Seismo measures the time of a pulse near the heart by capturing the vibration

caused by the heart using an accelerometer in a smartphone. The pulse at the

far site (at the user finger) is measured using a phone camera. By computing

the delay between the pulse at the near site and the far site, the pulse velocity

is inferred, and thus blood pressure.

• Although PPG is an low-cost and unobtrusive method to measure many car-

diovascular metrics, many heart conditions such as rhythm disturbances, heart

block and conduction problems require Electrocardiography (ECG) measure-

ment for diagnosis. ECG measures electrical activities of heart using elec-

trodes placed on limb skin and chest skin. The use of many electrodes at

many positions on a user body makes ECG recording an obtrusive process and
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only deployable in hospitals. There have been studies on creating hand-held

ECG devices [1], or integrating ECG sensors on phone cases [91]. To have

electrodes unobtrusively contact to a user body, Kang et al. [78] proposed

to use a specially designed phone case which have three exposed electrodes.

During phone uses, the electrodes opportunistically contact to user skin and

the equipped processing module measures the bio potentials between pairs of

electrodes, and process the potential readings to produce ECG signals.

• Another application of smartphone camera related to physiological sensing is

to assess pupil diameter. Tracking pupil diameter and the response time under

different light conditions to measure the pupillary light reflex (PLR) is one of

the few important quantitative features that can be used to assess traumatic

brain injury (TBI). Mariakakis et al. [112] proposed PupilScreen, a sensing

system using the front-facing camera and flash from a smartphone with a 3D-

printed box to control eyes’ exposure to light. The system can stimulates

the patient’s eyes using the flash and records the response using the camera

(similar to the penlight test that is conventionally conducted by clinicians in

emergency situations). PupilScreen can perform pupil diameter tracking with

a median error of 0.30 mm. It was also evaluated i n a pilot clinical study with

six patients who had suffered a TBI and found that clinicians were almost

perfect when separating unhealthy pupillary light reflexes from healthy ones

using PupilScreen alone.

2.3 Psychological State Assessment Using Mobile

Sensing System

Recent advancements of sensing capabilities (e.g., motion, location, audio-visual

sensing) integrated into smartphones have turned the devices to a powerful personal

sensor hub. Being almost always attached to its users, smartphone can continuously
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collect various sensing data as well as the smartphone usage data in an unobtrusive

manner. These sensing data extract can be used to extract user’s individual behavior,

physical activities, physiological signals as well as contextual information, which

altogether could enable significant improvement of research in automatic and objec-

tive assessment of user’s psychological states. Detecting short-term psychological

states such as mood or emotion are very useful to develop personalized mobile user

experience such as music or movie recommendation system, adaptive online study

or gaming experience. On the other hand, it is important to monitor people’s long-

term psychological states to understand the individual behavior and technological

conditions that have impacts on or associate with those states to develop applica-

tion that could help improving individual’s well-being. Hence, many studies from

research areas including mobile sensing, affective computing and human-computer

interaction have extensively examined mobile the sensing data and explored new

features to infer mobile user behavior to infer mobile user’s psychological states. I

summarize the related works from that perspective:

Emotion and mood: although these two constructs are closely related, they

represent different psychological or affective states [11]. One distinctive character-

istic of mood is that it typically lasts longer, less intense and is usually not directly

related to its undermined cause. On the other hand, emotions are elicited by certain

conditions or stimuli and usually last shorter as changing reaction from one thing to

another [144, 42].

Several prior works [99, 105, 100] have developed software system to automat-

ically detect people’s mood by analyzing the smartphone usage data as a service to

enhance context-awareness by providing mobile users’ mental states. For instance,

MoodSense [99] studied the correlation between user mood and the smartphone

usage data, including SMS, email, phone call, application usage, web browsing

and location, and demonstrated that user mood can be inferred and classified into

four major types. Develop on top of the MoodSense about the correlation between

smartphone usage data and user mood, Likamwa et al. [100] proposed MoodScope,

18



a smartphone software system that statistically infers user’s daily mood by adopt-

ing the Circumplex Model of Affect [144] and analysing communication history as

well as application usage patterns. MoodScope also considered the privacy concerns

related to personal phone usage data by adopting a variety of data anonymization

techniques when capturing user to smartphone interactions.

Many studies have also exploited smartphone usage data to recognize distinct

emotions such as happiness, sadness or boredom. For example, Bogomolov el

al. [18] presented a model to perform 3-level happiness classification using fea-

tures extracted from phone usage data and the weather information available online.

Similarly, the mobile usage data was used along with physiological data (skin con-

ductance) collected from a wearable device to classify two emotions (happy vs.

sad) in [72]. Regarding the physiological signals that can be acquired directly us-

ing hand-held or wearable sensing devices, signals such as skin conductance, skin

temperature, cardiovascular activity, and brain wave activity have been studied ex-

tensively as potential metrics to measure emotions. Researchers have reported some

physiological patterns that are highly correlated with certain emotional states, for

example, galvanic skin response is a linear correlate to arousal [96]. Many research

works have examined the use of physiological measures to detect the emotions that

associated with variety of task such as music listening [81], playing games [109, 28].

There are also attempts of using pattern of finger stroke behavior extracted from

touch data collected from smartphone touchscreen to recognize emotion [13].

Stress and depression: the use of smartphone sensing data for psychological

states that are related to mental health such as stress or depression has also attracted

research from both HCI and psychology areas [10, 25, 45]. In particular, Bogo-

molov et al. [17] showed that the behavioural metrics extracted from users’ mobile

phone activity are useful features to combine with other indicators including person-

ality traits (collected through survey) and weather conditions for stress detection. In

another study [148], the authors showed that stress can also be detected by fusing

physiological marker (skin conductance) collected by using a wrist sensor with mo-
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bile phone usage data (calls, SMS, location and screen on/off status). They applied

correlation analysis to find statistically significant features associated with stress

and they used machine learning to perform binary stress classification. Besides

skin conductance, changes in the speech production process is another physiologi-

cal changes that happen during stress. Lu et al. [104] proposed StressSense, a sys-

tem to detect stress from human voice using smartphone microphone. The authors

demonstrated that the StressSense classifier can robustly identify stress across mul-

tiple individuals in diverse acoustic environments, StressSense can achieve 81% and

76% accuracy of binary stress classification for indoor and outdoor environments.

Regarding to depression assessment, some metrics included in common subjec-

tive depression assessment test are related to the behavior changes in people with

depression [180, 157]. Prior works have tried to extract behavior change features

from mobile sensing data to develop a automatic system for subjective depression

prediction. Doryab et al. [39] is one of the first attempts to detect major depressive

disorders from behavior change using mobile sensing data. The authors developed

an Android application to collect mobile sensing data and extract features includ-

ing noise amplitude from microphone, light intensity from ambient light sensor,

location and movement from accelerometer. The application is able to identify spe-

cific user behaviors related to depression. Furthermore, Canzian et al. [24] has

demonstrated that there exists a significant correlation between people’s mobility

patterns extracted from smartphone GPS with their depressive moods. The authors

also presented their design of models that can predict change in depression states of

individuals by analyzing their movements.
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Chapter 3

EngageMon: Multi-modal

Engagement Sensing for Mobile

Games

In this chapter, we propose a new tool, that uses multi-modal sensing, to detect the

engagement level (as high, moderate, or low) of mobile game players. This tool

will allow game developers to incorporate automatic user engagement measure-

ments throughout their game design process and use it to evaluate game prototype

alternatives.

3.1 Introduction

Games remain the most popular category on both the Android and iOS app

stores [38, 137] with ≈20% of each app store devoted to games. Games also dom-

inate in terms of user base and revenue generated [51, 6]. With the ever increasing

number of mobile games, player engagement becomes increasingly important in

game design. Specifically, it is not enough to just motivate users to install and be-

gin playing a game; if the engagement is not maintained at a high level, users can

quickly switch to other games or applications as they have many options available in
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the app stores. Hence, the engagement of players can be used as a metric to evaluate

the (potential) success of a game.

User engagement has been defined as the emotional, cognitive, and behavioral

connection that exists, at any point in time and possibly over time, between a user

and a technological resource [8]. The definition is also well acknowledged in other

application domains such as studying [46] and book reading [54]. We adopt this

definition into the mobile game domain as the fusion of behavior, emotion, and

cognition under the idea of engagement could provide a richer characterization of

the mobile gaming experience. In particular, we notice that playing mobile games

is a heavily active and interactive experience in which all the three engagement

elements could be present simultaneously and vary at greater levels. This definition

emphasizes the player engagement as a holistic metric of gaming experience and

also suggests its essential aspects that are open for measurements.

A conventional approach in evaluating user engagement is to conduct self-

assessment surveys or interviews [21]. However, this approach is not easily applied

to the mobile gaming context. In particular, it is difficult for participants to recall,

in detail, how their engagement state was changing during a long gameplay; the

participants often fall back on a single overall impression that does not provide an

accurate measurement of engagement level for each short game session (1-2 min-

utes). For fine-grained and accurate engagement assessment, the survey needs to be

taken very regularly (every minute). Such frequent surveys are not only cumber-

some but also likely to affect the gaming experience, especially when multiple data

points need to be collected from a single participant. In addition, it is extremely

hard for game developers to use the self-assessment method to accurately measure

the engagement levels of real users after a game is released. There have been prior

work to infer engagement and other related metrics in more general or different con-

text using mobile phone usage [100, 115] and various sensors such as camera [52],

phone-embedded sensors [121], and other external sensors [165, 159, 60]. How-

ever, to our knowledge, this is the first work to study engagement measurement in
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the context of mobile gaming.

We built our technique around the hypothesis that a game player’s engagement

will translate into physiological responses and changes in their physical gaming

behavior. The hypothesis is based on our multifaceted definition of engagement,

which consists of three main components: emotion, cognition, and behavior – these

are the physiological signals that have been shown to be useful to infer emotional

states and cognitive load [20, 140, 83]. In addition, we also capture the touch in-

teractions and body movements of the user playing the game as we believe that

these are also representative of their current engagement levels. To validate our hy-

pothesis and to enable automated engagement detection, we built a system, called

EngageMon. The system utilizes sensor data from three different sources: (a) the

Game Developer Survey

§ Participant: 22 mobile game developers and designers
§ Data: Survey data
§ Method: Survey and semi-structured interview
§ Goal: Study usefulness of engagement measurement in 

game development from developers’ perspective

Study in Lab Settings

§ Participant: 54 mobile game players
§ Data: Sensor data and self-reported engagement score
§ Method: Experiment in lab settings
§ Goal: Build and evaluate engagement classification models

Study in Natural Settings

§ Participant: 10 mobile game players
§ Data: Sensor data and self- reported engagement score
§ Method: Experiment in natural settings
§ Goal: Demonstrate the feasibility of EngageMon during 

natural game plays

Figure 3.1: Overall study procedure.
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player’s screen-touch events (taps, swipes, etc.) captured on the game play device

itself, (b) the player’s physiological signals such as heart rate and electrodermal ac-

tivity captured by a wearable wristband, and (c) the player’s upper-body skeletal

motion data using the depth camera.

We conducted our research in three main phases as shown in Figure 3.1: (1)

motivational study, (2) system design and evaluation in a lab setting, and (3) system

evaluation in natural environments. The studies were IRB-approved at the two in-

stitutions where they were conducted and the experimental procedures followed the

ethics guidelines.

The main contributions we make in this work are as follows:

• We conducted a study with 22 professional game developers and designers to

motivate the importance of detecting the engagement level and the potential

of using EngageMon during the actual game development and testing cycle

(Section 3.3).

• We built EngageMon, a multi-modal sensing system to automatically measure

the engagement state of users while they were playing mobile games. In par-

ticular, we combined three different sensing channels (i.e., touch events, phys-

iological signals, and upper-body motion) that can collectively capture the in-

ternal and external changes of the player’s engagement level (Section 3.4). To

the best of our knowledge, this is the first system to detect engagement levels

in a mobile gaming context.

• We conducted extensive experiments with 54 players in a lab setting and ten

players in natural environments while they were playing six different mobile

games. Our results show that EngageMon achieves high accuracy (85% and

77% on average for cross-sample and cross-subject evaluation, respectively)

for various game types and players. We also conducted comprehensive sen-

sitivity analysis to show the robustness of our technique under different use

24



cases (Section 3.6). Overall, EngageMon has the potential to augment and

improve upon current survey-based practices used by game developers.

This paper is organized as follows. Section 3.2 gives an overview of previous re-

search related to engagement definition and engagement measurement. Section 3.3

describes the motivational survey with professional game developers and our mo-

tivating use cases of engagement measurement. We present our system design in

Section 3.4, data collection procedure in Section 3.5 and show evaluation results

in Section 3.6. Additionally, a further evaluation in a more natural environment is

presented in Section 3.7. Finally, we discuss the limitations and many ideas for the

future work in Section 3.8; and end with conclusions (Section 3.9).

3.2 Related Work

3.2.1 Engagement Definition

The importance of evaluating gaming experience and measuring engagement specif-

ically have been highlighted by Brockmyer et al. [21] and Huizenga et al. [66]. In

addition, Ijsselsteijn et al. [70] points out that engagement is a relevant metric to

assess the impact of design decisions to game experiences. This work also acknowl-

edges the need for effective testing and evaluation of games.

In this work, “user engagement” is defined as the emotional, cognitive, and be-

havioral connection that exists, at any point in time and possibly over time, between

a player and the mobile game. This definition is intentionally broad to emphasize

the holistic characteristic of user engagement and also to suggest various aspects of

engagement that are open for measurement [8]. Many studies across various appli-

cation domains such as studying [46], book reading [54], and interacting with tech-

nological resources [8] also have a definitional agreement on the term engagement

as a multifaceted construct that consist of three components: emotion, behavior, and

cognition.
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The user experience during video game-playing (e.g. how users provide atten-

tion, feel, and interact with a game) has been studied extensively in the literature

with many attempts to conceptualize this subjective experience using different mea-

sures including enjoyment [117], involvement [171], immersion [15], flow [34],

attention [129], arousal [139], and interest [29]. These prior works have examined

many important components of the player’s experience separately; however, gaming

is an activity in which multiple factors including behavior, emotion, and cognition

are interrelated within the player dynamically and simultaneously. As such, many

researchers such as Guthrie et al. [54] and Wigfield et al. [176] suggest that study-

ing a more general concept, such as engagement, gives a better understanding of the

user experience in situations where multiple factors are present.

We adopt the multidimensional definition of engagement into the mobile game

domain as the fusion of behavior, emotion, and cognition under the idea of engage-

ment can provide a richer characterization of gaming experience than just consider-

ing any single component. Mobile gaming is a highly active and interactive expe-

rience in which all the three components of user engagement could vary at greater

levels or intensities compared to other mobile activities such as web browsing or

listening to music. Note: this definition requires each engagement component to

be interpreted specifically for the application domain. Specifically for the mobile

game context: (1) Emotional engagement refers to a player’s emotions during a

game session such as interest, excitement, and frustration; (2) Behavioral engage-

ment indicates the player’s involvement with physical game interaction modalities

such as touch and other hand gestures on mobile device; (3) Cognitive engagement

draws on the idea of attention and effort during the game-play such as the player’s

attempt to master some skill or accomplish a task in game.
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3.2.2 Measuring Engagement

The most widely used method to measure engagement is self-assessment using

questionnaires. Brockmyer et al. [21] and Martey et al. [113] have developed a

Game Engagement Questionnaire (GEQ) that measures the engagement levels of

video game players in four important aspects such as immersion, presence, flow,

and absorption. Although the GEQ can be a cost-effective and efficient manner to

identify engagement, it (and other self-assessment-based approaches) has several

limitations. First, it is hard for gamers to accurately recall the gaming experience

after they finish playing (some games are long!); players tend to give scores based

on what they experienced at the end of the game session, which does not reflect

their overall engagement level. Answering the questionnaire more frequently, dur-

ing a game session, would help address this issue; however, these game session

disruptions to answer the questionnaire are cumbersome for participants and likely

to affect the gaming experience unless carefully conducted.

There has been a thread of research using different approaches, such as physio-

logical sensing, mobile phone usage analysis, and camera-based tracking, to auto-

matically detect the engagement (either as a whole or just one related aspect sepa-

rately) in various domains [60, 59, 159, 170, 165, 115]. In particular, Hernandez et

al. [60] recognize the engagement of a child during interaction with an adult based

on physiological synchrony extracted from a wearable EDA. Hernandez et al. [59]

and Silveira et al. [159] show that physiological EDA (along with facial expression)

can be used to recognize the engagement level and the overall impression of TV

viewers. In addition, many prior works studied the potential of using smartphone

usage data to detect engagement. For example, Mather et al. [115] demonstrates

the feasibility of using phone usage data to infer the contextual aspect of user en-

gagement in general activities on mobile device. Likamwa et al. [100] also shows

the potential to estimate various emotional states of mobile users by analyzing the

features extracted from their mobile usage data. As for camera-based tracking ap-
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proach, Voit et al. [170] show the possibility of assessing the degree of attention by

capturing the head pose in working environments. Although there are differences

in terms of how engagement is interpreted and measured depending on the con-

text and application domain, these works have inspired us in our research to study

engagement in a mobile gaming context.

