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Résumé

Le multiplexage généralisé par répartition en fréquence (GFDM), une méthode de traitement par blocs

de modulation multiporteuses non orthogonales, est une candidate prometteuse pour les technologies de

forme d’onde pour les systèmes sans fil au-delà de la cinquième génération (5G). La capacité du GFDM

à ajuster de manière flexible la taille du bloc et le type de filtres de mise en forme des impulsions en fait

une méthode appropriée pour répondre à plusieurs exigences importantes, comme une faible latence,

un faible rayonnement hors bande (OOB) et des débits de données élevés. En appliquant aux systèmes

GFDM la technique des systèmes à entrées multiples et sorties multiples (MIMO), la technique de

MIMO massif ou des codes de contrôle de parité à faible densité (LDPC), il est possible d’améliorer

leurs performances. Par conséquent, l’étude de ces systèmes combinés sont d’une grande importance

théorique et pratique.

Dans cette thèse, nous étudions les systèmes de communication sans fil basés sur le GFDM en

considérant trois aspects. Tout d’abord, nous dérivons une borne d’union sur le taux d’erreur sur les

bits (BER) pour les systèmes MIMO-GFDM, technique qui est basée sur des probabilités d’erreur

par paires exactes (PEP). La PEP exacte est calculée en utilisant la fonction génératrice de moments

(MGF) pour les détecteurs à maximum de vraisemblance (ML). La corrélation spatiale entre les

antennes et les erreurs d’estimation de canal sont prises en compte dans l’environnement de canal

étudié. Deuxièmement, les estimateurs et les précodeurs de canal de faible complexité basés sur une

expansion polynomiale sont proposés pour les systèmes MIMO-GFDM massifs. Des pilotes sans

interférence sont utilisés pour l’estimation du canal basée sur l’erreur quadratique moyenne minimale

(MMSE) pour lutter contre l’influence de la non-orthogonalité entre les sous-porteuses dans le GFDM.

La complexité de calcul cubique peut être réduite à une complexité d’ordre au carré en utilisant la

technique d’expansion polynomiale pour approximer les inverses de matrices dans l’estimation MMSE

conventionnelle et le précodage. De plus, nous calculons les limites de performance en termes d’erreur

quadratique moyenne (MSE) pour les estimateurs proposés, ce qui peut être un outil utile pour prédire

la performance des estimateurs dans la région de Es/N0 élevé. Une borne inférieure de Cramér-Rao

(CRLB) est dérivée pour notre modèle de système et agit comme une référence pour les estimateurs.

La complexité de calcul des estimateurs de canal proposés et des précodeurs et les impacts du degré du

polynôme sont également étudiés. Enfin, nous analysons les performances de la probabilité d’erreur

des systèmes GFDM combinés aux codes LDPC. Nous dérivons d’abord les expressions du ratio de

vraisemblance logarithmique (LLR) initiale qui sont utilisées dans le décodeur de l’algorithme de
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somme de produits (SPA). Ensuite, basé sur le seuil de décodage, nous estimons le taux d’erreur de

trame (FER) dans la région de bas Eb/N0 en utilisant le BER observé pour modéliser les variations

du canal. De plus, une borne inférieure du FER du système est également proposée basée sur des

ensembles absorbants. Cette borne inférieure peut agir comme une estimation du FER dans la région

de Eb/N0 élevé si l’ensemble absorbant utilisé est dominant et que sa multiplicité est connue. La

quantification a également un impact important sur les performances du FER et du BER. Des codes

LDPC basés sur un tableau et construit aléatoirement sont utilisés pour supporter les analyses de

performances. Pour ces trois aspects, des simulations et des calculs informatiques sont effectués pour

obtenir des résultats numériques connexes, qui vérifient les méthodes proposées.
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Abstract

Generalized frequency division multiplexing (GFDM) is a block-processing based non-orthogonal

multi-carrier modulation scheme, which is a promising candidate waveform technology for beyond

fifth-generation (5G) wireless systems. The ability of GFDM to flexibly adjust the block size and the

type of pulse-shaping filters makes it a suitable scheme to meet several important requirements, such

as low latency, low out-of-band (OOB) radiation and high data rates. Applying the multiple-input

multiple-output (MIMO) technique, the massive MIMO technique, or low-density parity-check (LDPC)

codes to GFDM systems can further improve the systems performance. Therefore, the investigation of

such combined systems is of great theoretical and practical importance.

This thesis investigates GFDM-based wireless communication systems from the following three aspects.

First, we derive a union bound on the bit error rate (BER) for MIMO-GFDM systems, which is based

on exact pairwise error probabilities (PEPs). The exact PEP is calculated using the moment-generating

function (MGF) for maximum likelihood (ML) detectors. Both the spatial correlation between antennas

and the channel estimation errors are considered in the investigated channel environment. Second,

polynomial expansion-based low-complexity channel estimators and precoders are proposed for massive

MIMO-GFDM systems. Interference-free pilots are used in the minimum mean square error (MMSE)

channel estimation to combat the influence of non-orthogonality between subcarriers in GFDM. The

cubic computational complexity can be reduced to square order by using the polynomial expansion

technique to approximate the matrix inverses in the conventional MMSE estimation and precoding.

In addition, we derive performance limits in terms of the mean square error (MSE) for the proposed

estimators, which can be a useful tool to predict estimators performance in the high Es/N0 region. A

Cramér-Rao lower bound (CRLB) is derived for our system model and acts as a benchmark for the

estimators. The computational complexity of the proposed channel estimators and precoders, and

the impacts of the polynomial degree are also investigated. Finally, we analyze the error probability

performance of LDPC coded GFDM systems. We first derive the initial log-likelihood ratio (LLR)

expressions that are used in the sum-product algorithm (SPA) decoder. Then, based on the decoding

threshold, we estimate the frame error rate (FER) in the low Eb/N0 region by using the observed

BER to model the channel variations. In addition, a lower bound on the FER of the system is also

proposed based on absorbing sets. This lower bound can act as an estimate of the FER in the high

Eb/N0 region if the absorbing set used is dominant and its multiplicity is known. The quantization

scheme also has an important impact on the FER and BER performances. Randomly constructed and
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array-based LDPC codes are used to support the performance analyses. For all these three aspects,

software-based simulations and calculations are carried out to obtain related numerical results, which

verify our proposed methods.
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Introduction

Background

Mobile wireless communications advanced rapidly over the past decades. The first generation (1G) of

mobile wireless communication systems supported basic voice services with analogue design, which

improved the way people communicate. The second generation (2G) became digital, in which voice

services with greater capacity and better quality, and short message service could be provided. The

third generation (3G) introduced the Internet access ability on the basis of voice service and short

message service. The access to the Internet was a new milestone for wireless communications, which,

in many ways, enriched people’s lives. The fourth generation (4G) provided higher throughput than

the third generation due to the rapid development of electronics. The fifth generation (5G) is currently

being deployed in many countries and areas of the world, which supports diverse application scenarios,

such as enhanced mobile broadband (eMBB), ultra reliable low latency communications (URLLC),

and massive machine type communications (mMTC), etc. Future wireless communication systems

will face new and challenging requirements. Higher data rates will be expected as always. Greater

connection density should be provided to support the massive connectivity of Internet of Things (IoT).

Lower latency and higher reliability are the key factors enabling some critical control processes such as

telemedicine and autonomous vehicles. Technologies with ultra-low energy consumption need to be

investigated to extend the battery life cycles of the devices. In addition, higher spectral efficiency and

new frequency bands, such as millimeter wave (mmWave), should be exploited to increase the data rate

and bandwidth.

Waveform technologies in the physical layer are critical in the whole communication chain. Orthogonal

frequency division multiplexing (OFDM) is an important multi-carrier modulation scheme which

has been widely adopted in wireless communication systems, such as Long Term Evolution (LTE)

and Long Term Evolution Advanced (LTE-A), due to its advantages. OFDM is robust in multi-path

channels and can be easily applied in multiple-input multiple-output (MIMO) channels. In OFDM, the

transmit signal can be generated by an inverse fast Fourier transform (IFFT) operation at the transmitter

and the transmitted data symbols can be separated by a fast Fourier transform (FFT) operation at

the receiver. However, the inherent high peack-to-average power ratio (PAPR) in OFDM can lead to

high levels of out-of-band (OOB) radiation, which might be a serious problem for some scenarios

such as dynamic spectrum access because of its rectangular pulse shape. In cyclic prefix (CP) based
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OFDM (CP-OFDM), one symbol is accompanied with a CP, which leads to lower spectral efficiency.

Therefore, OFDM is no longer suitable for many beyond 5G application scenarios. At present, several

promising alternative waveform candidates are investigated widely, such as generalized frequency

division multiplexing (GFDM) [1], universal filtered multi-carrier (UFMC) [2], filter bank multi-carrier

(FBMC) [3], and filtered orthogonal frequency division multiplexing (f-OFDM) [4].

The UFMC waveform was originally proposed to overcome the problem of inter-carrier interference

in OFDM. UFMC is the outcome of applying post-filtering to OFDM waveforms. A pulse shaping

filter with smooth edges is applied to a group of sub-carriers to reduce the OOB radiation and as a

result, the inter-carrier interference (ICI) can be effectively suppressed. UFMC is suitable for short

burst communication scenarios because its filter length is shorter than the CP length of OFDM. Well

designed UFMC scheme can get rid of CP so that higher spectral efficiency can be achieved [2].

UFMC is compatible with common-used techniques that are currently used in OFDM, such as MIMO

transmissions. However, UFMC is sensitive to time misalignment if there is no CP. Therefore, it may

not be applicable to scenarios in which loose time synchronization exists.

In FBMC, the filtering operation is applied to every sub-carrier. A set of parallel symbols are processed

by a bank of modulated filters which can be well designed to offer very low frequency leakage. There

are two categories of FBMC. One of them is called filtered multi-tone (FMT) which is based on a

complex value scheme, such as quadrature amplitude modulation (QAM). The other one is called

FBMC/OQAM and is based on the real value offset QAM (OQAM) scheme. In order to obtain

orthogonality among sub-carriers, FMT has to reduce the frequency domain overlapping, which leads

to low spectral efficiency. Nevertheless, FBMC/OQAM imposes the orthogonality in the real domain to

get maximum frequency efficiency. FBMC is not suitable for low latency application scenarios because

it can get high spectral efficiency only when a large number of symbols are transmitted.

f-OFDM is based on the regular OFDM numerology (i.e. the configurations of subcarrier spacing,

CP and FFT size) but the difference is that it provides more flexibility in the parameterization. For

example, different widths of the sub-bands, different filters and CP lengths can be applied to different

sub-bands. As a consequence, f-OFDM can offer lower OOB emission and more flexible usage of

frequency resources than OFDM.

GFDM, the focus of this thesis, is a flexible block-processing based modulation scheme that can

generate flexibly configurable waveforms. Every block consists of K subcarriers with M subsymbols

each, leading to KM symbols in total, where K and M can be adjusted according to the system

requirements. With its high flexibility, GFDM is a unified scheme which can be also configured to be

OFDM, single-carrier frequency domain equalization (SC-FDE) or single-carrier frequency division

multiplexing (SC-FDM) to serve different use cases. In the GFDM block, each symbol is processed by

a certain filter that is a shifted version of a prototype filter in time and frequency domains. The level

of the OOB radiation can be reduced due to this filtering operation, which is important for dynamic

spectrum allocation and fragmented spectrum scenarios, e.g. cognitive radio (CR) systems. Unlike
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OFDM, the orthogonality among subcarriers in GFDM is altered, which consequently might result

in larger ICI and inter-symbol interference (ISI). In this case, corresponding interference cancellation

methods should be designed at the receiving end. While offering new features, GFDM preserves most

benefits of OFDM at the price of higher complexity. GFDM can be suitable for low latency scenarios

because of its flexible block structure design.

MIMO technology can increase data throughput and strengthen the robustness and reliability of wireless

systems. A common configuration for MIMO in LTE mobile networks is a 2×2 mode, which places

2 antennas at the transmit end and 2 others at the receive end. Other configurations are 4×2, 4×4,

8×2, etc. In recent years, massive MIMO (also called large-scale MIMO) architectures are drawing

more research attention and becoming a promising technology for the next generation of wireless

communication systems. In massive MIMO, the base stations (BSs) are equipped with a large number

of antennas, generally more than 100. Massive MIMO provides various advantages, such as increasing

the capacity 10 times or more, improving the radiation energy efficiency in the order of 100 times and

simplifying the multi-access layer due to channel hardening. The size of antennas can get smaller when

the carrier frequency goes higher with the assumption that the size of antenna is proportional to the

wavelength. Therefore, in mmWave bands, more antennas can be easily installed onto a given area with

smaller size. Massive MIMO combined with small cells will be an important architecture for obtaining

massive connectivity and seamless coverage. Massive MIMO can be equipped with inexpensive

and low-power components. Massive MIMO increases the robustness both to unintended man-made

interference and to intentional jamming. At the same time, massive MIMO brings several problems to

be solved, including fast and distributed coherent signal processing, hardware impairments, internal

power consumption, channel modeling, accurate acquisition of spatial correlation, holographic massive

MIMO, application to cell-free networks, application to sub-THz communications, amalgamation with

machine learning, etc. [5], [6], [7].

Low-density parity-check (LDPC) codes are capacity-approaching linear block error correction codes,

which were initially discovered by Gallager in 1962 [8]. Due to their high computation complexity and

the level of electronic systems at that time, LDPC codes did not get much research attention. However,

with the development of electronics, LDPC codes were reinvented by D. J. C. Mackay and R. M. Neal

in 1996 [9]. Near-Shannon limit performance with belief propagation (BP) method was achieved.

In general, LDPC codes have better performance than Turbo codes if the block length is large. In

addition, great flexibility, simple description, high throughput and low decoding complexity are also

the advantages of LDPC codes. LDPC decoding can also provide low latency and more parallelization.

LDPC codes have been adopted into several standards, including worldwide interoperability for

microwave access (WiMAX), digital video broadcasting (DVB-S2), and the eMBB scenario in 5G. It is

worth conducting further research on LDPC codes to achieve better performance.
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Motivations

By gathering their advantages, the combination of GFDM, massive MIMO and LDPC codes should

have the potential to provide a sophisticated and efficient wireless system. Applying MIMO technology

to GFDM systems can further improve the system performance by increasing data throughput and

system reliability. The error probability performance is one of the key criteria in evaluating wireless

systems. Monte-Carlo simulations are often used to obtain the error probability, but, for complex

systems, those simulations may take too much time to obtain reliable numerical results. Deriving

analytical performance bounds is an alternative to performing Monte-Carlo simulations, which usually

needs less time. Although massive MIMO technology has great potential, the increase in the number

of antennas brings a problem of high computational complexity. The increase in computational

complexity will consume more energy and time. This issue may be more notable at the user terminal

end because complex computation will badly drain the batteries of electronic devices. As a specific

example, conventional MMSE based channel estimators and precoders have cubic complexity whose

computation cost is expensive as the number of antennas increases. Therefore, low-complexity solutions

need to be found to keep related systems energy-efficient. The application of LDPC codes to GFDM

systems can effectively improve the recovery of the transmitted information owing to their capacity-

approaching performance and low decoding complexity. There are several factors that can impact

the system performance, such as channel types, decoding algorithms, quantization schemes, etc. It is

of great theoretical and practical importance to investigate LDPC-coded GFDM systems with these

factors taken into consideration. Moreover, deriving performance bounds is quite useful because LDPC

codes can have very low error probability and regular Monte-Carlo simulations will take much more

time to obtain desired numerical results.

Contributions

The contributions of this thesis are as follows:

1 Develop union bounds on the error probability performance for MIMO-GFDM systems to serve

as a reference for future design.

2 Propose low-complexity channel estimators for massive MIMO-GFDM systems and propose

low-complexity precoders based on the channel estimates obtained from the proposed estimators.

3 Analyze the error probability performance of LDPC-coded GFDM systems. The frame error rate

(FER) in the low Eb/N0 region is efficiently estimated based on the decoding threshold and the

observed bit error rate (BER). By exploiting absorbing sets, a lower bound on the FER is also

proposed for LDPC coded GFDM systems when quantized SPA decoders are used.
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Thesis Outline

This thesis investigates several critical issues of GFDM-based wireless systems, including performance

bounds on the BER of MIMO-GFDM systems, low-complexity channel estimators and precoders for

massive MIMO-GFDM systems, and error probability performances of LDPC-coded GFDM systems.

To be specific, the organization of this thesis is described below.

In Chapter 1, literature reviews are provided in the areas of GFDM, MIMO/massive MIMO, and LDPC

codes, respectively.

In Chapter 2, we present the first contribution of the thesis. A union bound on the BER is derived

for MIMO-GFDM systems with ML detection, which is based on exact PEP calculations using MGF

methods. Realistic channel environments are considered in deriving the union bound that include the

spatial correlation between antennas, and channel estimation errors.

In Chapter 3, we present the second contribution of the thesis. Low-complexity MMSE channel

estimators and precoders are proposed for massive MIMO-GFDM systems. In order to reduce the

impact of non-orthogonality between GFDM subcarriers, we employ interference-free pilots in the

channel estimation. Polynomial expansion technique is used to approximate the matrix inverses in the

MMSE estimation and precoding, consequently reducing the cubic computational complexity to square

order. The computational complexity of the proposed channel estimators and precoders is analyzed. In

addition, performance limits in terms of MSE are also derived for the proposed estimators, which are

useful tools in predicting the performance in the high Es/N0 region.

In Chapter 4, the third contribution of the thesis is presented. We investigate the error probability

performances of LDPC-coded GFMD systems. The initial LLRs are first derived for our system model

and then used in SPA decoders. We estimate the system’s FER in the low Eb/N0 region by considering

the decoding threshold and observed BER. A lower performance bound on the FER is proposed based

on the absorbing sets of the LDPC code when quantization is taken into account in the SPA decoding.

This bound can be an accurate estimate of the FER in the high Eb/N0 region if the absorbing set is

dominant and its multiplicity is known. Both randomly constructed and array-based LDPC codes are

used to verify the performance.

Finally, the thesis ends with a conclusion.
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Chapter 1

Literature Review

In this chapter, we present detailed literature reviews of GFDM, MIMO, massive MIMO and LDPC

codes.

1.1 Generalized Frequency Division Multiplexing

1.1.1 Basic Model of GFDM

The concept of GFDM [10] was proposed by Gerhard Fettweis et al. in 2009. It was originally designed

to opportunistically exploit white spaces in the spectrum for wireless communications, such as the

spectrum holes in the ultra high frequency (UHF) television (TV) bands, i.e. TV white spaces (TVWS).

Therefore, the motivation therein is to develop a GFDM system which can provide low OOB radiation,

simple equalization, flexible signal bandwidths and digital implementation. Because OFDM has strong

spectral leakage, it will interfere with the legacy TV signals. GFDM was intended to combine the

simplicity and flexibility of OFDM with effective interference reduction mechanisms.

