59 research outputs found

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five

    Mixture Kalman filtering for joint carrier recovery and channel estimation in time-selective Rayleigh fading channels

    Full text link
    This paper proposes a new blind algorithm, based on Mixture Kalman Filtering (MKF), for joint carrier recovery and channel estimation in time-selective Rayleigh fading channels. MKF is a powerful tool for estimating unknown parameters in non-linear, non-Gaussian, real-time applications. We use a combination of Kalman filtering and Sequential Monte Carlo Sampling to estimate the channel fading coefficients and joint posterior probability density of the unknown carrier offset and transmitted data respectively. We study the effect of Signal to Noise Ratio (SNR) and doppler shift on Mean Square Error (MSE) and Bit Error Rate (BER) performance of the proposed algorithm through computer simulations. The results show that BER of the proposed algorithm achieves the theoreti-cal performance slope for the full acquisition range of normalized carrier frequency offset

    HOS-Based multi-component frequency estimation

    Get PDF
    We are considering a problem of carrier frequencies recovery for the linear mixtures of two BPSK signals in Gaussian noise. The goal is to simplify further signal analysis: signal separation, modulation identification and parameters estimation. The presented method is based on multidimensional (time-frequencyphase) representation of the Higher Order Statistics (HOS) of the received signal distribution. Performance of the proposed algorithm is verified through extensive simulations and compared to the MUSIC high-resolution spectral estimation method. Corresponding results show that our technique outperforms the latter for all considered frequency shifts, even for high signal-to-noise ratios (SNR)

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the Impact of Phase Noise in Communication Systems –- Performance Analysis and Algorithms

    Get PDF
    The mobile industry is preparing to scale up the network capacity by a factor of 1000x in order to cope with the staggering growth in mobile traffic. As a consequence, there is a tremendous pressure on the network infrastructure, where more cost-effective, flexible, high speed connectivity solutions are being sought for. In this regard, massive multiple-input multiple-output (MIMO) systems, and millimeter-wave communication systems are new physical layer technologies, which promise to facilitate the 1000 fold increase in network capacity. However, these technologies are extremely prone to hardware impairments like phase noise caused by noisy oscillators. Furthermore, wireless backhaul networks are an effective solution to transport data by using high-order signal constellations, which are also susceptible to phase noise impairments. Analyzing the performance of wireless communication systems impaired by oscillator phase noise, and designing systems to operate efficiently in strong phase noise conditions are critical problems in communication theory. The criticality of these problems is accentuated with the growing interest in new physical layer technologies, and the deployment of wireless backhaul networks. This forms the main motivation for this thesis where we analyze the impact of phase noise on the system performance, and we also design algorithms in order to mitigate phase noise and its effects. First, we address the problem of maximum a posteriori (MAP) detection of data in the presence of strong phase noise in single-antenna systems. This is achieved by designing a low-complexity joint phase-estimator data-detector. We show that the proposed method outperforms existing detectors, especially when high order signal constellations are used. Then, in order to further improve system performance, we consider the problem of optimizing signal constellations for transmission over channels impaired by phase noise. Specifically, we design signal constellations such that the error rate performance of the system is minimized, and the information rate of the system is maximized. We observe that these optimized constellations significantly improve the system performance, when compared to conventional constellations, and those proposed in the literature. Next, we derive the MAP symbol detector for a MIMO system where each antenna at the transceiver has its own oscillator. We propose three suboptimal, low-complexity algorithms for approximately implementing the MAP symbol detector, which involve joint phase noise estimation and data detection. We observe that the proposed techniques significantly outperform the other algorithms in prior works. Finally, we study the impact of phase noise on the performance of a massive MIMO system, where we analyze both uplink and downlink performances. Based on rigorous analyses of the achievable rates, we provide interesting insights for the following question: how should oscillators be connected to the antennas at a base station, which employs a large number of antennas