Different from these prior efforts, our work explored another important applica-

tion domain, mobile games, and a multidimensional element of gamer experience,

i.e., engagement. We focus on measuring the interaction or connection between

a player and the game that occurs during a game session. To capture this mul-

tifaceted interaction, we leverage various sensors including physiological sensors,

touch-screen, and depth camera which have been studied in prior works and shown

to be useful to infer at least one of the three engagement components (emotion,

cognition, and behavior) [83, 49, 111]. We conducted a comprehensive study to

identify useful sensing modalities and features affecting the engagement level of

gamers (using a dataset collected from 54 in-lab game players playing six different

games, with and an additional dataset collected from another ten players in a more

natural setting), and show that it is possible to accurately sense the engagement level

by fusing multiple sensing modalities.

3.3 Motivational Study

This work is motivated from the intuition that capturing and quantifying the engage-

ment levels of mobile game users can benefit the overall game design and develop-

ment processes. To validate our intuition and motivate the need for our work, we

performed a set of surveys with professional game developers and designers.

3.3.1 Survey Design

We recruited 22 professional game developers and designers by sending out a call

for participation through various mailing lists used by game developers in South
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Korea. Most of our participants have at least two years of experience working in the

game industry. Table 3.1 shows the demographic details of the survey participants.

Table 3.1: Demographics of survey participants

Company Experience in years

Game developer (9)
Mid-sized firm (100+ personnel) 2, 2, 3, 3, 7

Large-sized firm (1000+ personnel) 3, 7
Freelancer 1, 1

Game designer (12)
Mid-sized firm 1, 1, 1, 2, 2, 2, 2, 3, 3

Large-sized firm 3, 8, 9
QA specialist (1) Freelancer 2

Before starting the survey, we explained to the participants the definition of

“engagement” used in this study and the idea of using multimodal sensors from

mobile phones, wearables, and external cameras to measure the engagement level

of gamers. Each participant was asked to answer six questions (Table 3.2).

Table 3.2: Survey questions regarding the effectiveness and usefulness of measur-
ing user engagement levels in game design process. The survey can be found at
https://goo.gl/forms/zkNJaopsvakxkliK2. Note: The survey was conducted in Ko-
rean. The text in this table is the translated to English version.

Questionnaire for developers

1)
If available, will you consider the user engagement level as a factor in
designing games? How do you (plan to) use this information?

2)
If your team is already evaluating user engagement as part of the game
design, what is the measurement approach and at which stage in the
development process it is applied?

3)
What is the minimum granularity scale of the engagement
measurement’s output (e.g. binary, 3-level, 5-level) to be considered as
a useful feedback for design improvement?

4)
Based on your experience in game development, what is your
observation on the relation between engagement and a gamer’s
tendency to keep playing a game?

5)
If you had a system that automatically captures the engagement level
of gamers, would you apply this system in offline-play test? Please
explain why or why not.

6)
Please provide any additional comments you might have on our
approach of using multimodal sensors from the mobile phone, external
camera, and wearable device to automatically measure user
engagement.
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3.3.2 Engagement on a Game Developer’s Perspective

Regarding q1) on the the usage of engagement levels in game design, 16 participants

responded that if user engagement levels were made available, they would apply

this information to their games. Specifically, among the participants, 12 replied that

they would like to, or are already using engagement levels for identifying “effective

contents” within a game. For q2) on how they measured engagement, we found

that many mid-sized mobile game development agencies did not currently have a

way to measure and quantify engagement levels. For the larger agencies, while they

noted that user engagement was taken into account for both the game designing and

development procedures, simple forms of surveys and questionnaires were used for

the data collection. The engagement inferring process occurred within focus group

testing phases.

For q3) on the granularity of the engagement measurement output, 13 of our

participants reported that a 3-level category of engaged, normal, non-engaged, was

sufficient for their needs. The responses also showed that these three levels were

used to make key content decisions in their games. Three of the remaining nine

reported that even a binary classification on the engagement would be beneficial

(“engaged or not”) and the others indicated that they would prefer a 5-level engage-

ment classification.

For q4) on the correlation between engagement and a gamer’s decision to con-

tinue playing, among the participants, 20 (91%) agreed that the engagement level is

correlated with the motivation of users to play the game and it is important/mean-

ingful to collect such information. However, others gave lower priority to user

engagement in the game designing and development phases, under the concern that

generalizing the proper features would not be sufficient nor clear.

For q5) on using an automated engagement detection system, the participants

who worked at agencies that used engagement levels for their game design and

development mentioned that user feedback was their only source of engagement
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measuring and noted that an autonomous mechanism to better quantify the engage-

ment levels would increase the accuracy and reduce their costs for the focus group

testing phases.

After introducing our proposal (we described how EngageMon would work if

successfully built) of capturing user engagement levels automatically, we asked if

they were willing to use such a system, that uses external and internal sensors to

quantify user engagement levels, in their development process. Only 60% of the

participants answered that they would immediately use such a system with the rest

taking a wait and see approach as the idea of using external sensing modalities to

measure user engagement was not mature enough for them.

The participants also provided us with various metrics that are considered in the

game design and development process such as: level design of each stage, excite-

ment levels, game balancing (e.g., considering user’s ability and competency), the

flow of users’ movements (e.g., how easy it is for users to navigate the game world).

These features are all directly or indirectly related with the user’s feelings about the

game and can be comprehensively mapped as part of a user’s engagement level with

the game.

3.3.3 Motivating Use Cases

We are building a sensing system that can enable iterative and automatic player

engagement evaluation throughout the game development process. In particular, we

envision two use cases in which game developers and designers can leverage such a

system: (1) early formative evaluation for the development of design improvements;

and (2) adaptive update and customization for already released games.

In the early stages of the game development process, many design alternatives

(e.g., game mechanics, game flow, and user interface) should be evaluated to iden-

tify the optimal gameplay design. Our system, EngageMon, can assist developers to

perform player usability testing more efficiently. As the evaluation takes place “in
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lab”, all three sensing channels including physiological sensors, touch-screen, and

the depth camera are available for engagement measurement. For example, when

developing a car racing game, developers need to evaluate and select iteratively

several game control mechanisms such as the gestures to control the car (touch,

swipe, tilt, and their combinations) along with specifying the handling sensitivity

to make the game engaging and easy to play. Developers can conduct an in-lab

within-subjects experiment in which each game tester will try all the design alterna-

tives in randomized order. By using EngageMon to measure the engagement level

of each control mechanism automatically, developers can determine which control

mechanism can elicit the highest engagement level across the testers. Our system

also provides an analysis of the physiological and behavioral responses correspond-

ing to each alternative so that developers can get a more comprehensive view of the

gaming experience.

For the second use case when the game is already released, developers can still

leverage our engagement detection model using only the touch data collected from

the mobile device by integrating our model into their game or by calling our API

set. For example, in an endless runner game, such as Temple Run [162], it is an

important, yet a non-trivial task for the designers to determine the running speed

of the character. If the speed is too slow or too fast, players will easily get bored

or become frustrated, and, naturally, lose engagement with the game itself. If game

designers could quickly evaluate the engagement of players, they could dynamically

vary the game speed and game contents to optimize the gaming experience based

on the current engagement measurement and player’s skill levels.

Finally, accurately determining the engagement level of users can be used, be-

yond just games, as a trigger for providing personalized content and interaction

modalities in other applications. For example, an advertisement could be triggered

when the current engagement level of the user is low to suggest new content or

applications.
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3.4 EngageMon Design

3.4.1 Overview

SCR	Extraction HRV	Extraction
Touch	Feature	
Extraction

SCR	Analysis Frequency	
Domain	Analysis

3D Skeleton	
Movement	Feature	

ExtractionTime	Domain	
Analysis

Feature	Selection

Engagement	Classification

EDA PPG Touch signals 3D skeleton points

Engagement Level

Data Acquisition

Data Processing

Engagement
Recognition

Figure 3.2: Overview of EngageMon

We built a prototype of EngageMon with all the components shown in Fig-

ure 3.2. Specifically, EngageMon collects its sensory input data from (1) a wrist-

band with an Electrodermal Activity (EDA) sensor and a Photoplethysmography

(PPG) sensor, (2) a touchscreen and an accelerometer sensor from a mobile device,

and (3) a depth camera. A data sample (corresponding to a game session) in En-

gageMon is processed through a segmentation phase, a feature extraction phase, a

classification phase, and a result aggregation phase to make a final prediction of the

gamer’s engagement level over that game session. EngageMon first splits the input

data into multiple pre-determined processing windows. Then, it performs feature

extraction and classification over each processing window. Lastly, it aggregates the

classification results from multiple processing windows and outputs the final en-

gagement level for the entire gameplay. We cover each aspect in more detail in the

following sections.
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3.4.2 Sensing Modalities and Features for Detecting Game En-

gagement

EngageMon uses various sensing devices to infer the engagement level of game

players. Table 3.3 summarizes these sensing modalities and the representative fea-

tures we used. We discuss below each sensing modality and the extracted features

in detail along with the reasons behind why we explored such sensors.

Table 3.3: Summary of the representative features. We used a subset (average,
median, minimum, maximum, and standard deviation) of each feature described.

Sensor Feature type Description

PPG
HRV on time domain

Heartbeat-to-heartbeat interval and
successive interval pair’s difference

HRV on frequency domain
Spectral power in low-frequency

band (0.03-0.15 Hz) and
high-frequency band (0.15-0.4 Hz)

EDA
Skin conductance response Frequency, amplitude, and area

Phasic component series
Mean of amplitude, variation of amplitude

(standard deviation and entropy)

Touchscreen Touch event
Touch duration, contact area,

touch-to-touch interval, distance
and speed traversed by finger

Depth camera Upper-body movement
Distance moved by head, shoulders,

chest and elbows (x, y, z components)

Physiological Signal Sensors

Physiological signals are well-known to be useful in inferring cognitive and emo-

tional states since they reflect the impact that such states bring to the nervous

system [83, 20]. While electroencephalogram (EEG) and facial electromyogram

(EMG) sensors are also useful and widely used to infer emotions, the data acqui-

sition process requires attaching electrodes to the scalp and facial points, which

is obtrusive and impractical. For designing a practical sensing system to identify

gamers’ engagement states, we instead exploit physiological sensors such as photo-

plethysmography (PPG) and electrodermal activity (EDA), which are much easier

to access and attach to target participants.

• Photoplethysmography:
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PPG sensors consist of an LED and photodiode. The LED emits light towards

human skin at a very high frequency, and the photodiode captures the reflected

light to measure the amount of light absorption occurring at the veins. Nat-

urally, using PPG sensors, we can collect measurements on how the human

heart pumps blood throughout the body, which provides data on heart rate and

heart rate variability (HRV). Given that HRV measurements allow the extrac-

tion of both time- and frequency-domain features, which are useful in captur-

ing autonomous nervous system activities for inferring emotional states [83],

we focus on capturing the HRV features from the PPG sensor.

Specifically, for feature extraction, we first extract the heartbeat-to-heartbeat

interval measurements by detecting the systolic peak of the heartbeat wave-

form from the raw PPG data. Based on this, we capture HRV features in

the time-domain including features such as the mean and standard deviation

of the intervals (SDNN), mean and standard deviation of the first and sec-

ond derivative of the interval series, root mean square of successive interval

differences (RMSSD), standard deviation of successive interval differences

(SDSD), and the number of successive interval pairs that differ by more than

50 ms and 20 ms (NN50 and NN20). On the frequency domain, we com-

pute the powers of two frequency bands that are dominant in an HRV pat-

tern’s spectral analysis: the low-frequency band (0.03-0.15 Hz) and the high-

frequency band (0.15-0.4 Hz). Note that in our experiments, the movements

of the users caused motion artifacts and impacted the signal quality, in which a

small number of heartbeats were not detected from the PPG signal traces. For

such samples, we applied a simple linear interpolation method to reconstruct

the missing interval points.

• Electrodermal Activity:

EDA, also referred to as galvanic skin response, is a measurement of skin con-

ductance obtained by applying low-level current on two electrodes attached
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to user skin. EDA is known to be a reliable indicator of sympathetic arousal,

which regulates the attention levels and affective states [20]. Note that the

EDA signal combines a tonic component (or baseline component) and a pha-

sic component. While the tonic component changes slowly and reflects the

general activity of sweat glands influenced by the body and environmental

temperatures, the phasic component shows rapid changes and correlates with

the responses to internal and external stimuli.
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Figure 3.3: Two samples of EDA signal collected from one subject corresponding
to (a) moderate engagement and (b) high engagement levels.

We begin by extract the tonic component from the raw EDA signal using Han-

ning low-pass filter with a window of 4 seconds. Given the minimal correla-

tion between the tonic component and the underlying arousal state [20, 83],

we remove it from the EDA signal. From the remaining phasic component

waveform, we perform peak detection to infer the skin conductance response

(SCR), which signifies either a non-specific physiological response or a re-

sponse to a specific stimulus such as a critical moment in a game. We then

extract the statistical features related to SCR including SCR occurrence count,

mean and standard deviation of amplitude and covered area of SCR. Those

features have been shown to be highly correlated to cognitive load, attention

and arousal state in general [47, 140, 20], which are important attributes of
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engagement in games. Figure 3.3 illustrates the differences between two EDA

series of one subject in our lab-setting study (Section 3.5) under two condi-

tions: high level and a moderate level of engagement. When the subject is

highly engaged, the SCRs occur more frequently with higher amplitude com-

pared to the moderately engaged condition. We also compute several features

that capture the oscillation or variation of the phasic component waveform

such as standard deviation and entropy.

Touch Sensor

In addition to the physiological signal reactions towards the game playing activity,

we see the opportunities to exposing physical responses as well. As the first phys-

ical sensing modality, we take sensory information that can be captured using the

smartphone’s native software interfaces. Capturing the touch behavior is the most

unobtrusive approach as the gaming device itself can achieve it. Also, prior work

has shown that the touch interaction of mobile users is affected by the emotional

stimuli; for example, mobile users tend to perform a touch task slower but more

accurately when they are exposed to the positive stimuli [121]. We thus hypothe-

size that the touch behavior during mobile gameplay possesses information related

to engagement level of the user. From the raw touch signals, we extract measure-

ments such as the touch frequency, touch-to-touch intervals, finger contact area, and

speed/distances traversed by a finger on the screen.

Depth Camera

An additional physical aspect that we observe is the anthropometric data captured

by externally installed 3D depth cameras. Specifically, using cameras such as the

Microsoft Kinect, we capture the posture and movements of the player’s upper body.

The body movement has been studied as an important modality to infer the affective

states with comparable performances to the recognition systems that use facial ex-

pressions [85]. Moreover, the temporal dynamics of head gestures such as shaking,
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rolling, leaning forward or backward have been shown to be useful to detect the

engagement state of TV viewers [59]. We hypothesize that such body-movement

features would work in the mobile gaming contexts. From the 3D skeletal coordi-

nations tracked by the depth camera, we extract several statistical features related

to the movement of player’s upper body including head, shoulders, upper arm, and

chest.

Accelerometer

Lastly, we exploit the accelerometer readings gathered within the smartphone. For

both the touch-sensor and accelerometer, we can run a background service that cap-

tures such data at high rates. This feature is especially useful for games that re-

quire controlling using the accelerometer motions. Even for the cases where the

accelerometer is not used for game interaction, the accelerometer can potentially

provide information on how the player is immersed in the game.

3.4.3 Feature Deduction and Selection

Feature Deduction

Using the sensors discussed above, we extract a total of 70 features: 23 from

the physiological signals (e.g., PPG and EDA), 15 from the touch actions, and 32

from the Kinect-based skeletal data. While prior works show that features such as

the SCR occurrence count are useful measures for detecting the engagement state

and various emotions [159, 60], we make no assumptions on their correlation for

engagement level classification.

We identify sensing features that carry overlapping information to reduce the

computational complexity of the feature selection and classification evaluation pro-

cess. Specifically, we compute a correlation matrix across all features and remove

those features that have the correlation coefficient higher than 0.9 which is consid-

ered very high correlation. From this process we noticed that a majority of the stan-
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dard time-domain HRV features are highly correlated to each other (e.g., SDNN,

RMSSD, SDSD).

Feature Selection

EngageMon further performs feature selection as a step to reduce the number of

required features in performing classification. This step not only helps improve

the model’s classification accuracy by removing features with negative influence

but also provides faster and a more efficient implementation [146]. This process

involves two steps, feature ranking, and classification evaluation which is both

wrapped inside a re-sampling process (i.e., a 10-fold cross-validation).