According to [1], a typical GFDM-based communication chain can be described as in Fig. 1.1. The
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Figure 1.1: Block diagram of a typical GFDM system.
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GFDM modulator is located between the mapper and CP addition. The binary information source

generates the binary data vector b and then, b is encoded with an appropriate coding scheme to produce a

codeword vector c. c is mapped to symbols d by a mapper, such as phase-shift keying (PSK), frequency-

shift keying (FSK) and QAM. d denotes a data block that contains a total of N = KM elements and can

be decomposed into K sub-carriers with M sub-symbols according to d = (dT
0 , . . . ,dT

m, . . . ,dT
M−1)

T and

dm = (d0,m, . . . ,dk,m, . . . ,dK−1,m)
T. Therefore, each element dk,m corresponds to the data transmitted

on the kth sub-carrier and in the mth sub-symbol of the GFDM block. The symbols are then modulated

in the GFDM modulator unit to obtain the transmit samples x = (x[0], . . . ,x[n], . . . ,x[N−1])T.

x[n] =
K−1

∑
k=0

M−1

∑
m=0

gk,m[n]dk,m, n = 0, . . . ,N−1, (1.1)

where gk,m[n] = g [(n−mK) mod N]exp
(

j2π
k
K n
)

is obtained by the time and frequency shift of a

prototype filter g[n]. gk,m[n] is a circularly shifted version of gk,0[n] because of the modulo operation.

The shifting operation in frequency is performed by the complex exponential. If the filter samples are

collected in a vector as gk,m = (gk,m[0],gk,m[1], . . . ,gk,m[N−1])T, then we obtain the following compact

form

x = Ad, (1.2)

where A = (g0,0 . . . g0,M−1 g1,0 . . . gK−1,M−1) denotes the KM×KM transmitter matrix.

Then, a CP is added to x to obtain the signal x̃ that is transmitted over a wireless channel. ỹ = H̃x̃+ ñ
is the received signal, where H̃ is the channel matrix and ñ is the AWGN. ys is obtained after the

received signal is synchronized. Assuming perfect synchronization (ys = ỹ) and after the operation of

CP removal, we have

y = Hx+n

= HAd+n,
(1.3)

where H is the corresponding circular convolution matrix with size of N ×N and n denotes the

equivalent noise. After that, a channel equalization procedure is conducted to produce z. When

zero-forcing (ZF) equalization is assumed, z = H−1HAd+H−1n = Ad+n, where n = H−1n. d̂ = Bz
is obtained after demodulating z, where B is the corresponding KM×KM receiver matrix. B is different

for different receiver options: for matched filter (MF) receivers, BMF = AH; for ZF receivers, BZF =

A−1; for linear minimum mean square error (MMSE) receivers, BMMSE =
(
R2

w +AHHHHA
)−1 AHHH,

where R2
w is the covariance matrix of the noise. The ZF channel equalization is not required for the

MMSE receiver due to the fact that the channel is jointly equalized in the process. In this case, d̂ = By.

Then, d̂ is demapped to yield ĉ. Finally, b̂ is obtained by decoding ĉ.

GFDM features a low OOB radiation, which is defined as the ratio of the energy emitted into the range

outside the allocated frequency band OOB to the energy contained in the allocated frequency band B,

O =
|B|
|OOB|

·
∫

f∈OOB P( f )d f∫
f∈B P( f )d f

, (1.4)
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where P( f ) denotes the power spectral density (PSD) of the baseband signal. A number of guard sub-

carriers can be inserted between the B and the OOB. As reported in [1], the OOB radiation in GFDM

is approximately 15 dB below that in OFDM by default. In order to achieve further reduction of OOB

radiation, the techniques of inserting guard symbols and pinching the block boundary were discussed

in [1]. An abrupt signal change between GFDM blocks leads to high OOB radiation. Guard symbols

can be inserted into each GFDM block to obtain smoother transitions between blocks, consequently

reducing the OOB radiation. Certainly, the insertion of guard symbols will decrease the spectral

efficiency, but the related reduction can be neglected when the number of symbols is set to be large

enough. The operation of pinching the block boundary means that each GFDM block at the transmitter

is multiplied by a window function in the time domain to achieve smooth boundaries, which is based

on the redundancy in the transmitted data introduced by the addition of the CP.

1.1.2 Symbol Error Rate Performance for Different Channels

With the assumption of a ZF receiver, the symbol error rate (SER) performance of GFDM has been

analyzed in [1] under AWGN channels, static frequency-selective channels (FSC) and flat time-variant

channels (TVC). The related channel impulse responses and delay spread of these considered channels

are summarized in Table 1.1. The ZF receiver is capable of removing self-generated interference at the

Table 1.1: Channel impulse response and delay spread [1]

Channel Impulse Response Delay Spread

AWGN h = (1) Nch = 1

FSC h =
(

10
−i

Nch−1
)T

i=0,...,Nch−1
Nch = NCP

TVC h = (h),h∼ CN(0,1) Nch = 1

cost of introducing noise enhancement that depends on the pulse shaping filters. The signal-to-noise

ratio (SNR) reduction is determined by the noise enhancement factor (NEF) χ = ∑
MK−1
n=0

∣∣[BZF]k,n
∣∣2

over flat channels, which is equal for every k.

AWGN channels: The SER expressions of GFDM and OFDM under AWGN [11] are only different in

terms of the equivalent SNR that is adjusted by the NEF for GFDM at the receiver. Thus the SER of a

GFDM system under AWGN is

pAWGN(e) = 2
(

κ−1
κ

)
erfc(
√

γ)+−
(

κ−1
κ

)
erfc2(

√
γ), (1.5)

where

γ =
3RT

2(2µ −1)
· Es

χN0
(1.6)

and

RT =
KM

KM+NCP +NCS
. (1.7)
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κ =
√

2µ and µ denotes the number of bits per QAM symbol. NCP and NCS denote the length of the

CP and cyclic suffix (CS), respectively. Es and N0 denote the average energy per symbol and the

noise power density, respectively. It is important to choose appropriate pulse shapes to reduce the

performance loss caused by noise enhancement.

Frequency-Selective Channels: When a ZF receiver is used, the input signal of the demapper in Fig.

1.1 is d̂ = d+neq, where neq is the equivalent noise. The variance of the equivalent noise for the lth

sub-carrier can be given by σ2
l = χlσ

2, where σ2 denotes the variance of the AWGN and χl denotes

the corresponding NEF. This variance is equal for every m. Therefore, the SER of a GFDM system

over FSC is

pFSC (e) = 2
(

κ−1
κK

)K−1

∑
l=0

erfc(
√

γl)+−
1
K

(
κ−1

κ

)2 K−1

∑
l=0

erfc2 (
√

γl), (1.8)

where

γl =
3RT

2(2µ −1)
· Es

χlN0
. (1.9)

GFDM can provide better mitigation of the frequency selectivity in each sub-carrier than OFDM

because GFDM has more samples per sub-carrier.

Time-Variant Channels: A TVC can be described as a multiplicative channel whose amplitude gain

is Rayleigh distributed with parameter σr and whose phase is uniformly distributed in [−π,π]. Assume

that the channel is static during the transmission of one GFDM symbol. The SER of a GFDM system

over TVC is

pTVC (e) = 2
(

κ−1
κ

)(
1−
√

γr

1+ γr

)
+−

(
κ−1

κ

)2[
1− 4

π

√
γr

1+ γr
atan

(
1+ γr

γr

)]
, (1.10)

where

γr =
3σ2

r RT

2µ
· Es

χN0
. (1.11)

Closed-form SER performance of GFDM over AWGN channels has been presented in [12], which is

under the assumption that an MF receiver is employed. In the low SNR region, MF receivers outperform

ZF ones because of the impact of the noise enhancement. However, in the high SNR region, ZF receivers

outperform MF ones because MF receivers suffer from self-interference. Simulation results of the SER

performance of MMSE receivers have also been presented in [13]. The MMSE receiver can provide

the best performance because it balances the noise enhancement and the self-interference.

The union bound can be used to provide a tight bound on BER or SER of communication systems [14],

[15]. Therefore, it is an appropriate performance criterion for optimizing algorithms used in the related

designs.

1.1.3 Impacts of Pulse Shaping Filters

The operation of pulse shaping in each sub-carrier can adjust the OOB radiation and will produce

non-orthogonal waveforms. The circular pulse shaping filters in GFDM, such as root raised cosine
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(RRC), raised cosine (RC), Xia pulse, Gaussian pulse and Dirichlet pulse were investigated in [12].

The Xia pulses are a family of real asymmetric pulses that can be defined in the frequency domain by a

roll-off function and a roll-off factor [16]. The 1st order Xia pulse can be formulated as [1]

GXia [ f ] =
1
2

[
1− e− jπlinω( f

M )sign( f )
]
, (1.12)

where

linω (x) = min
(

1,max
(

0,
1+ω

2ω
+
|x|
ω

))
, (1.13)

which is a truncated linear function and can describe the roll-off area systematically. ω denotes the

roll-off factor. The 4th order Xia pulse can be formulated as [1]

GXia4 [ f ] =
1
2

[
1− e− jπ p4(linω( f

M ))sign( f )
]
, (1.14)

where

p4 (x) = x4 (35−84x+70x2−20x3) . (1.15)

The Xia pulse turns into a Dirichlet pulse when the roll-off factor decreases to 0. Another example is

the Gaussian pulse that can be described in the time domain as [12]

gGauss [n] =
√

π

ι
exp
(
−π2n

ι2N

)
, (1.16)

where ι denotes its variance in the time domain.

Gaussian pulses can provide the lowest OOB radiation when 6 guard carriers are used but it has the

highest interference variance which is relatively independent of ι . The interference variance of RRC

filters is comparable to that of RC and Xia pulses, while RRC filters show stronger OOB radiation. RC

filters can suppress the OOB radiation to 50 dB below that of OFDM with 6 guard carriers. The 1st

order Xia pulse provides an equal reduction of the OOB radiation to the RC filter but its interference is

stronger. The 4th order Xia pulse shows higher level of OOB radiation with lower interference variance

than the RC filter. The Dirichlet pulse is free of self-interference and can provide an OOB radiation of

-68 dB. In addition, Dirichlet pulses can make GFDM orthogonal and consequently provide the same

BER performance as OFDM over AWGN channels with notably lower OOB radiation. The BER of

GFDM systems over AWGN channels is affected by the variance of the self-interference that is caused

by the pulse shaping filter. To be specific, the BER increases with the variance of the self-interference

when the self-interference is larger than a critical value. This value increases with the level of the noise.

Therefore, in the case of low SNR, the above-mentioned critical value is large and the constraint for

low self-interference can be relaxed, which means a pulse shaping filter with high interference can be

employed in order to obtain other benefits like better spectral properties. On the contrary, in the case of

high SNR, the above-mentioned critical value is small and pulse shaping filters with low interference

should be chosen to achieve acceptable BER performance [12].

In [17], two kinds of improved Nyquist filters from [18], namely, the flipped-hyperbolic secant (Fsech)

pulse shaping filter and the flipped-inverse hyperbolic secant (Farcsech) pulse shaping filter were
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introduced into GFDM. Their SER performance was evaluated over an AWGN channel with 16-QAM

mapping and compared with RRC filters. The concept of wavelet was used to obtain a better time-

frequency localization of the pulse shaping filters, where a Meyer auxiliary function [19] was employed.

Simulation results showed that these two improved Nyquist pulse shaping filters can achieve better

SER performance in GFDM compared to RRC pulse shaping filters.

1.1.4 Receiver Design and Interference Cancellation

Although GFDM provides attractive properties, the non-orthogonality of GFDM is a critical issue to

tackle. This non-orthogonality between sub-carriers can lead to interference. ZF, MF and MMSE

receivers have been derived to reduce the self-interference [13]. The ZF receiver can remove ICI

but suffers from some BER performance loss due to the problem of noise enhancement. The MF

receiver cannot completely eliminate the ICI. The MMSE receiver can reduce the noise enhancement

and maximize the signal-to-interference plus noise ratio (SINR). These receivers perform large matrix

inversion and multiplication operations. Therefore, their computational complexity is very high. A time

domain successive interference cancellation (SIC) method was introduced to completely remove the

self-interference [20]. But it was a computationally exhaustive procedure. The interference cancellation

performed in the frequency domain was introduced in [21]. The sparsity of the pulse shaping filter in the

frequency domain was employed to reduce the computational complexity at the receiver. This method

can remove the self-interference but can result in error propagation problems. A fast algorithm based

on the Gabor transform structure has been proposed in [22] to calculate the ZF and MF filters at the

receiver. Gabor analysis and time-frequency analysis were proposed by Dennis Gabor in 1946 [23]. His

idea was to transmit an arbitray signal as the linear combination of time-shifted and frequency-shifted

Gaussian impulses. The authors of [22] showed that the transmission and linear reception in GFDM

are equivalent to a critically sampled finite discrete Gabor expansion and transform, respectively. In

this approach, the matrix inversion is avoided but the matrix to vector multiplication still has high

computational complexity. In [24], a low-complexity modem structure was proposed. Block circulant

matrices were exploited. A unified structure of the ZF, MF and MMSE receiver was also presented.

This receiver structure for interference cancellation is not iterative, which makes it possible to run

the computations in parallel, consequently reducing the system processing delay. At the transmitter,

the sparsity of the modulation matrix was obtained to reduce the computational complexity by use

of block discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) matrices.

At the receiver, block diagonalization was used to design the low-complexity ZF, MF and MMSE

demodulators.

The non-orthogonality caused by pulse shaping results in self-generated ICI. ICI, in turn, will degrade

the performance of GFDM. In [20], a basic serial and a double sided serial interference cancellation

approach were introduced into the GFDM system. Self-generated ICI introduced by the RRC pulse

shaping can be successfully suppressed. In GFDM, if RRC filters are used at the transmitter and

receiver, ICI just exists in the neighbouring sub-carriers. Fig. 1.2 illustrates the principle of how
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the ICI occurs between the adjacent sub-carriers in the frequency domain. The basic idea therein

… …

k - 1 k k + 1 k + 2 f

Figure 1.2: Illustration of the interference in the kth sub-carrier from adjacent sub-carriers [20].

was that the received data symbols are fed back to the interference cancellation unit and in the ith

sub-iteration, the signal for interference cancellation is subtracted from the composite received signal.

In the sub-iteration i = k, the interference from the (k−1)th sub-carrier will be removed and at the

same time we obtain the symbols on the kth sub-carrier. Then, a similar process can be perform for

all the sub-carriers. At the end of this procedure, the ICI caused by the preceding sub-carriers can be

mitigated. For the cancellation of ICI from the succeeding sub-carriers, another K similar sub-iterations

should be performed.

In the previous basic serial interference cancellation approach, the ICI effects from preceding and

succeeding sub-carriers can be eliminated successively. However, they can also be removed simultane-

ously through the double sided serial interference cancellation approach. For the cancellation on the kth

sub-carrier, the data symbols on the (k−1)th and (k+1)th sub-carriers are processed simultaneously to

get the cancellation signal that is subtracted from the composite received signal. A similar procedure

can be performed in a pattern of iteration to mitigate the ICI in other sub-carriers. It was shown that the

double sided SIC outperforms the basic SIC for both quadrature phase-shift keying (QPSK) and QAM

modulation and the BER performance of the GFDM system with the double sided SIC can match the

theoretical BER performance of the OFDM system [20]. It is possible to carry out the interference

cancellation procedure in a parallel way. All the received symbols will be detected simultaneously and

be used to build the cancellation signal for every sub-carrier.

1.1.5 Synchronization in GFDM

Synchronization is significant for the signal processing at the receiver. Various synchronization

techniques [25], [26] have been proposed for the OFDM scheme due to its prevalence in existing

wireless systems. However, there is a deficiency of synchronization techniques for the GFDM scheme.

Symbol time offset (STO) and carrier frequency offset (CFO) estimation [27] are important challenges

in multicarrier receiving. The block structure of GFDM along with the CP addition allows for the

fundamental synchronization solutions designed for OFDM to be employed in GFDM. Low OOB

radiation design should be taken into consideration when these techniques are used in GFDM. A

windowed GFDM preamble can be defined with M = 2 and in the kth sub-carrier, the sub-symbols
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dk,0 and dk,1 are composed of the same pseudo-noise sequence. Pinching the block boundary can

ensure low OOB radiation [1]. This structure is illustrated in Fig. 1.3. Different pinching lengths

Figure 1.3: Illustration of the GFDM preamble and data block [1].

(NWd and NWp) can be chosen for the data block and preamble, respectively, for obtaining a desired

emission mask. The two identical halves of the GFDM preamble that result from the use of the same

pseudo-noise sequence can be identified with an autocorrelation metric. Then, the STO and CFO can

be estimated to serve the synchronization. In addition, an approximate maximum-likelihood (ML)

blind synchronization approach was investigated in [28] for GFDM systems by neglecting some weak

self-introduced interference and approximately averaging the time-varying signal power. The effect of

timing and carrier frequency offset on GFDM systems was investigated in [29]. The simulation results

therein indicated that GFDM systems are more sensitive to timing offset but robust to CFO (with large

frequency errors) compared with OFDM systems.

1.2 Multiple-Input Multiple-Output and Massive Multiple-Input
Multiple-Output

1.2.1 Basic MIMO Model

A typical MIMO channel can be illustrated as the structure shown in Fig. 1.4. On the left are Nt

transmit antennas and on the right are Nr receive antennas. Generally, there are multiple transmit

antennas and multiple receive antennas. If there is only one transmit antenna and one receive antenna,

then the channel model is called single-input single-output (SISO). For MIMO, if there is just one

user equipment (UE) configured with multiple antennas, it is called single-user MIMO (SU-MIMO);

if there are more than one UE, it is called multi-user MIMO (MU-MIMO). Let x, y and H denote

the transmitted signal, received signal and channel matrix, respectively. Then, we have the following

model:

y = Hx+n, (1.17)
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Figure 1.4: Illustration of an MIMO channel.

where n is the additive noise, and H can be expressed as

H =


h1,1 h1,2 . . . h1,Nt

h2,1 h2,2 . . . h2,Nt

. . . . . . hi, j . . .

hNr,1 hNr,2 . . . hNr,Nt

 , (1.18)

where i = 1,2, . . . ,Nr and j = 1,2, . . . ,Nt. hi, j, the entry of H, denotes the transmission coefficient

from the jth transmit antenna to the ith receive antenna. In practice, the channel matrix H needs to

be estimated to obtain the estimation of the transmitted signal x. However, for theoretical analyses,

H can be assumed to be known at the receiver. If H is a deterministic and constant channel matrix

of a narrow-band time-invariant channel, we have y =
√

εHx+n [30], where ε denotes the transmit

power if we assume that the total power of x is normalized and that the noise is zero-mean circularly

symmetric complex Gaussian with an identity covariance matrix I. With independent and identically

distributed (i.i.d.) Gaussian transmit signals and perfect channel state information (CSI) at the receiver,

the instantaneous achievable rate is given by [30]

R = log2 det
(

I+
ε

Nt
HHH

)
. (1.19)

When the entries of H are normalized such that Tr
(
HHH

)
≈ NtNr, lower and upper bounds on the

capacity can be formulated as [31]

log2 (1+ εNr)≤ R≤min(Nt,Nr) log2

(
1+

ε max(Nt,Nr)

Nt

)
. (1.20)
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The singular values of HHH determine the achievable rate. With the same normalization, channels

whose singular values are all equal can achieve the upper bound in (1.20), and channels with only one

non-zero singular value exhibit the lower bound in (1.20). When Nt goes to infinity and Nr remains

constant, the achievable rate reaches the upper bound in (1.20) [30]

R≈ Nr log2 (1+ ε) . (1.21)

When Nr goes to infinity and Nt remains constant, the achievable rate reaches the upper bound in (1.20)

as well [30]

R≈ Nt log2

(
1+

εNr

Nt

)
. (1.22)

The expressions in (1.21) and (1.22) show that a higher capacity can be achieved when a large number

of antennas are installed in the MIMO link. It should be noted that the above discussion is based on the

assumption that the row or column vectors of H are asymptotically orthogonal.