    Design and Analysis of GFDM-Based Wireless Communication Systems

    Get PDF
    Le multiplexage généralisé par répartition en fréquence (GFDM), une méthode de traitement par blocs de modulation multiporteuses non orthogonales, est une candidate prometteuse pour les technologies de forme d'onde pour les systèmes sans fil au-delà de la cinquième génération (5G). La capacité du GFDM à ajuster de manière flexible la taille du bloc et le type de filtres de mise en forme des impulsions en fait une méthode appropriée pour répondre à plusieurs exigences importantes, comme une faible latence, un faible rayonnement hors bande (OOB) et des débits de données élevés. En appliquant aux systèmes GFDM la technique des systèmes à entrées multiples et sorties multiples (MIMO), la technique de MIMO massif ou des codes de contrôle de parité à faible densité (LDPC), il est possible d'améliorer leurs performances. Par conséquent, l'étude de ces systèmes combinés sont d'une grande importance théorique et pratique. Dans cette thèse, nous étudions les systèmes de communication sans fil basés sur le GFDM en considérant trois aspects. Tout d'abord, nous dérivons une borne d'union sur le taux d'erreur sur les bits (BER) pour les systèmes MIMO-GFDM, technique qui est basée sur des probabilités d'erreur par paires exactes (PEP). La PEP exacte est calculée en utilisant la fonction génératrice de moments(MGF) pour les détecteurs à maximum de vraisemblance (ML). La corrélation spatiale entre les antennes et les erreurs d'estimation de canal sont prises en compte dans l'environnement de canal étudié. Deuxièmement, les estimateurs et les précodeurs de canal de faible complexité basés sur une expansion polynomiale sont proposés pour les systèmes MIMO-GFDM massifs. Des pilotes sans interférence sont utilisés pour l'estimation du canal basée sur l'erreur quadratique moyenne minimale(MMSE) pour lutter contre l'influence de la non-orthogonalité entre les sous-porteuses dans le GFDM. La complexité de calcul cubique peut être réduite à une complexité d'ordre au carré en utilisant la technique d'expansion polynomiale pour approximer les inverses de matrices dans l'estimation MMSE conventionnelle et le précodage. De plus, nous calculons les limites de performance en termes d'erreur quadratique moyenne (MSE) pour les estimateurs proposés, ce qui peut être un outil utile pour prédire la performance des estimateurs dans la région de Eₛ/N₀ élevé. Une borne inférieure de Cramér-Rao(CRLB) est dérivée pour notre modèle de système et agit comme une référence pour les estimateurs. La complexité de calcul des estimateurs de canal proposés et des précodeurs et les impacts du degré du polynôme sont également étudiés. Enfin, nous analysons les performances de la probabilité d'erreur des systèmes GFDM combinés aux codes LDPC. Nous dérivons d'abord les expressions du ratio de vraisemblance logarithmique (LLR) initiale qui sont utilisées dans le décodeur de l'algorithme de somme de produits (SPA). Ensuite, basé sur le seuil de décodage, nous estimons le taux d'erreur de trame (FER) dans la région de bas E[indice b]/N₀ en utilisant le BER observé pour modéliser les variations du canal. De plus, une borne inférieure du FER du système est également proposée basée sur des ensembles absorbants. Cette borne inférieure peut agir comme une estimation du FER dans la région de E[indice b]/N₀ élevé si l'ensemble absorbant utilisé est dominant et que sa multiplicité est connue. La quantification a également un impact important sur les performances du FER et du BER. Des codes LDPC basés sur un tableau et construit aléatoirement sont utilisés pour supporter les analyses de performances. Pour ces trois aspects, des simulations et des calculs informatiques sont effectués pour obtenir des résultats numériques connexes, qui vérifient les méthodes proposées.8 372162\u a Generalized frequency division multiplexing (GFDM) is a block-processing based non-orthogonal multi-carrier modulation scheme, which is a promising candidate waveform technology for beyond fifth-generation (5G) wireless systems. The ability of GFDM to flexibly adjust the block size and the type of pulse-shaping filters makes it a suitable scheme to meet several important requirements, such as low latency, low out-of-band (OOB) radiation and high data rates. Applying the multiple-input multiple-output (MIMO) technique, the massive MIMO technique, or low-density parity-check (LDPC) codes to GFDM systems can further improve the systems performance. Therefore, the investigation of such combined systems is of great theoretical and practical importance. This thesis investigates GFDM-based wireless communication systems from the following three aspects. First, we derive a union bound on the bit error rate (BER) for MIMO-GFDM systems, which is based on exact pairwise error probabilities (PEPs). The exact PEP is calculated using the moment-generating function (MGF) for maximum likelihood (ML) detectors. Both the spatial correlation between antennas and the channel estimation errors are considered in the investigated channel environment. Second, polynomial expansion-based low-complexity channel estimators and precoders are proposed for massive MIMO-GFDM systems. Interference-free pilots are used in the minimum mean square error (MMSE) channel estimation to combat the influence of non-orthogonality between subcarriers in GFDM. The cubic computational complexity can be reduced to square order by using the polynomial expansion technique to approximate the matrix inverses in the conventional MMSE estimation and precoding. In addition, we derive performance limits in terms of the mean square error (MSE) for the proposed estimators, which can be a useful tool to predict estimators performance in the high Eₛ/N₀ region. A Cramér-Rao lower bound (CRLB) is derived for our system model and acts as a benchmark for the estimators. The computational complexity of the proposed channel estimators and precoders, and the impacts of the polynomial degree are also investigated. Finally, we analyze the error probability performance of LDPC coded GFDM systems. We first derive the initial log-likelihood ratio (LLR) expressions that are used in the sum-product algorithm (SPA) decoder. Then, based on the decoding threshold, we estimate the frame error rate (FER) in the low E[subscript b]/N₀ region by using the observed BER to model the channel variations. In addition, a lower bound on the FER of the system is also proposed based on absorbing sets. This lower bound can act as an estimate of the FER in the high E[subscript b]/N₀ region if the absorbing set used is dominant and its multiplicity is known. The quantization scheme also has an important impact on the FER and BER performances. Randomly constructed and array-based LDPC codes are used to support the performance analyses. For all these three aspects, software-based simulations and calculations are carried out to obtain related numerical results, which verify our proposed methods