With the remaining features, we rank their importance using a Random Forest

model. Random Forest provides a robust way to assess features’ importance by

computing the mean decrease in accuracy after removing the association between

that feature and the data. If the removal of a feature brings large impact to the

model’s accuracy, this implies that the specific feature plays an important role. With

a list of features ranked by their importance, we evaluate the classification, each

round adding one more feature from top of the list, to determine the minimal set of

features that the model can achieve the highest accuracy.

3.4.4 Final Decision Making

As the final step, EngageMon aggregates the classification result computed per-

window using the selected features and outputs the engagement level for the entire

game playing session. Here, we take a simple voting approach in which the classi-

fication result with high occurrences (on a per-window-basis) becomes the engage-

ment level classification result for the entire session.

As an example of the classification procedure, in Figure 3.4 we split a 120-

second game session into six 20-second windows. Here, if four out of six windows

are classified as ‘high engagement’, the entire session is determined as ‘high en-
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Figure 3.4: Overview of the engagement detection process: (1) a 120-second game-
play data is segmented into six 20-second windows, (2) feature extraction and clas-
sification is performed on each 20-second window, (3) the classified labels of the
windows are aggregated to determine the final engagement level, one of (high, mod-
erate, low).

gagement’. If two engagement levels have the same number of windows, we select

the engagement level of the most recent window as the tie-breaker. We choose to

take such an approach given that there can exist small variations in the sensor mea-

surements and it takes time for the user to start fully engage in the game from the

beginning of a session.

3.5 Data Collection

3.5.1 Participants

We recruited 54 mobile gamers for this study (27 from South Korea and 27 from

Singapore; ages from 21 to 40, M = 27.34, SD = 2.88; two females). The partici-

pants had various mobile gaming frequencies ranging from less than one hour per

week to more than seven hours per week.

3.5.2 Apparatus

We collected three types of data from the users during their game plays: (1) physi-

ological signals from a wristband, (2) touch logs and 3D acceleration data from the

game-playing device, and (3) upper-body motion from the Kinect depth camera.

Physiological signals. We used the Empatica E4 wristband [43] to collect EDA

and PPG signals. Figure 3.5 shows the E4 device. The E4 device allows us to sense

and retrieve EDA and PPG data at the frequency of 4 Hz and 64 Hz, respectively.
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(a) EDA sensor. (b) PPG sensor.

Figure 3.5: Sensors embedded in E4 wristband.

We asked the participants to wear the E4 on their non-dominant hand (which is the

typical hand people wear the wristband). This helps minimize motion artifacts and

also follows the standard practice used when measuring EDA.

Interactions and body movements. We used a Samsung Galaxy Tab S2 for the

gameplay device and captured the participant’s interactions with the device using

our custom data collector running as a background app. Through this data collector

we collected (1) touchscreen events (e.g., touch position, duration and contact area)

and (2) the 3-axis accelerometer signals captured at 40 Hz. In addition, we cap-

tured the upper-body motion of a player (i.e., the movements of their head, shoul-

ders, arms, and chest) using a Microsoft Kinect. The Kinect camera was installed

∼1.5 meters away from the participant. The participants were aware (and provided

consent) that we were using the camera to track their skeletal movements only, not

to capture or record live video.

3.5.3 Target Games

Table 3.4: The six games we used in our experiments.

Game Rating Installs Category Interaction
Temple Run 4.3/5 100 mil+ Endless Runner Swipe, tilt

Bridge Runner 3.7/5 500,000+ Endless Runner Swipe, tilt
Traffic Rider 4.7/5 100 mil+ Motorcycle Racing Tilt
Motoracing 3.7/5 1 mil+ Motorcycle Racing Tilt

Monument Valley 4.7/5 1 mil+ Puzzle Tap
Hocus Moving 3.6/5 50,000+ Puzzle Tap, swipe
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(a) MonumentValley (b) Hocus moving (c) Temple run (d) Bridge runner

(e) Traffic rider (f) Motoracing

Figure 3.6: Screenshots of the games.

To study the feasibility of engagement sensing over various games, we selected

six different games that have more than 50,000 downloads in the Google Play store;

two each under three popular game genres (i.e., racing, running, and puzzle). These

genres were chosen as they engage players using different stimulus and interaction

patterns; thus providing sufficient variation to test the robustness of EngageMon.

Table 3.4 provides basic information for each games while Figure 3.6 shows screen-

shots of the six games that we used in our experiments. For each game genre, we

selected one game with high review scores (>4.2 stars) and another with low review

scores (<3.8 stars). This use of games with different ratings allowed us to collect

data for a wide variety of engagement levels – with the hypothesis being that higher

rated games would naturally be more engaging than lower rated games.

3.5.4 Data Collection Procedure

The main data collection portion of our study was conducted in a lab-setting en-

vironment with the detailed setup shown in Figure 3.7. Specifically, the players

were asked to wear a smart wristband and play the games while sitting in front of a

Microsoft Kinect. We did not provide any other instructions to minimize any bias
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Figure 3.7: Experimental setup.

that would affect the player’s gaming behavior and physiological states during the

gameplay.

Phase	2
Phase	1 Game	3

Game	2

Watching baseline video

Preparation
- Briefing	the	experiment
- Getting	consent	form
- Setting	up	devices

Game	1

Engagement	
Assessment

Playing game

x 2 

Figure 3.8: Overview of study procedure.

Figure 3.8 illustrates the data collection procedure in detail. We asked each

participant to play six different mobile games in total while we collected various

sensor data.

We noticed that our participants would come to the experiment in many different

emotional states: some would feel excited to try the games while others would have

more neutral emotions. Unfortunately, these different initial emotional states could

have different and confounding effects on the participant’s physiological signals

and gaming behaviors. To address this issue, at the start of each phase, we showed

each participant a video with neutral contents for three minutes to elicit a neutral

emotional state in each participant, to eliminate, as much as possible, the confusing

caused by starting the study with different initial emotions. The videos were vali-
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dated from a pilot study in our previous work [68], which showed how to influence

specific states in participants using techniques from psychology research. Follow-

ing this, the participants were asked to play three different games (two sessions for

each game) with the default setting for each game and provide a self-report on their

engagement levels after each gameplay; we use these self-reports as the ground

truth engagement values in our study. The duration of each game session varied

from 50 seconds to 4 minutes depending on the game and the competency of each

participant. Overall, each user study session took up to 30 minutes to complete.

Note: we randomized the order of the games played to minimize experimental bias.

In addition, to minimize participant fatigue, we divided the data collection into two

phases with a break in between.

3.5.5 Ground Truth

Table 3.5: Game Engagement Questionnaire.

1 I was really into the game.
2 I lost track of time.
3 Playing seemed automatic.
4 The game seemed real.
5 I felt I couldn’t stop playing.
6 I couldn’t tell that I was getting tired.
7 I felt spaced out.
8 Time seemed to stand still or stop.

We consider the aforementioned participant self-reported engagement levels as

the ground truth. In particular, we asked each study participants to answer a short

survey after each game session. Each participant answered the survey 12 times in

total (two game sessions per game and six games for the whole experiment). For

the survey, we used a simplified version of the Game Engagement Questionnaire

(GEQ) designed by Brockmyer et al. [21]. The original GEQ consists of 19 assess-

ment statements which cover four aspects related to engagement including immer-

sion, flow, presence, and absorption. We used eight out of 19 statements that were

relevant to our mobile gaming contexts. Our modified survey is shown in Table 3.5.
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Figure 3.9: Box plot of reported engagement scores collected from 54 participants.
Higher indicates more engaged.

For each statement, participants were asked to rate how much they agreed with

the statement using a 5-point Likert scale (1 to 5) (5 – “agree”, 4 – “somewhat

agree”, 3 – “neutral”, 2 – “somewhat disagree”, 1 – “disagree”). We used the simple

sum of all the scores to generate a final engagement score between 8 and 40, with

40 indicating the highest possible engagement level.

Figure 3.9 plots the distribution of the engagement scores as reported by the

study participants. Since the goal of EngageMon was to categorize the gamer’s en-

gagement into three different and distinct levels (i.e., low, medium, and high), as

requested by the majority of the game developers and designers in our motivational

study (Section 3.3), we mapped the total scores obtained from our modified GEQ

into three distinct levels. We mapped scores below the 33.3 percentile in the distri-

bution as a low engagement level, between 33.4 and 66.6 percentiles as a moderate

level, and above the 66.7 percentile as the high engagement level.

3.6 Results

We conducted an extensive analysis to evaluate the accuracy of EngageMon. We

used 10-fold cross-validation over the dataset collected from the 54 mobile gamers

in our lab-setting study and report the average accuracy for all participants; we also

present the confusion metrics to better understand misclassified results.
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Table 3.6: Parameters used in our experiments (for the sensor combinations, “P”,
“T”, and “K” indicates physiological sensors, touchscreen sensors, Kinect depth
camera, respectively. The definition of different training datasets and gaming fre-
quencies are given in the corresponding subsections).

Parameters Variations Default Value
Sensor Combination P, T, K, P+T, P+K, T+K, All All
Processing Window 10, 20, 30, 40, 50 (second) 20
Gaming Frequency Frequent, Casual, Non-frequent, All All

To understand the robustness of our technique, we measured the accuracy of En-

gageMon under various operating parameters. Table 3.6 shows the parameters, their

variations, the default values, and the subsections we present the relevant sensitiv-

ity study results. We explain the choice of parameters used in each corresponding

subsection. By default, if not stated otherwise, our accuracy results use all sensor

combinations (wearable, mobile phone, Kinect). Furthermore, we trained our clas-

sifier using only data from within the same game genre; for example, to recognize

the engagement level for the “Traffic rider” game, we used the model trained with

the sensor data measured for all racing games only (i.e., “Traffic rider” and “Mo-

toracing”). In addition, we set the default processing window size to 20 seconds.

We performed 10-fold cross validation at the sample level where each sample is a

game session by a specific participant (each participant had two sessions with each

game). Unless explicitly stated otherwise, all results shown use these settings.

3.6.1 Overall Accuracy

We first evaluated the overall classification accuracy of EngageMon. Figure 3.10

shows the accuracy of EngageMon’s 3-level engagement classification for the six

different games using the per-game-genre models. It shows our 10-fold cross val-

idation results at both the sample (each sample is a game session and each partic-

ipant had two sessions with each game) and at the subject level. Overall Engage-

Mon shows high accuracy in detecting engagement levels. The highest accuracy is

91% for the “Monument Valley” puzzle game, while the lowest accuracy is 74%

46



for the “Motoracing” game. Except for “Motoracing”, EngageMon achieved over

84% accuracy for all games, demonstrating it’s potential for automated engagement

evaluation.

We also conducted a 10-fold cross-subject validation in which our test data did

not use any samples collected from the same subject in the training data to evaluate

the generality of our models. Results from Figure 3.10 (“Cross-subject”) show the

classification accuracy of the per-game-genre models when applied to new subjects.

Compared to cross-sample validation, the accuracy drops by ∼8%. This highlights

the differences in our classification performance when using general versus person-

alized models generated using the dataset collected from our lab-setting study.
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Figure 3.10: Cross-subject validation classification accuracy of per-genre models
using Random Forest with 20-second window

We looked into the confusion matrices (per game type) to better understand the

misclassified instances, especially for the racing games with lower accuracy. Ta-

ble 3.7 shows our results. For the puzzle and runner games (showing high accuracy),

misclassification occurs between the “moderate” and “high” states or the “moder-

ate” and “low” states. This suggests that a large source of error occurs when the

player has an engagement level at the borderline between two different levels. On

the other hand, for the racing games, there are ∼5% of instances where the low en-

gagement level is misclassified as a high engagement level. The reasons are mainly

two-fold: (1) touch interaction data is not available in racing games as a player only

needs to tilt the game device to control the target motorcycle in the racing game, and
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(2) the tilting gestures cause more motion artifacts (than touch gestures), degrading

the quality of the physiological signals; the tilt gestures easily change the contact

area and tightness between the skin and the EDA and PPG sensors embedded in the

E4 wristband.

Table 3.7: Confusion matrices of the per-genre engagement classification models

High Mid Low
High 41 2 2
Mid 1 31 6
Low 1 1 47

(a) Puzzle games

High Mid Low
High 46 3 0
Mid 5 30 8
Low 0 3 46

(b) Runner games

High Mid Low
High 45 5 1
Mid 7 37 1
Low 6 6 26

(c) Racing games

3.6.2 Classifier Selection

For designing the classifier that determines the engagement state using the various

sensor measurements, we empirically evaluated a number of widely-used classifi-

cation algorithms, which included an ensemble scheme (e.g., Random Forest), a

non-linear classifier (SVM with Radial Basic Function - RBF kernel), and a set of

linear classifiers (SVM with linear kernel, Naive Bayes, LDA, and multinomial lo-

gistic regression). Note that we validated the performance of each classifier with

its optimal configuration (i.e., optimized cost and gamma parameters for SVM) and

the most relevant selection features customized for each model.

Table 3.8: Classification accuracy of different classifiers: Random Forest (RF), Sup-
port Vector Machine (SVM), Naive Bayes, Linear Discriminant Analysis (LDA),
Logistic Regression (LR).

Classifier
Game RF SVM-Radial SVM-Linear Naive Bayes LDA LR

All 81% 72% 53% 41% 51% 56%
Puzzle 90% 84% 67% 56% 67% 77%
Racing 81% 64% 51% 42% 49% 57%
Runner 86% 86% 64% 41% 64% 73%

Our results, shown in Table 3.8, show that Random Forests and SVM with RBF

kernel outperforms other linear classifier options. The low accuracy of the linear

classifiers suggests that a linear separation of the selected features is not feasible,
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and thus we need to carefully choose non-linear classification algorithms and con-

figurations to achieve a high accuracy. Although SVM with RBF kernel performs

nearly as well as Random Forest in some cases, it requires heavier computation to

perform a grid search for the optimal kernel parameters (cost “C” and Gaussian

parameter “gamma”) and an optimal number of features. Quantitatively speaking,

since we have a list of 54 features ranked by their importance, for the Random

Forest model, we only need to run the classification 54 times (each round adding

one additional feature from the feature list) to identify how many features in the

model achieves the highest classification performance. On the other hand, for the

SVM with RBF kernel, each additional feature requires re-optimizing the model

for all the different parameters. Based on these observations, we decided to use a

Random Forest-based classification scheme as it had high classification accuracy

performance and a relatively shorter training time compared to using the SVM with

RBF kernel. Note: an additional benefit of using the Random Forest is that it does

not require a complicated optimization process.

3.6.3 Impact of Different Sensor Combinations

We now explore how accurately EngageMon can detect the engagement level when

only a subset of the sensors is available. During a game’s internal focus group

testing phase, it is likely that all sensors are available as the testers can setup well-

controlled test environments with various sensors. However, for beta-tests with

real users, it is likely that only a small subset of sensors may be accessible. The

touch sensor is naturally available as we target mobile games, and physiological

signal data is becoming increasingly available as many mobile users now also wear

wristbands or smart watches embedded with physiological sensors.

For this experiment, we trained the classifier using all possible combinations

of the three sensor types (i.e., physiological sensors, touch interaction sensor, and

Kinect). For each sensor subset combination, we followed the procedure described

49



Table 3.9: Top 15 features with the highest importance scores of the Puzzle games,
sorted by the sensor type. Corr: Spearman’s rank correlation coefficients between
the features and the reported engagement score, Score: feature importance score
(i.e., mean decreased accuracy in percentage).

Feature Corr Score
Sensor: PPG

Mean of heartbeat-to-heartbeat interval +0.143 27.80
Power spectrum at the high-frequency band (0.15-0.4 Hz) +0.175 27.60
Number of adjacent interval pairs differ more than 20 ms -0.262 27.58
Power spectrum at the low-frequency band (0.03-0.15 Hz) +0.072 22.14

Standard deviation of adjacent intervals’ differences -0.110 18.85
Sensor: EDA

Count of skin conductance response occurrences +0.174 21.54
Mean of amplitude of skin conductance response +0.123 19.34

Entropy of SCR component of EDA signal -0.097 18.32
Standard deviation of skin conductance response values +0.159 17.60

Sensor: Touch screen
Contact area between the finger and the screen -0.110 36.53

Mean touch duration -0.137 19.36
Distance traversed by finger on the screen -0.103 16.51

Mean touch-to-touch interval +0.150 15.50
Head movement in z-axis (forward and backward) -0.052 27.36

Shoulder movement -0.044 20.44

in Section 3.4 to rank and select the optimal feature set. Note that each game genre

has a different selected feature set for classifying engagement level. For example,

Table 3.9 shows the list of 15 selected features chosen as the optimal feature set

from the three sensor types applying for the Puzzle games. Many physiological fea-

tures such as SCR features that related to the peaks in the EDA phasic are correlated

with the engagement score of Puzzle game as shown in Table 3.9. The SCR fea-

tures have been used to infer emotional states in previous studies as they are closely

linked to arousal level and cognitive load [122, 83, 20]. Many HRV features are

also selected as they reflect the activity of autonomic nervous system which is af-

fected by the emotional stimuli [83]. We observe that similar physiological features

are selected for classifying engagement level of Racing and Runner games. As for

the gaming behavior features (e.g., touch pattern and upper-body movement), the

correlation is not consistent across three game genres. The interpretation of those

features is game-specific and subject to the game design. For instance, the head

movement during the gameplay of Puzzle games is negatively correlated with en-
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gagement score (Table 3.9). As the games require mental focus to solve the puzzle,

the movement of upper body may suggest the lack of focus or low engagement.