1.2.2 Massive MIMO

Massive MIMO appears when the number of antennas increases to a higher order of magnitude than

that of conventional MIMO configurations, i.e. 100 or more. The first base station (BS) architecture

with a large number of antennas is Argos [32] which support 64 antennas and can serve 15 user

terminals simultaneously. Information theoretical analyses of conventional MIMO and massive MIMO

have been presented in [30] to demonstrate the advantages of massive MIMO. In massive MIMO,

pilot contamination can be introduced by non-orthogonal pilot sequences used by different users in

the neighbouring cells. Pilot contamination will affect both uplink and downlink transmission in a

multi-cell massive MIMO system. Pilot contamination was initially viewed as a fundamental limitation

that leads to a finite spectral efficiency limit in massive MIMO. However, the results in [33] later

showed that this is generally not true and that the spectral efficiency can grow without bound in the

presence of pilot contamination, despite the fact that there is a power loss and reduced estimation quality.

Appropriate precoding or blind techniques might be used to mitigate the effect of pilot contamination.

Precoding is a critical beamforming technique to enable multi-stream transmission in massive MIMO

wireless systems. There are linear and non-linear precoding algorithms. Non-linear precoding methods

include dirty-paper-coding (DPC) [34], lattice-aided methods [35] and vector perturbation (VP) [36],

which may bring better performance but have higher implementation complexity at the same time.

Linear precoding methods include ZF and MF and are shown to be a better choice for massive MIMO

systems [31]. Energy efficiency is the ratio of spectral efficiency and transmit power. Massive MIMO

can improve the system energy efficiency. But there should be tradeoff between spectral efficiency

and energy efficiency. Current theoretical research on massive MIMO is based on crucial assumptions

about the channels. These assumptions are still in the need of validation through practical channel

measurements. Channel measurements for massive MIMO in [37] showed that most of the advantages

in theoretical work are still available over the measured channels. Considering the cost at the terminal

end and the difficulty in acquiring CSI for a large number of terminals, a practical deployment of
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massive MIMO is to have a large number of antennas at the BS which serves a limited number

of terminals with a single antenna or several antennas. The massive MU-MIMO system shown in

Fig. 1.5 is a typical application form. With a large scale antenna array, massive MIMO can provide

several advantages, such as higher capacity, higher energy and spectral efficiency and lower latency.

Meanwhile, many problems caused by the large number of antennas must be resolved, such as channel

characterization, pilot contamination, and hardware impairments.
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User 2
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User 1
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Figure 1.5: Illustration of a massive MU-MIMO system.

1.2.3 Channel Estimation

CSI is necessarily required for MIMO systems at the BS for the signal detection in the uplink and

precoding in the downlink. There are two duplex modes under consideration, namely frequency-

division duplex (FDD) and time-division duplex (TDD). In the FDD mode, the CSI is different for the

uplink and downlink. The uplink channel estimation can be performed at the BS by the use of different

pilots from all terminals. The channel estimation in the downlink is not that simple. Pilot sequences are

sent by the BS to all terminals. Then the terminals estimate their downlink CSI and send those estimates

back to the BS. The resource used for channel estimation is proportional to the number of the transmit

antennas and independent of the receive antennas. Therefore, the time resource for the downlink CSI

acquisition is proportional to the number of antennas at the BS. Because the number of antennas in

massive MIMO is very large, conventional channel estimation techniques will impose a heavy burden

on the system and will not be feasible any more. In TDD mode, the CSI estimation process can benefit

from the channel reciprocity. The downlink channel estimation can be obtained from the results of the

uplink channel estimation. Therefore, only the channel estimation in the uplink is required given the
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assumption of channel reciprocity. The procedure is as follows: all the terminals send pilot sequences

and the BS performs the channel estimation using the received pilots. Based on the channel reciprocity,

the BS can acquire the CSI for the downlink. However, there is a problem called pilot contamination

[38] if we reuse the same pilot sequences in all cells. This inter-cell interference will not disappear as

the number of antennas increases. Pilot contamination degrades the transmission performance both in

the uplink and in the downlink for multi-cell deployment. Therefore, it is important to take the pilot

contamination into account when we develop techniques for massive MIMO systems. Several different

techniques for mitigating the pilot contamination were introduced in [30].

A commonly used channel estimation approach is linear MMSE which has near-optimal performance

and low complexity. With the assumption of a system model using Rayleigh block fading channels

with the OFDM scheme, the linear MMSE estimation of an MU-MIMO channel in the TDD mode has

been presented in [39]

ĤMMSE = diag

( √ϑ1τ

1+ϑ1τ
. . .

√
ϑNuτ

1+ϑNuτ

)T
TTRT, (1.23)

where τ and ϑr denote the number of symbols in the training sequence and the SNR associated with

the rth user, respectively. Nu denotes the number of single-antenna users. T = [t1 t2 . . . tNu ] and

THT = I.
√

τtH
r is the training sequence vector transmitted by the rth user. The training sequences

here are orthogonal, i.e., tH
i t j = δi j, where δi j denotes the Kronecker delta. The orthogonal sequences

imply the condition Nu ≤ τ . H is the forward channel matrix (i.e., in the downlink) and ĤMMSE is the

conditional mean of H, given R. R is the training signal received at the BS.

Another approach for channel estimation is least squares (LS). According to the description of LS

channel estimation in [40], we have

ĤLS = RTH (TTH)−1
, (1.24)

where R denotes the training sequences received at the BS and T contains the training sequences

transmitted by the users. It is worth noting that ĤLS here is an estimate of the reverse channel, i.e., in

the uplink.

In addition, a compressive sensing based approach for channel estimation was proposed in [40]. As for

the CSI acquisition at the terminal end, an efficient channel estimation scheme called beamforming

training was presented in [41]. In this scheme, pilot sequences were precoded and sent by the BS to all

terminals. Each terminal estimated the CSI with the MMSE algorithm according to the received pilot

sequences. The related overhead for channel estimation is proportional to the number of the terminals

and independent of the number of antennas at the BS.

The Cramér-Rao bound can provide a lower bound on the mean square error (MSE) of unbiased

estimates. Therefore, we can use it as a performance criterion for evaluating different channel estimators.

Let the parameters used in the channel model be collected in a vector u with probability density function
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(PDF) f (m;u), where m contains the measurements from which u can be estimated. The estimates of

these parameters are denoted by û. Then, the Cramér-Rao bound can be given as

E
[
(û−u)(û−u)H

]
≥ I (u)−1 , (1.25)

where

I (u) = E

[
E

[(
∂ ln f (m|u)

∂u∗

)(
∂ ln f (m|u)

∂u∗

)H
∣∣∣∣∣u
]]

+E

[(
∂ ln f (u)

∂u∗

)(
∂ ln f (u)

∂u∗

)H
]

(1.26)

is the so-called Fisher information matrix [42] under regularity conditions.

1.2.4 Precoding

As mentioned above, linear precoding techniques, including ZF, MF and MMSE, are preferred in

massive MIMO systems. In the case of MF precoding, the transmit signal from the BS can be formulated

as

xMF =
1√
ξ

(
HT)H sd =

1√
ξ

H∗sd, (1.27)

where ξ is the power normalization factor [43] and sd is the downlink source information vector. H
denotes the uplink channel matrix. In TDD mode, the downlink channel matrix can be regarded as the

transpose of the uplink channel matrix. In the case of ZF precoding, the transmit signal from the BS

can be formulated as

xZF =
1√
ξ

H∗
(
HTH∗

)−1 sd. (1.28)

In the case of MMSE precoding, the transmit signal from the BS can be formulated as

xMMSE =
1√
ξ

H∗
(
HTH∗+ϕI

)−1 sd, (1.29)

where ϕ = Nr/ε and Nr denotes the number of the single-antenna users.

In [44], the authors analyzed the performance of ZF precoding in a single-cell massive MIMO context,

where the number of BS antennas is much larger than the number of the terminals. A lower bound for

the sum rate of the ZF precoding has been derived. The ZF precoding outperforms the MF precoding

in the high spectral efficiency region but the MF precoding outperforms the ZF precoding in the low

spectral efficiency region.

Low-complexity precoding techniques are vital to massive MIMO systems because the computational

complexity in precoding will increase with the number of antennas at the BS. A matrix-inversion-based

low-complexity design has been introduced to reduce the computational complexity of the ZF and

MMSE precoding [45]. A low-complexity precoding scheme based on a matrix polynomial was

proposed in [46]. Simulations therein indicated that this scheme can achieve near MMSE performance

in terms of the sum rate and provide better performance than the conjugate beamforming by orders

of magnitude. The computational complexity of the matrix-polynomial-based precoding scheme,

conjugate beamforming and MMSE have been analyzed in [46].
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1.3 Low-Density Parity-Check Codes

1.3.1 Representations of LDPC Codes

LDPC codes can be defined with sparse parity-check matrices, where the term sparse means that most

of the elements in a parity-check matrix (both in each row and column) are 0’s and there are only a

few 1’s. There are two kinds of LDPC codes, namely, regular and irregular LDPC codes. An LDPC

code can be defined as (n, j, k), where n denotes the code length, j denotes the number of 1’s in each

column of the parity-check matrix, and k denotes the number of 1’s in each row of the parity-check

matrix. If j and k are fixed for all columns and rows, then the code is called a regular LDPC code; if j

and k are variable for all columns and rows, then the code is called an irregular LDPC code. In addition

to the algebraic representation, LDPC codes can also be represented by Tanner graphs [47] that are

essentially bipartite graphs. A typical Tanner graph representing an LDPC code is illustrated in Fig.

1.6. The nodes on the left part of Fig. 1.6 are the so-called variable nodes (VN) and the nodes on the

v1

v2

v3

vn

c1

c2

cn-k

Figure 1.6: Illustration of a Tanner graph.

right part are the so-called check nodes (CN). Each VN corresponds to a column of the parity-check

matrix and each CN corresponds to a row of the parity-check matrix. In a Tanner graph, for an n-bit

codeword with k source bits, the number of the VNs is n and the number of the CNs is (n− k). There

will be an edge for each non-zero element in the parity-check matrix. The degree of a node can be

defined as the number of edges incoming on it. The sparse parity-check matrix of an LDPC code is

denoted as HPC. Then the degree distribution pair (λ , ρ) of HPC can be described as follows [48]

λ (x) =
dv

∑
i=2

λixi−1, (1.30)
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ρ(x) =
dc

∑
i=2

ρixi−1, (1.31)

where λi and ρi are the fraction of edges which corresponds to the VNs and CNs with degree i,

respectively. dv and dc are the maximum degreee of the VNs and CNs, respectively. In fact, a given

degree distribution pair determines an ensemble of matrices because distinct matrices might have the

same degree distribution pair.

1.3.2 Fundamentals of LDPC Codes

As described in [49], there are two steps for the encoding of LDPC codes. The first step is to create a

sparse parity-check matrix and the second step is to generate codewords based on the matrix. Although

irregular LDPC codes can outperform regular ones [50], it is difficult to establish the irregular parity-

check matrices. Several decoding algorithms were presented in [49], including the sum-product

algorithm (SPA), logarithmic sum-product algorithm (log-SPA) and the min-sum algorithm (MSA).

The logarithmic sum-product algorithm introduces logarithmic likelihood ratio (LLR) that can reduce

most multiplication to addition. The MSA eliminates the need for addition in the process of message

update, trading precision for speed.

The progressive edge growth (PEG) algorithm was introduced in [51] to construct Tanner graphs with a

large girth. The term girth is the length of the shortest cycle in a graph. This algorithm established

edges between symbol nodes and CNs in an edge-by-edge manner. PEG-based Tanner graphs for both

regular and irregular LDPC codes were investigated. It was shown that the PEG algorithm is powerful

for generating high-quality short-block-length LDPC codes. LDPC codes based on finite geometries

were described in [52]. This kind of LDPC codes can provide relatively good performance in terms of

minimum distances. There were no cycles of length 4 in the corresponding Tanner graphs. These codes

performed well with iterative decoding in the case of high rate and long block length. The parallel

LLR update in a bipartite graph and serial LLR update in a tripartite graph were investigated and

compared in an LDPC coded massive MIMO system with the BP algorithm [53]. It was shown that the

tripartite graph can provide faster convergence when showing the same performance with the bipartite

graph. The authors of [54] proposed a generalized space shift keying scheme with codebook-assisted

low-complexity detector for massive MIMO systems, in which an LDPC code is used to gain better

error performance with low computational complexity.

The threshold under BP decoding scheme is close to the Shannon limit for well-designed LDPC

block codes (LDPC-BCs). However, this threshold is typically strictly smaller than the threshold

under maximum-a-posteriori (MAP) decoding scheme which is optimal. For proper convolutional

codes, these two thresholds can coincide. This phenomenon is called threshold saturation [55]. LDPC

convolutional codes (LDPC-CCs) are the convolutional counterparts of LDPC-BCs and can be defined

by parity-check equations with a small number of non-zero taps. These codes have very large constraint

lengths and the number of the taps does not depend on the constraint length. LDPC-CCs can be

constructed by repeating the constraint structure of quasi-cyclic LDPC (QC-LDPC) codes to infinity
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[56]. The Viterbi algorithm is typically used to decode standard convolutional codes with the fact that

the complexity of the Viterbi algorithm is exponential in the constraint length. Therefore, the Viterbi

algorithm is not suitable for codes with large constraint lengths. Message-passing algorithms, such as

BP, are feasible for these codes due to the low-density nature of the parity-checks [57].

1.3.3 Spatially Coupled LDPC Codes

Spatially coupled LDPC (SC-LDPC) codes can be seen as an example of (terminated) LDPC-CC [58]

due to the fact that spatial coupling is equivalent to introducing memory into the process of encoding.

It was shown that spatially coupled codes were capacity achieving. The scheme of unwrapping

a cyclic block code into a convolutional structure was introduced by Tanner [56]. Felström and

Zigangirov first introduced the low-density convolutional ensembles [59]. The mechanism explaining

why convolutional LDPC ensembles perform so well over the binary erasure channel (BEC) was

provided in [55]. SC-LDPC codes can be constructed by coupling a series of LSC disjoint or uncoupled

LDPC codes (each one with a length of MUC bits) together with certain boundary conditions, where LSC

is the length of the SC-LDPC chain. If MUC goes to infinity and LSC is sufficiently large, the SC-LDPC

ensembles showed a BP threshold which is very close to the MAP threshold of uncoupled LDPC codes

[55]. Protograph-based spatially coupled LDPC convolutional codes (SC-LDPC-CC) were constructed

by applying an edge spreading operation in [60]. A protograph [61] is a small bipartite graph (V,C,E).
Assuming the design rate r = 1− nc/nv, a protograph connects a set of nv VNs V = (v0, . . . ,vnv−1)

to a set of nc CNs C= (c0, . . . ,cnc−1) by a set of edges E. Edge spreading is an operation for spatial

coupling to generate convolutional protographs. An illustration of protographs with the operation of

edge spreading is given in Fig. 1.7. SC-LDPC codes can achieve capacity for binary-input memoryless

output-symmetric channels with iterative decoding [62]. The minimum distance properties can be

improved by the inherent structure of the protograph-based SC-LDPC codes [63]. It was shown that

irregular protograph-based LDPC-BCs often exhibit better thresholds than the unstructured irregular

codes given the same degree distributions [64].

1.3.4 Quasi-Cyclic LDPC Codes

QC-LDPC codes form a significant subclass of LDPC codes. A QC-LDPC code can be described by a

parity-check matrix HPC that consists of small square sub-matrices, which are either null matrices or

circulant permutation matrices. A N×N permutation matrix Pn can be obtained through shifting the

identity matrix I of the same size to the left or right by n times, where n is an integer and 0≤ n<N.

For example, a 3×3 permutation matrix is expressed as

P =

 0 1 0

0 0 1

1 0 0

 , (1.32)

which circularly shifts the 3× 3 identity matrix I to the right by one time. A mN× nN parity-

check matrix HPC contains m×n permutation sub-matrices (null matrices may be included), which
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Figure 1.7: (a) Protograph representing a (3,6)-regular LDPC-BC ensemble, (b) sequence of (3,6)-
regular LDPC-BC protographs, (c) edge spreading for one segment of the graph at time t with a
coupling width of 2, (d) protograph representing a spatially coupled (3,6)-regular LDPC-CC ensemble
with a coupling width of 2 [60].

corresponds to a QC-LDPC code of length n×N. The code rate of such a code is r = (nN−mN)/nN=

1−m/n if HPC is of full rank. QC-LDPC codes can be constructed to be regular or irregular codes

by placing different sub-matrices in HPC. QC-LDPC codes are attractive especially in the sense of

implementation because they can be encoded efficiently and implemented with simple shift registers

[65]. In addition, QC-LDPC codes can be efficiently decoded using SPA decoders [66].
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Chapter 2

Union Bound on the Bit Error Rate for
MIMO-GFDM Systems

Résumé

Dans ce chapitre, une borne d’union pour le taux d’erreur sur les bits (BER) pour les systèmes

généralisés de multiplexage par répartition en fréquence à entrées multiples et sorties multiples

(MIMO-GFDM) est dérivée en se basant sur des paires de probabilités d’erreur (PEP) exactes. La

fonction génératrice de moments (MGF) est utilisée pour calculer la paire de probabilités d’erreur

exactes en supposant qu’un détecteur par maximum de vraisemblance (ML) est utilisé au récepteur.

Un environnement de canal MIMO à trajets multiples réaliste est étudié dans lequel la corrélation

spatiale entre les antennes et les erreurs d’estimation de canal sont incluses. Le modèle de Kronecker

et un modèle additif sont utilisés pour décrire respectivement les erreurs de corrélation spatiale et

d’estimation de canal. Les impacts de la corrélation spatiale et des erreurs d’estimation de canal sur la

borne dérivée sont également étudiés. Des calculs numériques pour la borne d’union et des simulations

de Monte-Carlo pour calculer le BER sont effectués pour vérifier la borne d’union. Les résultats

numériques montrent que la borne d’union est une limite supérieure serrée du BER pour les systèmes

MIMO-GFDM.

Abstract

In this chapter, a union bound on the bit error rate (BER) for multiple input multiple output generalized

frequency division multiplexing (MIMO-GFDM) systems is derived based on exact pairwise error

probabilities. The moment-generating function (MGF) is used to calculate the exact pairwise error

probability (PEP) under the assumption that a maximum likelihood (ML) detector is used at the receiver.

A realistic multipath MIMO channel environment is investigated in which the spatial correlation

between antennas and the channel estimation errors are included. The Kronecker model and an additive

model are used to describe the spatial correlation and channel estimation errors, respectively. The
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impacts of the spatial correlation and the channel estimation errors on the derived bound are also

investigated. Numerical calculations of the union bound and computer-based Monte-Carlo simulations

of BER are carried out to verify the derived bound. Numerical results show that the derived union

bound is a tight upper bound on the BER for MIMO-GFDM systems.

