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Abstract 

With the demand for higher date rates and quality of service for future wireless 

communications, the need to cope with the shared wireless medium increases along 

with the challenges. For example, frequencY-Relective multipath induced fading, 

time-selective mobility induced impairment, and the design of high performance 

transceivers. Orthogonal Frequency Division Multiplexing (OFDM) systems rely on 

Fourier transform· based block transmission and redundant precoding to offer the 

promised high data rate transmission with high bandwidth efficiency over frequency 

selective channels. It has therefore been widely used for digital audio broadcasting 

(DAB), digital video broadcasting (DVB) and wireless local area networks (\VLAN). 

More recently, OFDM has been considered to be the physical layer of the fourth 

generation mobile communication systems in Europe. 

This thesis investigates OFDM systems in the presence of unknown frequency 

selective fading and even over rapidly time-varying multipath channels. A number of 

self symbol-recovery OFDM transceivers are designed to mitigate unknown multipath 

fading by exploiting subcarrier correlations. Relying on distinct block precodings, a 

novel multi-antenna based OFDM transmission scheme is introduced to enable a low 

complexity blind multichannel estimator. To further reduce the channel estimation 

complexity, a superimposed-training based OFDM transceiver is developed without 

loss of the bandwidth efficiency. A pilot-assisted OFDM transceiver is investigated 

for combating rapidly time-varying multi paths. 

Our research on OFDM over time and frequency selective fading channels offers 

the potential benifit of enhanced performance, capacity, and high speed information 

ix 



x 

transmission to broadband wireless communication systems. The ultimate goal is 

to have advanced wireless services, such as mobile computing, high-speed internet 

access, and other personal communication services, made accessible to more people. 
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Notations 

Throughout this thesis, lower case boldface symbols are used to denote column vectors 

(e.g. s) while upper case boldface symbols are used to denote matrices (e.g. F). Their 

sizes are emphasized using subscripts: for instance SM indicates a size AI x 1 vector; 

FM denotes a size AI x AI, or F pxM indicates a size P x A!. Elements of vectors or 

matrices are expressed as s(m) or F(n, m). 

0*, (·f, 01-l and ot denotes complex conjugate, transpose, Hermitian transpose 

and pseudo inverse respectively. 8, 0 and * indicate Hadamard product, Kronecker 

product and convolution respectively. 

£ {.} stands for expectation, II . II for the norm of a vector (or a matrix), Rank{·} 

for the rank of a matrix, and Tr{·} for the trace of a matrix. 

1M denotes the identity matrix of size A!, and OKxP denotes a zero matrix of size 

K x P; D(s) denotes a diagonal matrix with s on its diagonal. 
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Chapter 1 

Introduction to multicarrier 
transmission 

This ch~pter provides an introduction to orthogonal frequency-division multiplex

ing (OFDM) transmission over frequency-selective fading channels. The presentation 

does not intend to be comprehensive, but the aim is to present all materials neces

sary to fully understand the following chapters. A more general and comprehensive 

coverage of multicarrier and OFDM systems can be found in'[l]. 

Historically, OFDM was introduced in the 60's [2] as an inter-symbol interference 

(lSI) resilient scheme. However, it was hardly considered for practical applications 

due to its high computation complexity. With the rapid development of digital sig

nal processing (DSP) technologies, OFDM, which requires an inverse fast Fourier 

transform (IFFT)jFFT component, can now be simply implemented in a high-speed 

embedded system. It receives a growing interest [3] and has now been adopted in 

many national and international standards. Specifically, it has been chosen as a solu

tion for digital audio and video broadcasting in Europe (DAB [4] and DVB [5]). It has 

also been ~hosen for high-speed modem transmission over copper wires (ADSL and 

VDSL [6]). Recently, it has been adopted in the standards for "VLAN bot.h in Europe 

2 



3 

(HIPERLAN/2 [7]-[8]) and in America (IEEE802.11a [9]). Europe and America are 

considering OFDM for wireless metropolitan area networks (Wireless MAN) [10]. 

The rest of this chapter is organized as follow·s: Section 1.1 overviews typical 

OFDM systems; Section 1.2 presents an OFDM system in the presence of multipath 

fading; Inter-carrier interference (ICI) in OFDM is introduced in Section 1.3; and, 

further understanding of OFDM is presented in Section 1.4. Finally, Section 1.5 

presents the objective of our research. 

1.1 Typical OFDM systems 

This thesis only focuses on the discrete-time baseband aspects of OFDM systems. 

Typically, the OFDM systems are classified into two categories according to the type 

of time-domain guard: cyclic prefixed (CP) OFDM and zero padding (ZP) OFDM. 

Figures 1.1 and 1.2 depict the discrete-time equivalent models of CP-OFDM and ZP

OFDM systems respectively. Conventionally, OFDM modulators employ an IFFT 

component to map information-bearing symbols onto IFFT IFFT grids (orthogonal 

sub carriers) for the block transmission. The subcarrier spacing l:lf is a reciprocal 

of the block duration n. Then, the parallel output of the IFFT is converted into 

the serial stream by employing a parallel-to-serial (PIS) component. Normally, a 

time-domain guard with the duration Tg is inserted between two consecutive OFDM 

blocks for mitigating the inter-block interference (IEI) caused by the time-dispersive 

channel and introducing the circulant property. Practically, most of OFDM-based 

communication systems use cyclic prefix as the time-domain guard (for instance [4]

[5], [7], [9]-[10]). At the receiving end, the CP-OFDM receiver first discards CPs, 

and then groups the received data into blocks with the block duration n. Those 
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Figure 1.1: Discrete-time equivalent model of CP-OFDM transceiver. 

Figure 1.2: Discrete-time equivalent model of ZP-OFDM transceiver. 
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blocks are then fed into a FFT component to generate so called frequency-domain 

signal. Channel equalization and signal detection are then performed in the frequency 

domain. 

Recently, it was proposed to replace CP by ZP (see [11]-[14]). The time-domain 

guard between two consecutive OFDM blocks is filled with zero symbols. Differed 

from the CP-OFDM receiver, as shown in Figure 1.2, the ZP-OFDM receiver does 

not remove the guard interval. It groups the received signal into blocks with the block 

duration n + Tg • Then, those blocks are fed to a FFT component to generate the 

--frequency-domain signal. Due to the redundancy introduced by the guard time, [12] 

shows that the ZP-OFDM system guarantees the symbol recovery in the noiseless 

case regardless of channel zero locations. However, the ZP-OFDM receiver increases 

the equalization complexity. 

f!ne main advantage of 0 FD M is that the 0 FP~_ rnodel:r!5an _ con~~~ __ ~fr_~q~~<?,~ 
selective fading channel into a number of flat-fading subchannels, such that equal

ization of the frequency-selective channel becomes very simple. Besides this, OFDM 

ChI. Ch2. Ch3. Ch4. Ch5. Ch6. Ch7. Ch8. Ch9. ChlO. 

0000000000 FDM 
iii Frequency 

~ 1 1 
l ! ! 

,~ .. LuwruuJ Saving of bandwidth l OFDM 

Frequency 

Figure 1.3: Comparison between conventional FDM and OFDM 



6 

is a spectral efficient transmission scheme. As an example, Figure 1.3 shows that 

OFDM can save almost fifty percent bandwidth compared with the conventional FDM 

scheme by overlapping orthogonal subcarrier~The working philosophy of OFDM in 

the frequency-selective channel is presented in Chapter 1.2. 

1.2 OFDM in the muItipath fading channel 

The presence of reflecting objects and scatters in the channel creates a constantly 

changing environment that dissipates the signal energy in amplitude, phase, and 

time. These effects result in multiple versions of the transmitted signal that arrive at 

the receiving antenna. The random phase and amplitude of the different multipath (0 .. 

components cause fluctuations in signal strength, thereby inducing small-scale f~ding 

and signal distortion. Due ·to the propagation delay, multipath propagation often 
-----,-,~------

lengthens the time required for the baseband signal to reach the receiver and causes 

inter-symbol interference (lSI) [15]. 

1.2.1 Propagation channel model 

Figure 1.4 depicts the propagation channel model, which consists of three parts: 

Propagation channel 

Transmit-filter PHY channel Receive-filter 

Figure 1.4: Continuous-time time-varying communication system. 
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transmit-filter, receive-filter and physical channel (also see [16]). The continuous 

channel impulse response he(t, T} is a stochastic process in the time variable t. It 

is common practice to assume the channel to be wide sense stationary for a fixed 

lag T and uncorrelated for different lags [17J. As shown in Figure 1.4, he(t, T} is 

the convolution of the transmit-filter c(tr)(t, T}, the physical channel c(ch)(t, T}, and 

the receive-filter c(ree)(t, T). Defining 'l/J(t, T) = c(tr)(t, T} * c(ree)(t, T), the propagation 

channel model can be mathematically described as (see [18]) 

(1.2.1) 

where subscript e denotes continues time, atJ.At} and ¢tJ.,v(t} denote the random am

plitude and random phase for the 11th ray of the ~th lag, ttJ.At) denot.es the Doppler 

frequency. Jfthe channel is time-invariant, we can omit tin (1.2.1) and let ttJ.,v(t) = O. 