On the other hand, the head and shoulder movements are positively correlated with

engagement scores in Runner games and Racing games. As the players have to tilt

the mobile while playing these games, upper body movement is also a part of gam-

ing interaction that indicate player’s engagement level. Another example is that the

touch-to-touch interval is correlated with engagement scores in Puzzle games. One

possible interpretation is that, as the games have no time limit, the highly engaged

players tend to touch more frequently to find the solution for the puzzle. However,

the same features is not selected for Racing game genre as it does not require touch

interaction. Some features that have low correlation coefficient are also selected as

they effectively complement other important features.

Table 3.10: Classification accuracy for different sensor combinations. P: physiolog-
ical sensors, T: touchscreen sensor, K: Kinect depth camera. Note that the racing
games (Traffic rider and Motoracing) do not require touch interaction, so the corre-
sponding combination is not available.

Feature Set
Game P+T+K P+T P+K K+T P T K
Monument valley 91% 84% 83% 79% 73% 68% 71%
Hocus moving 89% 86% 86% 79% 76% 71% 56%
Traffic rider NA NA 85% NA 75% NA 84%
Motoracing NA NA 74% NA 54% NA 64%
Temple run 88% 80% 86% 88% 78% 78% 84%
Bridge runner 85% 83% 79% 80% 65% 65% 73%

Table 3.10 presents the classification results when EngageMon uses different

sensor combinations. Note: for the two racing games, the touch interaction data

is not available. All sensors contribute to the accuracy, while different sensors are

more useful for different games. For example, the physiological sensors, alone,

achieve ≈75% accuracy for both puzzle games (i.e., capturing the movement in

“Monument valley” and “Hocus”) while they are not effective for the “Motoracing”

game. The “Motoracing” game involves tilt gestures at high degrees, causing sig-

nificant motion artifacts in the physiological signals. On the other hand, the Kinect-

based movement detection is more effective for the runner and racing games, and
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classifies the engagement level with an average accuracy of 79% and 74%, respec-

tively. We notice that players move their upper-bodies a lot more when they are

tightly engaged with these two game types. Kinect is less useful for puzzle games

as the gamers usually just sit still or marginally move regardless of their engagement

level. Such small movements are difficult to track and may not be highly correlated

with the engagement level of gamers.

Interestingly, EngageMon can achieve high accuracy with a combination of

physiological signals and touch interaction data. The average accuracy, with just

these two sensors, is 86% and 81% for puzzle and runner games, respectively, which

is nearly as good as when using the full set of sensors (with depth camera). The re-

sults are notable in that both sensing modalities are likely to be obtainable from

many mobile gamers. Furthermore, only with touch sensor data (which can be ob-

tained from the game device itself), the accuracy for the puzzle and runner games

is still ≈70%. These results demonstrate the feasibility of deploying EngageMon in

practice.

3.6.4 Impact of Feature Extraction Window

We now evaluate the impact on accuracy of different processing window lengths.

Note: EngageMon classifies the engagement level over smaller processing win-

dows and aggregates the results to determine the final engagement level for the

entire gameplay (as described in Section 3.4). Since engagement levels may vary

even during a single gaming session, it is important to use a good window size to

compute the features at the ideal time. In addition, we acknowledge that we focus

on studying the effectiveness of features at shorter time granularity in the context

of measuring engagement of mobile game players; and future work in other domain

(e.g., psycho-physiology) may further investigate the extent of validity of such fea-

tures (especially features computed from physiological signals) at short time win-

dows.
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We empirically tested different window sizes between 10 seconds and 50 sec-

onds. The minimum window as 10 seconds is selected because we expect the physi-

ological reactions to a stimulus to take at least this long to be reflected. For example,

a skin conductance response may be initiated only after 3 seconds of an event, and

last for ∼4 seconds [20]. Prior works also used the heart rate variability (HRV)

and skin conductance response (SCR) features computed by short time window of

signal (e.g., 10-second window [122], 50-second window[83]) to detect the emo-

tional states. Besides, it is quite common that users do not touch the screen for a

few seconds for puzzle games, so the touch features may not be available for many

windows if we use a shorter window (less than 10 seconds). We set the maximum

window size to 50 seconds assuming an average gameplay duration ranging from

50 seconds to 4 minutes.
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Figure 3.11: Impact of window length on classification accuracy

Figure 3.11 shows that the use of a 10-second or 20-second window performs

the best under our testing conditions. Since most racing game and runner game

sessions last from 50 seconds to 2 minutes, models with long windows of 40 or 50

seconds would only contain a few subsamples to determine the engagement level.

Given that the classification accuracy at the window level does not improve much

as the window length changes from 10-20 seconds to 40-50 seconds (from 60% to

65%), using long windows would negatively impact the final classification model’s

voting logic due to the insufficient number of windows per voting interval.
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3.6.5 Impact of Gaming Frequency

Finally, we investigated if considering the experience of the game players would

improve the accuracy of EngageMon’s engagement classification. Our assumption

here is that different levels of gaming experience can cause different interactions and

behavioral patterns. Furthermore, subjective engagement levels and physiological

states could be affected accordingly.

To validate this hypothesis, we split the participants into three different groups

based on how long and often they played mobile games on a per week basis:

• Frequent gamers: play more than 7 hours per week (18 participants)

• Casual gamers: play from 1 to 7 hours per week (19 participants)

• Non-frequent gamers: play less than 1 hour per week (17 participants)
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Figure 3.12: Classification accuracy of the customized models based on gaming
frequency

Next, we built a customized model for each group of gamers (e.g., frequent

gamers, casual gamers, and non-frequent gamers) to isolate the differences in gam-

ing behavior and engagement assessment among these three groups. Figure 3.12

summarizes the accuracy of the customized classifiers. Our results show that di-

viding our participant population by gaming frequency can help improve the en-

gagement classification performance significantly compared to a general model that

includes all participants regardless of their gaming frequency.
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To better understand the potential reasons behind this increase in accuracy,

we looked at the self-reported evaluation scores. Figure 3.13 shows that frequent

gamers reported lower engagement scores for all three game types in our experiment

compared to the other two groups. The possible reason being that these users have

already tried many different highly-engaging games and their subjective assessment

is relative to these previous experiences. In addition, participants with more gam-

ing experience also tend to play mobile games differently in terms of their physical

game interaction and physiological responses.

8

12

16

20

24

28

32

Puzzle Runner Racing

En
ga
ge
m
en

t	s
co
re

Game	type

>	7h/w

1-7h/w
<	1h/w

Figure 3.13: Engagement scores for the three groups with different gaming frequen-
cies

As another investigative point, Figure 3.14a shows the average number of touch

events, per 20-second window, that participants performed during their gameplay.

The runner game requires users to perform touch interaction (swipe) at higher fre-

quencies to navigate the in-game character within the game. The results suggest

that frequent gamers, who typically play the game with a higher skill level (their

game sessions last longer. The session ends when the participant loses in the game),

have more interaction with the touchscreen compared to other groups. On the other

hand, for the puzzle games, users can play at their own pace and only interact with

the screen when they have made a decision or require information. As a result,

non-frequent gamers perform a significantly higher number of touch actions dur-

ing gameplay in puzzle games (as they are likely looking for gameplay guidance
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Figure 3.14: Touch interactions for the three groups with different gaming frequen-
cies

information).

Finally, Figure 3.14b shows the normalized touch area, which can be considered

as a proxy of touch pressure, of the three groups during gameplay. The group of

frequent gamers appears to have a significantly smaller touch area indicating that

these users make touch actions in a less forcible manner compared to the other two

groups. Altogether, these results serve as evidence that creating models that incor-

porate how experienced a game player is can lead to significantly better operational

results.
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3.7 Evaluation in Natural Setting

The main dataset used in this study was collected in a lab-setting environment,

which involved multiple sensing devices in a closed setting. We note that this in-lab

experimental procedure could potentially affect the gaming experience of our study

participants. In order to further evaluate the performance of EngageMon in a more

realistic setting, we recruited ten additional study participants, all in South Korea,

and conducted a similar set of experiments in a more “natural” setting (see below).

All ten participants were between the ages of 21 to 50 (M = 28.9, SD = 7.32) with

two of the participants being female.

Among the three sensing channels that we used in the previous study, the touch

screen is the most natural and unobtrusive sensor to use given that it is already a

fundamental smartphone component. Wristbands with PPG and EDA sensors are

also arguably familiar to many mobile users as more physiological sensors are being

adopted in smart watches and bands. However, some participants may feel uncom-

fortable with the presence of the Kinect camera tracking their skeletal movements,

which can lead to un-natural emotions and actions. Furthermore, having to follow a

fixed experimental procedure (as done in the lab-setting experiments) can also lead

to a less natural gaming experiences.

To address these issues, we designed a more “natural” experimental setting as

follows: First, we eliminated the use of the Kinect camera as a sensor. However, we

did ask them to wear our wristband sensor. Second, we asked the players to select

their own comfortable environment for playing games rather than restricting them

to a lab environment. For example, some participants picked sitting in a coffee shop

to run the experiment while others choose their home while lying down in bed or on

a couch. Finally, we allowed the players to select their own order in which to play

the 6 games and they could play each game for as long as they wanted. Note: we

also did not ask the players to watch the neutral videos between different games. At

the end of each game session, we asked the participants to report their engagement
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levels using the same Game Engagement Questionnaire (GEQ) we used previously.
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Figure 3.15: Classification accuracy of per-game-type models evaluated on a dataset
of 10 participants in a natural experimental setting. “P” and “T” indicate physio-
logical sensors and the touchscreen, respectively. We only reported the results for
physiological sensors for racing games as they do not require touch interaction.

We trained our classification models using the physiological and touchscreen

data from the lab-setting experiment with 54 participants. The skeletal movement

data collected from Kinect camera was not used for this training step. We then eval-

uated the models using the dataset of the 10 newly recruited participants playing

games in the more “natural” setting. Figure 3.15 shows the evaluation results of

per-game-genre models using Random Forest. We see that the accuracy of the en-

gagement classifiers dropped to ∼75% for the puzzle and runner games when using

just the physiological signals from the wristband and touch signals from the mobile

device (Kinect was omitted).

When using only touch data, the per-game-genre models only achieve an aver-

age accuracy of 63%. This is a 8% drop compared to the cross-sample evaluation

performed using just the lab-setting dataset. One reason of the drop is because the

lab-setting data set evaluation test set includes samples from subjects that were used

as training data as well. This relatively low accuracy may not be sufficiently accu-

rate to develop an adaptive game in practice. However, the goal of this current work

is to demonstrate the potential of using sensing data to classify a gamer’s engage-

ment levels. We believe that EngageMon’s in-situ accuracy can be greatly improved.

In future work, by combining the sensing signals with additional contextual features
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extracted from the game itself.

3.8 Discussion

We have shown that by using a set of internal and external sensors, it is possible to

infer the engagement level of users playing a mobile game. At the same time, our

results introduce a set of interesting discussion points as follows:

• Engagement on game rating: We present a preliminary study on the cor-

relation between user-reported game engagement levels from our lab-setting

study (described Section 3.5) and the ratings on the mobile app market. Note

that during the experiment, we did not provide any knowledge of each game’s

Google Play review ratings to the users.
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Figure 3.16: Average engagement scores of six games reported by 54 participants

Figure 3.16 shows the average engagement levels seen for each game that the

users were asked to play. Overall, we noticed that games with higher review

ratings (e.g., stars in the app market) showed higher engagement levels from

our study participants. In particular, for the highly-rated game in each of the

three genres, the average engagement score was, in the worst-case, >28/40,

while the most heavily engaged low-rated game showed an average engage-

ment score of ∼21/40. While comparing the absolute engagement scores

across different game genres may not be significant, we do notice that within
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a single genre, the engagement level is a very reasonable predictor of high

versus low-rated games.

• Validating and customizing for real-world use: While our current system

setup shows high classification accuracy for the six games chosen across three

genres, our survey results with game developers and designers suggest that

there are a number of customizable factors in the game design and testing

phase. For example, we noticed from our evaluations that sensing features

used for game engagement levels differ for varying game types. A challenge

that yet remains is how we can easily identify a set of effective common fea-

tures that can be utilized across a more general set of games.

• Integrating with heterogeneous gaming platforms: While the main focus

of this work was to detect the engagement level of users in mobile gaming

environments, the types of gaming platforms and the ways users interact with

such platforms are quickly diversifying. For example, when applying en-

gagement detection for games using the Xbox console, we can use the Kinect

sensor to detect the skeleton information from users. However, we will be

losing the information provided by the touch interfaces on a smartphone. Het-

erogeneous gaming environments will, thus, require the use of environment

specific sensing modalities to detect user engagement – opening up avenues

of research to determine the best sensors that work both for a specific envi-

ronment and across environments.

• Real-time engagement measurement: The engagement level of a player

may vary during a game session as reactions to various game events. Real-

time engagement tracking can provide developers with engagement scores

multiple times for a game session, and help developers understand the im-

pact of different game events on engagement. However, enabling real-time

engagement detection is a challenging problem. The critical challenge lies

in capturing the ground truth of a gamer’s engagement multiple times during
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gameplay without disturbing the gaming experience. One possible approach

to collecting such fine-grained ground truth is to record facial, vocal expres-

sions and body movements of game players and hire professional coders to

code the ground truth. However, this approach is costly and time intensive

while the validity of the ground truth is not fully guaranteed. Another method

is using high-fidelity brainwave sensors (EEG) and adopting the changes of

EEG signals as the baseline to compare. However, this approach is still lim-

ited in that EEG signals are only a proxy for gamers’ engagement, not a direct

ground truth. Also, the use of an EEG sensor-embedded headset is likely to

affect the gamer’s engagement during gameplay. Survey and interview meth-

ods are also not applicable; if we continuously ask participants or players to

report their engagement level, their gaming experience will be significantly

disturbed. It will be an exciting research problem to overcome such chal-

lenges and enable real-time engagement tracking as the future work.

• Engaging different types of users: Finally, we share an interesting quote

by one of the mobile game designers we interviewed. As a third-year mobile

game designer, the participant noted that “Drawing from the current trends of

mobile gaming, there are two types of users. The first case is the users that

want to heavily engage in a game and enjoy the playing process itself. For

these set of users, knowing their engagement levels and providing them with

highly engaging content is important. However, the second half consists of

users that only care about the result of the game. In this category, we have

users that only focus on whether they won or not. For this set, instead of

trying to analyze engagement levels, we try to provide incentives so that they

are well-attached to the game.”

This quote corroborates recent trends in mobile gaming development which

shows that game developers face difficulties in designing content for engaging

different types of users. For example, result-oriented game players need to be
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provided with continuous incentives (e.g., extra tokens, special actions etc.)

that boost their winning possibilities to maintain their engagement level. On

the other hand, process-engaged game players might find constant incentives

to be distracting from their goal of being immersed in the game. We hope to

extend our work to automatically detecting different types of players to allow

different engagement strategies to be executed.

3.9 Conclusion

Angry Birds, a once trendy game in the mobile app market, captured millions of

users by offering a highly engaging gaming experience. Likewise, measuring and

predicting a gamer’s engagement levels can be an effective barometer for determin-

ing a mobile game’s success. However, even large-sized game development firms

rely on subjective self-assessment surveys for making user engagement estimations.

This work presents EngageMon, a first-of-its-kind multimodal sensor system that

captures both the game interactions and physiological responses of players to in-

fer their engagement level while playing mobile games. We evaluated our system

by combining physiological signal data, smartphone touch, and tilt interactions, and

skeletal motion data collected from 54 study participants. Our results show that with

all three sensing channels, which can be deployed in a lab or focus group testing en-

vironment, EngageMon can classify three levels of engagement with an average

accuracy of up to 85% under cross-sample evaluation and 77% under cross-subject

evaluation. For a more relaxed form of testing, where participants are playing the

games in natural environments such as a coffee shop or their homes, that can scale

to a larger user base, we show that even when using a subset of sensors that are

available on the mobile device and a smart wristband, the average accuracy of en-

gagement level classification is 82% (cross-sample evaluation). While not perfect,

we believe that EngageMon is still a very promising first-step and that it already

can be used by game developers and designers to obtain useful insights during their
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future game development and design processes.
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Chapter 4

VitaMon: Measuring Heart Rate

Variability Using Smartphone’s

Front Camera

In this chapter, we propose a novel contactless heart rate variability (HRV) sensing

system, named VitaMon, to measure HRV from a video of the user’s face captured

by a smartphone front camera.