2.1 Introduction

Generalized frequency division multiplexing (GFDM) is a block-based multi-carrier modulation scheme

which can generate flexibly configurable waveforms [10, 1]. Each GFDM block consists of a number

of sub-carriers and sub-symbols and the block size is configurable to meet different requirements. The

sub-carriers are filtered with time- and frequency-shifted prototype pulses. Because of the filtering

operation in GFDM, the level of the out-of-band (OOB) radiation can be reduced, which is important

for dynamic spectrum allocation and fragmented spectrum scenarios, such as cognitive radio (CR)

systems [67]. Another important feature of GFDM is the non-orthogonality between the sub-carriers

introduced by the filtering operation, which is the main difference to the orthogonal frequency division

multiplexing (OFDM) system. A cyclic prefix (CP) and cyclic suffix (CS) can be added to an entire

GFDM block instead of each symbol, which consequently increases the spectral efficiency. Therefore,

GFDM is efficient in relaxing the synchronization requirements with CP and CS addition for machine

type communications (MTC) [68]. By limiting the block size, GFDM has the potential to enable

low-latency applications, such as the Tactile Internet [69]. Therefore, GFDM is a promising candidate

waveform technology for beyond 5G.

It has been shown that multiple input multiple output (MIMO) technology can provide high capacity

[70] and reliability for wireless systems. Effective detection techniques are required to recover the

signals in MIMO systems and maximum likelihood (ML) detection is an optimal detection technique.

The application of MIMO technology in GFDM systems can provide high throughput and flexibility at

the same time. The MIMO-GFDM system, in fact, outperforms the MIMO-OFDM system in terms

of error performance in multipath fading channels [71, 72]. In order to investigate the potentialities

of MIMO-GFDM systems, effective tools for evaluating the system performance are necessary. A

common approach to approximate the bit error rate (BER) is using a union bound [73]. Despite the fact

that ML detection has high complexity for MIMO-GFDM systems [72, 74], it is useful to find union

bounds on BER using the ML criterion due to its optimality. This can offer a benchmark for the receiver

design in MIMO-GFDM systems. The union bound can be derived from the pairwise error probability

(PEP) and the exact calculation of PEP is the key to obtain a tight bound on BER. Techniques for

the calculation of exact PEP have been presented in [75, 76]. In [75], a general derivation of PEP

using Gauss-Chebyshev quadrature and moment-generating function (MGF) was presented and applied

to independent and block fading MIMO channels. The MGF-based approach can also be used in

the calculation of the exact PEP over spatially correlated MIMO channels and has been evaluated in

realistic propagation environments [76]. The derivation of PEP from another perspective has been

proposed in [77], where the probability density function-based approach was used to calculate the
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PEP over correlated MIMO channels and certain error types were introduced to evaluate the error

performance.

Motivated by MIMO-GFDM systems ability to be applied to diversified future wireless scenarios and

the need to develop effective performance evaluation tools, in this chapter, we derive a union bound

on the BER for MIMO-GFDM systems over realistic multipath fading channels. The MIMO system

operates in a spatial multiplexing mode and the ML detection is used at the receiver. The effect of

filtering in GFDM is included in an equivalent channel matrix. The Kronecker model [78] is used to

formulate the spatial correlation in MIMO Rayleigh channels and we use an additive model to describe

the imperfect channel state information (CSI). Numerical calculations and Monte-Carlo simulations

are carried out to evaluate the derived union bound.

The rest of the chapter is organized as follows. The system model is described in Section 2.2. The union

bound on the BER for MIMO-GFDM systems is derived based on exact PEPs in Section 2.3. Numerical

results are presented in Section 2.4 to evaluate the derived union bound. Section 2.5 concludes the

chapter.

Notation: Scalars are denoted by italic lower/upper case letters. Vectors are denoted by bold lower

case letters. Matrices are denoted by bold upper case letters. ai, j refers to the (i, j)th element of matrix

A. I denotes the identity matrix. (·)T and (·)H denote the matrix transpose and conjugate transpose,

respectively. ‖·‖ denotes the Euclidean norm of a vector. ⊗ denotes the Kronecker product. (·)1/2

denotes the matrix square root.

2.2 System Description

As shown in Fig. 2.1, the MIMO channel consists of Nt transmit antennas and Nr receive antennas.

The serial input symbols d are demultiplexed into Nt parallel streams, each of which, denoted by dt

(t = 1,2, . . . ,Nt), corresponds to a symbol vector processed at the t th transmit antenna. At each transmit

antenna, the symbols dt go through a GFDM modulation block of length N = K×M to produce the

transmit signal. The details of the GFDM modulation are shown in Fig. 2.2, where the transmit antenna

index ‘t’ is omitted for simplicity.

The transmit signal is given by [1]

xt [n] =
K−1

∑
k=0

M−1

∑
m=0

gk,m[n]d
k,m
t , n = 0, . . . ,N−1, (2.1)

where N is the total number of symbols and K and M are the number of sub-carriers and sub-symbols,

respectively. n is the sampling index, xt [n] is the transmit signal at the t th transmit antenna and dk,m
t

denotes the symbol transmitted on the kth sub-carrier and in the mth sub-symbol of the GFDM block at

the t th transmit antenna. gk,m[n] is obtained by the time and frequency shift of a prototype filter g[n].

gk,m[n] = g[(n−mK) mod N]e j2π
k
K n. (2.2)
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Figure 2.1: Transceiver diagram of an MIMO-GFDM system.
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Figure 2.2: Details of the GFDM modulation.
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The prototype filter can be chosen from raised cosine (RC) filters, root raised cosine (RRC) filters, etc.

For example, if the prototype filter is an RC pulse, we have

g[n] =
sin(πn/Ts)

πn/Ts

cos(πωn/Ts)

1−4ω2n2/T 2
s
, (2.3)

where Ts is the symbol duration and ω is the roll-off factor. Note that we use the same GFDM block

for all the streams. If we write (2.1) in a compact form, we have

xt = Adt , (2.4)

where xt = (xt [0],xt [1], . . . ,xt [N−1])T and

dt =
((

d0
t
)T

,
(
d1

t
)T

, . . . ,
(
dK−1

t
)T
)T

(2.5)

with

dk
t =

(
dk,0

t ,dk,1
t , . . . ,dk,M−1

t

)T
. (2.6)

The N×N transmitter matrix is denoted by

A = (g0,0 g0,1 . . . g0,M−1 g1,0 . . . gK−1,M−1) (2.7)

where gk,m = (gk,m[0],gk,m[1], . . . ,gk,m[N−1])T.

After the addition of a CP, xt [n] is transmitted through a quasi-static Rayleigh fading channel which is

assumed to be constant over one GFDM block and to vary from one block to another.

2.3 Derivation of the Union Bound on Bit Error Rate

In this section, we derive a generic union bound on the BER for MIMO-GFDM systems under realistic

multipath channel environments. In practical applications, the wireless channels need to be estimated

and estimation errors are usually inevitable. It is necessary to investigate the influence of estimation

errors on the system performance. In addition, spatial correlation exists between antennas in many

MIMO wireless systems. Therefore, in order to describe the realistic channel as accurately as possible,

we incorporate the channel estimation error and spatial correlation into the channel model.

After CP removal, the signals at the receive antennas are given by
y1
...

yNr

=


H1,1A · · · H1,NtA

...
. . .

...

HNr,1A · · · HNr,NtA




d1
...

dNt

+n, (2.8)

where yi (i = 1,2, . . . ,Nr) denotes the signal received at the ith receive antenna. Hr,t (r = 1,2, . . . ,Nr

and t = 1,2, . . . ,Nt) is a circulant convolution matrix of size N×N which denotes the channel matrix

between the t th transmit antenna and the rth receive antenna. n∼ CN(0,N0INrN) denotes additive white

Gaussian noise.
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We use the well-known Kronecker model to describe the correlated channel. The Kronecker model is

based on the assumption that the correlation between transmit antennas is independent of that between

receive antennas. This model is valid when the transmitter and receiver are separated by enough

distance and are only affected by the scatterers around them. Combined with the tapped delay line

(TDL) channel model, for a given tap l, the channel matrix with the Kronecker model can be written as

[79]

HKl = Rr
1/2
l Gl

(
Rt

1/2
l

)T
, (2.9)

where Rtl = E
[
HK

H
l HKl

]T and Rrl = E
[
HKlHK

H
l
]

are the transmit and receive correlation matrices

of the lth path, respectively. Gl is populated with i.i.d. complex Gaussian random variables with zero

mean and unit variance (0.5 per dimension), as follows

Gl =


gl

1,1 · · · gl
1,Nt

...
. . .

...

gl
Nr,1 · · · gl

Nr,Nt

 , (2.10)

where the entry gl
r,t (l = 1,2, . . . ,L) denotes the channel gain of the lth path between the t th transmit

antenna and the rth receive antenna. It should be noted that no channel estimation error is assumed in

(2.9).

An additive model [80, 81] is used to describe the channel estimation errors. In the case of uncorrelated

channels,

ĝl
r,t = gl

r,t + ε
l
r,t , (2.11)

where ĝl
r,t is the estimate of gl

r,t and is a zero-mean complex Gaussian random variable that is dependent

of gl
r,t . ε l

r,t is the channel estimation error, which is a Gaussian variable with mean zero and variance

σ2
ε and is independent of gl

r,t .

Now we include simultaneously the Kronecker and additive channel estimation models in the MIMO

channel. The channel matrix becomes

Hl = HKl +El

= R1/2
rl Gl

(
R1/2

tl

)T
+El,

(2.12)

where El is the estimation error matrix with entries ε l
r,t denoting corresponding channel estimation

errors, as follows

El =


ε l

1,1 · · · ε l
1,Nt

...
. . .

...

ε l
Nr,1 · · · ε l

Nr,Nt

 . (2.13)

Note that this channel matrix is a general model which includes the spatial correlation and channel

estimation errors at the same time. Special channel cases can be obtained with proper choices of Rrl ,

Rtl and El . For example, we will get a correlated channel without channel estimation errors if El has

all-zero entries and will get a uncorrelated channel if Rrl = I and Rtl = I.
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In (2.12), Hl has the following structure

Hl =


hl

1,1 · · · hl
1,Nt

...
. . .

...

hl
Nr,1 · · · hl

Nr,Nt

 . (2.14)

With some rearrangements, we have

Hr,t =



h1
r,t 0 · · · 0 hL

r,t · · · h2
r,t

... h1
r,t

... 0
. . .

...
...

...
. . . 0

... hL
r,t

hL
r,t

... h1
r,t 0 0

0 hL
r,t

... h1
r,t

...
... 0

. . .
...

...
. . . 0

0
... · · · hL

r,t
... · · · h1

r,t


. (2.15)

For the convenience of notation, we rewrite (2.8) in the following form

y = H̆d+n, (2.16)

where y = (yT
1 ,yT

2 . . . ,yT
Nr
)T, d = (dT

1 ,dT
2 , . . . ,dT

Nt
)T and

H̆ =


H1,1A · · · H1,NtA

...
. . .

...

HNr,1A · · · HNr,NtA

 . (2.17)

The entries of Hr,tA are linear transformations of the channel impulse vector hr,t = (h1
r,t ,h

2
r,t , . . . ,h

L
r,t)

and therefore, are complex Gaussian variables with zero mean. Consequently, all the entries of H̆ are

complex Gaussian variables with zero mean.

At the receiver, we use an ML detector to process the received signal. The ML detector makes a

decision based on the minimal Euclidean distance between the received and estimated signal as follows

d̂ = argmin
d∈D

∥∥y− H̆d
∥∥2

, (2.18)

where D is the set of all possible transmitted symbol vectors. The PEP is defined as the error probability

when d is sent but erroneously detected as d̂ and is denoted as P
(
d→ d̂

)
. The PEP conditioned on H̆

is calculated as [82]

P
(
d→ d̂

∣∣H̆)= Qn

(√
Es

2N0
d2
(
d, d̂
))

, (2.19)

where Es is the energy per symbol at each transmit antenna.

Qn(x) =
1√
2π

∫
∞

x
e−t2/2dt (2.20)
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and

d2 (d, d̂)= ∥∥H̆ ·
(
d− d̂

)∥∥2
, (2.21)

which is the Euclidean distance between H̆d and H̆d̂. The exact PEP can be obtained by averaging the

conditional PEP in (2.19) over the distribution of channel gains

P
(
d→ d̂

)
= E

[
Qn

(√
Es

2N0
d2
(
d, d̂
))]

. (2.22)

Let d∆ = d− d̂. We have

d2 (d, d̂)= ∥∥H̆d∆

∥∥2

=
NNr

∑
i=1

h̆id∆dH
∆ h̆H

i

=
[
h̆1, . . . , h̆NNr

][
INNr⊗

(
d∆dH

∆

)][
h̆1, . . . , h̆NNr

]H
,

(2.23)

where h̆i denotes the ith row of the matrix H̆.

Based on [83], we have the following fact. Let B be a Hermitian matrix and z be a circularly symmetric

complex Gaussian vector with mean µz and covariance matrix Cz, i.e., z∼ CN(µz,Cz). The MGF of

the quadrature form q = zBzH is

Mq(s) =
∫

∞

0
esq pq(q)dq

=
exp
(

sµzB(I− sCzB)−1µH
z

)
det(I− sCzB)

,

(2.24)

where s is a complex number and pq(q) denotes the probability density function of q.

Now let z=
[
h̆1, . . . , h̆NNr

]
with mean µz = 0 and covariance matrix Cz. B=(Es/(2N0))INNr⊗

(
d∆dH

∆

)
.

Γ = zBzH = (Es/(2N0))d2
(
d, d̂
)
, then

MΓ(s) = det
(
I− (Es/2N0)sCz

(
INNr⊗

(
d∆dH

∆

)))−1
. (2.25)

Following [75], let ΦΓ(s) =MΓ(−s) = E
[
e−sΓ

]
and ∆ = Γ−ϑ 2 (ϑ is a real Gaussian random variable

with zero mean and unit variance). We have

P
(
d→ d̂

)
= E

[
Qn

(√
Γ

)]
=

1
2

P(∆ < 0)

=
1

2π j

∫ c+ j∞

c− j∞

Φ∆(s)
2s

ds,

(2.26)

where c is a real number in the region of convergence of Φ∆(s), and

Φ∆(s) = E
[
e−s∆

]
= ΦΓ(s)Φϑ 2(−s)

= ΦΓ(s)(1−2s)−
1
2 .

(2.27)
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Methods for properly selecting c have been reported in [75, 84] and the references therein. Rewrite

(2.26) by expanding the real and imaginary parts of s and we have

P
(
d→ d̂

)
=

1
2π j

∫ c+ j∞

c− j∞

Φ∆ (c+ jϕ)
2(c+ jϕ)

d(c+ jϕ)

=
1

4π

∫ +∞

−∞

cRe [Φ∆ (c+ jϕ)]+ϕIm [Φ∆ (c+ jϕ)]
c2 +ϕ2 dϕ.

(2.28)

Using the change of variable ϕ = c
√

1− x2/x, (2.28) becomes

P
(
d→ d̂

)
=

1
4π

∫ 1

−1

(
Re

[
Φ∆

(
c+ j

c
√

1− x2

x

)]
+

√
1− x2

x
Im

[
Φ∆

(
c+ j

c
√

1− x2

x

)])
dx√

1− x2
.

(2.29)

Note that (2.29) is of the form
∫ 1
−1

(
f (x)/

√
1− x2

)
dx. Therefore, it can be numerically computed

using the Gauss-Chebyshev quadrature rule with ν nodes, as follows

P
(
d→ d̂

)
=

1
4ν

ν

∑
k=1

(Re [Φ∆ (c(1+ jτk))]+ τkIm [Φ∆ (c(1+ jτk))])+Eν , (2.30)

where τk = tan((k−1/2)π/ν). Eν is an error term which goes to 0 as ν goes to infinity. In practice,

one can determine the parameter ν by computing (2.30) for increasing values of ν . For example, a

value can be chosen for ν if the resulting value of (2.30) does not change significantly when ν reaches

that value.

Then the union bound on the BER is defined as the weighted sum of all PEPs, given by [15]

PUB = ∑
d

∑
d̂|d̂ 6=d

r
(
d, d̂
)

P
(
d→ d̂

)
P(d) , (2.31)

where P(d) is the a priori probability that d is transmitted. r
(
d, d̂
)

is the error ratio when d is sent but

d̂ is detected. r
(
d, d̂
)

can be defined as r
(
d, d̂
)
= Ne/Nb, where Ne is the number of erroneous bits

due to the detection error
(
d→ d̂

)
and Nb is the number of the bits per symbol vector.

2.4 Numerical Results

We evaluate the union bounds on BER by carrying out numerical simulations. 16-QAM (quadrature

amplitude modulation) is used to generate the symbol vector which is the input of the GFDM unit. In

the GFDM unit, K = 16 and M = 5. An RC pulse with roll-off factor ω = 0.5 is used as the prototype

pulse shaping filter. L = 3, that is, there are 3 paths in the channel of each transmit-receive antenna

pair. c = 1/4 and ν = 64. For the case of uncorrelated channel and imperfect CSI, we let σ2
ε = 0.01 to

examine the impact of the channel estimation errors on the union bound. Correlation matrices Rtl and

Rrl are generated by the exponential model [85], whose components are

ri j =

r j−i, i≤ j;

r∗ji, i > j.
(2.32)
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where |r| ≤ 1 is the correlation coefficient. The value of r reflects the correlation strength between

antennas. We let r = 0.5 in the simulations to impose the spatial correlation. Simultaneously let

σ2
ε = 0.01 and r = 0.5 for the case of correlated channel and imperfect CSI. The exact union bounds on

BER for the four different cases are shown in Fig. 2.3 for 2×2 MIMO. Corresponding BER simulation

results are also shown in the figure to demonstrate the accuracy of the union bounds. From Fig. 2.3, it

can be seen that the derived exact union bounds are tight for the BER in the high signal-to-noise ratio

(SNR) region for all cases. The system with imperfect CSI shows higher BER than the case of perfect

CSI. It is worth noting that fixed σ2
ε ’s are used here, whereas in practical applications the channel

estimation errors decrease as the SNR increases [80]. This is why the curves with σ2
ε = 0.01 exhibit

significant performance losses trending toward flatness for high SNR. For a correlated channel, both

the derived union bounds and the simulated results show larger BER values than the uncorrelated case.

The reason is that the correlation between antennas introduces non-zero entries in the off-diagonal

elements of the channel covariance matrix, consequently leading to higher error probability. In the case

of correlated channel and imperfect CSI, both the union bound and simulated BER exhibit the highest

BER values due to a superposition effect of the channel estimation error and the channel correlation.

Therefore, as expected, both channel estimation errors and correlation between antennas contribute to

the increase of BER.
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Figure 2.3: Union bounds on BER of MIMO-GFDM systems, Nt = Nr = 2.

The derived union bounds on BER and simulation results for 4×4 MIMO channels are shown in Fig.

2.4. Other simulation settings remain the same as in Fig. 2.3. It can be seen that for 4× 4 MIMO
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channels, both the union bounds and simulated BERs have lower BER values compared to the 2×2

MIMO system while they have similar trends, as expected.
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Figure 2.4: Union bounds on BER of MIMO-GFDM systems, Nt = Nr = 4.

The impacts of the channel estimation errors and the channel correlation on the derived union bound

are shown in Figs. 2.5 and 2.6 for 2×2 and 4×4 MIMO channels, respectively. Es/N0 is set to 15

dB. It is shown that both r and σ2
ε have significant influences on the derived union bound, specifically,

which increases with the increase of these two parameters. In addition, there is a superposition effect

of r and σ2
ε .

2.5 Conclusion

We derived a union bound on the BER for MIMO-GFDM systems over realistic Rayleigh channels. The

union bound is obtained from the exact PEPs which are calculated based on an MGF-based approach.