Then, (1.2.1) becomes the frequency-selective channel model as 

(1.2.2) 
II 

where a., = L:tJ. atJ.,ve1cPp,,,. When the information-bearing symbols s( f) goes through 

the channel, we can relate input and output as 
00 

zc(t}' = L s(£}he(t - £Ts) (1.2.3) 
l=-oo 

where Ts is the symbol duration. Once the output signal ze(t) is sampled at the 

symbol rate Ts, the discrete-time version of the output signal is a function of the 

sample index i 
00 

z(iTs) = L s(£)h(iTs - iTs) (1.2.4) 
1=-00 

We define z(i} = z(iTs} and are able to rewrite (1.2.4) into 
00 

z(i} = L s(f)h(i - C) (1.2.5) 
£=-00 
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Figure 1.5 demonstrates the relationship (1.2.5) using a flow graph. We can see that 

it is a moving average process [19], such that the frequency-selective channel can be 

modelled as a FIR filter with complex coefficients [21]. Since the upper bound of chan

nel length LlIo is experimentally measurable, the sampled channel impulse response 

(CIR), h, can be expressed by"a LlIo x 1 vector as: h = [h(O), h(I), "', h(LlIo -1)jT. 

The channel frequency response is therefore given by 

Lu-l 

H(m) = :L h(l)VV;:; (1.2.6) 
1=0 

where tV~ = exp{ -j21l'mlj M}, and M denotes the number of DFT grids and also 

equals the number of subcarriers in the OFDM systemJ Later on, we would like to 

investigate the output z(i) by employing the CP-OFDM and ZP-OFDM signals as the 

input, Also, we intend to exhibit the outstanding features of typical OFDM systems. 

Z-l Z-I Z-I 

sCi) --+----;-----r--- - -!:' - - -. s(l'-L

u

) 

s(j) s(i-1) 
_ - t- _ r-..z-..... 
I I 
I I --- h(L,) h(O) h(l) 
L_. __ 1 . I z(i) 

Channel 

Figure 1.5: Input-output relationship of the discrete-time channel. 
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1.2.2 CP-OFDM system model 

Prior to transmission, the information-bearing symbols are grouped into blocks s(n) = 

[s(n, 0), s(n,1), "', s(n, M - 1)]T with the size M x 1. As shown in Figure 1.6, 

these blocks are fed into IFFT to generate OFDM blocks s(n) = F~s(n), where FM 

is the normalized DFT matrix with the (m, k)th entry lVAt 1m. Then, CPs are 

prepended to the OFDM blocks by duplicating the last Lep samples of s(n) to produce 

the transmitted blocks x(n) as 

x(n) = 8 eps(n) (1.2.7) 

where Lep is the length of CP, 8 ep is a J x AI matrix formed by 8 ep = [Fep , FM ]7i, 

and the M x Lep matrix Fep is formed by the last Lep columns of FM . 

:r(1I 0) .-- s( 0) 11- .-- X(II 0) . .--

S{ 11,0) .-- .'I1IlJ-MI r-' 

FH 
AI 

PIS ~ PIS 
x(n) 

f------
F~ 

xI'L.J-4 
.(1 lA/-I) . x(n.M-l} 

'--- 0 

1..1f-l} .t(I/.J -1) 

"--- L-
0 
~ 

CP-OFDM Modulator ZP-OFDM Modulator 

Figure 1.6: OFDM modulator with cyclic prefix and zero-padding 
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When the blocks x(n) go through the propagation channel, the input-output re

lationship is given by (see [12]) 

(1.2.8) 

IBI part 

where dlow is the J x J lower tria~gular Toeplitz filtering matrix with the first column 

[h(O), ... ,h(Lu -1), 0, ... ,of; d up is the J x J upper triangular Toeplitz filtering 

matrix with the first row [0, ... ,0, h(Lu - 1),· .. ,h(I)]. Normally, the CP length, 

L cp , is designed to be larger than the upper bound of channel order, therefore the 

IBI part can be easily eliminated by discarding the first Lcp elements of zJ(n). The 

remaining part of zJ(n) can be expressed as [12] 

(1.2.9) 

where r M is an M x M circulant matrix with the first row [h(O), 0 , ... ,0, h(Lu-

1), ... , h(I)]. Since every circulant matrix can be diagonalized by using eigen

decomposition [12], [14], [20], equalization of CP-OFDM transmission can be per

formed in the frequency domain. Performing a FFT on zcp(n), we can obtain the 

frequency-domain version of zcp(n) as 

(1.2.10) 

where 1)M = diag{H(O), H(I), ... , H(M - I)}. Once 1)M is available at the 

receiver, equalization can be implemented using a simple matrix multiplication 

(1.2.11) 

where s(n) is the estimated version of the information symbol block. However, the 

symbol recovery is guaranteed only when the diagonal channel matrix 1) M does not 
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comprise zeros on its diagonal. Practically, channel code is employed to introduce 

enough code redundancy 117]. From the above discussions, we can draw the following 

conclusions: 

cl.l. By employing the cyclic prefix, (1.2.10) shows that the channel matrix can be 

diagonalized. Symbols in the block s(n) are not interfered each other. Therefore, 

CP-OFDM can mitigate the lSI. 

c1.2. Since'DM may comprise at most Lu -1 zeros on its the diagonal (see 122], 123]), 

channel code has to be used to guarantee the symbol recovery. 

1.2.3 ZP-OFDM system model 

The right-hand part of Figure 1.6 depicts the discrete-time equivalent model of the 

ZP-OFDM modulator. Differed from CP-OFDM, the relationship between x(n) and 

s( n) is given by 

(1.2.12) 

where 8 zp = [FM , OMxLzJH, Lzp = Lcp is the number of zero symbols. Then, the 

output of the propagation channel is given by 

(1.2.13) 

IBI part 

Since A up 8 zp = 0 [14], the IBI part does not exist actually, and (1.2.13) becomes 

(1.2.14) 

where r J = Alow + Aup is the J x J circulant channel matrix. 
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Similar to the CP-OFDM, equalization of ZP-OFDM transmission is also carried 

out in the frequency domain. Let F J be a J X J normalized DFT matrix. The 

frequency-domain blocks can be expressed as 

zJ(n) F JZJ(n) 

F JI' JF7F J8zps(n) 

1)J Gzps(n) 
'---' 

lSI part 

(1.2.15) 

where 1) J = F JI' JF:f = diag{H(O), 1I(1),'" ,1I(J - I)}, and G zp = F J8zp with 

the size J x AI. It can be observed that J = Lzp + M and G zp has full column 

rank. The symbol recovery is therefore guaranteed only when the channel frequency 

response contains at most Lzp zeros. Chapter 1.2.2 has mentioned that, 1) J has 

at most (Lu - 1) < Lzp zeros on its diagonal, therefore the following zero-forcing 

equalization method can guarantee the symbol recovery 

(1.2.16) 

From the above analysis, we can conclude that: 

c1.3. The results (1.2.15) and (1.2.16) show that the tall matrix G zp introduces 

enough redundancy to guarantee the symbol recovery regardless of channel zero 

locations. Hence, for the uncoded case, ZP-OFDM outperforms CP-OFDM in 

the frequency-selective channel. 

cI.4 Due to the presence of G zp, (1.2.15) also shows that information symbols are 

interfered each other. The receiver complexity needs to be paid for removing 

the lSI. 
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1.3 Inter-carrier interference in OFDM 

One of the main disadvantages of OFDM is its high sensitivity to carrier frequency 

offset (CFO), which is caused by oscillator mismatch between the transmitter and 

the receiver or the Doppler shift (see [26]-[27]). If CFO is an integer multiple of the 

subcarrier spacing b.j, then subcarriers are still mutually orthogonal, but the received 

symbols mapped to DFT grids are in the wrong position. If CFO is not an integer 

multiple of the subcarrier spacing, then energy is spilling over between sub carriers, 

which results in inter-carrier interference (leI) [26]. 

Most of previous literatures consider the ICI effect in additive white Gaussian 

noise (AWGN) or flat-fading channels [27]-[29]. This thesis analyzes the ICI effect in 

a frequency-selective fading channel using the matrix formulation. To simplify the 

discussion, here, we just take CP-OFDM as an example. 

As shown in [30], [31], the noise-free version of received signal with CFO is ex

pressible as 
00 

z(i) = ei27rfDT.i L s(C)h(i - £) (1.3.1) 
(=-00 

where JD denotes the CFO. This model considers the communication channel to be 

static (or slowly time-varying) 1 , i.e. the CFO is mainly from the oscillator mismatch. 