4.1 Introduction

Heart rate variability (HRV), fluctuations in the interval between consecutive

heartbeats, is an important physiological marker that reflects the changes in the

sympathetic-parasympathetic balance of the autonomic nervous system (ANS).

HRV has proven its effectiveness as a diagnostic tool in various research and clin-

ical studies related to cardiovascular disease, diabetic autonomic dysfunction, hy-

pertension, and psychiatric and psychological disorders. Furthermore, daily HRV

monitoring could be useful for screening and tracking the condition of individuals

at risk to serious health issues [149, 168, 132, 40, 154]. More generally, beyond

just clinical use, HRV measurements can also help to measure stress and engage-
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ment levels of a person performing various tasks, and it can also help monitor sleep

quality [155, 161].

Conventional HRV measurement techniques, however, have two significant

drawbacks to be used for daily HRV monitoring. First, they require additional

electronic or optical sensing devices [19, 152, 74] that are often not available to

most people. Second, most sensing instruments need direct contact to the skin

for reliable signal acquisition, making daily continuous measurements tedious and

uncomfortable. For example, electrocardiograph (ECG) recording devices require

several electrodes to be carefully attached to different body points making it imprac-

tical as a general daily use solution. Recently, more practical photoplethysmogram

(PPG)-based techniques are available that measure cardiac activities based on video

recordings of a finger or a human face. However, they are limited to detecting just

the heart rate (HR) [118, 169, 92, 134].

Our system has two clear benefits over prior techniques: (1) VitaMon does not

require any extra sensing device and uses a commodity smartphone’s front camera,

possibly with low resolution and frame rate, (2) sensing can be done naturally and

unobtrusively while the user uses the phone for different purposes (e.g., plays games

or video-chat). This opens up new opportunities to apply real-time HRV sensing in

mobile apps – e.g. to track the stress and engagement levels of users playing a

mobile game or using an education app.

Building VitaMon required solving several challenges before measuring HRV

using front-camera videos became viable. The core of HRV monitoring is to cal-

culate the precise intervals between the two peaks of consecutive heartbeat cycles.

Techniques have been proposed to count the number of heartbeat peaks (HR) from

the changes of the reflected light intensity in the video recordings, but it has still

not been feasible to identify the exact peak times. The reflected light signals cap-

tured in video recording often have unclear peaks due to noise, different ambient

light conditions, and motion artifacts (head, face and hand movement), making it

difficult to accurately detect the peaks. Also, the low frame-rate of the front camera
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(e.g., 15 fps) makes it difficult to estimate the exact times of heartbeat peaks as the

peaks may occur in between two consecutive video frames.

VitaMon addresses these challenges using two key insights. Firstly, VitaMon

takes multiple PPG readings from different facial areas in a single frame whereas

prior camera-based PPG techniques consider facial video as a single image. Mul-

tiple facial regions carry pulse signals from the heart at different time offsets and

shifted phases, which enables VitaMon to overcome limitations from low frame rates

and noise. Second, we observed that there is a strong temporal correlation between

PPG signal patterns and ECG signal patterns. VitaMon utilizes the correlation to

build a deep learning model that generates exact heartbeat peaks from low-quality

PPG signals.

We built a novel HRV estimation technique based on the above two insights. The

technique is designed with a two-stage Convolutional Neural Network (CNN). The

first network learns the correlation between the ECG signals and the PPG signals

(estimated from the video), and firstly reconstructs a form of ECG waveform from

the captured video to identify which video frame includes a peak. The second CNN

learns the relationships between the facial images (the reflected light intensity of the

multiple facial regions) and the temporal distance between the actual peak time and

the image capture time. Based on the trained model, VitaMon estimates the exact

timestamp of the peak.

The contributions of this work are as follows:

• We design VitaMon a contactless HRV monitoring system using videos of

user’s face captured by a commodity smartphone’s front camera with low

frame rate.

• Our motivational study shows that PPG-based heartbeat estimation with facial

videos can achieve higher granularities than the video’s frame rate. Such fine

grain measurements allow the detection of heartbeat intervals at millisecond-

level accuracy.
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• We built a novel HRV estimation technique based on Convolutional Neural

Networks (CNN) that can accurately estimate the exact timestamps of heart-

beat peaks from a facial video.

• We evaluate VitaMon with data collected from 30 participants under different

smartphone usage conditions. The results show that our technique can detect

heartbeat intervals only with 14.26 ms of errors. Also, it is robust against

the light conditions and motion artifacts. Finally, through a user study, we

show that VitaMon can be used in various practical applications such as stress

detection.

4.2 Related Work

Cardiac activity monitoring is the basis of many clinical, healthcare and psycholog-

ical condition monitoring applications. In particular, heart rate variability (HRV)

measurements can be used for many applications from early-warning of impending

cardiac disorders, diagnosing various diseases, to activity-associated stress moni-

toring. While HRV can be captured in several different ways, in this work, we focus

on the use of the photoplethysmogram (PPG) measurement, a low-cost and easy-to-

apply method for measuring heartbeat. Nevertheless, since most clinical-grade PPG

sensors still require a physical attachment of the special sensor, there has been prior

work to alleviate such inconvenience and use camera images for PPG monitoring

[116, 58, 169, 133, 90]. In this section, we present background information on how

PPG sensors work and discuss how previous work utilizes camera-captured data to

design non-invasive systems for measuring HRV.

4.2.1 Photoplethysmogram (PPG)

Photoplethysmogram (PPG), initially developed in the 1930s, is an optical sensing

technique for detecting heart pulse [63]. It is based on the principle that blood ab-
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sorbs light more than the surrounding tissue; thus, variations in the blood volume

will affect the transmission or reflectance of light correspondingly. The conven-

tional design of a PPG sensor includes a light emitting diode (LED) to illuminate a

region on the skin and a photodiode to measure the intensity of the reflected light.

This light intensity is inversely related to the blood volume, therefore, the pulsatile

component of the PPG signal oscillates with every heartbeat cycle.

Being an easy-to-use, low cost, and convenient sensing technique for under-

standing cardiac activities, PPG sensing technology has been extensively studied,

and have continuously improved over time to the point where the accuracy of these

measurements can be used to compute HRV. However, despite its accuracy, the fact

that PPG measurements typically need a sensor continuously attached to the skin

limits the realization of ubiquitous monitoring applications [166].

4.2.2 Other HRV Monitoring Techniques

Aside from PPG-based HRV monitoring, sensors of different modality such as elec-

trical, acoustic, seismic sensors can be used to measure the inter-beat interval of

heartbeat, and this information can be used to interpret HRV [35, 32, 177]. How-

ever, given that they require cumbersome attachments to the skin for accurate mea-

surements, the HRV captured from these devices are mostly used within clinical en-

vironments [5]. Nevertheless, with recently introduced wearable and mobile ECG

monitors, there has been a number of efforts in measuring HRV from mobile de-

vices. The work by Nepi et al. compared the performance of a Zephyr Bioharness

ECG sensor to clinical-grade devices to validate their clinical effectiveness [127].

Wippert et al. show performance evaluations of different mobile ECG platforms for

detecting various cardiac activity features, which include HRV [174]. While these

work along with may similar efforts [55, 79, 106] show promising results for its ap-

plicability in various domains, usability issues with these devices yet remain [172].
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Related Work N Video Input Ref. Signal Result (MAE)
[7] 4 30fps, 800x600 ECG 24.4 ms

[36] 20 60fps, 720x480 ECG 35.3 ms
[118] 14 30fps, 960x720 Contact PPG 26 ms
[141] 15 15/60fps, 1280x720 Contact PPG 15.04ms

Table 4.1: Related work on non-contact HRV measurement in stationary condition
using signal processing approach. N: sample size of the study; MAE: Mean Abso-
lute Error.

4.2.3 Remote PPG

Remote PPG techniques, which do not involve a sensor attached to the skin, have

been recently proposed to improve the convenience of PPG measurement for daily

monitoring. This body of work utilizes a camera to capture subtle changes in the

skin color as the pulse wave propagates from the heart through the body. This color

change is not visible with the human eyes but can be captured using an RGB camera.

For instance, Poh et al.[133] is one of the early works that introduced a remote heart

rate assessment technique using a webcam under ambient light conditions, showing

the potential to apply these techniques in various applications. The main process-

ing pipeline in the proposed techniques generally includes the following steps: (1)

detecting face region in each input frame; (2) averaging the pixel value of the face

region in consecutive frames to reconstruct the pulse signal; (3) Up-sampling or

applying interpolation and bandpass filter on the pulse signal; (4) Performing peak

detection and count the number of heartbeat. More recent works exploit the smart-

phone’s camera to implement remote PPG using similar processing approach. In

particular, Kwon et al.[92] has demonstrated the feasibility of using smartphone

camera (iPhone) to estimate heart rate from facial video recording and reported the

error of 1.08% (beat per minute).

While being attractive for heart rate monitoring, remote PPG schemes proposed

until now are inefficient for HRV monitoring. A primary reason is that HRV mon-

itoring requires 100 Hz sampling rate [163], whereas smartphone cameras operate
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at a slower sampling rate (e.g., 15 Hz for smartphone front cameras). If the cam-

era captures videos at 15 fps, the granularity or time resolution of the heartbeat

peak detection would be 67 msec in the ideal case. Furthermore, external lighting

conditions and motion artifacts (especially in mobile context) would further com-

plicate the process of capturing accurate PPG measurements. While some work

suggests the use of signal processing to overcome these challenges [90, 93], the

low frame rate and resolution of the smartphone’s front camera still heavily impact

the sensitivity of HRV measurements [163]. For instance, as shown in Table4.1,

Davila et al.[36] showed that with a similar processing pipeline mentioned above,

they can perform the IBI measurement with 35.3ms Mean Absolute Error (MAE)

. While Rodriguez et al. [141] reported a more promising result IBI estimation

(MEA 15.04ms) using a similar processing technique, it is worth noting that the IBI

estimation was evaluated against another finger pulse sensor. Previous studies have

shown that the interval measured by pulse sensor even with sampling rate as high

as 1kHz may still have certain error compared to the interval extracted from ECG

signal [74, 36]. This is due to the difference of the two signal waveforms, the peak

of PPG waveform is not as distinctive as the R-peak in ECG waveform.

Different from these previous works, we empirically show that the time delay of

pulse signal traveling through facial regions is significant as compared to the time

resolution of commodity camera. This finding suggests that a video of human face

is a source of multiple signals of blood volume pulse with different phases or time

delays. We propose an approach using convolution neural network to leverage such

spatial-temporal information from the input video to estimate the IBI with higher

precision.
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Figure 4.1: Anatomy of facial artery (This figure is drawn based on [2]).

4.3 Investigation: Can We Extract Multiple PPG

Data Points From Facial Images?

The basis of this work is on an important hypothesis: “Given the structure of facial

arteries, different parts of the face will show PPG ‘peaks’ at different times.” We

can exploit this information to gain more precise peak-occurrence times, finer than

the frame rate granularity.

Prior works introduce the concept of pulse transit time, the time a pulse wave

to travel between two arterial sites [50, 160]. Existing measurements from the heart

to ear and finger [71] has shown that the pulse transit times from the heart to the

ear and finger is ∼174 ms and ∼245 ms, respectively. We hypothesize that it would

take some time (significant compared to the time resolution of a video) for the pulse

to propagate even with the facial arteries. To the best of our knowledge, no previous

work quantifies the time delay of the pulse traveling on different facial regions. In-

stead, previous work either neglect this time delay or make assumptions that within

the face, the time delay is not significant.

To validate our hypothesis, we conducted an IRB-approved preliminary study

with 10 participants (ages from 19 to 31, 4 females). We selected five facial regions
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Figure 4.2: Normalized PPG signals at different facial positions.

and attach a photoplethysmogram (PPG) sensor to each of these regions to under-

stand how the PPG-peak delay occurs for different regions. The five facial regions,

R1 jaw corner, R2 center chin, R3 upper lip, R4 below left eye, and R5 forehead,

were selected based on the anatomy of facial arteries as illustrated in Figure 4.1.

Participants in this study were asked to sit on a chair while the PPG sensor captures

samples at 1 kHz for one minute. All five PPG sensors were attached to an Arduino,

and the five incoming signals were time-synchronised.

Figure 4.2 shows an example of normalized PPG signals from our collected data.

We can observe a phase shift of the peak of the PPG signals detected at different

locations. This observation suggests that we can exploit this spatial-temporal aspect

of PPG signals, based on the artery structures of a person’s face. We further quan-

tify the time difference for signals observed at two different facial regions in two

ways: (a) using peak detection and (b) phase-shift calculation via cross-correlation

computation [86, 9]. Figure 4.3 shows the results. The time delay for different fa-

cial region pairs are as significant as ∼36.79msec, when the pulse travels from the

corner jaw to the forehead. The delays are consistent over the two quantification

methods.

Potentially, as we will detail in the following section, VitaMon exploits this to

make very accurate measurements of the heartbeat interval even with videos taken
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Figure 4.3: Time delay of PPG peaks between two different facial positions.

at low frame rates.

4.4 Design of VitaMon

VitaMon measures a user’s heart rate (HR) and heart rate variability (HRV) using

just videos captured from that user’s front facing phone camera by exploiting the

color changes that occur as blood pass through the facial arteries. Figure 4.4 shows

VitaMon’s data pipeline and we explain each stage in more detail next:

4.4.1 Preprocessing: Extract the Green Color Channel

Starting from the topmost preprocessing phase, we first resize each frame from the

videos to 224x224 resolution, then extract and normalize the green color channel

of each frame from the videos captured by a smartphone’s front camera. The key

principle used by VitaMon is that blood absorbs light more than the surrounding tis-

sues in the body and that the absorption levels are directly proportional to the blood

volume [169]. This phenomenon causes subtle color changes to appear on human

skin, which are invisible to human eyes but can be captured by camera images.

Prior work has shown that the green channel captured by RGB camera is better than

red and blue channels in detecting these colour changes [169, 90]. This is because
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Figure 4.4: VitaMon data pipeline.

the absorption spectra of hemoglobin (Hb) and oxyhemoglobin (HbO2), the two

main constituent components of blood, peaks in the 520 to 580 nm light spectrum

– which falls in the middle of the green spectrum [169]. Thus any changes in the

blood volume, caused by heartbeats etc. will be easier to detect using the green

channel information compared to the other colours.
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4.4.2 Normalisation & Input Creation

VitaMon processes the green channel information to predict the HR and HRV of the

person in the captured images. However, processing every frame produced by the

camera is computationally very expensive. Thus, VitaMon creates a multi-channel

image that is formed by stacking multiple green color-channels extracted from con-

secutive video frames which is used as the input for subsequent machine learning

stages. In particular, we extract green channel samples in sets of n samples to form

a single image that combines the features contained in the n samples. By doing this,

the depth dimension of this stacked image will contain the temporal information of

n consecutive green frames. We found, empirically, that n = 25 worked best for 15

fps video feeds – with each stack containing 25 samples representing changes in the

green channel over a period of 1.67 seconds. This is sufficiently long to allow us

to detect a full heartbeat cycle, even for heart rates as low as 36 bpm, just from a

single image.

This stacking serves three main purposes: (1) it reduces the input size to mini-

mize model complexity; (2) stacking a single color channel to form an image allows

the depth dimension of the image to contain the temporal aspects – this separates

away the color/spectral information making the technique much more robust; (3)

we now have a single image that contains both spatial and temporal information of

the facial video, allowing us to extract pulse information from the image using just

a single 2D convolution.

4.4.3 Two-Phase Machine Learning

Reliable HRV measurement requires accurate identification of the R-peaks of the

ECG and their occurring timestamps in the cardiovascular pulse signals generated

as the heart pumps blood around the body. This is different from just measuring

the heart rate as heart rate calculation uses an average of the number of beats over a

minute (bpm) while HRV measures the inter-beat time in milliseconds.
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To effectively extract the HRV using just video images of a user’s face, VitaMon

uses two phases: (1) it reconstructs the “frame-order waveform” of the ECG signal

to identify heartbeat cycle peaks from the video sequences, and (2) it then estimates

the exact timestamp of each peak. In both phases, ECG reference signal is used

only for the purpose of model training and evaluation; VitaMon only takes the facial

video as input.