We incorporated the effect of filtering in GFDM into an equivalent channel matrix. We investigated the

effects of the spatial correlation between antennas and the channel estimation errors on the union bound.

Computer-based simulations were performed in four different channel cases to verify the validity of

the derived union bound. It is shown that both the spatial correlation and the channel estimation error

have significant influence on the BER performance and the derived bound. The derived bound is a tight

upper bound for the BER of MIMO-GFDM systems.
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Figure 2.5: The impact of r and σ2
ε on the union bound on BER, Nt = Nr = 2.

Figure 2.6: The impact of r and σ2
ε on the union bound on BER, Nt = Nr = 4.
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Chapter 3

Polynomial Expansion-Based MMSE
Channel Estimation and Precoding for
Massive MIMO-GFDM Systems

Résumé

Dans ce chapitre, des estimateurs et des précodeurs de canal de faible complexité sont proposés

pour des systèmes de multiplexage généralisé par répartition en fréquence combinés à un système

à entrées multiples et sorties multiples massif (MIMO-GFDM). Afin de lutter contre l’effet de la

non-orthogonalité dans le GFDM, des pilotes sans interférence sont utilisés dans le domaine des

fréquences pour l’estimation du canal par l’erreur quadratique moyenne minimale (MMSE). Une

expansion polynomiale est utilisée pour calculer approximativement les inverses des matrices dans

l’estimation et le précodage MMSE conventionnels, réduisant par conséquent la complexité de calcul

cubique à l’ordre carré. Le degré du polynôme matriciel peut être correctement choisi pour obtenir

un compromis entre la complexité et l’estimation ou les performances de précodage. Différents poids

peuvent être attribués aux termes de l’expansion polynomiale et les valeurs de ces poids peuvent être

optimisées pour obtenir une erreur quadratique moyenne (MSE) minimale. Les limites dérivées pour la

MSE des estimateurs proposés peuvent prédire les performances dans la région du Es/N0 élevé. Ensuite,

nous dérivons une borne inférieure de Cramér-Rao (CRLB) et l’utilisons comme référence pour les

estimateurs. De plus, la complexité de calcul et les impacts du degré du polynôme sont également

étudiés. Les résultats numériques montrent la précision des estimateurs et des précodeurs de canal

proposés.

Abstract

In this chapter, low-complexity channel estimators and precoders are proposed for massive multiple-

input multiple-output generalized frequency division multiplexing (MIMO-GFDM) systems. In order to
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combat the effect of non-orthogonality in GFDM, interference-free pilots are used in frequency-domain

minimum mean square error (MMSE) channel estimation. Polynomial expansion is used to approxi-

mately compute the matrix inverses in the conventional MMSE estimation and precoding, consequently

reducing the cubic computational complexity to square order. The degree of the matrix polynomial

can be properly selected to get a required trade-off between complexity and estimation/precoding

performance. Different weights can be assigned to the terms in the polynomial expansion and be

optimized to achieve a minimal mean square error (MSE). Derived limits on the MSE of the proposed

estimators can predict their performance in the high Es/N0 region. Then, we derive a Cramér-Rao lower

bound (CRLB) and use it as a benchmark for the estimators. In addition, the related computational

complexity and the impacts of the polynomial degree are also investigated. Numerical results show the

accuracy of the proposed channel estimators and precoders.

3.1 Introduction

Generalized frequency division multiplexing (GFDM) [10, 1] is a promising non-orthogonal candidate

waveform technology [68] for 5G and beyond. It is a block-based multi-carrier modulation scheme.

The number of subcarriers and subsymbols and the type of pulse-shaping filters in each block can

be flexibly modified to meet different requirements, such as low latency, high data rates and low

out-of-band (OOB) radiation. GFDM can meet the low-latency requirement for the Tactile Internet

[69] by limiting its block size. The filtering operation in GFDM reduces the OOB radiation, which

makes GFDM a good choice for dynamic spectrum allocation in cognitive radio (CR) systems [67].

The subcarriers in GFDM are no longer orthogonal because of the filtering operation. Therefore, apart

from inter-symbol interference (ISI), GFDM systems suffer inter-carrier interference (ICI) as well. In

multiple-input multiple-output (MIMO) applications, inter-antenna interference (IAI) generally exists

and will degrade the signal quality. All the interferences increase the complexity in receiver design. In

GFDM, a cyclic prefix (CP) and a cyclic suffix (CS) are assigned to an entire block instead of each

symbol, which increases the spectral efficiency and relaxes the related synchronization requirements in

machine type communications (MTC) [68]. The application of MIMO technique to GFDM systems

can further improve the system performance [86, 87]. In recent years, massive MIMO (also known

as large-scale MIMO) architectures are drawing more and more research attention and have evolved

from a promising concept to a reality [5, 30, 7, 6, 88]. In massive MIMO, the base stations (BSs) are

equipped with a large number of antennas, generally more than 100.

Accurate channel state information (CSI) is a key factor to ensure reliable data transmission in wireless

communication systems. Typically, CSI can be obtained with the help of reference signals, i.e., pilots

[89, 90]. The GFDM system sends pilots and data within the same time-frequency block and estimates

the channel using received pilot signals with a specific estimator. The received pilot signal suffers

not only from noise but also from data interference due to the non-orthogonality between subcarriers

[91, 92]. Fortunately, interference-free pilots have been proposed to ensure clean pilot observations at

the receiver [93]. The minimum mean square error (MMSE) estimator is optimal when the channel
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statistics are available [90, 94]. However, the MMSE estimator involves matrix inversion which has

cubic computational complexity. Therefore, the direct use of the MMSE channel estimator in massive

MIMO systems could result in unacceptable complexity. The polynomial expansion technique can be

used to reduce the computational complexity of matrix inversion [95, 96]. The principle of polynomial

expansion is to approximate the matrix inverse with a V -degree matrix polynomial which converges to

the exact matrix inverse as V goes to infinity. In practical applications, V can be appropriately selected

to balance complexity against estimation performance. Polynomial expansion-based low-complexity

channel estimators have been recently proposed and validated for massive MIMO systems [97].

Precoding technology enables reliable multi-stream transmission for MIMO systems. Pilot contamina-

tion is a common issue in massive MIMO systems due to pilot reuse [98]. Precoding can mitigate the

effect of pilot contamination to a certain extent. There are linear and non-linear precoding algorithms.

Non-linear precoding methods include dirty-paper coding (DPC) [34], lattice-aided methods [35] and

vector perturbation (VP) [36], which bring better performance with more implementation complexity.

Linear precoding methods include zero-forcing (ZF), maximum ratio transmission (MRT) and MMSE,

which is shown to be the better choice for massive MIMO systems [31]. The ZF precoder transmits

the signal only to its target user terminal and is effective if there is no noise or the noise is weak due

to its noise amplification effect [99]. The MRT precoder maximizes the signal gain at the target user

terminal and is near-optimal when there are much more BS antennas than user terminals [99, 100].

The MMSE precoder is also known as the regularized ZF (RZF) precoder and is a trade-off between

the ZF and MRT precoders [101]. Matrix inversion is involved in the implementation of the MMSE

precoder and consequently, the direct computation is costly with large dimensions in massive MIMO.

In order to reduce the computational complexity of the MMSE precoder, the truncated polynomial

expansion-based precoder has been proposed [102, 103].

Motivated by the previous work on polynomial expansion-based detectors, estimators and precoders,

in this chapter, we consider low-complexity channel estimation and precoding algorithms in massive

MIMO-GFDM systems. We extend the interference-free pilot pattern in [93] to the context of massive

MIMO for channel estimation and approximate the matrix inverses in the MMSE estimator and precoder

with the related matrix polynomials. For the proposed polynomial expansion-based channel estimators,

we derive performance limits on the mean square error (MSE) when the covariance matrix of the noise

goes to zero. A Cramér-Rao lower bound (CRLB) is also derived as a benchmark for the estimators.

The computational complexity of the channel estimators and precoders is also analyzed. Numerical

results verify that the proposed channel estimators and precoders achieve near-optimal performance

with lower complexity.

The rest of this chapter is organized as follows. A system model for massive MIMO-GFDM systems in

which the uplink pilot transmission and downlink precoding are included is described in Section 3.2.

We propose low-complexity polynomial expansion-based MMSE (PE-MMSE) channel estimators for

massive MIMO-GFDM systems in Section 3.3. Polynomial expansion-based precoders are proposed in

Section 3.4. The computational complexity is analyzed in Section 3.5. Numerical results are presented
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in Section 3.6 to verify the proposed estimators. Section 3.7 concludes the chapter.

Notation: Scalars are denoted by italic lower/upper case letters. Vectors are denoted by bold lower

case letters. Matrices are denoted by bold upper case letters. IM and 0M denote the identity matrix and

the null matrix of size M×M, respectively. (·)T and (·)H denote the matrix transpose and conjugate

transpose, respectively. E(A) and Tr(A) denote the expectation and trace of matrix A, respectively.

vec(A) denotes the vectorization of matrix A by stacking its columns. diag(a) denotes a diagonal

matrix with the entries of a column vector a as its diagonal entries. blkdiag(A, · · · ,B) denotes a block

diagonal matrix with A being its top-left block entry and B being its bottom-right block entry. circ(·)
produces a circulant matrix based on its argument. ‖·‖F denotes the Frobenius norm of a vector or a

matrix. ⊗ and ◦ denote the Kronecker product and Hadamard product, respectively. ~ denotes the

circular convolution. b·c rounds its argument to the nearest integer less than or equal to it. The big-O

notation O(Mn) denotes that complexity is bounded by CMn for certain 0 <C < ∞. ai, j refers to the

(i, j)th element of matrix A. bi denotes the ith element of vector b.

3.2 System Description

3.2.1 Massive MIMO-GFDM System

We consider a massive MIMO system using GFDM modulation. There are K subcarriers and M

subsymbols in each GFDM block, containing a total of N = K×M symbols. The subsymbol at the kth

subcarrier and mth time slot is denoted by dk,m. All the symbols are processed by pulse shaping filters

and superimposed to produce the transmit samples [1]

x[n] =
K−1

∑
k=0

M−1

∑
m=0

gk,m[n]dk,m, n ∈ {0,1, . . . ,N−1}. (3.1)

gk,m[n] is obtained by the time and frequency shift of a prototype filter g[n], as follows

gk,m[n] = g [(n−mK) mod N]e j2π
k
K n. (3.2)

If we rewrite (3.1) in a compact form, we have

x = Ad, (3.3)

where x = (x[0], . . . ,x[n], . . . ,x[N−1])T and

d =
(
(d0)

T , . . . ,(dk)
T , . . . ,(dK−1)

T
)T

with dk = (dk,0, . . . ,dk,m, . . . ,dk,M−1)
T. A denotes the N×N transmitter matrix

A =(g0,0 . . . g0,M−1 . . . gk,0 . . .

gk,M−1 . . . gK−1,0 . . . gK−1,M−1),

where gk,m = (gk,m[0],gk,m[1], . . . ,gk,m[N−1])T.
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From another perspective, (3.3) can be reformulated as [104]

x = FH
N

K−1

∑
k=0

P(k)G(S)R(S)FMdk, (3.4)

where FM =
{

fi, j
}

M×M is the discrete Fourier transform (DFT) matrix with fi, j = e− j2π
i j
M which

transforms symbols dk to the frequency domain. R(S) = (IM, . . . ,IM)T is a repetition matrix which

concatenates S identity matrices, corresponding to an S times upsampling in the time domain [105].

G(S) = diag
(
FSMg(S)

)
is the filtering matrix, where FSM is a DFT matrix of size SM×SM and g(S) is

obtained by downsampling g by a factor of K/S. The function of the permutation matrix P(k) is to shift

signals to corresponding subcarriers [104].

P(k) = B`

(
0MS/2 IMS/2 0MS/2×(N−MS)

IMS/2 0MS/2 0MS/2×(N−MS)

)T

, (3.5)

where `= kM−MS/2. B` is a circulant matrix and is given by

B` = circ
([

0T
` mod N , 1, 0T

(N−`−1) mod N

])
. (3.6)

A CP is added to the whole GFDM block once the transmit samples are produced. Then the transmit

signal passes over a multipath MIMO channel with Nt transmit antennas and Nr receive antennas. In

the context of massive MIMO, hundreds of antennas might be placed at one side of the communication

link, typically at the BS. It is assumed that the channel length L is shorter than the CP length. After the

CP is removed, the received signal at receive antenna r is

yr =
Nt

∑
t=1

xt ~ht,r +nr, (3.7)

where xt denotes the transmit signal at the transmit antenna t and nr denotes the additive white Gaussian

noise (AWGN) at receive antenna r. ht,r denotes the channel impulse response between transmit antenna

t and receive antenna r, which is formulated as [106]

ht,r =
√

diag(pt,r)at,r, (3.8)

where pt,r ∈ RL×1 is the normalized power delay profile (PDP), such that ‖pt,r‖F = 1. at,r ∈ CL×1

denotes a basic Rayleigh fading channel and its entries are complex Gaussian variables with zero mean

and unit variance. In the frequency domain, we have

yf
r =

Nt

∑
t=1

Xthf
t,r +nf

r, (3.9)

where the superscript “f” indicates the related terms are in the frequency domain. Xt = diag(FNxt)

denotes the frequency-domain transmit signal and hf
t,r = FN×Lht,r with FN×L ⊂ FN comprising the first

L columns of FN . Moreover, nf
r = FNnr.
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Figure 3.1: Illustration of the pilot transmission in the uplink.

3.2.2 Uplink Pilot Transmission

The uplink pilot transmission is depicted in Fig. 3.1. In order to perform channel estimation, we

include the pilots dp ∈ CN×1 into the GFDM signals x, in which user data dd ∈ CN×1 are also included.

d = dp +dd. dp comprises pilot information only at pilot subcarriers with zeros at data subcarriers,

while dd comprises user data only at data subcarriers with zeros at pilot subcarriers. Therefore,

dp ◦dd = 0N , which implies there is no overlap between the pilot sequence and data. The GFDM

signals are transmitted over a MIMO wireless channel H after the CP addition. Here, H is an equivalent

channel matrix that consists of all the channel impulse responses. At the receiver, after removing the

CP, the received pilot signals yp are extracted from the hybrid signals y and then used by a channel

estimator to obtain the channel estimates Ĥ. In practice, the demodulator can obtain the recovered user

data d̂d based on Ĥ once it is available.

For pilot patterns in [91] and [92], the GFDM data act as interference to the pilots at the receiver,

which reduces the estimation accuracy. An interference-free pilot pattern has been proposed in [93] for

GFDM systems. The transmit signal becomes

x = FH
N

K−1

∑
k=0

P(k)G(S)R(S) (Γdpk +FMddk
)
, (3.10)

where Γ= P′blkdiag
(

γINUL
t
,FM−NUL

t

)
with P′ being a permutation matrix which allocates pilots at the
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pilot subcarriers. The pilot energy is normalized by γ to one. It is worth noting that FMddk = 0M×1 for

the subcarrier k being a pilot subcarrier and Γdpk = 0M×1 for the subcarrier k being a data subcarrier.

Then, the transmit signal at pilot subcarriers is

xp = FH
N

K−1

∑
k=0

P(k)G(S)R(S)Γdpk. (3.11)

Pilots are placed at frequency bins such that there is no intercarrier interference. Each orthogonal

subsymbol is reserved for a specific transmit antenna and consequently, an NUL
t ×NUL

r MIMO channel

can be considered in terms of NUL
t NUL

r individual SISO channels, where the superscript “UL" means

the corresponding parameter is for the uplink. This interference-free pilot pattern is illustrated in Fig.

3.2 for a 2×2 MIMO channel, where the pilot subcarrier spacing ∆k = 2 and two frequency bins are

reserved at pilot subcarriers for pilots with only one pilot being sent at each transmit antenna. The pilot

f

t

Data

f

t

Data

Zero

Pilot

Zero

Pilot

Antenna 1 Antenna 2

Figure 3.2: Illustration of the interference-free pilot pattern for a 2×2 MIMO channel.

signal received at receive antenna r is

yp
f
r =

NUL
t

∑
t=1

Xpthp
f
t,r +np

f
r, (3.12)

where Xpt = diag
(
FNp×Nxt

)
, hp

f
t,r = FNp×Lht,r and np

f
r = FNp×Nnr. Np is the number of pilot samples

and is given by bMK/∆kc. FNp×N ⊂ FN and FNp×L ⊂ FN×L only contain the rows of FN and FN×L that

are associated to the pilots from transmit antenna t, respectively.

In order to include all the transmit-receive antenna pairs in one expression, let

Yp =
(

yp
f
1, . . . ,yp

f
r, . . . ,yp

f
NUL

r

)
,

Xp =
(

Xp1, . . . ,Xpt , . . . ,XpNUL
t

)
,
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F = INUL
t
⊗FNp×L,

H =


h1,1 · · · h1,NUL

r
...

. . .
...

hNUL
t ,1 · · · hNUL

t ,NUL
r

 ,

and

N =
(

np
f
1, . . . ,np

f
r, . . . ,np

f
NUL

r

)
.

Then, we have

Yp = XpFH+N. (3.13)

Based on the fact that vec(ABC) =
(
CT⊗A

)
vec(B) [107], the vectorization of Yp is

yp = vec
(
Yp
)
= Xh+n, (3.14)

where X =
(
INUL

r
⊗XpF

)
, h = vec(H) and n = vec(N).

3.2.3 Downlink Data Transmission with Precoding
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Figure 3.3: Illustration of the downlink data transmission involving a precoder.

Fig. 3.3 illustrates the downlink data transmission which involves a precoder. We consider a single-cell

massive MIMO system that operates in time-division duplex (TDD) mode, where the downlink channel
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can be obtained from the transpose of the uplink channel. Precoding is performed at the base station to

provide high-quality downlink transmission. There is one BS which is equipped with NDL
t antennas

serving NDL
r user terminals in the cell, where the superscript “DL" means the corresponding parameter

is for the downlink. The transmitted signal at BS is

x = Wsd =
NDL

r

∑
n=1

Wnsn, (3.15)

where sd =
[
sT

1 , . . . ,sT
NDL

r

]T
with sn denoting the source signal for user terminal n. W =

[
W1, . . . ,WNDL

r

]
denotes the precoding matrix with Wn being the subprecoding matrix for sn. The received signal vector

at the rth user terminal is

yr = HH
r x+nr

= HH
r Wsd +nr

= HH
r Wrsr +

NDL
r

∑
n=1,n6=r

HH
r Wnsn +nr,

(3.16)

where nr denotes the AWGN at the user terminal r. Hr =
[
HT

r,1, . . . ,HT
r,NDL

t

]T
with Hr,t being the

circular convolution matrix between transmit antenna t and receive antenna r. The signal vector which

involves the signals received by all user terminals is given by y =
[
yT

1 , . . . ,yT
NDL

r

]T
.