Consider the transmitted signal to be CP-OFDM format, (1.3.1) can be expressed as 

the following matrix form 
I 

zJ(n) = OJ(n).dlow8 cps(n) + OJ(n) .dup8 cps(n - 1) ( 1.3.2) , ~ ... 
IBI part 

where OJ(n) is a J x J diagonal matrix with the (m, m)th entry 

0Anjm,m) = exp(j~;cd(nJ + m» (1.3.3) 

1 For the slowly time-varying channel, the doppler shift is very small and ignorable. 
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and Cd denotes the normalized CFO with cd = fDMTs 2. When CP is removed, the 

remaining part of zJ{n) becomes 

(1.3.4) 

where !lM(n) is a M x M diagonal matrix with the (m, m)th entry 

(1.3.5) 

The DFT of (1.3.4) is therefore given by 

FM!lM(n)rMF~s(n) 

OM(n; 0, O)'DMs(n) + vrcr{n) (1.3.6) 

where 

(1.3.7) 

is the ICI part. (1.3.6) shows that CFO introduces not only the constant phase ro

tation OMen; 0, 0), but also the additive noise vrcr(n). Figure 1.7 gives an example 

to illustrate the result of (1.3.6). In this example, all subcarriers for the CP-OFDM 

transmission are QPSK modulated. It shows that the ICI power increases with the 

increase of CFO. The signal to interference ratio (SIR) becomes very low when the 

normalized CFO Cd = 0.5. To mitigate the ICI power, a number of ICI self-cancelling 

schemes [29J and CFO estimation algorithms [30], [32J-[36J have been proposed. De-

tails of these schemes will be introduced in the following chapters. 

2The block duration n = MTs, and the subcarrier spacing t1/ = lin, so this result is equivalent 
to Cd = fD/D..J. 
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1.4 Block precoded OFDM 

Observing (1.2.9) and (1.2.14), the CP-OFDM and ZP-OFDM transmissions can be 

rewritten as the following matrix form, 

(1.4.1) 

(1.4.2) 

where e cp = F~ and e zp can be regarded as linear block precoders. Then, CP

OFDM and ZP-OFDM have the following unified form 

z(n) = res(n) (1.4.3) 

where r is a circulant channel matrix, and e is a linear block precoder. If we let 

e = F~ W, where W is a linear block precoder with the full column rank, then 

(1.4.3) becomes the block precoded (BP) OFDM model addressed in [25]. It can be 

observed that typical OFDM is a special case of the BP-OFDM, when W = 1M , In 

the following contents, we intend to introduce other members of DP-OFDM family, 

for instance multicarrier code-division multiple access (MC-CDMA) and generalized 

MC-CDMA (GMC-CDMA). 

1.4.1 Conventional MC-CDMA 

Originally, MC-CDMA was presented as a combined framework with OFDM and 

CDMA [37]. It has been shown that MC-CDMA may save almost fifty percent 

bandwidth of a direct sequence (DS) CDMA [1], [37]. A typical MC-CDMA trans

mitter for single user is depicted in Figure 1.8. It shows that the MC-CDMA 

transmitter spreads the original signal using a given spreading sequence over the 
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frequency domain. Usually, the spreading sequence is selected from a Ku x Ku 

Walsh matrix W K .. [381. Meanwhile, Ku also denotes the total number of users. 

Let sJl{n) = [sp{n,O), ... ,sJl{n, P - l)jT be the information bearing blocks of the 

11th user, where P denotes the number of transmitted symbols per block. Using the 

CP-OFDM transmitter, the received signal can be expressed as 

(1.4.4) 

where W p is the 11th column of the Walsh matrix W K .. , and the number of subcarriers 

M = P x Ku. If there has totally Ka active users, the received signal for the downlink 

is given by 

p=l 

Ka 

rMF~ 2:[w Jl ® sJl{n)] (1.4.5) 
Jl=l 

Note that (1.4.4) and (1.4.5) introduce the MC-CDMA models in the traditional way. 

Next, those models are represented in the view of block precoded systems. 

First, let us form an M x P (M = Ku x P) matrix Up as 

(1.4.6) 

and (1.4.4) can be rewritten into 

zJJ{n) rMFZUJJsJJ{n) 

= rMup.sp.{n) (1.4.7) 

where UJJ = FZ.UJJ can be regarded as a linear block precoder. For the single user 

case, the signal recovery is promised by the following theorem. 
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Theorem 1.4.1. The information bearing block slL(n) is uniquely identifiable in 
(1..4.7) regardless of channel zero locations only 'When the upper bound of channel 
length Lu, and the length of spreading sequence Ku satisfy: 

( 1.4.8) 

Proof. See Appendix LA. 

In the presence of unknown frequency-selective fading, Theorem 1.4.1 suggests the 

design criterion of MC-CDMA for the single-user case. For the multiuser case in the 

downlink, the following contents will show the signal recovery condition in the view 

of a block precoded system. 

Without loss of generality, it is assumed that the Ka active users use spreading 

sequences W IL , for J-L E {I,··· ,Ka}. Then, (1.4.5) can be rewritten into 

(1.4.9) 

where sMJn) is an Mux 1 vector (Mu = KaxP), which contains multiuser information 

(1.4.10) 

and U KG is given by 

U Ka = (WKa .. ) 
WKa 

(1.4.11) 

and W Ka = [WI, ... , WKJ with size Ku x Ka. Let UKa = F"ZU Ka , indeed, the 

linear model (1.4.9) is also a block precoded system. 

Theorem 1.4.2. The information-bearing block SMu (n) is uniquely identifiable in 
{1·4·9} regardless of channel zero locations only 'When the number of active users Ka 
satisfy 

(1.4.12) 
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Proof. See Appendix 1.B. 

Theorem 1.4.2 shows that the traditional MC-CDMA is sensitive to the channel 

zero locations. The signal recovery is guaranteed regardless of channel zero locations 

only when the bandwidth efficiency llb is 

(1.4.13) 

1.4.2 Generalized MC-CDMA 

To improve the MC-CDMA performance in the frequency-selective fading channel, 

recently, a generalized MC-CDMA transceiver has been reported, which is resilient 

to the multiuser interference (MUI) and lSI [24]-[2.5]. Similar to the traditional MC

CDMA, the GMC-CDMA is also a special block precoded OFDM scheme. 

To clarify t.he difference between MC-CDMA and GMC-CDMA, the downlink 

(G)MC-CDMA models are represented here 

(1.4.14) 

(104.15) 

It is easy to find that GMC-CDMA replaces the precoder UK,. with aK,.. To guarantee 

the signal recovery in MUI regardless of channel zero locations, the precoder a K,. 

should meet t.he following two conditions [22], [24]: 

c1.4.1 the block precoder aK ,. should always have full column rank for a /{a, and 

M ~ P /{u + Lu - 1 

c1.4.2 any P /{a rows of a K,. are linearly independent. 
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Obviously, (1.4.14) does not fulfil the above two conditions, and thereby decreases the 

overall system performance in the frequency-selective fading channel. On the other 

hand, GMC-CDMA promises the signal recovery, but it has to pay extra receiver 

complexity. 

1.5 Objective of the work 

(OFDM-based block transmission schemes provide promising high data-rate services 

over frequency-selective fading channel~JOn the other hand, most of OFDM systems 

require the channel state information (CSI) to carry out the coherent signal detection. 

The channel state informat.ion may be obtained at receivers by employing channel 

estimators. A good channel estimator is very important for improving the overall 

system performance. \ 1\ 
~\\ 

In the presence of slowly time-varying channels, OFDM transceivers equipped with 

blind channel estimators are capable of self symbol recovery. This thesis proposes a 

number of blind OFDM transceivers to cope with unknown frequency-selective fading 

channels. The contributions of this work contain: 

1) A differential leI self-cancelling OFDM transceiver is developed for combating 

time-varying frequency-selective fading channels. This transceiver is equipped 

with a blind channel estimator and a semi-coherent signal detector to improve 

the overall system performance. 

2) A novel blind channel estimation method is developed for block precoded OFDM 

systems by exploiting subcarrier correlation. This blind estimator only uses 

second-order joint moments to offer a relatively low-complexity approach. 
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3) A superimposed training based OFDM transceiver is proposed both for cases 

with single transmit antenna and multiple transmit antennas. The first-order 

statistics based algorithm offers a low-complexity channel estimator. Since the 

superimposed training does not cost an extra bandwidth, the transceiver us

ing superimposed training can be regarded as a kind of self symbol recovery 

equipment. 

4) A novel MIMO-OFDM transceiver is proposed by employing distinct block 

precoders, i.e., ZP-OFDM and CP-OFDM signals are transmitted from two 

uncorrelated transmit antennas. This transceiver enables a second-order cy

clostationary based blind channel estimator, which can cope with subchannels 

individually and improve the channel estimate performance. 

fVv:hen the channel state information varies very rapidly, pilot-assisted OFDM 

transceivers may be a good candidate rather than a blind transceiver 1391-14011 This 
r.::. 

thesis also analyzes the performance of existing pilot-assisted channel estimators, 

and proposes two combined channel estimation approaches to improve the channel 

estimate performance. 