    New advances in synchronization of digital communication receivers

    Get PDF
    Synchronization is a challenging but very important task in communications. In digital communication systems, a hierarchy of synchronization problems has to be considered: carrier synchronization, symbol timing synchronization and frame synchronization. For bandwidth efficiency and burst transmission reasons, the former two synchronization steps tend to favor non-data aided (NDA or blind) techniques, while in general, the last one is usually solved by inserting repetitively known bits or words into the data sequence, and is referred to as a data-aided (DA) approach. Over the last two decades, extensive research work has been carried out to design nondata-aided timing recovery and carrier synchronization algorithms. Despite their importance and spread use, most of the existing blind synchronization algorithms are derived in an ad-hoc manner without exploiting optimally the entire available statistical information. In most cases their performance is evaluated by computer simulations, rigorous and complete performance analysis has not been performed yet. It turns out that a theoretical oriented approach is indispensable for studying the limit or bound of algorithms and comparing different methods. The main goal of this dissertation is to develop several novel signal processing frameworks that enable to analyze and improve the performance of the existing timing recovery and carrier synchronization algorithms. As byproducts of this analysis, unified methods for designing new computationally and statistically efficient (i.e., minimum variance estimators) blind feedforward synchronizers are developed. Our work consists of three tightly coupled research directions. First, a general and unified framework is proposed to develop optimal nonlinear least-squares (NLS) carrier recovery scheme for burst transmissions. A family of blind constellation-dependent optimal "matched" NLS carrier estimators is proposed for synchronization of burst transmissions fully modulated by PSK and QAM-constellations in additive white Gaussian noise channels. Second, a cyclostationary statistics based framework is proposed for designing computationally and statistically efficient robust blind symbol timing recovery for time-selective flat-fading channels. Lastly, dealing with the problem of frame synchronization, a simple and efficient data-aided approach is proposed for jointly estimating the frame boundary, the frequency-selective channel and the carrier frequency offset
    • …
    corecore