The signal-to-interference-plus-noise ratio (SINR) at the user terminal r is given by

SINRr =
Tr
(
HH

r WrWH
r Hr

)
Tr(HH

r WWHHr)−Tr(HH
r WrWH

r Hr)+σ2 , (3.17)

where σ2 denotes the noise variance. Then the achievable rate is

Rr = log2 (1+SINRr) . (3.18)

3.3 Polynomial Expansion-Based MMSE Channel Estimation

3.3.1 MMSE Estimator

Bayesian MMSE estimators provide accurate estimations for MIMO channels when the channel

statistics are known at the receiver. The Bayesian MMSE estimation calculates the coefficients of a

linear filter and minimizes the MSE. Let Ĥ be the estimate of H. Thus, we have

ĥMMSE = ChXH (XChXH +Cn
)−1 yp, (3.19)

where ĥMMSE = vec
(
Ĥ
)
, Ch ∈ CLNUL

t NUL
r ×LNUL

t NUL
r denotes the covariance matrix of H and Cn ∈

CNpNUL
r ×NpNUL

r denotes the covariance matrix of N. The MSE metric is

MSEMMSE = E
{∥∥H− Ĥ

∥∥2
F

}
= Tr

(
Ch−ChXH (XChXH +Cn

)−1 XCh

)
.

(3.20)
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We observe that there is a matrix inversion operation in the MMSE estimators which have the compu-

tational complexity O
((

NpNUL
r
)3
)

. It is acceptable in conventional MIMO settings where NUL
r are

in general smaller than 10. However, in the context of massive MIMO, there might be hundreds of

antennas at the BS. The computational complexity increases exponentially and will be an obstacle to

a practical implementation. Therefore, it is necessary to find low-complexity estimators for massive

MIMO channels.

3.3.2 Polynomial Expansion-Based MMSE Estimator

Polynomial expansion-based estimators [97] have been proposed to reduce the computational com-

plexity in channel estimation for massive MIMO. In this section, we propose low-complexity MMSE

channel estimators for massive MIMO-GFDM systems based on the concept of polynomial expansion.

Proposition 1: For any positive-definite Hermitian matrix Z, we have [97]

Z−1 = α (I− (I−αZ))−1

= α

V

∑
v=0

(I−αZ)v +E,
(3.21)

where 0 < α < 2/maxnλn (Z) and the sum term on the right side is a V -degree polynomial expansion

approximation. E is an error term which vanishes as V → ∞.

A low-complexity PE-MMSE estimator is obtained by applying the approximation in Proposition 1 to

(3.19), as follows

ĥPE−MMSE = ChXH
α

V

∑
v=0

(
I−α

(
XChXH +Cn

))v yp. (3.22)

α should be properly selected to satisfy the convergence condition in Proposition 1. In addition, the

convergence speed of the polynomial expansion is determined by the value of α . For the consideration

of complexity, α can be set to 2/Tr
(
XChXH +Cn

)
[108]. In order to obtain the fastest asymptotic

convergence speed, α can be set to 2/
(
maxnλn

(
XChXH +Cn

)
+minnλn

(
XChXH +Cn

))
[109]. The

MSE of the PE-MMSE estimator is

MSEPE−MMSE = Tr
(
Ch +ChXHAV

(
XChXH +Cn

)
AH

V XCh−2ChXHAV XCh
)
, (3.23)

where AV =∑
V
v=0 α

(
I−α

(
XChXH +Cn

))v. For a given V and constant symbol energy, MSEPE−MMSE

reaches its limit

MSELimit
PE−MMSE = Tr

(
Ch +ChXHÃV XChXHÃH

V XCh−2ChXHÃV XCh
)

(3.24)

as Cn→ 0, where ÃV = ∑
V
v=0 α̃

(
I− α̃XChXH

)v and α̃ = 2/Tr
(
XChXH

)
. This implies that the MSE

in (3.23) cannot be efficiently reduced by simply increasing the Es/N0, especially in the high Es/N0

region. Therefore, the limit in (3.24) can be used as a practical tool in predicting the estimators’

performance in the high Es/N0 region.
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The polynomial expansion-based estimator approaches the conventional MMSE estimator if V is

sufficiently large and it suffers degradation in terms of the estimation performance for a finite V .

Therefore, weighted V -degree polynomial expansions can be exploited to improve the approximation

accuracy. To be specific, for a given V , different weights are assigned to the terms and then optimized

in order to minimize the MSE metric. The weighted PE-MMSE (WPE-MMSE) estimator is formulated

as [97]

ĥWPE−MMSE = ChXH
V

∑
v=0

wvα
v+1 (XChXH +Cn

)v yp, (3.25)

where wv is the (v+1)th element of the weight vector w = (w0,w1, . . . ,wV )
T. The optimal weights are

obtained by minimizing the MSE with the help of the partial derivatives of the coefficients.

wopt = Q−1b, (3.26)

where the (i, j)th element of Q ∈ C(V+1)×(V+1) and the ith element of b ∈ CV+1 are

qi, j = α
i+ jTr

(
ChXH (XChXH +Cn

)i+ j−1 XCh

)
and

bi = α
iTr
(

ChXH (XChXH +Cn
)i−1 XCh

)
,

respectively.

With the optimal weights, the MSE of the WPE-MMSE estimator is given by

MSEWPE−MMSE = Tr(Ch)−bHQ−1b. (3.27)

Similarly, for a given V and constant symbol energy, MSEWPE−MMSE reaches its limit

MSELimit
WPE−MMSE = Tr(Ch)− b̃HQ̃−1b̃ (3.28)

as Cn→ 0, where the (i, j)th element of Q̃ and the ith element of b̃ are defined as

q̃i, j = α̃
i+ jTr

(
ChXH (XChXH)i+ j−1 XCh

)
and

b̃i = α̃
iTr
(

ChXH (XChXH)i−1 XCh

)
,

respectively. The limit in (3.28) is also a useful tool which can predict the estimators’ performance in

the high Es/N0 region.

3.3.3 Cramér-Rao Lower Bound

The Cramér-Rao bound provides a lower bound on the variance of unbiased estimators and usually acts

as a benchmark for evaluating different channel estimators. In this section, we derive the CRLB for the

pilot-aided channel estimation model proposed in this chapter. According to (3.14), the received signal
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follows a complex Gaussian distribution, i.e., yp ∼ N (Xh,Cn) and its probability density function

(PDF) is formulated as

p
(
yp;h

)
=

1
πNpNUL

r det(Cn)
e−

1
2(yp−Xh)

HC−1
n (yp−Xh). (3.29)

By conducting derivative, we have

∂ ln p(yp;h)
∂h∗

= XHC−1
n
(
yp−Xh

)
= XHC−1

n X
(
X−1yp−h

)
,

(3.30)

and then

E
[

∂ ln p(yp;h)
∂h∗

]
= 0, for all h. (3.31)

Therefore, the “regularity" conditions [110] are satisfied. Let the estimates of h be denoted by ĥ. Then,

the CRLB on the variance matrix of any unbiased estimator is given by

Cĥ = E
[(

ĥ−h
)(

ĥ−h
)H
]
≥ J(h)−1, (3.32)

where J(h) is the so-called Fisher information matrix [42] and the equality is attained if and only if

∂ ln p(yp;h)
∂h∗

= J(h)
(
f(yp)−h

)
(3.33)

for some function f and matrix J. Recall (3.30), the CRLB on the covariance matrix for a minimum

variance unbiased (MVU) estimator is

CCRLB =
(
XHC−1

n X
)−1

. (3.34)

The MSE corresponding to the CRLB is defined as

MSECRLB = Tr
((

XHC−1
n X

)−1
)
. (3.35)

3.4 Polynomial Expansion-Based Precoding

With the CSI estimated in the previous section, we can generate precoding vectors using appropriate

precoding algorithms to process the data before it is transmitted. This operation mitigates the effect of

the channel on signals at the transmitting end and thus provides reliable data transmission.

For MMSE precoding,

WMMSE = ξ H̄
(
H̄HH̄+µINNDL

r

)−1
, (3.36)

where ξ ensures that the power constraint is satisfied at the BS, i.e. Tr
(
WWH)=P. H̄=

[
H1, . . . ,HNDL

r

]
.

µ is a regularization factor. The MMSE precoder becomes a ZF precoder when µ → 0 and an MF

precoder when µ → ∞. It is seen that there is a matrix inversion operation in (3.36). The direct com-

putation of a matrix inverse incurs a cubic computational complexity which is expensive for massive

MIMO applications.
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The polynomial expansion technique can be used to reduce the computational complexity. Based on

Proposition 1 in Section 3.3, the MMSE precoding matrix becomes

WPE−MMSE = ξ H̄
V

∑
v=0

α
(
I−α

(
H̄HH̄+µI

))v
, (3.37)

where V denotes the polynomial degree. In order to obtain the fastest asymptotic convergence speed of

the polynomial expansion, let α = 2/
(
maxnλn

(
H̄HH̄+µINNDL

r

)
+minnλn

(
H̄HH̄+µINNDL

r

))
[109].

3.5 Complexity Analysis

The MMSE estimator and the MMSE precoder have computational complexity of O
((

NpNUL
r
)3
)

and

O
((

NNDL
r
)3
)

, respectively, due to the direct computation of the matrix inverse.

For the convenience of description and without loss of generality, let V = I−α
(
XChXH +Cn

)
. The

polynomial can be computed in a recursive way, as follows
V

∑
v=0

Vvyp = yp +V
(
yp +V

(
yp +V(. . .)

))
. (3.38)

There are only matrix-vector multiplications in (3.38) and thus, its computational complexity is

O
(

V
(
NpNUL

r
)2
)

. Therefore, the computational complexity of the PE-MMSE estimator in (3.22) is

also O
(

V
(
NpNUL

r
)2
)

and is reduced, compared with an MMSE estimator, whenever V < NpNUL
r .

Similarly, the computational complexity of of the PE-MMSE precoder becomes O
(

V
(
NNDL

r
)2
)

. The

PE-MMSE precoder, therefore, provides a reduced computational complexity when V < NNDL
r . In

addition, the value of V can be properly selected to balance the performance against the complexity.

For the WPE-MMSE estimator, the computational complexity is O
((

NpNUL
r
)3
)

because there are

matrix-matrix multiplications and matrix inverse in finding the optimal weights. However, by using

a low-complexity algorithm for computing the optimal weights, the complexity can be reduced to

O
(

V
(
NpNUL

r
)2

+V 3
)

. We refer readers to [97] for more details on this low-complexity algorithm.

3.6 Numerical Results

The derived channel estimators are verified by computer simulations using MATLAB. The related

parameters are summarized in Table 3.1. No interfering cells are assumed. For all transmit-receive

antenna pairs, the PDP vector is first exponentially generated according to pt,r = e−τ/10 with τ =

(0,1, . . . ,L−1)T, and then is normalized. Pilots are placed at the subcarriers with spacing ∆k from

the first one. The permutation matrix P′ = IM, which means that pilots are placed at the first NUL
t

subsymbols of the pilot subcarriers. The MSE is normalized by the trace of the channel covariance

matrix, i.e., MSE/Tr(Ch).

The MSE of different estimators is shown in Fig. 3.4 for different values of Es/N0. Es denotes the

average energy of the symbols in a 16-QAM constellation and N0 denotes the variance of the AWGN.
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Table 3.1: Simulation Parameters

Parameter Symbol Value

No. of BS antennas NUL
r or NDL

t 112
No. of single-antenna terminals NUL

t or NDL
r 8

Prototype filter - RC
Roll-off factor of the RC filter ω 0.5
No. of subcarriers K 96
No. of subsymbols M 11
No. of channel taps Lch 5
Pilot subcarrier spacing ∆k [4,6,8,12,16]
Pilot sequence - 1st root Zadoff-Chu [111]
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Figure 3.4: MSE of the PE-MMSE and WPE-MMSE estimators for different Es/N0.
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∆k = 8 and the polynomial degree V is set to 5, 10 and 20 for PE-MMSE and set to 3, 6 and 9 for

WPE-MMSE. The MSE of an MMSE estimator and the CRLB are also shown for comparison. It

is shown that the MMSE estimator coincides with the CRLB in terms of MSE. We can see that the

MSE decreases with the increase of Es/N0. Both the PE-MMSE and WPE-MMSE estimators reach

their limits in terms of MSE as Es/N0 increases, showing flatness in the high Es/N0 region. The

WPE-MMSE estimator reaches a lower MSE level compared to the PE-MMSE estimator because of

the introduction and optimization of weights. The PE-MMSE and WPE-MMSE estimators show larger

MSE values than the MMSE estimator, which is the cost of the polynomial expansion approximation

with a finite V . The MSE gaps between polynomial expansion-based estimators and the MMSE

estimator decrease with an increasing V . With a sufficiently large V , the polynomial expansion-based

estimators will approach the MMSE estimator at the cost of complexity. With V = 9, the WPE-MMSE

estimator matches the MMSE estimator well in the low Es/N0 region.
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Figure 3.5: MSE of the PE-MMSE and WPE-MMSE estimators for different polynomial degrees at
Es/N0 = 20 dB.

Fig. 3.5 clearly shows the impact of the polynomial degree on the MSE of the PE-MMSE and WPE-

MMSE estimators. ∆k = 8 and Es/N0 is set to 20 dB. As before, the MSE of an MMSE estimator is

also shown for comparison. We can see that the MSE of the PE-MMSE and WPE-MMSE estimators

decreases as V increases, but there is a noticeable difference between them. The WPE-MMSE estimator

shows a faster speed approaching the MMSE estimator compared to the PE-MMSE estimator and for

V ≥ 8 (this value may vary for different parameter settings), the MSE of the WPE-MMSE estimator is
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very close to that of the MMSE estimator so that the difference can be ignored.
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Figure 3.6: The influence of the pilot subcarrier spacing on the MSE of the estimators at Es/N0 = 20
dB.

The influence of the pilot subcarrier spacing ∆k on the MSE of the MMSE, PE-MMSE and WPE-MMSE

estimators is shown in Fig. 3.6. V is set to 20 and 9 for the PE-MMSE and WPE-MMSE estimator,

respectively, and Es/N0 is set to 20 dB. We confine ∆k to values by which K is divisible. We can see

that the MSE of all the channel estimators increases with the increase of ∆k. This increase is expected

because increasing ∆k means decreasing the number of pilot symbols. The WPE-MMSE estimator

shows nearly the same MSE as the MMSE estimator while the PE-MMSE estimator exhibits higher

values. One of the findings worth noting here is that the difference between the PE-MMSE estimator

and the MMSE estimator decreases as ∆k increases. This implies that the PE-MMSE estimator can be

a good alternative to the MMSE estimator in a case where only limited amount of pilots are allowed.

Let the average achievable rate R =
(
1/NDL

r
)

∑
NDL

r
r=1 Rr. The average achievable rates of the MMSE

and PE-MMSE precoders for various transmit power-to-noise ratio (T PNR) are shown in Fig. 3.7.

T PNR = P/
(
NDL

r σ2
)
. The channel matrices in (3.36) and (3.37) are obtained from the WPE-MMSE

channel estimation in the uplink with Es/N0 = 30 dB and V = 9. The average achievable rate of

the PE-MMSE precoder inceases to approach that of the MMSE precoder as the polynomial degree

increases. We can see that with V = 30, the PE-MMSE precoder shows an average achievable rate very

close to that of the MMSE precoder, especially in the low T PNR region.
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Figure 3.7: Average achievable rates of the MMSE and PE-MMSE precoders for varying T PNR with
V = 10, 20 and 30.
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Figure 3.8: Average achievable rates of the MMSE and PE-MMSE precoders for different polynomial
degrees with T PNR = 10 dB.
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The impact of the polynomial degree on the average achievable rate is shown in Fig. 3.8, where T PNR

is set to 10 dB. It can be seen that the average achievable rate of the PE-MMSE precoder increases

rapidly with an increasing polynomial degree. The PE-MMSE precoder matches the MMSE precoder

when V ≥ 20.
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Figure 3.9: Bit error rate performance of the downlink transmission for different Es/N0.

Finally, the bit error rate (BER) performances in the downlink are shown in Figs. 3.9 and 3.10. The

polynomial degee of the WPE-MMSE estimator and Es/N0 in the uplink are set to 9 and 30 dB,

respectively. For Fig. 3.9, ∆k = 8 and V = 10, 20 and 30. We can see that the BER of the PE-MMSE

precoder approaches that of the MMSE precoder as V increases and with V = 30, they match well,

especially in the low Es/N0 region. For Fig. 3.10, V = 30 and Es/N0 = 20 dB. It is seen that the

downlink BER of MMSE and PE-MMSE precoders increases with the increase of ∆k. This is due to

the fact that with a larger ∆k, less pilots are sent and then, less pilot information can be used by the

channel estimators, which increases the channel estimation errors. The increased errors in channel

estimation give rise to the larger BER in Fig. 3.10.

3.7 Conclusion

Massive MIMO-GFDM systems can provide flexible waveforms and high spatial resolution at the same

time. Accurate acquisition of CSI is the key to recovering the signals at the receiver. Interference-free

pilot patterns can be used to eliminate the influence of the non-orthogonality in GFDM on the received
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Figure 3.10: Influence of the pilot subcarrier spacing on the downlink bit error rate at Es/N0 = 20 dB.

pilots. MMSE estimators are optimal when the channel statistics are known at the receiver. At the same

time, the MMSE precoder is a good trade-off between the ZF and MRT precoders. However, the cubic

computational complexity in the MMSE algorithm is unaffordable for massive MIMO applications. In

this chapter, we proposed polynomial expansion-based MMSE estimators and precoders for massive

MIMO-GFDM systems, which reduce the cubic computational complexity to square order through

approximating the matrix inverse with a finite V -degree matrix polynomial. In practice, V can be

appropriately selected to balance complexity against estimation performance. Limits on the MSE of

the proposed estimators are derived to analyze their performance in the high Es/N0 region. Numerical

results show that, for the proposed channel estimators and precoders, near-optimal performance can be

obtained in the low Es/N0 region with small polynomial degrees.
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Chapter 4

Performance Analysis of LDPC Coded
GFDM systems

Résumé

Ce chapitre analyse les performances de probabilités d’erreurs des codes de contrôle de parité à faible

densité (LDPC) utilisés avec des systèmes de multiplexage généralisé par répartition en fréquence

(GFDM) dans des canaux de Rayleigh et des canaux à bruit blanc gaussien additif (AWGN). Les

expressions du rapport de vraisemblance logarithmique (LLR) initiale utilisées dans l’algorithme de

somme de produits (SPA) pour les décodeurs sont d’abord dérivées pour le modèle du système présenté

dans ce chapitre. Basé sur le seuil de décodage du système, le taux d’erreurs de trame (FER) dans la

région de bas Eb/N0 est estimé en modélisant les variations de canal à l’aide du taux d’erreurs sur les

bits (BER) observé. Ensuite, une borne inférieure basée sur les ensembles absorbants est proposée

pour le FER lorsque des décodeurs SPA quantifiés sont utilisés. Pour des canaux à bruit blanc gaussien

additif, la borne inférieure peut agir comme un estimé du FER dans la région du plancher d’erreurs si

l’ensemble absorbant est dominant et que sa multiplicité est connue. Pour les canaux de Rayleigh, la

borne inférieure peut encore être utilisé pour estimer la performance du FER pour les codes sélectionnés.

L’approche d’estimation pour le FER dans la région de bas Eb/N0 et la borne inférieure du FER dans la

région de haut Eb/N0 peuvent être utilisées comme outils pratiques pour évaluer différentes conceptions

de systèmes basés sur le GFDM en termes de performance de probabilité d’erreur. La méthode de

quantification a un impact important sur les performances du FER et du BER. Des codes LDPC

construits aléatoirement et basés sur des tableaux sont utilisés pour obtenir des résultats numériques

qui démontrent les performances du système et la précision des estimations proposées pour le FER.