Finally, the carrier frequency offset induced by time-varying channels is also in

vestigated in the presence of unknown frequency selective-fading channels. A novel 

blind CFO estimation algorithm has been developed. It is established that the CFO 

parameter is identifiable regardless of unknown channel fading and unknown symbol 

timing mismatch. 
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Appendix 1.A: Proof of Theorem 1.4.1 

For a FIR channel with length Lu, Chapter 1.2 has shown that r M has at most Lu - 1 

zero eigenvalues. It means that 

(1.5.1) 

It can also be observed that 

(1.5.2) 

Hence, (1.4.7) shows that the necessary condition of the identifiability of sJl(n) is 

( 1.5.3) 

which leads to 

Lu-1 ~ At - P (1.5.4) 

However, this condition is not sufficient for the signal identifiability. 

Consider the frequency-domain form of zJl{n), which is given by 

zJl(n) FMzJl(n) 

VMUJlsJl(n) (1.5.5) 

The signal recovery is guaranteed when Rank{VMUJl} = P. Now, split the matrix 

TJM into P sub-matrices t>i with size Ku x Ku, and 

(1.5.6) 

The condition Rank{VMUJl} = P holds only when 

(1.5.7) 
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Hence, Vi needs to contain at least one non-zero entry along the diagonal, i.e. 

(1.5.8) 

(1.5.4) and (1.5.8) show that sJ.L(n) is uniquely identifiable regardless of channel zero 

locations only when 

Lu ~ min(M - P+ 1, Ku) (1.5.9) 

For M = Ku x P and Ku ~ Lu, it can be easily deduced that 

AI - P + 1 = {Ku - l)P + 1 ~ Ku (1.5.10) 

This theorem is therefore proved. 

Appendix 1.B: Proof of Theorem 1.4.2 

DFT of (1.4.9) is given by 

(1.5.11) 

Similar to the proof of Theorem 1.4.1, (1.5.11) infers that the signal recovery is 

guaranteed only when 

Rank{ViW Ka} ~ Ka 

which leads to the result of (1.4.12). 

(1.5.12) 
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Figure 1.7: An example of ICI with the normalized Doppler shifts Cd=: a) 0, b) 0.05, 
c) 0.2, d) 0.5. abscissa: real part of symbols, ordinate: imaginary part of symbols. 
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Figure 1.8: A MC-CDMA transmitter for single user. 



Chapter 2 
• 

Channel estimation techniques for 
OFDM 

Chapter 1 has shown that the&an.~.el estimation is very necessar~ for m?s~ ~f OFDM 

~ivers in the presence of unknown multipathfadinij Compared to noncoherent 

(DPSK (17]) and semi-coherent (differential space-time (ST) modulation (41]-(42]) 

modems, many papers have shown that, for the uncoded system, a receiver equipped 

with a channel estimator can improve the overall system performance significantly 

(e.g. (43]-(44]). This chapter is intended to briefly review channel estimation methods 

for OFDM systems. 

2.1 Understanding of channel estimation 

W;;ure 2.1 depicts the block diagram of channel estimation methods. Usually, chan

nel estimation methods can be classified into two main categories: training based 

and blind approaches. The training based approach normally uses several training 

sequences ahead to track a time-varying channel (8]-(9], (49]. When the channel state 

information (CSI) varies rapidly, training sequences need to be frequently sent to 

maintain the overall system performance (45]. Alternatively, pilot assisted channel 

24 
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estimation methods can be used to track the rapidly time-varying channel (see [1], 

[46]-[48]). These methods have already been considered in many standards, such as 

DVB [5] and wireless MAN [10].\Recently, blind techniques for identification of linear 
~ 

time-invariant systems have found widespread applications in time series modelling, 

econometrics, exploration seismology, and equalization of communication channels 

[16]. With no access to the input, as shown in Figure 2.1 (b), many blind meth

ods have relied on stationary high-order statistics [41], [51]-[53], and cyclostationary 

or multivariate second-order statistics [21], [30], [54]-[57] of the output data. The 

blind schemes are important, for example, in digital broadcasting because transmis

sion is not interrupted to train new users entering the cell. In wireless environments, 

the bandwidth is utilized efficiently when cold start-up is possible and in multipoint 

data networks throughput increases and management overhead drops when training 

is obviated ~ 

2.2 Training based technique 

Figure 2.2 illustrates the block diagram of the training based scheme for OFDM. To 

track the time-varying channel, training sequences need to be sent periodically. As 

shown in Figure 2.1 (a), when the input is known to the receiver, the CSI can be 

(a) (b) 

Figure 2.1: Block diagram of channel estimation. (a) training based estimation, (b) 
blind channel estimation 
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uni quely ident ifi ed us ing well-known least squa re (LS) 158] and linear minimum mean 

sq uare error (LMMSE) 149] a lgori t hms. [49] has shown t hat LMMSE outperforms 

LS when t he chann cl correlat ion matrix and noise power a re know n at the receiver. 

However , t hese cond it ions increase t. he receiver com plexity a nd limi t its applicat ion-J 

Later on , we int rod uce the LS and LMMSE a lgori t hm respective ly, and a lso show 

t heir relationshi p. 

2.2.1 LS algorithm and performance analysis 

Let t (nt) = [t(nt , O) , "', t(nt , M - l)jT be t he t ra in ing block on t he ntth block 

in terval. For t he CP-OFDM syst.em , as shown in Section l.2.2, t he DFT-processed 

received signal (l.2 .10) on t he ntth block in terval can be expressed as 

(2 .2. 1) 

by rep lac ing the sy mbo l block s(n) with t he t ra ining b lock t (nd. Consider til e pres-

ence of add it ive noise v (nt), t he received signa l is given by 

r-- ---- Freq",,"C)' 

I I I I I 
n ITTTJi 

S? 0 Training Iymbol ~ Oat; symOOI 
t 

l~ igure 2.2: Structure of t he training based channel est imat ion sc\ leme. 



27 

(2.2.2) 

Equivalently, (2.2.2) can be rewritten into 

(2.2.3) 

where D(t(nt)) stands for the diagonal matrix with the vector tent) on its diagonal, 

and h is the frequency-response vector with size M x 1. Collect the first Lu columns 

of the DFT matrix FM to form a M X Lu matrix Fh . Eqn. (1.2.6) can be expressed 

as the following matrix form 

Substitutes this result into (2.2.3) to obtain that 

v'M"D(t(nt))Fhh + Vent) 

= v'M"Qth + Vent) 

(2.2.4) 

(2.2.5) 

where Qt = D(t(nt))Fh • It can be observed that the matrix Qt always has full 

column rank if the block tent) contains at least Lu non-zero components. Hence, the 

CIR h can be uniquely identified using 

(2.2.6) 

Usually, MSE is used to evaluate the channel estimate performance, which is given 

by 

(; = £llh - hl1 2 

;1 Tr{ Q!£ {v( 11-t)V1i( 11-t) HQUH} 

M-l 2 
Lu '""' CTtl,m 

M2 ~ It(n,m)12 
(2.2.7) 
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where O';,m denotes variance of the noise on the mth subcarrier. From the above 

analysis, we can find that: 

r2.2.1 To guarantee the full column rank of Qt, the length of training sequence should 

be large enough (At ~ Lu). 

r2.2.2 (2.2.7) shows that the channel estimation performance is related to the signal

to-noise ratio (SNR). So, in the low SNR (e.g. SNR= OdB), the estimate per-

formance is not as good as what we expect. 

r2.2.3 The MSE, E, is a function of It(n, m)l. So, it is possible to minimize E by 

designing the training sequences carefully. Previous work [40] has established 

the optimum training design for the case of white noise. Here, we study the 

optimum training design by considering the noise to be colour. 

Theorem 2.2.1. If the total energy of the training sequence is given, i.e. 
M-l 

L It(n,m)12 = ~t 

then the MSE, E, achieves its minimum 

L M-l 
u,",2 

Emin = Ant L...J O'v,m 
. m=O 

(2.2.8) 

(2.2.9) 

when the signal power is equally allocated along the subcarriers regardless of noise 
colour. 

Proof. See Appendix 2.A. 

When the noise is white, (2.5.4) shows that the power of the training sequence 

should be equally allocated for each subcarrier. The channel estimate error is therefore 

given by 

(2.2.10) 

where 0'; = 0'; 0 = ... = 0'; M-l' , , 
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2.2.2 LS Vs LMMSE 

Section 2.2.1 has presented the LS-based channel estimation algorithm by assuming 

that the upper bound of channel length, Lu , is known at the receiver. If we consider 

Lu to be the unknown parameter, then the LS approach can only estimate the channel 

frequency response ii from (2.2.3) as 

(2.2.11) 

Then, the mean-square channel est.imation error is given by 

£IIFA/(h - ii)1I2 

1 M-l 2 

AI ~ It(~~:)12 (2.2.12) 

\Ve can see that this MSE result equals to the result of (2.2.7) only when Lu = AI. 

However, practical OFDM systems assure Lu/M ~ 20% (e.g. [4]). So, with the 

knowledge of L u , the LS approach is able to improve the channel estimate perfor-

mance. 