4.4.4 Phase 1: Reconstruction & Segmentation

Prior work has used photoplethysmogram (PPG)-based methods to reconstruct the

blood volume signal directly from video recordings. However, these methods are

limited to just detecting the HR and achieved poor results when used to also detect

the HRV. To detect the HRV, we use a CNN-based regression model with the In-

ception module from InceptionV3 model [164]. The module compose of a separate

branch of temporal 1D convolution and other branches including temporal 1D con-

volutional layer followed by spatial 2D convolutional layer as shown in Figure 4.5.

We add enhancements to reconstruct a pulse waveform in frame-units by utilizing

the color changes embedded in the 25-channel stacked input images described ear-

lier. Specifically, as each stacked image holds the facial color change information

(on the green channel) for at least one full heartbeat cycle, we trained the CNN

model to identify the exact sub-frames within this stacked image where the heart-

beat cycle’s “peaks” have taken place. We did this by using the intuition that the

this peak will cause a noticeable color change (on the camera) due to large amounts

of blood flowing through the arteries.

Based on this, we mark the center-most frame in the n-channel image with the

respect to the nearest peak that occurs earlier. For instance, if the peak occurs at

the 13th sub-frame (e.g., the center-most frame of the 25-channel image), the model

will output a value ‘0’. If the peak occurs on sub-frame 10, three sub-frames before

the center, the model will output ‘3’. We label the data by marking the offset of the
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center frame according to only the previously observed peak. Hence, the offset of

the center frame is always a positive number. Using this simple scheme, for each

of the 25-channel images, we can identify at what location (in the units of sub-

frames/channels) the heartbeat’s peak occurred with reference to the most recent

peak. When done for all of the image sequences, we can construct a “frame-order

waveform”, which is roughly correlated to the ECG at a frame-level granularity.

Figure 4.6 illustrates an example of the ECG waveform and its corresponding frame-

order waveform.

There are two major benefits of using this approach. First, the frame-order

waveform represents a normalized form of ECG. Naturally, using the frame-order

waveform eliminates the effects caused from ECG peak amplitude variations and

facilitate the model to focus on the local relative change of the blood volume within

the samples. Using this information, our CNN model is optimized to learn while fo-

cusing on the differences in color distributions among different neighboring frames.
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Second, the use of the frame-order waveform allows the model to easily distinguish

between two consecutive heartbeats (i.e., the end of one heartbeat cycle and the

beginning of the next). Once the value decreases, we can quickly notice that one

heartbeat cycle has ended. When using a PPG-based approach, due to the smooth

signal patterns, making this distinction of whether the currently detected sample

is before or after a peak is difficult. By applying the frame-order waveform, the

model, in its training phase, can penalize heavier if an estimation is made for a

different subsequent heartbeat cycle.

Note that the range of the frame-order waveform will vary with respect to the

inter-heartbeat-interval, given that this interval varies from person to person in the

typical range of 500 ms to 1470 ms under resting condition [147]. For instance, for

a person with the a heartbeat interval of 600ms, the output values will range from 0

to 9 (in unit of frames; assuming 15 fps), while a person with 1000 ms interval, the

output values will vary from 0 to 15.

4.4.5 Phase 2: Peak Detection

Next, in the second phase of our model, we take the n-channel images that are la-

beled from the first CNN model as ‘0’ (i.e., the peak has occurred at the center-most

sub-channel for the image) and cut-off sub-channels on the edges in a symmetric

manner. As a result, we leave only the m-channels in the center of the original n-

channel image (where m < n), and maintain the peak-detected channel at the center

of the stack. We then train a second CNN-based regression model using these im-

ages and the ground truth ECG waveform. By doing so, we can now correlate the

ECG peaks with the exact location of where within the peak-detected channel the

R-peak took place. Given that the color distribution for the peak-detected channel

will vary for different (more specific) R-peak occurrence locations, we can start

making fine-grain estimations (at the msec-level) on the actual time that the R-peak

occurred at a granularity finer that that of the frame rate. Again, this is based on the
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Processing time (ms)
Device Pre-process Phase1 model Phase2 model

Lenovo Phab 2 31.4 122.2 45.4
Galaxy S8 5.6 125.6 47.1

Huawei P20 Pro 8.5 108.4 44.4

Table 4.2: Operation latency of VitaMon ’s components on three different mobile
devices.

findings from our preliminary studies indicating that the pulse will travel at slow

speeds even within a person’s facial regions. Meaning that for some images, we

will have the peak at the jaw region of the face, and for some, the peak will be at the

forehead. Each of these images will have different points at which the ground-truth

ECG presents its R-peak. Learning this information is the core of this second phase

CNN design.

4.4.6 VitaMon Implementation

We implemented VitaMon as an Android application with the phase 1 and phase

2 models implemented in tflite format with float32 precision. Figure 4.7 presents

the overall CNN structure of both our phase 1 and phase 2 models. Note: each

convolution layer is followed by a batch normalization layer and a rectified linear

unit (ReLU) activation layer. In terms of model complexity, the total number of pa-

rameters is 508,129 and 104,129 for the Phase 1 and Phase 2 models, respectively.

The complexity did not increase by using stacked images as a similar schema for

processing a standard 3-channel RGB image would have 503,233 and 102,689, pa-

rameters for the two phases, respectively.

We ran VitaMon on different octa-core phone devices including the Lenovo Phab

2 (2016), Galaxy S8 (2017), and Huawei P20 Pro (2018). Table 4.2 reports the run-

ning time of VitaMon ’s main processing components on each phone using just

CPU resources (no GPU optimisations done yet). The preprocessing step in Ta-

ble 4.2 refers to the process of extracting the green channel from each video frame

79



Phase 1 Model Phase 2 Model

Input (224x224x7)

3x3 conv (32)2 x

Dropout (0.5)

Fully Connected

3x3 conv (64)

Average Pooling4 x

Flatten

2 x

Input (224x224x25)

3x3 conv (32)

3x3 conv (192)

2 x

Max Pooling

Dropout (0.5)

Fully Connected

Max Pooling

3x3 conv (80)

3x3 conv (64)

Average Pooling4 x

Flatten

Inception Module

2 x

Figure 4.7: Structures of phase 1 and phase 2 models.

and creating the stacked images that are fed as inputs to the CNN models.

The operational latency of the phase 1 model is longer compared to the phase

2 model as it is a more complicated model (as described earlier). Overall the la-

tency of VitaMon is sufficient for real-time use. We can improve the latency further,

as future work, by further optimising the models or by using pruning or quantiza-

tion scheme [56] and/or GPU optimised DNN runtimes such as DeepMon [67] or

TensorFlow Lite running on mobile GPU [167].

4.5 Data Acquisition

4.5.1 Sensors and Set-up

In this study, we use a Lenovo Phab Pro2 smartphone to record the facial video of

participants and a Zephyr Bioharness 3 ECG strap to acquire ground truth reference

pulse signals (e.g., ECG). All videos were recorded using a frame rate of 15 fps with

a pixel resolution of 1920x1080 from the 8-megapixel front camera with 3.75 mm
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focal length and a f/2.2 lens aperture. The automated white balance (AWB) mode

of the camera was enabled to normalise the color representations of the captured

images under different lighting conditions. The ECG signal was recorded simulta-

neously throughout the experiment using the Zephyr ECG strap with a sampling rate

of 250 Hz. The Zephyr is FDA-approved and multiple prior studies have used it to

provide reference ECG/RR interval data under various conditions [82, 125, 76, 77].

4.5.2 In-lab Data Collection

We conducted an IRB-approved study with 30 participants of different ages (24 to

39) and skin tones (22 participants with light yellow skin tone from South East Asia

and East Asia, 6 participants with dark brown skin tone from South Asia, and 2 par-

ticipants with fairer skin tone from Europe). Participants were seated on a height-

adjustable chair at a table in front of a tripod holding the smartphone mounted ver-

tically. The distance from the smartphone’s front camera to the participant’s face

varied from 25 to 50 cm depending on the participant’s preferred sitting posture.

Each participant did eight 5-minute tasks that were fully recorded by the smart-

phone. Each of the eight tasks was designed to capture different motion artifacts

and light conditions. The eight tasks were: tasks one to five required the partici-

pant to stay as still as possible the entire five minute duration with each task using a

different fluorescent light intensity. The intensities used were 150 (denoted as L1),

250 (L2), 380 (L3), 600 (L4), and 1000 (L5) lux and represented different types of

real-world intensities. For example, the recommended light level at homes is 150

lux, 500 lux for the library and 750 lux at supermarkets [130]. The last three task

required the participant to perform an action under a consistent 380 lux lighting

condition. The three tasks were (M1) Speaking: Counting out loud from 1 to 100

repeatedly. (M2) Horizontal head rotation: Participants had to rotate their heads

horizontally by 120 degrees at a speed of about 20 degrees/sec. (M3) Manual phone

holding: The smartphone was removed from the tripod and held by the participant
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Figure 4.8: Acceleration signals during the real-world experiment, passenger in a
driving car scenario.

in their hands, with the front facing camera still being able to see their faces, for 5

minutes.

4.5.3 Real-world Experiments

In addition to the controlled lab studies, to evaluate the robustness of VitaMon in

real-life scenarios, we collected data from two participants while they performed

various real-world tasks. In particular:

(1) Passenger in a driving car: This scenario introduces different types of motion

artifacts as the car moves on the road (e.g., accelerate, slow down, stop, bumps at

potholes). Figure 4.8 shows an example of the acceleration signals (excluding the

gravity) collected from the phone that participants used to record the facial video.

The light conditions also change dynamically as the car moves in and out of shaded

and non-shaded areas. Each participant held the phone in their hand, with the front

camera facing their faces, for two 5-minute sessions.

(2) Coffee shop: This scenario required each participant to record their faces for

two 5-minute session while sitting in a very dim (40 lux) coffee shop.
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Figure 4.9: Raw average signal extracted from green channel of whole face region;
Second component of ICA; VitaMon phase-1 model output; ECG reference signal.

4.6 Evaluations

For the valuation of VitaMon , we train the model using two types of data and create

two versions of VitaMon : (1) a global model with training data from multiple

people, and (2) a personalized model trained with a specific person’s previously

collected data. For each case, we evaluate the accuracy of different metrics that

can be extracted from a person’s heart. Specifically, we focus on the accuracy of

the heart rate, inter-beat-interval, and HRV. We evaluate the global model with the

leave-one-out subject level evaluation and the personalized models with leave-one-

out session level evaluation.

4.6.1 Heart Rate Detection

We first evaluate the performance of VitaMon in calculating the heart rate from the

captured video. VitaMon calculates the heart rate using the output of the Phase-1

model; it identifies a frame that includes the peak of a heartbeat and the heart rate

can be calculated by simple counting of such peak frames. We used a 1-minute

window to calculate the heart rate and slide the window every second. We also

compare the results with the state-of-the-art signal processing-based remote PPG
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Table 4.3: Phase-1 model evaluation under different light conditions: Mean Abso-
lute Error (MAE) for heart rate (HR) and peak position estimations. L1-L5 are set
to 150, 250, 380, 600, and 1000 Lux, respectively.

Light Condition
Metric Model L1 L2 L3 L4 L5

HR MAE General 0.82 1.06 0.82 0.94 0.88
(bpm) Personalized 0.67 0.72 0.61 0.61 0.56

Peak Position General 0.78 0.98 0.76 0.80 0.84
MAE (frame) Personalized 0.63 0.72 0.65 0.72 0.62

schemes as discussed in Section 4.2 [133, 134].

Figure 4.9 shows the waveforms reconstructed by VitaMon’s Phase-1 model for

20-second epoch signal from our dataset, along with the comparison with a state-of-

the-art technique (a signal decomposition method based on Independent Component

Analysis (ICA) [133, 134]) and the reference ECG signals. The third plot in the fig-

ure shows that our approach shows a clear representation of the pulsatile variations,

closely correlated with the ground-truth ECG traces in the bottom-most plot. On the

other hand, the ICA-based method results in a much unclearer waveform (as shown

in the second plot), from which heart rate calculation is not still trivial. The Phase-1

CNN model identifies peak frames from a noisy signal by leveraging the relation-

ships between ECG signals and PPG signals whereas the signal reconstruction is

not effective based on signal processing techniques.

We then quantitatively compute two metrics (1) the mean absolute error (MAE)

for the estimated heart rate compared to the ground-truth, and (2) MAE for peak

position (e.g., the peak position error is 1 if the 10th frame should have the peak but

our Phase-1 model identifies 11th frame as the peak frame). Tables 4.3 and 4.4 show

the results for different lighting conditions and motions artifacts, respectively. Each

lighting condition L1-L5 and motion artifact M0-M3 correspond to the different

conditions discussed in Section 4.5. We use L1 and M0 by default.

Table 4.3 presents that VitaMon, despite under different light intensities, have the

exceptional performance of keeping HR estimation error under a single beat. The

personalized model, as one may expect, outperforms the general model, but for both
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Table 4.4: Phase1 model evaluation under different motion artifact conditions:
Mean Absolute Error (MAE) for heart rate (HR) and peak position estimations.
M0-M3 are set to ”no action”, ”speaking, ”horizontal head rotation”, ”manual mo-
bile phone holding”, respectively.

Motion Artifact Condition
Metric Model M0 M1 M2 M3

HR MAE General 0.82 1.77 1.69 1.31
(bpm) Personalized 0.61 1.23 1.38 1.08

Peak Position General 0.76 1.33 1.45 1.32
MAE (frame) Personalized 0.65 1.02 1.19 1.18

cases, the errors are kept extremely low. Overall, the CNN model we designed were

robust against different light conditions, allowing a reliable heart rate measurement.

Results in Table 4.4 suggest that, with motion introduced, the heart rate estima-

tions are affected more than simple light condition changes. Especially when parts

of the facial components move (due to talking in M1) and the entire face rotates

(M2) the error increases to higher than 1 bpm. Small variations due to hand-holding

the smartphone (M3)) show relatively less loss in accuracy performance. The CNN

used in our model is more robust against small movements of the face (e.g., slight

facial position changes due to phone holding) but its performance was affected by

more significant movement such as talking or head rotations.

The peak position errors in both tables show that the Phase-1 model well exe-

cutes the task of extracting the sub-frame that contains the peak of a heartbeat cycle.

The MAE was maintained below a single frame for light conditions and two frames

for motion artifacts. This suggests that if VitaMon needs to consider a maximum of

5 frames to calculate the exact time of the peak in the second phase.

4.6.2 Inter-beat Interval

Next, we examine the accuracy of VitaMon to predict the inter-beat intervals (IBIs).

(Note: IBI measures the distance between two R-peaks in an ECG and is used to

capture disorders such as arrhythmia.) To compute an accurate IBI, we utilize the

full VitaMon system, including the Phase 2 model for capturing fine-grain heartbeat
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Figure 4.10: Mean absolute error of peak detection in VitaMon .

occurrence times. As in heart rate evaluations, we test the performance of Vita-

Mon for different lighting conditions and motion artifacts with the personalized and

global models.

An accurate IBI measurement requires the precise detection of peak times in

heartbeat cycles. For this, we first measure the MAE for estimated peak times.

Figure 4.10 presents the results for different light conditions and motion artifacts.

The results show that VitaMon estimates the peak times with the errors of around

only 10ms for the personal model and 15 ms for the global model. Also, accuracy is

minimally affected by different illumination levels and motion artifacts. Assuming

an 80 bpm heartbeat, a 10 msec error translates to an error of only 1.3% on the

time-scale. Even when using the general model and also when introducing different

motion artifacts, we observe errors less than 17 msec. This suggests that VitaMon’s

Phase-2 model estimates the heartbeat cycle peak (ECG R-peak) with very high
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Figure 4.11: Mean absolute error of inter-beat interval (IBI) measurements.

accuracy; its underlying CNN model well captures the correlation between a face

image (that include multiple PPG data points at different facial areas) and the actual

peak time.

We then evaluate the IBI estimation accuracy of VitaMon . Figure 4.11 shows

the results. The MAEs for the IBI, in all cases, are below 22 msec, and for the

personalized model the errors are as low as 12 msec. This is expected as the ac-

curate peak detection contributes to the accurate calculation of the IBI. There is a

slight impact on the performance as motion artifacts are introduced, but this increase

can be considered minimal considering their applicability in many applications that

involve users’ mobility, especially in mobile context.

We also evaluate the performance of VitaMon on three groups of participants

with different skin tones. The results are summarized in Table 4.5. Note that

melanin, the pigment that accounts for the color of human skin, has a high absorp-
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Skin Tone Group
Metric Model G0 G1 G2

HR MAE General 0.58 1.90 0.71
(bpm) Personalized 0.32 1.55 0.53

IBI MAE General 20.71 25.43 20.92
(ms) Personalized 13.17 19.45 12.09

Table 4.5: Evaluation per skin tone group under stationary condition. G0: light
yellow skin tone, N = 22; G1: dark brown skin tone, N = 6; G2: white skin tone, N
= 2

tion coefficient compared to hemoglobin’s in the wavelength range of visible light.