Abstract

This chapter analyzes the error probability performance of low-density parity-check (LDPC) coded

generalized frequency division multiplexing (GFDM) systems over Rayleigh fading and additive white
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Gaussian noise (AWGN) channels. The initial log-likelihood ratio (LLR) expressions used in the

sum-product algorithm (SPA) decoder are first derived for the system model presented in this chapter.

Based on the decoding threshold of the system, the frame error rate (FER) in the low Eb/N0 region is

estimated by modeling the channel variations using the observed bit error rate (BER). Then, a lower

bound based on the absorbing sets is proposed for the FER when quantized SPA decoders are used.

For AWGN channels, the lower bound can act as an estimate of the FER in the error-floor region if

the absorbing set is dominant and its multiplicity is known. For Rayleigh channels, the lower bound

can still be used to estimate the FER performance of selected codes. The estimation approach for the

FER in the low Eb/N0 region and the lower bound on the FER in the high Eb/N0 region can be used as

practical tools for evaluating different designs of GFDM-based systems in terms of the error probability

performance. The quantization scheme has an important impact on the FER and BER performances.

Randomly constructed and array-based LDPC codes are used to obtain numerical results that show the

system performance and the accuracy of the proposed FER estimations.

4.1 Introduction

Generalized frequency division multiplexing (GFDM) [10], [1] is a block-processing based multi-

carrier modulation (MCM) scheme which can generate flexible waveforms. The filtering operation

introduced in GFDM reduces the out-of-band (OOB) radiation, which enables dynamic spectrum

allocation in cognitive radio (CR) systems [67]. However, the subcarriers are no longer orthogonal

due to the filtering operation. Therefore, GFDM systems also suffer inter-carrier interference (ICI)

in addition to the inter-symbol interference (ISI). The number of subcarriers and subsymbols can be

easily adjusted to meet the low-latency requirement for the Tactile Internet [69]. In GFDM, a cyclic

prefix (CP) and a cyclic suffix (CS) are assigned to an entire block instead of each symbol, which

increases the spectral efficiency. This can relax the synchronization requirements in machine type

communications (MTC) [68]. Due to its flexibilty, GFDM can be an important candidate waveform for

beyond 5G systems.

Low-density parity-check (LDPC) codes are capacity-approaching linear block error correction codes,

which were initially discovered by Gallager in 1962 [8]. The advantages of LDPC codes include

simple description, great flexibility, high throughput and low decoding complexity. In addition, LDPC

decoding can also provide low latency and more parallelization. Due to these advantages, LDPC codes

have been adopted in several standards, including worldwide interoperability for microwave access

(WiMAX), digital video broadcasting (DVB-S2), and the enhanced mobile broadband (eMBB) scenario

in 5G. Despite excellent asymptotic performance, when decoded by a practical message-passing

decoder, finite-length LDPC codes exhibit error floors where the slope of the error probability curve

decreases. The low Eb/N0 region where the error probability falls quickly is called the waterfall region.

The asymptotic performance of LDPC codes can be efficiently analyzed by density evolution [112]

when assuming the code’s block length goes to infinity. However, density evolution cannot provide

accurate analysis for finite-length codes. The finite-length analysis of LDPC codes over the binary
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erasure channel (BEC) was presented in [113] using a combinatorial method. The performance of

LDPC codes in the waterfall region, over the BEC, was proved to follow a scaling law for iterative

decoders [114]. An efficient estimation method based on the decoding threshold and observed bit error

rate (BER) was proposed for the finite-length performance of LDPC codes over symmetric channels

[115]. In addition, the performance analysis of finite-length LDPC codes over asymmetric memoryless

channels was presented in [116]. Some error-prone structures in the Tanner graphs [47] of LDPC codes,

such as near-codewords [117], trapping sets [118], and absorbing sets [119], have been identified to

contribute to the error floor. An importance sampling based method was proposed to estimate the

frame error rate (FER) of LDPC codes with the knowledge of trapping sets [118]. Error floor estimates

based on absorbing sets were proposed for array-based codes in [120]. A code-independent lower

bound has been proposed for LDPC codes, which was based on the dominant absorbing sets and can be

used to estimate the error floor performance [121]. Monte-Carlo simulations has been widely used to

estimate the error probabilities of communications systems. However, for LDPC coded systems, such

simulations take too much time to obtain reliable numerical results for very low error probabilities.

Therefore, developing accurate estimators or performance bounds is of great practical importance due

to the fact that they usually need less time and thus, provide quick analyses for systems of interest.

In this chapter, we analyze the error probability performances of LDPC coded GFDM systems over

Rayleigh and additive white Gaussian noise (AWGN) channels. To the best of our knowledge, this

work is the first to report such analyses, although there have been some simulation results for LDPC

coded GFDM systems [122], [123]. We first derive the initial log-likelihood ratio (LLR) that is the

input of the SPA decoders for our system model. Then, we estimate the FER in the low Eb/N0 region

by using the observed BER to interpret the channel variations. The decoding threshold obtained from

the Gaussian approximation method is used along with the observed BER to derive the FER estimation.

Finally, a lower bound is derived for the FER based on absorbing sets while assuming the use of

quantized SPA decoders. In developing the lower bound, we take into consideration the dynamics of

the LLRs input to the check nodes connected to the absorbing set from outside the set. Saturation in the

LLR values of the quantized SPA decoder is assumed to make the decoding more practical. In the case

of a Rayleigh channel, we make a conjecture to facilitate the probability computation. We then apply

our methods to randomly constructed and array-based LDPC codes and analyze the error performance

of LDPC coded systems. Numerical results show that the introduction of LDPC codes into GFDM

systems can substantially improve the error probability performance and the FER estimation and lower

bound are valid.

The rest of the chapter is organized as follows. Necessary concepts, such as absorbing sets, SPA

decoding and Gaussian approximation, are introduced in Section 4.2. A system model for the LDPC

coded GFDM system is provided in Section 4.3. In Section 4.4, we first derive the initial LLR that is

required for the SPA decoding and then estimate the FER in the low Eb/N0 region. In addition, we

propose a lower bound on the FER for the LDPC coded GFDM system with quantized SPA decoders.

Numerical results are presented in Section 4.5. Finally, Section 4.6 concludes the chapter.
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Variable nodes

Check nodes

Figure 4.1: Illustration of a (4,4) absorbing set.

Notation: Scalars are denoted by italic lower/upper case letters. Vectors are denoted by bold lower

case letters. Matrices are denoted by bold upper case letters. ai, j refers to the (i, j)th element of matrix

A. (·)T and (·)H denote the matrix transpose and conjugate transpose, respectively. |·| denotes the norm

of a number or the cardinality of a set. bxc rounds x down to the largest integer that is not greater

than x. dxe rounds x up to the smallest integer that is not less than x. R [·] and I [·] denote the real and

imaginary parts of a complex number, respectively.

4.2 Preliminaries

4.2.1 Absorbing Sets

For a Tanner graph of an LDPC code, let sets V = {v1,v2, . . . ,vn} and C = {c1,c2, . . . ,cm} denote

the variable nodes (VNs) and check nodes (CNs), respectively. A= {v1,v2, . . . ,va} is a subset of V,

whose cardinality is |A|= a. The sets of the CNs that are connected to the VNs in A with even and

odd degrees are denoted by E(A) and O(A), respectively. Let C(A) = E(A)∪O(A). |O(A)|= b and

|C(A) |= θ . A is a so-called (a,b) trapping set [118]. A is an (a,b) absorbing set [119] if each node

in A is connected to fewer nodes in O(A) than E(A). Fig. 4.1, as an example, shows the bipartite

graph of a (4,4) absorbing set. The edges highlighted in red show a shortest cycle in the absorbing set,

whose length is defined as the girth.

4.2.2 Sum-Product Algorithm

Let L j denotes the jth initial LLR. N(i) and N( j) denote the sets of neighbors to the CN i and VN j,

respectively. The Gallager Sum–Product Algorithm [124] is summarized as follows:

1. Initialization:
L j = L(v j|y j) = log

(
Pr(v j = 0|y j)

Pr(v j = 1|y j)

)
, (4.1)

where v j and y j denote the jth transmitted and jth received bits, respectively. For all i, j for which

hi, j = 1, set L j→i = L j. hi, j is an entry of the parity-check matrix HPC.
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2. CN updates: Compute outgoing CN messages Li→ j and then transmit to VNs.

Li→ j = ∏
j′∈N(i)−{ j}

γ j′i ·Φ

(
∑

j′∈N(i)−{ j}
Φ
(
η j′i
))

, (4.2)

where γ ji = sign(L j→i) and η ji =
∣∣L j→i

∣∣ such that L j→i = γ jiη ji, and

Φ(x) = log
(

ex +1
ex−1

)
.

3. VN updates: Compute outgoing VN messages L j→i and then transmit to CNs.

L j→i = L j + ∑
i′∈N( j)−{i}

Li′→ j. (4.3)

4. LLR sum:
Ltotal

j = L j + ∑
i∈N( j)

Li→ j, (4.4)

for all j.

5. Stopping criteria: Make decisions based on

v̂ j =

1, if Ltotal
j < 0;

0, else,
(4.5)

to obtain the estimated codeword v̂. If v̂HT
PC = 0 or the maximum number of iterations is reached, then

stop; else, repeat steps 2 - 5.

4.2.3 Gaussian Approximation

For AWGN channels, a Gaussian approximation can be used to simplify the computation of density

evolution by approximating the probability density functions (PDFs) of messages with Gaussian

probability densities. Let m(v) be the outgoing message of a variable node in the Tanner graph and

m(c) be a check node. Assume the messages satisfy the consistency condition with respect to their

PDFs. If a normal distribution X ∼N
(
µ,σ2

)
satisfies the consistency condition, then σ2 = 2µ , i.e.

X ∼N (µ,2µ). Therefore, in this case, the distribution can be characterized only by a single parameter,

i.e. the mean. Let dv and dc denote the variable-node degree and check-node degree, respectively. For

message updates at variables,

m(v)
l = m0 +

dv−1

∑
j=1

m(c)
j,l−1. (4.6)

By taking expectation, the means are

µ
(v)
l = µ0 +

dv−1

∑
j=1

µ
(c)
j,l−1

= µ0 +(dv−1)µ
(c)
l−1.

(4.7)
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For message updates at check nodes,

µ
(c)
l = φ

−1
(

1−
(

1−φ

(
µ0 +(dv−1)µ

(c)
l−1

))dc−1
)
, (4.8)

where

φ (x) =

1− 1√
4πx

∫
R tanh x

2 e−
(u−x)2

4x du, if x > 0;

1, if x = 0.
(4.9)

After l decoding iterations, we can get the mean of the messages for variable nodes. Then the PDF can

be found for a variable node message based on its mean. According to the desicion criterion used in

the SPA algorithm, the probability of bit error is

pe = Pr
(

m(v)
l < 0

)
. (4.10)

By predefining an error probability level, e.g. 10−10, the decoding threshold can be determined.

4.2.4 Uniform Quantization

Let Qβ1.β2 denote a uniform quantizer which represents a fixed-point number with β1 bits for represent-

ing the integer part and β2 bits for representing the fractional part of the number. An additional bit is

used to represent the sign. Therefore, the total number of bits of the quantizer is β = β1 +β2 +1. The

minimum and maximum values that the quantizer can provide are qmin =−2β1 and qmax = 2β1−2−β2 ,

respectively. The step size is ∆ = 2−β2 . For a real number x, its quantized representation can be given

by

Q(x) =


bx/∆+0.5c ·∆, if x≥ ∆/2;

dx/∆−0.5e ·∆, if x≤−∆/2;

0, otherwise,

(4.11)

and be bounded by qmin and qmax, i.e.,

Q(x) =

qmin, if Q(x)< qmin;

qmax, if Q(x)> qmax.
(4.12)

4.3 System Description

We consider an LDPC coded GFDM system that is depicted in Fig. 4.2. The B-bit-long information

vector b is processed by an LDPC encoder to produce a C-bit-long codeword vector v with a coding

rate r = B/C. v is mapped to the symbols in a constellation to generate the symbol vector d. The

number of information bits required to generate one symbol is µ = log2 J given that J is the size of the

constellaion. The BPSK mapping is used in the chapter. Then the symbols are modulated by a GFDM

modulator to produce a signal vector x. There are K subcarriers and M subsymbols in each GFDM
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Figure 4.2: Transceiver diagram of an LDPC coded GFDM system.

block, leading to a total of N = K×M symbols. x = (x[0],x[1], . . . ,x[N−1])T and

x[n] =
K−1

∑
k=0

M−1

∑
m=0

gk,m[n]dk,m, n = 0, . . . ,N−1, (4.13)

where dk,m denotes the symbol transmitted on the kth subcarrier and in the mth time slot of the GFDM

block [1] and gk,m[n] is obtained by the time and frequency shift of a prototype filter g[n],

gk,m[n] = g[(n−mK) mod N]e j2π
k
K n. (4.14)

Equation (4.13) can be rewritten to obtain a compact expression, as follows

x = Ad, (4.15)

where

d =
(
dT

0 ,d
T
1 , . . . ,d

T
K−1
)T

(4.16)

with dk = (dk,0,dk,1, . . . ,dk,M−1)
T. A is the N×N transmitter matrix, denoted by

A = (g0,0 g0,1 . . . g0,M−1 g1,0 . . . gK−1,M−1), (4.17)

where gk,m = (gk,m[0],gk,m[1], . . . ,gk,m[N−1])T. A CP is added to the signal x to generate x̃. Then,

the signal x̃ goes through a wireless channel and ỹ is the received signal. By assuming perfect

synchroniztion, the received signal after CP removal is given by

y = Hx+n, (4.18)

where H denotes a circulant convolution matrix of size N×N, which is an equivalent channel matrix.

A special case is the AWGN channel (H = I), where the received signal becomes y = x+n. n denotes

the complex-valued AWGN, i.e. n ∼ CN (0,N0I), where N0 is the noise power density. GFDM is a

filtered MCM scheme and particularly useful for fading channels in combating narrowband interference

and multipath fading. Therefore, theoretical analyses of GFDM systems over fading channels are of

practical importance. In this chapter, both Rayleigh and AWGN channels are used. The channel matrix
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H in the case of Rayleigh fading has the following structure.

H =



h1 0 · · · 0 hNch · · · h2

h2 h1
... 0

. . .
...

... h2
. . . 0

... hNch

hNch

... h1 0 0

0 hNch h2 h1
...

... 0
. . .

... h2
. . . 0

0
... · · · hNch

... · · · h1


, (4.19)

where (h1,h2, . . . ,hNch)
T = h denote the channel impulse response of length Nch. The entries of h are

independent and identically distributed (i.i.d.) complex Gaussian random variables with zero mean and

unit variance (0.5 for real or imaginary parts). By assuming that perfect channel state information is

available at the receiver, a zero-forcing (ZF) equalizer can be used to yield

z = H−1y

= x+H−1n.
(4.20)

The euqalization takes place following the CP removal and is unnecessary for AWGN channels. Then,

we obtain the recovered symbols d̂ by demodulating y, as follows

d̂ = Bz, (4.21)

where B is the receiver matrix and when the ZF criterion is used, B = A−1.

d̂ is transformed to the estimated codeword vector v̂ after SPA decoding and BPSK demapping. Finally,

v̂ is converted to the recovered information vector b̂.

4.4 Performance Analysis of Error Probability for LDPC Coded GFDM
Systems

4.4.1 Initial LLR Calculation

For the purpose of simplicity, we consider a BPSK mapper. The jth bit of the codeword v and the jth

element in the symbol vector d are denoted by v j and d j, respectively. For BPSK, v j = 0 is mapped to

d j =+1 and v j = 1 is mapped to d j =−1. Recalling (4.15) and following (4.20) and (4.21), we have

d̂ = d+(HA)−1 n

= d+En

= d+ ñ,

(4.22)

where ñ is directly defined in the equation.
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The received symbol corresponding to d j is given by

d̂ j = d j + ñ j. (4.23)

ñ j is formulated as

ñ j = e jn

=
N

∑
l=1

e j,lnl,
(4.24)

where e j is the jth row of the matrix E. e j,l and nl , l = 1,2, . . . ,N, are the lth elements in e j and

n, respectively. Both k j,l and nl are complex numbers. It is obvious from (4.24) that ñ j is a linear

combination of all nl’s. Recall that n is a complex Gaussian random vector and each entry nl has a mean

zero and variance N0. Then, the real and imaginary parts of nl have Gaussian distributions with mean

zero and variance σ2, i.e. R [nl]∼N
(
0,σ2

)
and I [nl]∼N

(
0,σ2

)
, where σ2 = N0/2. Therefore, ñ j

is also a Gaussian random variable, i.e. R [ñ j]∼N
(

0, σ̃2
j

)
and I [ñ j]∼N

(
0, σ̃2

j

)
, whose variance is

given by

σ̃
2
j =

N

∑
l=1

∣∣e j,l
∣∣2 σ

2

= e jeH
j σ

2.

(4.25)

The received symbol d̂ j also has a Gaussian distribution with mean ±1 (corresponding to d j =±1)

and variance 2σ̃2
j . Thus, the PDF of R

[
d̂ j
]

can be formulated as

f (d̂ j) =
1√

2πσ̃ j
e
−(

d̂ j∓1)
2

2σ̃2
j (4.26)

for d j =±1.

R
[
d̂ j
]

is used to generate the prior LLR. Under the assumption that Pr(v j = 0) = Pr(v j = 1), the

initial LLR in (4.1) becomes

L j = log

(
Pr
(
v j = 0|R

[
d̂ j
])

Pr
(
v j = 1|R

[
d̂ j
]))

= log

(
Pr
(
R
[
d̂ j
]
|v j = 0

)
Pr
(
R
[
d̂ j
]
|v j = 1

))

=
2R
[
d̂ j
]

σ̃2
j

.

(4.27)

Because R
[
d̂ j
]

has a normal distribution, L j is also normally distributed. Without loss of generality,

we assume all-zero codewords are transmitted. Therefore, we have

L j ∼N

(
2

σ̃2
j
,

4
σ̃2

j

)
. (4.28)
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4.4.2 FER Estimation in the Low Eb/N0 Region

In this section, we estimate the low-Eb/N0-region FER performance of LDPC coded GFDM systems

over AWGN channels.

The decoding threshold is defined as

α
∗ = sup{α : lim

l→∞

∫ 0

−∞

p(v)l (τ)dτ = 0}. (4.29)

α is the channel parameter. For the AWGN channel, α = σ and the corresponding decoding threshold

is denoted by σ∗. σ̃∗ =
√

e jeH
j σ∗. In order to determine the decoding threshold, we use the Gaussian

approximation approach in Section 4.2.3 with the following approximation to φ (x) [125] to facilitate

computation,

φ (x)≈

e−0.4527x0.864+0.0218, if 0≤ x≤ 10;√
π

x e−
x
4

(
1− π2

8x

)
, if x > 10.

(4.30)

A bit is received in error if the LLR L from the channel is smaller than 0. The probability of error is

p0 =
∫ 0

−∞

fL (l)dl

= Qn

(
1
σ̃

)
,

(4.31)

where fL (l) denotes the PDF of L and Qn (x) = 1√
2π

∫
∞

0 e−
τ2
2 dτ is the tail distribution function of the

standard normal distribution. Therefore, the probability of error at σ∗ is p∗ = Qn
( 1

σ̃∗

)
.