The LMMSE algorithm for parameter estimation has been introduced in many 

textbooks (e.g. [59]). Using the LMMSE algorithm, [49] has proposed a channel 

estimation method for OFDM systems as 

(2.2.13) 

where Rhh = £{iiii"H} and 0"; is the variance of white noise (Le. 0";,0 = 0";,1 = ... = 

O";,M_l = 0";). Based on (2.2.13), we study the relationship between LMMSE and LS 

approaches. 

High SNR or noiseless case: In this case, noise power is very low, such that 



we can let a;(D(t(nt))D(t(nt))'H)-l = o. Then, (2.2.13) can be simplified as 

A 

ii = Rhh(Rhh)-lD(t(nt))-lYcp(nt) 

Because the relationship between hand h is given by [GO], 

the correlation matrix Riih can be derived as 

where Rhh = £{hh'H}. The inverse of Rhh is given by 

We plug (2.2.16) and (2.2.17) into (2.2.14) and obtain 

ii FMdiag{h .. ,OM_L,,}F"ZD(t(nt))-lYcp(nt) 

= FM(D(t(nt)) FMdiag{h", OM-Lv} )-lYcp(nt} 
, v ' 

Then, the channel impulse response h can be identified by 

30 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

(2.2.19) 

This equation is the same as the LS-based approach (2.2.6). So, we can conclude 

that, in the high SNR (or noiseless) case, LMMSE and LS approaches lead to the 

same result if Lu is known at the receiver. 
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Using the optimum training sequence: The training sequence is designed ac

cording to Theorem 2.2.1, Le. D(t(nt))D(t(nt))"H = ~IM' Let /3 = (J;M/~t, (2.2.13) 

becomes 

(2.2.20) 

Because /3IM = MFMt7IMFZ., we can rewrite (2.2.20) into 

h - :1 Rhii(FMdiag{(Rhh + /3/ M)-l, Al/ ,BIM-L.JFZ. )D(t(nt))-lYcp(nt) 

FMdiag{Rhh(Rhh + ,B/M)-l,OM_Lu}FZ.D(t(nt))-lYcp(nt) (2.2.21) 

Then, the channel impulse response h can be obtained as 

Due to FhFM = diag{hu , OM-Lu}, we can finally obtain the following result 

(2.2.23) 

Since channel taps are random variables and un correlated each other, Rhh is a diag

onal matrix. Denoting (J~,i to be variance of the i t.ap and hLS to be the estimated 

channel using the LS approach, (2.2.23) can be simplified as 

2 2 
A. CTh.O CTh,Lu-l A 

h=dIag{ 2 {j/M"'" 2 ,B/M}hLs 
CTh,O +. (Jh,Lu-l + 

(2.2.24) 

This result shows that. hand hLS should have the same phase for each tap. Also, 

the LMMSE and LS approaches lead to the same result when the SNR is high (Le. 

(3 ~ 0). Then, we examine the channel estimation error of the LMMSE approach. 

Firstly, hLS can be expressed as 

(2.2.25) 
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where eLS is the channel estimation error for the LS approach. The variance of eLS 
2 2 

has been given in (2.2.10). Let A = diagLr2 u~;/M"" , u2 Uh,Lu';~/M}' the mean-square 
h.O h,Lu-1 

channel estimation error of the LMMSE approach is given by 

EII(A - l)h + AeLSII2 

= Tr{(I- A)2Rhh} + EliAeLsII2 (2.2.26) 

Differed from the LS approach, (2.2.26) shows that the channel estimation error for the 

LMMSE approach is related to the channel delay profile. This relationship becomes 

weak with the increase of SNR ((1- A) -40). 

In order to describe performances for the LS and LMMSE approaches visually, 

we plot the theoretical MSE results in Figure 2.3 by employing two channel models. 

The first channel model is called lab channel model. Each channel tap is randomly 

generated with the variance of 1/ Lu. The second channel model is generated according 

10' 

10' 

10-1 

~ 
10" 

10" 

10" 
-10 -5 0 

lS without 
~ __ knownLu 

10 
SNR (dB) 

15 20 2S 

Figure 2.3: Channel estimation performance: LS Vs LMMSE. 
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to the measurement result of large office environment (approved by ETSI [67]). Figure 

2.3 shows that the LS approach without knowledge of Lu is the worst among all 

approaches. Because the channel correlation matrix Riiii contains the information of 

Lu , it is unfair to compare the LMMSE approach with the LS approach without the 

knowledge of Lu. For the fairness, we only compare the LMMSE approach wit.h the 

LS approach with the knowledge of Lu' Figure 2.3 shows that the LMMSE approach 

is sensitive to the channel delay profile. Using the lab channel model, the LMMSE 

and LS approaches have almost the same MSE performance for SNR~ OdB. Even 

though small difference exists for SNR< OdB, the MSE results are too large to be 

acceptable for practical applications. Using the large-office channel model, we can see 

the LMMSE approach outperforms the LS approach for SNR< lldB. The LMMSE 

approach pays more computation complexity, but does not improve the performance 

significantly. For the typical SNR (= 12dB), the performances for the LMMSE and 

LS approaches are almost the same. 

2.3 Pilot assisted technique 

0Vhen the channel varies rapidly, training sequences have to be sent frequently, be

cause the channel estimate error increases considerably with increasing the training 

interval. In the broadcasti~lg networks [5] and wireless MAN [10], a pilot assisted 

scheme is employed to track the rapidly time-varying chann~ 

Figure 2.4 illustrates an example of pilot assisted scheme for OFDM systems, 

where pilot symbols are uniformly arranged on DFT gri~ [40] has shown that this 

kind of pilot arrangement is optimum in AWGN. This section is intended to briefly 

review the pilot assisted scheme. \ 
J 
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Start ing from (1.2.9), t he received signal of t.h e pilot ass i ted OFDM can be ex

pressed as 

r MF Z s (n) + v (n) 

r MF~sd(n) + r M F~sr(n) + v(n) (2.3.1) 

where sd(n) stands for a Md x 1 data block, sp(n) denote a MI' x 1 pilot block, 

(M = Md + Mp) ; The matrix F p is formed by uniformly collecting Mp rows from t he 

DFT matrix FM , and t he rest rows of F M is used to con truct F d. T hen, DFT of 

zcp(n) is given by 

zcp(n) = DMFMF~sd (n) + DMFMF~sp(n) + v(n) 
, " , .J 

p:rtl Pa~tlI 

(2.3.2) 

wh ere v(n) = F Mv(n). Si nce Part I and Part II in (2.3.2) are ort hogona l, t he pilot 

information can be abstracted from the received signal as [1] 

Frequency 
~-------------------+ 

Q) 

~ D Pilot D Data 

Figure 2.4: SLrueture of the pilot assisted ehannel estimat ion scheme. 



35 

(2.3.3) 

where zp{n), 'Dp and vp{n) are formed by drawing the elements, corresponding to the 

pilot subcarriers, from zcp{n), 'DM and v{n), respectively. Detailed contents can be 

found in [40]. Constructing F p by collecting the first Lu columns of F p, (2.3.3) can 

be represented as 

zp(n) D{sp(n))Fph + vp{n) 

= Qph+ vp(n) (2.3.4) 

where Qp = D{sp{n))Fp. Similar to t.he training based approach, the channel identifi

ability is guaranteed only when Qp has full column rank, and the CSI can be obtained 

as 

(2.3.5) 

The analysis of channel estimate performance may follow the way for t.he training 

based scheme, and the same conclusion can be drawn. 

2.4 Blind channel estimation technique 

!unlike the training based techniques, blind channel estimation met.hods cannot be 

unified to one solution. The blind estimator is designed only for a specified modulation 

scheme. As illustrated in Figure 2.1 (b), the estimator does not need the knowledge 

of the input data, but it needs to know the format of the input. 

Originally, many blind channel estimators are based on the high-order statistics 

algorithms [50]-[52]. To offer a relatively fast convergence rate, second-order statistics 

based algorithms have been widely used to identify the FIR channel. Most of them 
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exploit the cyclostationarity of the output signal [13], [57] and [61]. The cyclostation

arity can be introduced by many factors, for example, the pulse shaping filter [31], 

[62], [63], CPs [57], and the time domain precoding [30], [61]. The major advantages 

of the cyclostationary based approach are as follows: 1) the channel identifiability 

is guaranteed regardless of channel zero locations; 2) The present additive Gaussian 

noise is not necessarily white; 3) Some approaches using the pulse shaping filter or 

time-domain precoding does not rely on the coding redundancy. However, the exist

ing approaches have their own drawbac~ The detail contents can be found in the 

above literature. /' 

Another popularly used blind method is based on the subspace decomposition 

algorithm [21], [56], [64], [65]. The philosophy behind this method is that the sig

nal subspace is orthogonal to the noise subspace [17], [19]. For a time-invariant or 

a slowly time-varying channel, subspace based approaches have demonstrated their 

excellent capability [64]. On the other hand, the subspace based approach has its 
/ 

drawbacks, such as: !! this method needs singular value decomposition, which has 

relatively high computation complexity [65]; 2) the number of blocks collected for the 

channel estimation needs to be large enough to assure the full column rank of the 

autocorrelation matrix, otherwise, the channel identifiability cannot be guaranteed 

[64]. 3) the present Gaussian noise should be whit;.-r 

Q Recently, a number of semi-blind algorithms ha;e been proposed to improve the 

capability of the blind algorithms (e.g. [65]). This method is effective when the 

number of blocks available for the channel estimation are not large enough. To offer 

a relatively fast convergence rate, a training sequence is employed to obtain the initial 

channel estimate. The initial estimate is then updated in the blind estimation process. 
) 
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Since the semi-blind approach can be regarded as an enhanced version of the blind 

methods, this thesis does not give a detailed presentation. 

