6,876 research outputs found

    Embedding-based Scientific Literature Discovery in a Text Editor Application

    Full text link
    Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author's manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application (https://SciEditorDemo2020.herokuapp.com/) and a short video tutorial (https://youtu.be/pkdVU60IcRc) are available online

    Top-N Recommendation on Graphs

    Full text link
    Recommender systems play an increasingly important role in online applications to help users find what they need or prefer. Collaborative filtering algorithms that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. To alleviate this problem, this paper proposes a simple recommendation algorithm that fully exploits the similarity information among users and items and intrinsic structural information of the user-item matrix. The proposed method constructs a new representation which preserves affinity and structure information in the user-item rating matrix and then performs recommendation task. To capture proximity information about users and items, two graphs are constructed. Manifold learning idea is used to constrain the new representation to be smooth on these graphs, so as to enforce users and item proximities. Our model is formulated as a convex optimization problem, for which we need to solve the well-known Sylvester equation only. We carry out extensive empirical evaluations on six benchmark datasets to show the effectiveness of this approach.Comment: CIKM 201

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page
    • …
    corecore