The observed BER, Pobs, is the ratio of the number of bit errors to the code length in the transmission

of a codeword. Pobs is a random variable and used to model the error rate of the channel. Let Ne denote

the number of bit errors. Thus, Pobs = Ne/N. The probability mass function (PMF) of Ne is

fNe (σ̃ ,N,Ne) =

(
N

Ne

)
pNe

0 (1− p0)
N−Ne , (4.32)

where Ne is an integer and 0≤Ne ≤N. For sufficiently large N, the above discrete binomial distribution,

B(N, p0), can be approximated by a continuous Gaussian distribution whose mean is equal to N p0 and

variance is equal to N p0 (1− p0), i.e. Y ∼N (N p0,N p0 (1− p0)). The continuity correction is applied

in order to improve the approximation accuracy.

Pr(Ne > ne) = Pr(Ne ≥ ne +1)≈ Pr(Y > ne +0.5) . (4.33)

A frame error occurs when Pobs > p∗ by assuming that a decoding failure results from an observed

channel worse than the decoding threshold [115]. Therefore, the FER can be estimated as follows

FER = Pr(Pobs > p∗) = Pr(Ne > N p∗)≈ Pr(Y > N p∗+0.5) , (4.34)
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where FER is the average frame error rate. Recall that Y is normally distributed, thus

Pr(Y > N p∗+0.5) = Qn

(
N p∗+0.5−N p0√

N p0 (1− p0)

)
. (4.35)

In this section, decoding thresholds are computed using Gaussian approximation and all the bits are

assumed to have the same error probability p0. Therefore, the above estimation method is only valid

for AWGN channels.

4.4.3 Lower Bound on the FER in the High Eb/N0 Region With Quantized Decoders

In this section, we propose lower bounds on the FER of LDPC coded GFDM systems with quantized

decoders, which apply to both AWGN and Rayleigh channels.

ξ (A) is defined as the event that there are still bit errors in absorbing set A after T decoding iterations

operating on the absorbing set. The probability of error can be given by [121]

Pr(ξ (A)) =

∑
i

∑
k

Pr(ξ (A) |s = xi,U = Wk) ·Pr(s = xi,U = Wk) ,
(4.36)

where s denotes the quantized channel LLR vector corresponding to the VNs in A and xi is the

realization of s. Matrix U denotes the LLRs input to CNs in C(A) from VNs outside A and Wk is the

realization of U. The set of all possible Wk is denoted by W . Pr(ξ (A) |s = xi,U = Wk) takes only

values 0 or 1 according to whether the xi is correctly decoded or not. By assuming that s and U are

independent we have

Pr(ξ (A)) = ∑
(xi,Wk)∈ψ

Pr(s = xi) ·Pr(U = Wk) , (4.37)

where ψ = {(xi,Wk) |Pr(ξ (A) |s = xi,U = Wk) = 1}. Then a lower bound on the error probability of

the absorbing set can be found as follows [121]

Pr(ξ (A))≥ λ (A), ∑
xi∈Ψ(W )

Pr(s = xi) , (4.38)

where Ψ(W ) is the set of xi that cannot be correctly decoded for all Wk, i.e. Ψ(W ) = {xi|(xi,Wk) ∈
ψ,∀Wk ∈W}. Pr(s = xi) can be obtained according to (4.28) with the quantization taken into account.

Note that in the case of an AWGN channel, all σ̃2
j ’s in (4.28) are equal. However, when a Rayleigh

channel is used, the values of σ̃2
j ’s are different for different variable nodes, implying that their LLRs

have different Gaussian distributions. In this case, the exact position of the absorbing set needs

to be known to compute Pr(s = xi) for Rayleigh channels. In order to simpify the computation of

Pr(s = xi) over Rayleigh channels, we propose to use an average value σ̃2
a to replace all σ̃2

j to obtain

the same distribution for all LLRs. The ideal way for finding this average is to theoretically determine

the dstributions of σ̃2
j and then, compute the expexted value. Recall (4.25), then we find that σ̃2

j is
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determined by e j,l , which are the entries of E. E = (HA)−1 = A−1H−1, where A is deterministic and

H is a circulant matrix whose nonzero entries are normally distributed.

H = FΛF∗, (4.39)

where F is the matrix composed of the eigenvectors, whose entries are fixed. Λ= diag(λk) with λk

being the eigenvalue. The inverse of H can be given by

H−1 = FΛ−1F∗. (4.40)

Therefore, the distribution of H−1 can be found when the distribution of Λ−1 is known. λk is normally

distributed. However, unfortunately, the distribution of its reciprocal, 1/λk, cannot be found. Thus,

theoretically determining the distribution of E through H−1 is impossible. In this case, a practical

approach is to use Monte-Carlo simulations to find the statistics of interest. Given that in (4.25),

σ is fixed, we only have to find the average value of e jeH
j . In the case of an AWGN channel,

eieH
i = e jeH

j = ωA,∀ i, j ∈ [1,N]. For Rayleigh channels, let ω j = e jeH
j and ω̄ = 1

N ∑
N
j=1 ω j. After

carefully examining the values of ω̄ that are averaged over 105 realizations of H, we obtain the

following conjecture regarding the relationship among ω̄ , ωA and Nch.

ω̄ =
2ω3

A

ω
Nch/3
A −ω

−Nch/3
A

. (4.41)

Fig. 4.3 shows an example of the conjecture for GFDM systems over Rayleigh channels, whose block

size is K×M = 48×21. This conjecture enables one to determine ω̄ and compute Pr(s = xi) quickly.

Define ε (V) as the event that there are still bit errors in set V after decoding the bits on the full code

graph for T iterations. The FER is formulated as FER = Pr(ε (V)). Let ε (A) denote the event that

there are still bit errors in A after T decoding iterations operating on the full code graph. Then we have

FER≥ Pr(ε (A)) . (4.42)

If there are N independent isomorphic absorbing sets A, by assuming that all of them have the same

probability of error we have

FER≥ Pr

(
N⋃

i=1

ε (Ai)

)

≥ NPr(ε (A))−

(
N

2

)
(Pr(ε (A)))2 ,

(4.43)

where Ai denotes the ith absorbing set. The value of Pr(ε (A)) is generally quite small in the high

Eb/N0 region so that Pr(ε (A))� (Pr(ε (A)))2. Thus, we further have

FER≥ NPr(ε (A)) . (4.44)

65



0 2 4 6 8 10 12 14 16 18 20

N
ch

0

5

10

15

20

25

30

Monte-Carlo simulation

Conjecture

Figure 4.3: Conjecture on ω̄ for GFDM systems with K = 48 and M = 21.

Based on the following inequality [121]

Pr(ε (A))≥ λ (A) , (4.45)

a lower bound on the FER can be given by

FER≥ Nλ (A) . (4.46)

Determining the set Ψ(W ) is required in order to calculate λ (A). However, determinig Ψ(W ) requires

to go over all Wk for each xi, which is time-consuming for practical quantization schemes and iteration

numbers. Therefore, approximating Ψ(W ) using a small number of Wk is necessary. In order to select

reasonable Wk, we examine the dynamics of the external LLR values input to C(A) from VNs outside

A. Such dynamics can be found via running the SPA decoder on the full code graph for T iterations

and averaging over sufficient frame transmissions. As an example, Fig. 4.4 shows the dynamics of the

external LLRs at Eb/N0 = 5 dB for a (3,3) absorbing set of the randomly constructed (3,6) code of

length 1008 [126]. Note that the LLR values increase quickly to a saturation level Φ(0) [127] within a

small number of iterations. The value of Φ(0) influences the decoding performance. As reported in

[127], greater values of Φ(0) result in lower error floors but the performance in the waterfall region

deteriorates at the same time. Φ(0) = 4.25 in our setup. Now let Wsat = {Φ(0)}θ×p with all its entries

having value Φ(0). Therefore, by assuming that the VNs in the absorbing set are more likely to be

decoded correctly when the external LLRs have the maximum values than when they have smaller

values, a straightforward method to identify Ψ(W ) is to just examine the set Wsat to find the incorrectly
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Figure 4.4: Dynamics of the external LLRs input to C(A) from outside A for a (3,3) absorbing set of
the randomly constructed (3,6) code of length 1008 at Eb/N0 = 5 dB.

decoded VN inputs xi. The numerical results shown in Figs. 4.7 and 4.8 verify this selection. However,

for some LDPC codes, the Wsat based approximation of the lower bound in (4.46) can have greater

values than simulations. This implies that there exist other Wk’s which lead to correct decoding when

Wsat leads to incorrect decoding. Motivated by the results in [128], [121], we consider a matrix Wlinc

whose entries increase linearly when decoding iterations proceed. All the entries in the t th column of

Wlinc have the same value wt which increases linearly. wt is formulated as

wt = Q
(

tΦ(0)
T

)
, (4.47)

where 1≤ t ≤ T . The numerical results in Figs. 4.9 and 4.10 show the validity of the selection of Wlinc.

4.5 Numerical Results

In this section, we present numerical results and related discussions for the error probability perfor-

mances of LDPC coded GFDM systems. The randomly constructed (3,6) codes of length 1008 and

length 2640 (Margulis code) [126] and array codes [119] are used to support the analyses of the FER

and BER performances. For the GFDM block, K and M are configured to include a whole codeword.

At least 100 frame errors were observed for each simulation. The maximum number of iterations

in SPA decoding is set to 20. In calculating the decoding threshold by Gaussian approximation, the
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predefined error probability level is 10−10. All the numerical results are obtained using the MATLAB

software.

Table 4.1: Simulation parameters for the analyses of low-Eb/N0-region FER estimations (Figure 4.5)

Parameters Code of length 1008 Margulis code

Channel AWGN AWGN
K 48 176
M 21 15
Filter Raised cosine Raised cosine
Roll-off factor 0.3 0.3
Mapper BPSK BPSK
Decoder SPA SPA

Table 4.2: Simulation parameters for the analyses of the lower bounds on FER (Figures 4.6, 4.7, 4.8,
4.9 and 4.10)

Parameters Code of length 1008 (19,3) array code

Channel
AWGN and AWGN and
Rayleigh (Nch = 5) Rayleigh (Nch = 5)

K 48 19
M 21 19
Filter Raised cosine Raised cosine
Roll-off factor 0.3 0.3
Mapper BPSK BPSK
Decoder Quantized SPA Quantized SPA
Quantization scheme Q3.2 and Q3.3 Q3.2
Φ(0) 4.25 4.25

The low-Eb/N0-region FER estimations based on Pobs and σ∗ are shown in Fig. 4.5, in which the

related simulation results are also plotted. Both the Margulis code and the randomly constructed

(3,6) code of length 1008 are used. Related simulation parameters are summarized in Table 4.1. No

quantization is considered in SPA decoders for Fig. 4.5. The FER performance of the uncoded GFDM

system is shown for comparison. The uncoded GFDM system has the same simulation settings as in

the case of the (3,6) code of length 1008 except that the SPA decoder is not used. It is shown that

LDPC coded GFDM systems have obviously improved FER performance compared to the uncoded

system, and a longer code can provide lower FER values. It can be seen that in the low Eb/N0 region,

the FER estimations are close to the simulations. For example, at FER = 10−3, the differences between

the estimations and simulations are around 0.33 dB and 0.06 dB for code lengths of 1008 and 2640,

respectively. The estimation accuracy gets better as the code length increases.

Fig. 4.6 shows the BER performances of LDPC coded GFDM systems, where the performance of an

uncoded GFDM system is also incorporated for ease of comparison. The related simulation parameters

are shown in Table 4.2. The randomly constructed (3,6) code of length 1008 is used, and both
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Figure 4.5: FER performance of LDPC coded GFDM systems in the low Eb/N0 region. Both the
Margulis code and the randomly constructed (3,6) code of length 1008 are used.
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Figure 4.6: BER performances of LDPC coded GFDM systems with different quantized SPA decoders.
The LDPC code used here is the randomly constructed (3,6) code of length 1008.
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Rayleigh and AWGN channels are considered. We can see that the LDPC coded GFDM systems have

substantially improved BER performance compared to the uncoded case for both Rayleigh and AWGN

channels. It can also be seen that for AWGN channels, quantized SPA decoders can exhibit error floors

when Eb/N0 increases to a certain value. For Rayleigh channels, no error floors are observed in the

Eb/N0 range in Fig. 4.6. The BER decreases as the number of quantization bits increases, which agrees

with the common observations in the literature.
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Figure 4.7: Lower bounds on the FER of the LDPC coded GFDM system with a (3,6) code of length
1008 over AWGN channels. In the legend, Nλ is used to denote Nλ (A) for convenience.

The proposed lower bounds on the FER of the LDPC coded GFDM system over AWGN and Rayleigh

channels are shown in Figs. 4.7 and 4.8, respectively. Simulation results of an uncoded GFDM system

are also shown for comparison. Related simulation parameters can be found in Table 4.2. The code

used here is the randomly constructed (3,6) code of length 1008. The lower bounds are based on (3,3)

absorbing sets whose multiplicity in the code is 153 [129]. It can be seen that the LDPC coded GFDM

system has smaller FER than the uncoded system. Similar to the case of BER, the FER performance

improves as the number of quantization bits increases. It is shown that the proposed lower bounds are

valid for both Q3.2 and Q3.3 quantization schemes. For the region Eb/N0 ≥ 4 dB in Fig. 4.7 and the

region Eb/N0 ≥ 8 dB in Fig. 4.8, the lower bounds can be used as estimates of the FER with acceptable

accuracy. For example, for FER at 10−4 in Fig. 4.7, the difference between the bound and the simulated

value is around 0.5 dB when using a Q3.3 quantizer. However, in the lower Eb/N0 region, the lower

bounds cannot be used to estimate the FER because they obviously diverge from the simulations. This

divergence is due to the fact that the contribution of the (3,3) absorbing set to incorrect decoding is not
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Figure 4.8: Lower bounds on the FER of the LDPC coded GFDM system with a (3,6) code of length
1008 over Rayleigh channels. In the legend, Nλ is used to denote Nλ (A) for convenience.

the only factor in the lower Eb/N0 region where the high FER is mainly attributed to the strong noise.

The FER performances of the GFDM system with a (19,3) array code over AWGN and Rayleigh

channels are shown in Figs. 4.9 and 4.10, respectively. Again, the simulated FERs of an uncoded

GFDM system are incorporated for comparison. Related simulation parameters are summarized in

Table 4.2. The lower bounds are based on (3,3) absorbing sets whose multiplicity is 6498. It is shown

that the GFDM system with a (19,3) array code has lower FER compared to the uncoded case. We can

see that for both AWGN and Rayleigh channels, the bound Nλ (A) can exceed the simulation in some

Eb/N0 region when Wsat is selected. However, Nλ (A) is a lower bound on FER when Wlinc is used.

For AWGN channels, this lower bound closely follows the simulation in the high Eb/N0 region and

thus, can act as an estimate of the FER. However, for Rayleigh channels, the difference between the

lower bound and simulation cannot be neglected.

4.6 Conclusion

GFDM mudulation can provide flexible waveforms for future wireless systems due to its block based

structure and the introduction of the filtering operation. LDPC codes have shown excellent asymptotic

performances that are close to the Shannon limit and iterative message-passing decoders, such as SPA

decoder, make their practical applications more feasible. Applying LDPC codes to GFDM systems can

substantially improve the error probability performances. In adddition, the quantization scheme has an
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Figure 4.9: FER performance of the LDPC coded GFDM system with a (19,3) array code over AWGN
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important impact on the performance of practical SPA decoders. Absorbing sets of the LDPC codes

are identified as the main cause of the error floors for some codes. This chapter first derived the initial

LLR expressions for the SPA decoders in LDPC coded GFDM systems. Then, based on the decoding

threshold, we estimated the FER in the low Eb/N0 region by considering the observed BER. This

estimation method is valid for AWGN channels. Finally, we proposed a lower bound on the FER based

on the absorbing sets when quantized SPA decoders are used. Both Rayleigh and AWGN channels are

considered in deriving the lower bound. The numerical results reveal that the proposed FER estimation

is efficient for the performance analysis in the low Eb/N0 region and that the lower bound is valid

for different quantized SPA decoders. The bound can be used to estimate the FER of the investigated

codes in the high Eb/N0 region for AWGN channels. In the case of Rayleigh channels, the lower bound

can only estimate the FER performance of some selected code. The proposed estimation approach

and lower bound for the FER can be used to efficiently evaluate the error probability performances of

LDPC coded GFDM systems. A future work could be the joint design of the GFDM modulation and

LDPC codes to lower the error floors.
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Conclusion

In this thesis, we investigated GFDM-based systems. MIMO, massive MIMO and LDPC codes were

integrated into the systems. For each case, we provided a system model and then analyzed the system

performance or propose new algorithms. Under the assumption of ML detection, a union bound on the

BER was derived for MIMO-GFDM systems based on exact PEPs. The MGF was used in order to

calculate the exact PEP. The Kronecker model and an additive model were used to describe the spatial

correlation and channel estimation errors in the multipath MIMO channel, respectively. This union

bound provides an upper bound which can serve as a reference for the future design of MIMO-GFDM

systems. Numerical results show that both the spatial correlation and channel estimation errors have

important impacts on the BER performance and the derived bound. To be specific, the bound increases

as the correlation strength or the variance of channel estimation errors increases. For massive MIMO-

GFDM systems, low-complexity channel estimators and precoders were proposed based on polynomial

expansion. The cubic computational complexity was reduced to square order due to the use of the

technique of polynomial expansion. The performances of the channel estimators and precoders improve

as the polynomial degree increases. However, in the meantime, a larger polynomial degree will increase

the computational complexity. Therefore, there is a trade-off in determining the value of the polynomial

degree. For a given polynomial degree value, the MSE of the proposed channel estimators reaches a

limit as Es/N0 increases which implies that the MSE cannot be lower than a certain value as the channel

quality improves. From another aspect, this limit can act as a tool in predicting the performance of

estimators in the high Es/N0 region. We also analyzed the error probability performance of LDPC

coded GFDM systems. The initial LLRs were first derived for the system model in question. Then,

the FER in the low Eb/N0 region was estimated based on the decoding threshold, where the channel

variations were modeled through the observed BER. A lower bound on the FER was proposed based

the absorbing sets when quantized SPA decoders are assumed. Numerical results indicate that the

introduction of LDPC codes in GFDM systems substantially improve the error probability performance.

The lower bound can be an estimate of the FER in the error-floor region when the absorbing set used is

dominant and its multiplicity in the code is known.

Presented below are some interesting research directions that are worth investigating in the future.

These investigations can further extend the work in this thesis. We considered Rayleigh fading channels

in analyzing MIMO-GFDM systems in Chapter 2. However, other multipath fading channels can be

further investigated, such as Rician, Nakagami, Beaulieu-Xie, etc. Although the precoders proposed
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in Chapter 3 can relieve the signal processing burden at the user terminal, the receiver may still be

complex for massive MIMO-GFDM systems. Therefore, the design of low-complexity receivers is an

important topic to study. In Chapter 4, we analyzed the error probability performance of LDPC coded

GFDM systems over AWGN and Rayleigh fading channels. Analyses of these systems over other

fading channels, such as Nakagami and Rician channels, are also necessary and interesting due to the

fact that GFDM is one of MCM schemes and powerful in mitigating multipath fading and narrowband

interference. In addition, performance analyses of LDPC coded GFDM systems over channel models

in 5G specifications are of practical importance. As seen in the literature, finite-length LDPC codes

usually exhibit error floors in the high Eb/N0 region. Therefore, in the future, joint design of GFDM

modulation and LDPC codes can be investigated to lower the error floors.
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