2.5 Conel usion 

This chapter has presented various channel estimation methods for communication 

systems. It has also briefly reviewed existing channel estimators for OFDM systems 

and their applications. Some necessary performance analysis has been made for those 

estimators. From the next chapter, a number of novel channel estimation algorithms 

will be proposed for an OFDM rec~iver [Those estimators should improve the overall 

OFDM system performance in the presence of unknown multipath fading. Some 

new transmission techniques will also be developed to enable t.he proposed channel 

estimators) 

Appendix 2.A: Proof of Theorem 2.2.1 

Use Cauchy inequality, the following result can be deduced from (2.2.7), 

{2.5.1} 

The equality reaches when 

2 2 "M-l 2 
(Tv,Q (Tv,M-l L...m=O (Tv,m 

-:--:---'-~ = . . . = -:--:---::-:---:-= 
It{n, O)12 It(n, M - 1}12 E~~~ It(n, OW 

(2.5.2) 

Then, the minimum of ( can be derived from (2.5.1) and (2.5.2) 

L M-l 
U"",,,2 

(min = 1\1 c LJ (T v,m 
<",t m=O 

(2,5.3) 
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If the variance 0"; m is known, (2.5.2) also infers the power allocation strategy for the , 

training sequence as 
2 

2 O"v,m 
It{n, m)1 = ~t M-l 2 

Em=o O"v,m 

(2.5.4) 

But, (2.5.2) is not the necessary condition to minimize MSE. If the power of training 

sequence is equally allocated along the subcarriers, i.e., 

It{n, 0)12 = ... = It{n, M - 1W = ~t!M (2.5.5) 

(2.5.3) can also be achieved by plugging (2.5.5) into (2.2.7). Theorem 2.2.1 is therefore 

proved. 



Chapter 3 

Exploiting subcarrier correlation 
for blind channel estimation (Part 
I): RC-OFDM 

In the presence of unknown multi path fading, previous chapters have shown that 

most of OFDM transmission systems need a channel estimator to guarantee the signal 

recovery and improve the overall system performance. It has also been shown that a 

blind channel estimator could be very useful when the cold start-up occurs in wireless 

environments, or in where the training is obviated to improve the bandwidth efficiency. 

In this chapter and Chapter 4, several blind channel estimation methods are pro

posed for various OFDM transmission schemes, e.g . .!~2etiti.9JLJ;Qd~.dlR9l_QfDM 

[29] and block precoded (BP) OFDM [22], [25]. These OFDM schemes have a com-
___ ~ ____ _.. ___ "'_.-~ _""~ ____ •• _... ..v 

mon feature, i.e. part or all of subcarriers are correlated. Based on this feature, the 

CIR and the channel frequency response are blindly identifiable at the receiver. 

The contents, exploiting subcarrier correlation for blind channel estimation, are 

divided into two parts. Part I presents blind channel estimation methods for RC

OFDM systems. A new RC-OFDM transmission scheme is also proposed to improve 

the overall system performance. Part II introduces a novel blind channel estimation 

39 
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method for BP-OFDM systems. 

3.1 Blind channel estimation for RC-OFDM 

3.1.1 Introduction to RC-OFDM 

The RC-OFDM transmission is originally proposed for an ICI self-cancellation scheme 

[29], where the output of the OFDM modulator can be expressed by 

(3.1.1) 

where W2xl = [1, - If and @ stands for the Kronecker product. At the presence of 

normalized frequency offset Cd, the received signal on subcarrier m is given by [29] 

M/2-1 

fj(n, m) = L s(n, m')h(m' - m) -,(m' + 1 - m)] + v(n, m) (3.1.2) 
m'=O 

and on subcarrier m + 1 is 

M/2-1 

fj(n, m + 1) = L s(n,m')!T(m' - m -1) -,(m' - m)] + v(n, m + 1) (3.1.3) 
m'=O 

where ,(m' - m) is defined as the ICI coefficient, which can be expressed as 

,(m' - m) = 
sin(7r(m' + cd - m)) 

M sin(~(m' + cd - m)) 

. exp(j7r(1 - ~)(m' - m + cd)) (3.1.4) 

Since the difference between ,(m' - m) and ,(m' + 1 - m) is very small, [29] has 

shown that the coefficient ,'(m' - m) = ,(m' - m) -,(m' + 1 - m) is much smaller 

than the ICI coefficient ,(m' - m), such that the SIR can be significantly improved 

(more than 10 dB improvement). 
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When the multipath fading is considered, the received signal on subcarrier m can 

be rewritten into 

M/2-1 

y(n, m) L s(n, m')[H(m' - mh(m' - m) 
m'=O 

-H(m' + 1 - mh(m' + 1- m)] + v(n, m) (3.1.5) 

Then, the coefficient 1'(m' - m) is given by 

1'(m' - m) = ll(m' - mh(m' - m) - H(m' + 1- mh(m' + 1- m) (3.1.6) 

It can be shown that SIR can be improved when the difference between two adjacent 

frequency responses are very small, i.e. II(m) ~ H(m + 1). It means that the ICI 

self-cancelling scheme works only when the subcarrier spacing l::!.f is small enough. 

In other words, this scheme is not applicable for broadband OFDM transmission, for 

instance WLAN. 

3.1.2 Blind channel estimation 

The RC-OFDM model (3.1.1) shows that each information symbol is loaded onto two 

subcarriers, such that the bandwidth efficiency is relatively low. Using the training

based channel estimation method, the bandwidth efficiency may be further reduced. 

So this section proposes a blind channel estimation method for the RC-OFDM trans

mission in the slowly time-varying channel. Part of this content has been presented 

in [83]. 

Start from the received signal model (3.1.5), which can be rewritten into 

y(n,2m) = s{n, m)(H(2mh(O) - H(2m + 1h(1)) 

+vICI{n, 2m) + v(n, 2m) (3.1.7) 
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y(n, 2m + 1) s(n, m)(H(2m)r(I) - H(2m + 1)r(0» 

+VICI(n, 2m + 1) + v(n, 2m + 1) (3.1.8) 

where VICI denotes the ICI part. As shown in Figure 1.7, VICI can be regarded as an 

additive noise with zero mean. For H(2m) ~ H(2m + 1), the signal models (3.1.7) 

and (3.1.8) can be further expressed as 

y(n,2m) = s(n, m)II(2m)r'(0) + vIcI(n, 2m) + v(n, 2m) (3.1.9) 

y(n, 2m + 1) = -s(n, m)H(2m + 1)r'(0) + vIcI(n, 2m + 1) + v(n, 2m + 1) (3.1.10) 

In a slowly time-varying channel, i.e. Cd is small, it can be derived from (3.1.4) that 

the coefficient ,'(0) is very close to 1. The correlation between subcarriers 2m and 

2m + 1 is given by 

t'{y(n, 2m)y*(n, 2m + I)} 

-0";1,'(0)1 2 H(2m)H*(2m + 1) + CICI (2m) (3.1.11) 

where 

(3.1.12) 

and O"~ denotes the variance of information-bearing symbols. Previous subsection 

has shown that the ICI power can be significantly reduced by employing RC-OFDM, 

therefore the following result is true 

(3.1.13) 

If the information-bearing symbols are drawn from a finite alphabet, then the receiver 

has the knowledge of 0";, and the following result can be derived 

- 2 -Cy(m)/O"s 

I,'(OW H(2m)H*(2m + 1) (3.1.14) 
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Let H(m) = b'(O)IH(m), the coefficient b'(0)1 2 can be absorbed into the frequency 

response, such that, 

ny(2m) = R(2m)H*(2m + 1) (3.1.15) 

If the number of subcarriers M ~ 2L"", then an ideal interpolation can be used to 

estimate ny(m) for m E [0, AI - 1] [40], [83]. The interpolation algorithm can be 

implemented using 

M-l M/2-1 

~ ~ ~ n (2m )lv-2lmllvlm 
M~ ~ y 1 M M 

m ml=O 

R(m)H*(m + 1) 

then, the autocorrelation for each subcarrier is given by 

C~(m) E{y(m)y*(m)} 

Assuming that the variance 0"; is known, then we define 

and the channel frequency-response can be obtained by 

iI(O) = Jn~(o) . exp(jepo) 

tI(l) = ~y{l) 
H(O) 

m-l n ny(m') 
H(m) = ~ m'=;_l ' for m ~ 2 

R(O) n n~(m') 
m'=l 

(3.1.16) 

(3.1.17) 

(3.1.18) 

(3.1.19) 

(3.1.20) 

(3.1.21) 
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Remark 1: Like most of blind channel estimation algorithms, for instance [21], the 

proposed estimator can uniquely identify the CSI with a phase ambiguity 1>0. This 

ambiguity can be resolved using several pilot symbols. 