Hence, more melanin in skin or darker skin tone would attenuate the strength of op-

tical signal of blood volume pulse. Compared to the other two groups, estimation on

the group of participants with dark skin tone has significantly higher error, in terms

of both heart rate and heartbeat interval measurement. On the other hand, Table 4.5

shows a similar evaluation results of VitaMon on participants with light yellow skin

tone and participants with white skin tone, sample size of the latter group is small

(N = 2) though.

4.6.3 HRV Features

Next, we evaluate how accurately VitaMon calculates various HRV features using

the detected peak times. For HRV evaluation, we extract a list of standard features

in the time-domain, geometric Poincare plot, and frequency-domain widely used

for clinical purposes [4, 103, 14]. Specifically, RMSSD is the square root of the

mean of the squares of successive differences between adjacent intervals, SDNN

is the standard deviation of intervals, SDSD is the standard deviation of the suc-

cessive differences between adjacent intervals, NN50 shows the number of pairs of

successive intervals that differ by more than 50 msec, and pNN50 represents the

proportion of NN50 divided by the total number of intervals. These metrics are fea-

tures included in the time-domain. For the geometric Poincare plot features, SD1

shows the length of the longitudinal line in the Poincare plot of the intervals, and
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SD2 is the length of the transverse line in the Poincare plot of intervals. Lastly for

features in the frequency domain, LFnu shows the normalized spectral power in

the low-frequency band from 0.04 to 0.15 Hz, and HFnu is the normalized spectral

power in the high-frequency band from 0.15 to 0.4 Hz. We point interested readers

to [108, 3] for more details on these metrics.

Table 4.6: HRV monitoring performance of the general model: Average HRV fea-
tures extracted from ECG reference signal and VitaMon estimation under stationary
condition.

HRV time-domain features
Statistic Source RMSSD SDNN MRRI NN50 PNN50
Mean ECG 112.90 89.68 747.41 9.89 13.51
Mean VitaMon 113.65 89.18 743.44 33.37 45.68
SD ECG 70.62 44.83 68.63 9.25 12.35
SD VitaMon 54.94 38.40 68.58 10.22 12.04

Correlation Coefficient 0.9917 0.9976 0.9943 0.4469 0.4517
(a) HRV time-domain features.

HRV plot and frequency-domain features
Statistic Source SD1 SD2 LFnu HFnu
Mean ECG 80.38 96.39 25.50 74.49
Mean VitaMon 80.92 95.98 33.88 66.12
SD ECG 50.30 42.69 30.21 30.21
SD VitaMon 39.13 39.55 21.77 21.77

Correlation Coefficient 0.9917 0.9987 0.71 0.71
(b) HRV Poincare plot and frequency-domain features.

RMSSD: The square root of the mean of the squares of successive
differences between adjacent intervals.

SDNN: The standard deviation of intervals.
MRRI: The mean of R-R intervals.
SDSD: The standard deviation of the successive differences between

adjacent intervals.
NN50: The number of pairs of successive intervals that differ by more

than 50 msec.
pNN50: The proportion of NN50 divided by the total number of intervals.
SD1: The length of the longitudinal line in the Poincare plot of the

intervals.
SD2: The length of the transverse line in the Poincare plot of intervals.
LFnu: The normalized spectral power in the low-frequency band from

0.04 to 0.15 Hz.
HFnu: The normalized spectral power in the high-frequency band from

0.15 to 0.4 Hz.

Table 4.6 presents a comparison between the VitaMon -estimated features and
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ECG-driven features (used as the ground truth). From the correlation coefficients,

we can see that for five of the nine features (i.e., RMSSD, SDNN, MRRI, SD1 and

SD2), VitaMon achieves a very high correlation with the ground truth. For the two

frequency domain features (LFnu and HFnu ), the correlations were 0.71 which

are lower than the correlations of other time-domain features. This is because the

frequency-domain features represent the trend in interval series and require accurate

estimation of multiple continuous data points (intervals) to capture. In particular,

LF band covers 0.04-0.15Hz or 7-15 second rhythm of interval series. However, the

correlations are still high; our evaluation for stress detection (estimated by the ratio

between LFnu and HFnu) in Section 4.7 shows that the accuracy of stress detection

using the LFnu and HFnu features estimated by VitaMon was comparable with the

same features extracted from the ECG reference signal. The errors for NN50 and

pNN50 were high; these features are calculated based on the difference between

two heartbeat intervals and the error of VitaMon ’s IBI estimation could be doubled

while there is a clear binary threshold of 50ms for evaluation.

Table 4.7: HRV monitoring performance of the personal model: Average HRV Fea-
tures extracted from ECG reference signal and VitaMon estimation under stationary
condition.

HRV time-domain features
Statistic Source RMSSD SDNN MRRI NN50 PNN50
Mean ECG 111.45 88.87 746.49 9.88 13.46
Mean VitaMon 113.55 89.36 748.51 16.30 22.88
SD ECG 69.97 44.59 68.64 9.32 12.43
SD VitaMon 61.81 41.31 68.59 9.59 13.01

Correlation Coefficient 0.9829 0.9914 0.9871 0.8157 0.7529
(a) HRV time-domain features.

HRV plot and frequency-domain features
Statistic Source SD1 SD2 LFnu HFnu
Mean ECG 79.35 97.78 25.81 74.19
Mean VitaMon 80.85 96.05 30.81 69.19
SD ECG 49.83 42.65 30.30 30.30
SD VitaMon 44.01 41.03 24.56 24.56

Correlation Coefficient 0.9829 0.9973 0.8231 0.8231
(b) HRV Poincare plot and frequency-domain features.

The issues observed from the global model in Table 4.6 are alleviated in Ta-
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Table 4.8: Evaluation on data collected from real-world scenarios: (R1) passenger
in a driving car and (R2) in coffee shop with dim light 40lux.

Personalized model General model
Metric R1 R2 R1 R2

HR MAE (bpm) 1.25 1.00 2.00 2.00
Peak MAE (frame) 1.18 1.29 1.52 1.48

Peak MAE (ms) 16.97 15.25 19.10 17.55
IBI MAE (ms) 22.57 19.98 25.40 22.99

ble 4.7, where we plot the results for a personal model. This is so due to the fact

that a personalized model will show fewer variations with higher peak detection

accuracy as its underlying CNN models better captures the relationships between

actual ECG signal peaks and the front camera images. While we omit the results

for the case with different motion artifacts, similar trends were observed with other

earlier evaluations.

4.6.4 Evaluation for Samples Collected from Real-world Use

Cases

We also evaluate VitaMon on the data collected while driving and chatting in a

coffee shop described in Section 4.5. Table 4.8 shows that VitaMon can measure

heart rate with the errors of 1-2bpm using our Phase-1 model. The errors for the

peak detection and inter-beat interval are higher than in the lab experiment, however,

the errors remain low; for instance, the inter-beat interval errors remain under 23 ms

for the personalized model. We attribute the increment of the errors to the different

light conditions and motion artifact that are not captured in our training data; for

instance, passengers’ mobile phones were shaken when the car accelerated. We

believe we can further improve the accuracy of our models in various ways. For

instance, we can train our model with a more diverse set of data collected in real-

life situations. Also, it is possible to use the phone’s accelerometer data to filter out

the segment of unstable video recording caused by the hand’s motion artifact.
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4.7 VitaMon Applications

VitaMon can be applied to various useful applications. Online education is one

example of where VitaMon can play an important role. As a student participates in

the education programs, we can continuously monitor their engagement and stress

levels using a face-facing camera, which are features that are known to be heavily

correlated with HRV [153, 131, 64, 27, 26].

4.7.1 User Study

To study the feasibility of applying VitaMon to capture the cardiovascular responses

to such psychological distress situations, we conduct a small user study that involves

12 participants (age from 26 to 35). This user study includes an arithmetic stress test

session and a baseline session and all 12 participants participated in both of these

sessions. In the arithmetic stress test session, we follow the validated experiment

procedure described in [84, 102]. While the users were facing the front camera on

a smartphone, we verbally delivered questions with simple arithmetic operations

(subtract 13 from 1022 as fast and accurately as possible), and their responses from

mental calculation was delivered back to us verbally as well. Upon responding with

an incorrect answer, the participants re-started the process from 1022, based on ver-

bal feedback indicating to restart the calculation. Note that the arithmetic test was

used as a tool to induce a psychological distress situation and the subjective stress

level under the test may vary among participants. However, we did not collect the

self-report stress level as the main purpose of the test is not to classify participants’

stress level, but to study the cardiovascular responses measured by VitaMon as com-

pared to the features from ECG reference signal. The baseline session was designed

so that the participants stay still (sitting) while soothing classical music was played.

We used the Lenovo Phab 2 smartphone for data collection and kept each session for

five minutes each. Upon the beginning of the first session, three minutes were given

to the participants to minimize the effect of the previous session. The two sessions
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Figure 4.12: HF/LF ratio HRV feature to distinguish stress and baseline condition.

were separated by a six-minute break, and the session order was randomized [84].

4.7.2 Data Analysis

To examine the cardiovascular responses to the stress stimulation, we used a well-

adopted previous method proven to be effective for stress detection [23]. The anal-

ysis of HRV was carried out using the low frequency (LF;0.04-0.15 Hz) and high

frequency (HF; 0.15-0.40 Hz) bands, which reflect the sympathetic activity with

vagal modulation, and parasympathetic activity, respectively.

Figure 4.12 plots the comparison of the ratio of HF and LF for the ECG-based

baseline, VitaMon with the global model and, VitaMon with the personalized model

when participating in the two different sessions. Results suggest that indeed when

the participant is involved in the arithmetic stress test session, the ratio of HF over

LF shows a noticeably high value compared to the case when the participant is not

in stress. The results are consistent with prior studies [27, 26] showing that under

mental stress condition, the HF spectral power increases while LF power decreases.

The figure also serves as an indicator for suggesting that VitaMon can be a useful

involuntary sensing tool for measuring stress.

In Table 4.9 we present additional details on the observations made for each

study participant. The results suggest that both types of models can effectively

be used for a real-world application to detect stress levels. We also emphasize

that when observing the HRV features themselves, the frequency-band features,
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Table 4.9: Average HRV Features extracted from ECG reference signal and Vita-
Mon estimation (personal model) under stationary condition. State: Stress (S) and
Baseline (B).

Subject
Source State S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
ECG S 1.05 2.76 2.90 4.50 .03 .03 .03 .04 1.90 3.23 1.22 2.02
Ref B 0.02 0.04 0.04 0.04 .03 .04 .57 .08 0.03 1.28 0.49 0.52

Personal S 1.62 1.47 1.69 2.23 .03 .49 .43 .27 1.86 3.89 1.91 2.06
Model B 0.03 1.23 0.05 0.13 .04 .05 .66 .13 0.06 1.88 0.53 1.68

General S 1.54 1.59 1.23 2.21 .08 .68 .38 .32 1.88 2.61 1.91 3.16
Model B 0.10 0.62 0.13 0.96 .07 .16 .71 .09 0.14 1.36 1.53 2.70

LFnu and HFnu did not show a significantly high correlation with the ground truth.

However, when utilizing these features as application-specific features, even such

features can be considered useful for the target purpose.

4.8 Discussion

In this section, we discuss some of the limitations of VitaMon and present our future

work plans.

4.8.1 Effect of Skin Tone & Make-up on VitaMon

VitaMon uses a camera-based PPG method to extract the subtle variation of skin

color caused the changing blood volume due to heartbeats. However, the degree of

color variation seen on the face by the camera also depends on facial features such

as the color and intensity of the skin pigments and the amount and type of make-up

used etc. In particular, dark skin pigments have a high light absorption coefficient

and or heavy make-up block out the ambient light on facial skin, which both would

result in a weaker type of pulse signal being observed in the facial video. We plan

to extend our tests of VitaMon across a larger population segment in future work.
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4.8.2 Effect of Unstable Light Condition

The key idea of extracting pulse signal from a facial video is based on the relative

change in the intensity of reflected light from the face. Besides the properties of

skin pigment and human face anatomy, the stability of the light that casts user face

also has crucial impact on the reflected light. While VitaMon has been evaluated

under conditions of various light intensity levels (Section4.6), the light source was

kept stable during each evaluation experiment session. The unstable light source

with changing intensity could introduce noise to the pulse signal extracted from

facial video. For instance, the changing light intensity reflect on user’s face could

be affected by the light from smartphone’s screen displaying different content frame

by frame. Future investigation on the effect of unstable condition of light that casts

on user face and how to address it is important to make VitaMon more practical in

daily-life use.

4.8.3 Integrating VitaMon With Built-in Camera Optimisations

Modern smart phone cameras perform a number of automatic image corrections to

improve the quality of the images taken as perceived by a human user. For example,

the camera might automatically sharpen or increase the contrast of the image or

even brighten the image if the ambient light is too low. In addition, many smart

phone cameras automatically perform color filtering to increase the vividness of the

photos and videos. In this paper, we did not investigate how VitaMon would operate

in situations where the camera software was automatically manipulating the images

using in-built algorithms.

4.8.4 Limitations & Future Work

The user study was conducted mainly with student volunteers in two countries. It’s

possible that a more diverse user pool would show very different results. In the

future, we plan to improve VitaMon by 1) extending it to detect other physiological
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signals, 2) improving its performance by integrating a simple yet powerful training

step – where a user can quickly provide facial data that is added to a pre-trained

general model to create a much better performing semi-personalised model. Finally,

3) we plan to integrate VitaMon into a student life-logging app and deploy it more

generally across a larger audience.

4.9 Conclusion

We present VitaMon, a mobile sensing system for daily HRV monitoring using a

commodity smartphone’s front camera. We first present our two key insights in de-

signing VitaMon: (1) a human face contains multiple cardiovascular pulse signals

with different phase shift, and (2) PPG signals are correlated with ECG signals.

Then, we build a CNN-based technique to extract both spatial and temporal infor-

mation of the video to reconstruct a pulse waveform signal that is optimized for

detecting the exact time of heartbeat cycle peak occurrences, from which inter-beat

intervals (IBIs) and HRV features can be calculated. We evaluated VitaMon with a

dataset collected from 30 participants under various conditions involving different

light intensity levels and motion artifacts. Our results show that, with 15 fps video

inputs (66.67 ms time resolution), VitaMon can measure IBI with an average error

of 14.26 ms and 21.65 ms using personal and general models, respectively. Both

time- and frequency-domain HRV features extracted from the IBI measurements

show a high linear relationship with the reference signal.
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Chapter 5

Conclusion

There has been an increasing number of research studies on leveraging smartphone’s

sensing capacity for measuring physiological signals and assessing psychological

states of mobile users. With a growing set of embedded sensors various source

of information covering vision, audio, motion, user interaction and other ambient

factors, smartphones are becoming a personal sensor kit that allow new opportu-

nities to develop interesting sensing applications in daily life context. Moreover,

smartphone usually plays as the central node that connects other peripheral sensing

devices such as wearables and earables which further enhance its sensing capacity.

In the first part of this thesis, we designed EngageMon, a multi-modal sensing sys-

tem that combines sensing signals from multiple sources to infer the engagement

level of mobile gamer. We showed that physiological signals including heart rate

signal and skin conductance, body posture and touch interaction are useful indica-

tors of mobile users’ psychological states that can be captured by mobile sensing

system. The focus of EngageMon study was on measuring engagement of mobile

gamers, however, we believe that system design concept is applicable for assess-

ing engagement of mobile users to improve user experience of other activities on

smartphone such as studying, watching different forms of media content and adver-

tisement. In the second part of this thesis, we presented VitaMon, a sensing system

using commodity smartphone’s front camera to accurately measure heartbeat-to-

97



heartbeat interval and compute heart rate variability. The results from the VitaMon

study demonstrates the feasibility of using solely sensors available on smartphones

to measure cardiovascular signals.

5.1 Insights

In this thesis, we addressed a number of technical challenges and presented our find-

ings related to developing mobile sensing systems to measure physiological signals

and psychological states. We summarized the contributions of this thesis as follows:

First, we empirically investigate the time delay of optical pulse signals captured

at different facial regions caused by the pulse travel time. The results from our

study shows that the time delay is significant compared to the time resolution of

smartphone’s front camera (66.67 ms or 33.33 ms). Hence, a facial video can be

considered as a source of multiple pulse signals with varying phase shifts or time

delays. This finding theoretically suggests the potential to accurately measure the

cardiovascular parameters such as heart rate, heart rate variability, and blood pres-

sure from the facial video with frame rate as low as 30 fps or 15 fps.

Second, we design VitaMon, a remote HRV monitoring system using videos of

user’s face captured by a commodity smartphone’s front camera with low frame rate.

