322 research outputs found

    Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling

    Get PDF
    In this paper we address shape modelling problems, encountered in computer animation and computer games development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces. Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation with near real-time preview times are presented

    Fluid Morphing for 2D Animations

    Get PDF
    Professionaalsel tasemel animeerimine on aeganĂ”udev ja kulukas tegevus. Seda eriti sĂ”ltumatule arvutimĂ€ngude tegijale. Siit tulenevalt osutub kasulikuks leida meetodeid, mis vĂ”imaldaks programmaatiliselt suurendada kaadrite arvu igas kahemÔÔtmelises raster animatsioonis. Vedeliku simulaatoriga eksperimenteerimine andis kĂ€esoleva töö autoritele idee, kuidas saavutada visuaalselt meeldiv kaadrite ĂŒleminek, kasutades selleks vedeliku dĂŒnaamikat. Tulemusena valmis programm, mis vĂ”ib animaatori efektiivsust tĂ”sta lausa mitmeid kordi. Autorid usuvad, et see avastus vĂ”ib viia kahemÔÔtmeliste animatsioonide uuele vĂ”idukĂ€igule — nĂ€iteks kaasaegsete arvutimĂ€ngude kontekstis.Creation of professional animations is expensive and time-consuming, especially for the independent game developers. Therefore, it is rewarding to find a method that would programmatically increase the frame rate of any two-dimensional raster animation. Experimenting with a fluid simulator gave the authors an insight that to achieve visually pleasant and smooth animations, elements from fluid dynamics can be used. As a result, fluid image morphing was developed, allowing the animators to produce more significant frames than they would with the classic methods. The authors believe that this discovery could reintroduce hand drawn animations to modern computer games

    Procedural Cloudscapes

    Get PDF
    International audienceWe present a phenomenological approach for modeling and animating cloudscapes. We propose a compact procedural model for representing the different types of cloud over a range of altitudes. We define primitive-based field functions that allow the user to control and author the cloud cover over large distances easily. Our approach allows us to animate cloudscapes by morphing: instead of simulating the evolution of clouds using a physically-based simulation, we compute the movement of clouds using key-frame interpolation and tackle the morphing problem as an Optimal Transport problem. The trajectories of the cloud cover primitives are generated by solving an Anisotropic Shortest Path problem with a cost function that takes into account the elevation of the terrain and the parameters of the wind field

    Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion

    Get PDF
    The SARS coronavirus (SARS-CoV) spike is the largest known viral spike molecule, and shares a similar function with all class 1 viral fusion proteins. Previous structural studies of membrane fusion proteins have largely used crystallography of static molecular fragments, in isolation of their transmembrane domains. In this study we have produced purified, irradiated SARS-CoV virions that retain their morphology, and are fusogenic in cell culture. We used cryo-electron microscopy and image processing to investigate conformational changes that occur in the entire spike of intact virions when they bind to the viral receptor, angiotensin-converting enzyme 2 (ACE2). We have shown that ACE2 binding results in structural changes that appear to be the initial step in viral membrane fusion, and precisely localized the receptor-binding and fusion core domains within the entire spike. Furthermore, our results show that receptor binding and subsequent membrane fusion are distinct steps, and that each spike can bind up to three ACE2 molecules. The SARS-CoV spike provides an ideal model system to study receptor binding and membrane fusion in the native state, employing cryo-electron microscopy and single-particle image analysis

    Transport-Based Neural Style Transfer for Smoke Simulations

    Full text link
    Artistically controlling fluids has always been a challenging task. Optimization techniques rely on approximating simulation states towards target velocity or density field configurations, which are often handcrafted by artists to indirectly control smoke dynamics. Patch synthesis techniques transfer image textures or simulation features to a target flow field. However, these are either limited to adding structural patterns or augmenting coarse flows with turbulent structures, and hence cannot capture the full spectrum of different styles and semantically complex structures. In this paper, we propose the first Transport-based Neural Style Transfer (TNST) algorithm for volumetric smoke data. Our method is able to transfer features from natural images to smoke simulations, enabling general content-aware manipulations ranging from simple patterns to intricate motifs. The proposed algorithm is physically inspired, since it computes the density transport from a source input smoke to a desired target configuration. Our transport-based approach allows direct control over the divergence of the stylization velocity field by optimizing incompressible and irrotational potentials that transport smoke towards stylization. Temporal consistency is ensured by transporting and aligning subsequent stylized velocities, and 3D reconstructions are computed by seamlessly merging stylizations from different camera viewpoints.Comment: ACM Transaction on Graphics (SIGGRAPH ASIA 2019), additional materials: http://www.byungsoo.me/project/neural-flow-styl