Remark 2: This estimator requires the knowledge of O'~, which can be easily 

obtained using the time-domain autocorrelation [57]. 

Remark 3: The proposed equations (3.1.19)-(3.1.21) are prone to error propaga

tion. The estimation performance is the best when IJf(O) I becomes the largest among 

all subcarriers. To improve the performance, this estimator can be modified and 

summarized based on the following steps: 

Step 1: Find the subcarrier mmax using 

mmax = max(C~(m))l, for m E [0, M - 1] (3.1.22) 

Step 2: Estimate the frequency response H(mmax) using 

H(mmax) = J'R~(mmax) . exp(j<!>o) (3.1.23) 

H"' ( + 1) _ 'Ry(mmax + 1) m'max - ---"~"'~;,,;,;;,,:.,.-~ 

H(mmax) 
(3.1.24) 

Step 3: Obtain the channel frequency response using 

m-I 

II 'Ry(mmax + m') 
fI(mmax + m) = A m'=O tn-I ' for m ~ 2 

fI(mmax) II 'R~(mmax + m') 
(3.1.25) 

m'=l 

Imax(J(i)) is to find the index i max corresponding to the maximum of f(i). 
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3.2 Differential RC-OFDM and semi-coherent de
tection 

Using the ideal interpolation, (3.1.16) shows that the partial channel information 

can be blindly acquired at the receiver. If the information-bearing symbols can be 

recovered only using the partial channel information, then the channel estimation and 

equalization complexity can be reduced. This motivates us to propose the differential 

RC-OFDM modulation scheme and the semi-coherent detection technique. 

3.2.1 Differential RC-OFDM modulation scheme 

If each subcarrier is modulated using the phase shift key (PSK), then the temporal 

differential modulation scheme can be employed in OFDM systems [21], [GS]. This 

section proposes a differential modulation scheme for RC-OFDM by exploiting the 

frequency diversity. 

Recall the transmitted RC-OFDM signal model 

(3.2.1) 

If the information-bearing symbols are PSI{ modulated 2, using the differential mod

ulation scheme, the symbol blocks s(n) are updated by a new block sd(n), whose mth 

element is given by 

Sd(n,O) = s(n, 0) 

Sd(n, m) = s*(n, m)s(n, m - 1) 

(3.2.2) 

(3.2.3) 

We can see that £{sd(n, ml)sd(n, m2)} = o. sd(n) and s(n) have the same statistical 

property. Following the analysis in Chapter 3.1.1, it is easy to find that the differential 

RC-OFDM scheme is also an ICI self-cancelling scheme. 

2The amplitude of PSK symbol is normalized. 
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Certainly, the differential scheme has its distinct feature, which enables the semi

coherent detection, i.e. 

Sd(n, m) . s~(n, m + 1) 

3.2.2 Semi-coherent detection 

ISd(n, mW' s(n, m + 1) 

s(n,m+l) (3.2.4) 

The motivation of proposing the differential RC-OFDM scheme is to enable the semi

coherent detection technique by employing the partial channel knowledge obtained 

by (3.1.16). Similar to the RC-OFDM system, the received signal of the differential 

scheme can be expressed as 

y(n,2m) = sd(n, m)1l(2m}-y'(0) + vICI(n, 2m) + v(n,2m) (3.2.5) 

y(n, 2m + 1) = -sd(n, m)H(2m + 1))-'(0) + vIcI(n, 2m + 1) + v(n, 2m + 1) (3.2.6) 

Then, the product of y(n, 2m + 1) and y*(n, 2m + 2) is given by 

P(n,m+ 1) y(n, 2m + 1) . y*(n, 2m + 2) 

-sd(n, m)s~(n, m + 1)Jl(2m + 1)J/(2m + 2) 

+vp(n, m + 1) 

-s(n, m + 1) J/(2m + 1)Jl(2m + 2) +vp(n, m + 1) (3.2.7) , , 
v 

R.y(m) 

where vp(n, m + 1) is the interference term with zero mean. With the knowledge of 

Ry(m), we can use the following equation to perform the partial channel equalization 

s(n,m+ 1) = 
P(n,m+l) 

i'4(2m + 1) 

( 1) 
vp(n,m+l) 

s n, m + - -_:::-'-------'-
Ry(2m + 1) 
'-v-" 

Interference 

(3.2.8) 
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Remark 1: The differential RC-OFDM modulation scheme enables the semi-

coherent detection method. It does not need full CSI and therefore simplifies the 

blind channel estimator. 

Rema.rk 2: For PSK symbols, it is easy to find that Is(n, m)12 = ISd(n, m)12 = 

cr;. Therefore, (3.1.16) and (3.1.21) show that the CSI and the partial CSI can be 

identified from one OFDM block. 

Rema.rk 3: (3.2.8) shows that s(n, 0) cannot be directly obtained using the semi

coherent detection. A simple way to solve this problem is to map pilot symbols on 

sub carrier o. 

Remark 4: Since the symbol detection is based on (3.2.8), the interference term 

vp(n, m) may affect the overall system performance considerably when the ICI and 

the additive noise are large. To improve the performance, the decision directed (DD) 

algorithm [42], [69] can be employed. The DD algorithm can be summarized as the 

following steps. 

Step 1: Based on the initial estimate Ry(m), the semi-coherent detection (3.2.8) can 

be carried out. 

Step 2: For the ith iteration, full channel estimate h(i) is obtained by treating the 

estimated symbols as known symbols. Then, the channel frequency response 

H(i)(m) can be calculated using DFT of h(i). ll(i)(m) is then used for equaliza

tion and constructing the estimate R~i)(m) = H(i) (m)(H(i)(m + 1»*. 

Step 3: Repeat Step 2 until the Euclidean distance 1.Ry(m) - R~i)(m)1 is minimized. 

Using the DD algorithm, s(n,O) is not necessary known, and the full CSI can be 

obtained without any ambiguity. However, the DD algorithm diverges easily at low 
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SNR because symbol by symbol detection has poor performance. The smallest bit

error-rate (BER) will be that corresponding to known channels. In the high SNR case, 

the DD algorithm converges to the maximum likelihood solution of I Ry(m) _R~i)(m)l. 

3.3 Simulations for RC-OFDM in the unknown 
multipath 

In the simulations, the bit-error-rate (BER) is used to benchmark the overall system 

performance of RC-OFDM systems in the unknown multipath fading channel. In 

order to reflect the channel estimation performance, the RC-OFDM system does 

not employ the channel code. The system parameters are set as Lu = 2, Lcp = 2, 

M = 32, which is the typical set.ting of an OFDM-based cellular radio syst.em. The 

information-bearing symbols are drawn from a QPSK const.ellation. The RC-OFDM 

scheme employs one pair of symbols for each block. The SNR is defined as the average 

received symbol energy to noise ratio (J~/(J;. The simulations test the RC-OFDM and 

differential RC-OFDM systems in random and time-varying channels. 

Test Case 1 (static random channels): Each tap of the FIR channel is ran

domly generated with variance 1/ Lu. The channels do not vary within one block 

duration, and therefore there is no ICI. The CIRs for different blocks are indepen

dent of each other. We perform the blind channel estimation based on each OFDM 

block. The simulation results are averaged over 600 channels. Figure 3.1 illustrates 

the BER performance of RC-OFDM and differential RC-OFDM systems for the SNR 

range from 0 dB to 25 dB. In order to compare with state-of-the-art method, we also 

plot the finite-alphabet (FA) based approach ([66]) in the figure. We can see that 

the BER performances between FA and differential RC-OFDM approaches are quite 
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Figure 3.1: BER Vs SNR for RC-OFDM in random channels. 
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close. The differential RC-OFDM outperforms the RC-OFDM by using the semi

coherent detection technique. Its performance can be further improved by employing 

the decision-directed method. Since the channel estimate is blindly obtained only 

from one OFDM block, the result is not accurate enough, and thereby reduces the 

overall system performance. 

Test Case 2 (random channels with ICI): If the random channels vary within 

one block duration, the received signal block contains the ICI part. When the nor

malized Doppler shift cd = 0.05, Figure 3.2 depicts BER as a function of SNR for 

various RC-OFDM systems. Compared to Figure 3.1, it can be observed that the ICI 

reduces the BER performance particularly in the high SNR range (20 - 25 dB). Be

cause RC-OFDM is capable of mitigating the ICI power, the loss of BER performance 

is not significant. Similar to the test case 1, the differential RC-OFDM still has better 

performance than that of RC-OFDM. Because we only select 6 out of 25 SNR points 
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to plot the curve, a kink appears in the case with perfect channel knowledge at SNR 

=5dB. 