We developed a novel HRV estimation technique based on Convolutional Neural

Networks (CNN) that can accurately estimate the exact timestamps of heartbeat

peaks from a facial video. The VitaMon system was evaluated with data collected

from 30 participants under different smartphone usage conditions. The results show

that our technique can detect heartbeat intervals only with 14.26 ms of errors. Also,

it is robust against the light conditions and motion artifacts. Furthermore, through a

user study, we show that VitaMon can be used in various practical applications such

as stress detection.

Third, we conduct a study with 22 professional game developers and designers

to validate the importance of detecting the engagement level of mobile gamers and
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the potential of using automatic engagement sensing system during the actual game

development and testing cycle.

Finally, we develop EngageMon, a system that uses multi-modal sensing to de-

tect the engagement level (as high, moderate, or low) of mobile game players. This

tool will allow game developers to incorporate automatic user engagement measure-

ments throughout their game design process and use it to evaluate game prototype

alternatives. We built our technique around the hypothesis that a game player’s en-

gagement will translate into physiological responses and changes in their physical

gaming behavior. The hypothesis is based on our multifaceted definition of engage-

ment, which consists of three main components: emotion, cognition, and behavior

– these are the physiological signals that have been shown to be useful to infer

emotional states and cognitive load. In addition, we also capture the touch inter-

actions and body movements of the user playing the game as we believe that these

are also representative of their current engagement levels. We conducted extensive

experiments with 54 players in a lab setting and ten players in natural environments

while they were playing six different mobile games. Our results show that En-

gageMon achieves high accuracy (85% and 77% on average for cross-sample and

cross-subject evaluation, respectively) for various game types and players. We also

conducted comprehensive sensitivity analysis to show the robustness of our tech-

nique under different use cases. Overall, EngageMon has the potential to augment

and improve upon current survey-based practices used by game developers.

5.2 Future Work

Measuring Other Related Cardiovascular Signals Using Camera

In the scope of this thesis, VitaMon was designed to extract heart pulse signal from

only the face area, because smartphone front camera can capture user’s face in a

natural manner without requiring any effort from users when they using their smart-
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phone. However, the same technique could be applied to other parts of human body

(e.g., arm, leg) and using any type of RGB camera to acquire the cardiovascular sig-

nals. For instance, the time delay of pulse signals extracted from different regions

on an arm can be even longer than from face regions’. Further investigation on the

average pulse transit time and the optimized settings to acquires such signals from

other body parts are also important to address in the future works.

In addition to detecting heart rate variability, VitaMon may also be able to de-

tect other related physiological signals. In particular, earlier studies [44, 128] have

shown that, a person’s respiration rate can be extracted directly from the continuous

blood volume signal, which we can collect by tuning the output target of Phase-1

regression model in VitaMon. Furthermore, given that the pulse speed is known to

be inversely related to the blood pressure [50, 136], we can utilize the pulse prop-

agation delay utilized in this work for continuous blood pressure estimation. With

the right extensions to our model, VitaMon could accurately detect these signals us-

ing the same input data. We plan to investigate this in the future. Furthermore, we

plan to improve VitaMon by integrating a simple yet efficient training step where a

user can quickly provide facial data that is added to a pre-trained general model to

create a much better performing semi-personalised model.

Utilizing additional sensing modalities to measure engagement

EngageMon currently utilizes a physiological data collection sensor, a Kinect cam-

era, and the touch interfaces on the smartphone. However, we believe that there are

other external sensing modalities that we could potentially leverage. For example,

for a small subset of study participants, we tried applying a gaze tracking solution to

monitor the infrared (IR) gaze activities during gameplay. However, due to its bulky

design, the gaze tracking solution (pictured in Figure 5.1) caused large usability is-

sues that affected the participant’s engagement levels (e.g., glasses bothering the

user’s sight). We thus had to omit this sensor as it was biasing the engagement

levels. However, we believe that gaze tracking is still a very useful sensor for iden-
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tifying points of user interest in a game. For this, the gaze-tracking hardware will

need to become significantly less intrusive before it can be used.

Figure 5.1: Picture of the glass prototype with the Raspberry Pi processing module
in EngageMon[69].

Another approach to extending the sensing modalities is to develop new sens-

ing techniques that can exploit the currently available embedded sensors on mo-

bile device for new sensing applications. This approach could potentially improve

the practicability as it is less dependent on the external hardware. For example of

physiological signals, heart rate and heart rate variability can be measured by the

smartphone with VitaMon without relying on other sensing devices (e.g., wristband,

smart watch) which may not be available to many smartphone users.

Developing Gaze Tracking on Mobile Devices

Eye gaze is an observable indicator of human visual attention. Tracking the vi-

sual attention has many applications in various domains such as human-computer

interaction, medical diagnoses and psychological studies. In particular of mobile

context, gaze tracking can be used to develop hand-free mobile interaction (e.i.,

eye-gesture control to assist the interaction of people with disability) and extend the

sensing modalities of EngageMon to assess users’ engagement to provide personal-

ized experience in studying, gaming or advertising on mobile devices. Gaze track-

ing or estimation has been studied extensively with a variety of proposed solutions,

some of them are commercially available. However, gaze tracking is still far from

being an ubiquitous technology that available to the majority of users outside of

the laboratory environment due to these limitations: being inaccurate in real-world

condition, expensive, and many of them require custom or invasive hardware.
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Recent significant improvements of vision sensing capacity of mobile device

including better camera hardware, faster processing unit along with the adaptation

of deep learning framework into mobile device are enabling new opportunities to

develop appearance-based gaze tracking running on mobile devices. Some previ-

ous works on gaze estimation on smartphone and tablet [87, 65] have shown very

encouraging results. However, the current tracking performance, in term of gaze

estimation accuracy and especially the processing latency, is still not practical for

real-time applications on mobile device. Furthermore, most of the previous studies

evaluated their tracking systems with separated testing dataset by mapping discrete

frame with known face/eye regions to a gaze point. In the real-world scenario, eye-

tracking is a continuous video processing problem with the overall pipeline gener-

ally including face detection, facial landmark detection and gaze point estimation.

The first two steps are important to tackle the motion artifact involved in video cap-

turing by smartphone’s font camera. For the future work, our focus is to develop a

gaze tracking system on mobile as a whole processing pipeline, not just the gaze es-

timation step with the assumption that the eye regions in captured frame are already

tracked.
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[28] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun. Emotion assessment from phys-
iological signals for adaptation of game difficulty. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 41(6):1052–1063, 2011.

[29] J. P. Charlton and I. D. Danforth. Distinguishing addiction and high engagement in
the context of online game playing. Computers in Human Behavior, 23(3):1531–
1548, 2007.

[30] M. Cheffena. Fall detection using smartphone audio features. IEEE journal of
biomedical and health informatics, 20(4):1073–1080, 2015.

[31] Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, and L. Xie. Fusion of wifi, smart-
phone sensors and landmarks using the kalman filter for indoor localization. Sensors,
15(1):715–732, 2015.

[32] A. A. Chlaihawi, B. B. Narakathu, S. Emamian, B. J. Bazuin, and M. Z. Atashbar.
Development of printed and flexible dry ecg electrodes. Sensing and bio-sensing
research, 20:9–15, 2018.

[33] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. Automatically characterizing places
with opportunistic crowdsensing using smartphones. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing, pages 481–490. ACM, 2012.

[34] M. Csikszentmihalyi. Finding flow: The psychology of engagement with everyday
life. Basic Books, 1997.

[35] B. B. D. Boutana, M. Benidir. Segmentation and identification of some pathologi-
cal phonocardiogram signals using time-frequency analysis. IET Signal Processing,
5:527–537(10), September 2011.

[36] M. I. Davila, G. F. Lewis, and S. W. Porges. The physiocam: a novel non-contact
sensor to measure heart rate variability in clinical and field applications. Frontiers in
public health, 5:300, 2017.

[37] D. Dias and J. Paulo Silva Cunha. Wearable health devices—vital sign monitoring,
systems and technologies. Sensors, 18(8):2414, 2018.

[38] A. Dogtiev. App store statistics roundup. Available at: http://www.
businessofapps.com/app-store-statistics-roundup/, 2016.

[39] A. Doryab, J. K. Min, J. Wiese, J. Zimmerman, and J. Hong. Detection of behavior
change in people with depression. In Workshops at the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, 2014.

105

http://www.businessofapps.com/app-store-statistics-roundup/
http://www.businessofapps.com/app-store-statistics-roundup/


[40] E. Ebrahimzadeh, M. Pooyan, and A. Bijar. A novel approach to predict sudden
cardiac death (scd) using nonlinear and time-frequency analyses from hrv signals.
PloS one, 9(2):e81896, 2014.

[41] P. Ekkekakis. The measurement of affect, mood, and emotion: A guide for health-
behavioral research. Cambridge University Press, 2013.

[42] P. Ekman. Emotions revealed: Recognizing faces and feelings to improve communi-
cation and emotional life, new york, ny: St. Martin’s Griffin, 2007.

[43] Empatica. E4 Wristband. Available at: https://www.empatica.com/
e4-wristband/, 2017.

[44] B. T. Engel and R. A. Chism. Effect of increases and decreases in breathing rate on
heart rate and finger pulse volume. Psychophysiology, 4(1):83–89, 1967.

[45] R. Ferdous, V. Osmani, and O. Mayora. Smartphone app usage as a predictor of per-
ceived stress levels at workplace. In 2015 9th International Conference on Pervasive
Computing Technologies for Healthcare (PervasiveHealth), pages 225–228. IEEE,
2015.

[46] J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris. School engagement: Potential
of the concept, state of the evidence. Review of educational research, 74(1):59–109,
2004.

[47] C. D. Frith and H. A. Allen. The skin conductance orienting response as an index of
attention. Biological psychology, 17(1):27–39, 1983.

[48] C. Gao, F. Kong, and J. Tan. Healthaware: Tackling obesity with health aware smart
phone systems. In 2009 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 1549–1554. Ieee, 2009.

[49] Y. Gao, N. Bianchi-Berthouze, and H. Meng. What does touch tell us about emotions
in touchscreen-based gameplay? ACM Transactions on Computer-Human Interac-
tion (TOCHI), 19(4):31, 2012.

[50] L. Geddes, M. Voelz, C. Babbs, J. Bourland, and W. Tacker. Pulse transit time as an
indicator of arterial blood pressure. psychophysiology, 18(1):71–74, 1981.

[51] Google. Top grossing android apps. Available at: https://play.google.
com/store/apps/collection/topgrossing?hl=en, 2017.

[52] J. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N. Wiebe, and J. Lester. Automatically
recognizing facial expression: Predicting engagement and frustration. In Educational
Data Mining 2013, 2013.

[53] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta, and K. Sharma. A continuous
hand gestures recognition technique for human-machine interaction using accelerom-
eter and gyroscope sensors. IEEE Sensors Journal, 16(16):6425–6432, 2016.

[54] J. T. Guthrie, E. Anderson, et al. Engagement in reading: Processes of motivated,
strategic, knowledgeable, social readers. Engaged reading: Processes, practices, and
policy implications, pages 17–45, 1999.

[55] P. Guzik and M. Malik. Ecg by mobile technologies. Journal of Electrocardiology,
49(6):894 – 901, 2016.

106

https://www.empatica.com/e4-wristband/
https://www.empatica.com/e4-wristband/
https://play.google.com/store/apps/collection/topgrossing?hl=en
https://play.google.com/store/apps/collection/topgrossing?hl=en


[56] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[57] A. Haro, K. Mori, T. Capin, and S. Wilkinson. Mobile camera-based user interaction.
In International Workshop on Human-Computer Interaction, pages 79–89. Springer,
2005.

[58] J. A. Heathers. Smartphone-enabled pulse rate variability: an alternative methodol-
ogy for the collection of heart rate variability in psychophysiological research. Inter-
national Journal of Psychophysiology, 89(3):297–304, 2013.

[59] J. Hernandez, Z. Liu, G. Hulten, D. DeBarr, K. Krum, and Z. Zhang. Measuring the
engagement level of tv viewers. In Automatic Face and Gesture Recognition (FG),
2013 10th IEEE International Conference and Workshops on, pages 1–7. IEEE, 2013.

[60] J. Hernandez, I. Riobo, A. Rozga, G. D. Abowd, and R. W. Picard. Using electroder-
mal activity to recognize ease of engagement in children during social interactions.
In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 307–317. ACM, 2014.

[61] R. Herring, A. Hofleitner, S. Amin, T. Nasr, A. Khalek, P. Abbeel, and A. Bayen.
Using mobile phones to forecast arterial traffic through statistical learning. In 89th
Transportation Research Board Annual Meeting, pages 10–14, 2010.

[62] M. J. Hertenstein, R. Holmes, M. McCullough, and D. Keltner. The communication
of emotion via touch. Emotion, 9(4):566, 2009.

[63] A. B. Hertzman. Observations on the finger volume pulse recorded photoelectrically.
Am. J. Physiol., 119:334–335, 1937.

[64] N. Hjortskov, D. Rissén, A. K. Blangsted, N. Fallentin, U. Lundberg, and K. Søgaard.
The effect of mental stress on heart rate variability and blood pressure during com-
puter work. European journal of applied physiology, 92(1-2):84–89, 2004.

[65] Q. Huang, A. Veeraraghavan, and A. Sabharwal. Tabletgaze: dataset and analysis for
unconstrained appearance-based gaze estimation in mobile tablets. Machine Vision
and Applications, 28(5-6):445–461, 2017.

[66] J. Huizenga, W. Admiraal, S. Akkerman, and G. t. Dam. Mobile game-based learning
in secondary education: engagement, motivation and learning in a mobile city game.
Journal of Computer Assisted Learning, 25(4):332–344, 2009.

[67] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, pages 82–
95. ACM, 2017.

[68] S. Huynh, R. K. Balan, and Y. Lee. Towards recognition of rich non-negative emo-
tions using daily wearable devices. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pages 471–472. ACM, 2015.

[69] S. Huynh, S. Kim, J. Ko, R. K. Balan, and Y. Lee. Engagemon: Multi-modal engage-
ment sensing for mobile games. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2(1):13, 2018.

107



[70] W. IJsselsteijn, Y. De Kort, K. Poels, A. Jurgelionis, and F. Bellotti. Characterising
and measuring user experiences in digital games. In International conference on
advances in computer entertainment technology, volume 2, page 27, 2007.

[71] J. Jago and A. Murray. Repeatability of peripheral pulse measurements on ears,
fingers and toes using photoelectric plethysmography. Clinical Physics and Physio-
logical Measurement, 9(4):319, 1988.

[72] N. Jaques, S. Taylor, A. Azaria, A. Ghandeharioun, A. Sano, and R. Picard. Pre-
dicting students’ happiness from physiology, phone, mobility, and behavioral data.
In 2015 International Conference on Affective Computing and Intelligent Interaction
(ACII), pages 222–228. IEEE, 2015.

[73] K. Jeong and H. Moon. Object detection using fast corner detector based on smart-
phone platforms. In 2011 First ACIS/JNU International Conference on Computers,
Networks, Systems and Industrial Engineering, pages 111–115. IEEE, 2011.

[74] V. Jeyhani, S. Mahdiani, M. Peltokangas, and A. Vehkaoja. Comparison of hrv pa-
rameters derived from photoplethysmography and electrocardiography signals. In
2015 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 5952–5955. IEEE, 2015.

[75] Z. Jin, J. Oresko, S. Huang, and A. C. Cheng. Hearttogo: a personalized medicine
technology for cardiovascular disease prevention and detection. In 2009 IEEE/NIH
Life Science Systems and Applications Workshop, pages 80–83. IEEE, 2009.

[76] J. A. Johnstone, P. A. Ford, G. Hughes, T. Watson, and A. T. Garrett. Bioharness mul-
tivariable monitoring device: part. i: validity. Journal of sports science & medicine,
11(3):400, 2012.

[77] J. A. Johnstone, P. A. Ford, G. Hughes, T. Watson, and A. T. Garrett. BioharnessTM

multivariable monitoring device: part. ii: reliability. Journal of sports science &
medicine, 11(3):409, 2012.

[78] S. Kang, S. Kwon, C. Yoo, S. Seo, K. Park, J. Song, and Y. Lee. Sinabro: opportunis-
tic and unobtrusive mobile electrocardiogram monitoring system. In Proceedings of
the 15th Workshop on Mobile Computing Systems and Applications, page 11. ACM,
2014.

[79] S. Kang, S. Kwon, C. Yoo, S. Seo, K. Park, J. Song, and Y. Lee. Sinabro: Opportunis-
tic and unobtrusive mobile electrocardiogram monitoring system. In Proceedings of
the 15th Workshop on Mobile Computing Systems and Applications, HotMobile ’14,
pages 11:1–11:6, New York, NY, USA, 2014. ACM.

[80] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad. Mobile phone sensing sys-
tems: A survey. IEEE Communications Surveys & Tutorials, 15(1):402–427, 2012.
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