    Fluid typography: transforming letterforms in television idents

    Get PDF
    This document is the Accepted Manuscript version of the following article: Barbara Brownie, (2015) "Fluid typography: transforming letterforms in television idents", Arts and the Market, Vol. 5 Issue: 2, pp.154-167, October 2015. Under embargo. Embargo end date: 5 October 2017. The Version of Record is available online at doi: https://doi.org/10.1108/AAM-07-2014-0024. Published by Emerald Insight.Purpose – The purpose of this paper is to propose that, within the practice of motion branding, transforming type has been largely neglected by existing theorists and its importance to wider marketing trends overlooked. It will be observed that previous texts on transitional letterforms have tended to focus on changes in global arrangement and in doing so have neglected to recognise the significance of changes that occur at a local level, within individual letterforms. Design/methodology/approach – Taking an interdisciplinary approach, with examples including idents and bumpers from Channel 4, Sky, FOX, Five and MTV. New methods of understanding these artefacts will be introduced, with emphasis on how they affect the relationship between broadcaster’s identities and the medium of television. Modes of definition and understanding that have previously been applied to holographic poetry will be applied to the field of on-screen artefacts. Findings – The paper will discuss how branding has adapted to incorporate the features of the medium of television, and propose new methods of classification for the associated processes of metamorphosis, construction, parallax and revelation. Originality/value – Motion branding, in the form of television idents, is frequently described as containing “motion typography”, but this and related terminology is vague or misleading – and reduces all forms of kineticism to simple motion. On-screen branding often operates more complex temporal behaviours. Lack of sufficient vocabulary to describe such transformations has forced practitioners to describe their work in terms of previously existing work, thereby limiting the perceived scope of their ideas and the possibility of innovation. This paper resolves the lack of existing vocabulary by providing new definitions of four categories of fluid transformation that appear in contemporary television idents.Peer reviewedFinal Accepted Versio

    Information Processor

    Get PDF
    How computational technology start to take place and gradually become being heavily involved/implemented in the design process of architectural design. In the architecture domain, not only the proportion of the assistance from computational techniques has been increasing exponentially, but also, the role they play has been gradually shifting from a supporting one to a generative one. No longer limited to being a complex mathematics calculator, computers, have become a ubiquitous necessity in our daily life and even influence the way we live. This, is especially true for the young generation who were born in this digital world, mainly referred to as the “Generation Z”. Business Insider, a fast-growing business media website, mentioned that “Gen Z-ers are digitally over-connected. They multitask across at least five screens daily and spend 41% of their time outside of school with computers or mobile devices, compared to 22% 10 years ago, according to theSparks & Honey report.” When Alan Turing first invented the room-sized “Turing Machine” to decipher Nazi codes, he couldn’t have expected that this giant machine could one day be put into one’s pocket and efficiently compute a million times more data. As compared to the era of tools, such as paper and pen, the computer, in today’s context has been heavily utilized and relied upon as a powerful instrument. This change is remarkable, considering the relatively short period of time, especially after 1981 when the first IBM personal computer was released (Mitchell, 1990). Architecture Design cannot be excluded from this inevitable technological tendency. Even the most conservative architecture firms are now required to deliver digital technical drawings to communicate amongst designers, clients, and construction firms in the present scenario. Incorporating computer technology in today’s context also provides young designers the opportunity to experiment with creating relatively complex geometry based architectural space. But before applying this powerful technology in architectural design, the crucial knowledge behind it that architects had to understand and realize was the manner and procedure of “Processing of Information”. Without information, the computer would be just lying on one’s desk as a useless cube, like a vehicle without a driver, or a body without a soul. The shifting roles of computer technology in architectural design are obviously defined by the manner of how designers interpret, digest and operate/process the streams of information flow

    Biological Computation of Physarum : from DLA to spatial adaptive Voronoi

    Get PDF
    Physarum polycephalum, also called slime mold or myxamoeba, has started attracting the attention of those architects, urban designers, and scholars, who work in experimental trans- and flexi-disciplines between architecture, computer sciences, biology, art, cognitive sciences or soft matter; disciplines that build on cybernetic principles. Slime mold is regarded as a bio-computer with intelligence embedded in its physical mechanisms. In its plasmodium stage, the single cell organism shows geometric, morphological and cognitive principles potentially relevant for future complexity in human-machines-networks (HMN) in architecture and urban design. The parametric bio-blob presents itself as a geometrically regulated graph structure-morphologically adaptive, logistically smart. It indicates cognitive goal-driven navigation and the ability to externally memorize (like ants). Physarum communicates with its environment. The paper introduces physarum polycephalum in the context of 'digital architecture' as a biological computer for self-organizing 2D- to 4D-geometry generation

    Morphing arquitectĂłnico: transformaciones entre las casas usonianas de Frank Lloyd Wright

    Get PDF
    Esta tesis investiga sobre el proceso de transformación de la forma arquitectónica, analizando una técnica específica denominada morphing. La técnica del morphing se utiliza en los gråficos por ordenador para la transformación de la forma entre dos o mås objetos dados. Desde un punto de vista técnico, se revisan y actualizan las metodologías y aplicaciones existentes, sus características específicas y sus incidencias sobre la arquitectura. Desde un punto de vista pråctico, se utilizan una serie de modelos de las casas Usonianas de Frank Lloyd Wright, con el fin de experimentar la técnica y ver qué utilidades se pueden obtener a partir de su lógica de diseño. Como resultado de este anålisis se obtiene una metodología genérica para el procedimiento de un morphing arquitectónico.This thesis investigates the transformation of architectural form, analyzing a specific technique called morphing. Morphing is a technique used in computer graphics to transform a form between two or more given objects. From a technical point of view, the existing techniques are reviewed and updated, as well as their specific characteristics and impact on architecture. From a practical point of view, some models of Usonian houses of Frank Lloyd Wright are used to experience the technique and see which utilities are available from his design logic. As a result of this analysis a generic methodology for the process of architectural morphing is obtained.Postprint (published version
    • 

    corecore