Test Case 3 (time varying channels): The time-varying FIR channels are 

generated according to Jake's model [70] with a maximum normalized Doppler fre

quency Cd = 0.05. It is assumed that each data burst (a frame) has N = 64 OFDM 

symbol blocks, which are all used for the blind channel estimation. The results are 

obtained by averaging over 500 Monte Carlo trials. Figure 3.3 shows that all ap

proaches have the significantly improved DER performances compared with the t.est 

cases 1 and 2, because t.he blind channel estimator uses the second-order statistics 

algorithm to improve the channel estimate accuracy. It also shows that the DD algo

rithm (3 iterations) may make the overall system performance much close to the case 

with perfect CSI in the high SNR range (around 25 dB). Usually, blind approaches 

are used to track the static channel (or slowly time-varying channel). Therefore, in 
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the moderately time-varying channel (e.g. Cd = 0.05), their performance will not be 

very good. 

3.4 Conclusion 

This chapter has introduced several novel blind channel estimation and equalization 

methods for RC-OFDM system by exploiting the subcarrier correlation. A differ

ential RC-OFDM modulation scheme has been developed for the PSK modulated 

OFDM systems. It has been shown that the differential scheme only needed the 

partial channel knowledge for the semi-coherent detection, and thereby reduced the 

channel estimation and equalization complexity. The overall system performance can 

be significantly improved by employing the decision directed algorithm. Simulation 

results were provided to confirm our theoretical analysis in static random and time 
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varying channels. 



Chapter 4 

Exploiting subcarrier correlation 
for blind channel estimation (Part 
II): BP-OFDM 

4.1 Introduction 

Relying on the precoding redundancy, symbol recovery for linear block precoded 

OFDM is independent with channel zero (deep fade) locations in frequency-selective 

fading channels. This chapter presents a second-order joint moment based blind 

channel estimation method for BP-OFDM systems by exploiting the sub carrier cor

relation. To enable the proposed method, a slight modification needs to be made at 

the transmitter (see Figure 4.1). Using the properly designed precoders, the chan

nel identifiability is guaranteed regardless of channel zeros locations. The remaining 

sign ambiguity can be easily resolved using various blind and semi-blind algorithms. 

Relying on the exhaustive searching, the minimum distance (MD) algorithm always 

holds the best performance in both time invariant and slowly time varying channels. 

To reduce the complexity, a sign-directed (SD) algorithm can be used for the channel 

estimation. Its performance is subject to the accuracy of the initial channel estimate. 

53 
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Unlike the subspace-based approach [65], the proposed blind channel estimator does 

not rely on the precoding redundancy. It works at the full rate transmission. Fur

thermore, the blind estimator adopts IFFT and sign directed algorithms, and thereby 

outperforms the eigendecomposition approach in complexity.' The additive Gaussian 

noise considered here is not necessarily white. Part of this chapter has been presented 

in [84]. 

4.2 BP-OFDM Model, Modification, and Channel 
Identifiability 

The BP-OFDM model is partly introduced in Chapter 1.4. The detailed introduction 

can be found in [14], [25]. Since the CP length is normally not smaller than the 

sen) 

sen) 

x(n) 
PIS 

(a) 

IFFT 
1--+-----+---1 

(b) 

i(n) 
PIS 

Figure 4.1: Discrete-time models of BP-OFDM transmitter: a) conventional BP
OFDM b) modified BP-OFDM 
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upper bound of the channel length, there is no IBI in the received block by removing 

CPs, and the channel equalization is normally implemented in the frequency domain. 

To simplify the discussion, this Chapter only considers the frequency domain signal 

model. 

4.2.1 Briefly overview of the BP-OFDM model 

Figure 4.1 depicts the discrete equivalent model of a BP-OFDM system [65]. Prior 

to transmission, the information-bearing symbols are first grouped into blocks s(n) 

of size K x 1, where n denotes the block index. Then, these blocks are fed to a linear 

block precoder e of size AI x K to introduce redundancy (AI> K), and generate 

x(n) = es(n). Let 'DM be the fl.! x M diagonal channel matrix, the entries along the 

diagonal are collected from the frequency response 'DM = diag{J!(O) ... H(AI-1)}. 

The received symbol block with the additive Gaussian noise v(n) of size AI x 1 can 

be expressed as 

y(n) 'DMeS(n) + v(n) 

'DMx(n) + v(n) 

z(n) + v(n) (4.2.1) 

where z(n) = 'DMx(n) denotes the noiseless version of the received blocks. \\Then 

the channel matrix 'D M is perfectly known, the channel equalization can be simply 

implemented using 

s(n) = gtz(n) + gtv(n) (4.2.2) 

where 9 = 'DMe. In the noiseless case, the above zero-forcing method guarantees 

the signal recovery regardless of channel zero (deep fade) locations only when the 
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matrix 9 has full column rank. Otherwise, the channel coding technique is required 

to introduce the redundancy [17]. 

4.2.2 Subcarrier correlation 

Unlike the uncoded OFDM system, subcarriers in the BP-OFDM system may be 

correlated with others. The autocorrelation of the transmitted blocks· x(n) can be 

expressed as 

(4.2.3) 

Assuming that al) the information-bearing symbols are drawn from a finite alphabet 

with equal probability, the autocorrelation of symbol blocks is given by 

(4.2.4) 

where IK denotes a K x K identity matrix. Hence, (4.2.3) can be represented as 

( 4.2.5) 

If the matrix aa'H does not contain a zero entry, then any two subcarriers of BP

OFDM are correlated. To achieve this goal, the following assumption should be 

satisfied: 

a2) any K rows of a are linearly independent, and for any ml f:- m2, (}(ml)(}'H(m2) f:-

0, where (}(m) denotes the mth row vector of the precoder a. 

A simple example of the precoder satisfying a2) can be formed by an AI x K Van

dermonde matrix, whose (m, k)th entry is given by & IViimk
• Using the sub carrier 

correlation, we next present a blind channel estimation method for BP-OFDM sys-

tems. 



57 

4.2.3 A modified BP-OFDM model 

The modified BP-OFDM model is described in Figure 4.1(b). The modification is 

simply implemented by performing a conjugate operation on the (2m + l)th element 

ofx(n) to generate the modified transmitted blocks x(n), whose 2mth and (2m+ l)th 

elements are given by 

x(n, 2m) = 8(2m)s(n) 

x(n, 2m + 1) = s'H(n)8'H(2m + 1) 

(4.2.6) 

(4.2.7) 

and the 2mth and (2m + l)th elements of the received block can be expressed as 

y(n, 2m) 

y*(n, 2m + 1) 

H(2m)8(2m)s(n) + v(n, 2m) 

z(n, 2m) + v(n, 2m) 

l/*(2m + 1)8(2m + l)s(n) + v*(n, 2m + 1) 

z*(n, 2m + 1) + v*(n, 2m + 1) 

(4.2.8) 

(4.2.9) 

where z(n, m) denotes the mth element of the vector z(n), and v(n, m) is the mth 

element of the noise vector v(n). Without loss of generality, let us assume AI is even 

and construct an AI x 1 vector 

y(n) = [y(n, 0), y*(n, 1), ... ,y(n, Af - 2), y*(n, 111 - l)]T (4.2.10) 

and a diagonal matrix 

15M (n) = diag{H(O), lJ*(l),··· ,H(M - 2), lJ*(1I1 - l)}T (4.2.11) 

The channel equalization can be implemented using the following matrix multiplica

tion 

s(n) = gty(n) (4.2.12) 
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where 9 = 15M B. In the noiseless case, (4.2.12) guarantees the symbol recovery 

regardless of deep fade locations only when the matrix 9 has full column rank. This 

is an equivalent condition as that addressed in the BP-OFDM model. 

4.2.4 Channel identifiability 

Besides the conditions a1) and a2), the channel identifiability is based on the modified 

BP-OFDM model (4.2.6)-(4.2.7) and the following assumptions: 

a3) the Gaussian noise v(n, m) is independent with the signal. It is uncorrelated 

with n's and m's and not necessary white. 

a4) M ~ 2L. 

Prior to addressing the channel identification issue, this section first investigates the 

second joint moment Mx(ml, m2) = £{x(n, mdx(n, m2)} of the transmitted blocks. 

Result 4.2.1. Define two sets A = {O,2,··· ,Af- 2} and B = {1,3,··· ,Af-l}, 
the second joint moment Mx(ml, m2) =I 0 holds only when the indices ml and m2 
are not in the same set. 

Proof See Appendix4.A. 

Let us define an index mT E B and form Af x 1 blocks zmT(n) by circularly shifting 

the noiseless received blocks z(n) with the offset mT , such that 

ZffiT (n) = [z(n, mT ), ••• ,z(n, mT - l)f (4.2.13) 

Using Result 4.2.1, the second joint moment M(Z,ZmT) = £{z(n) 0ZmT(n)} can be 

derived as 

(4.2.14) 
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where 8 stands for the Hadamard product; h = [H(O)," . ,I/(M - 1)t and hm,. is 

formed by circularly shifting h with the offset m-r; 4>m.,. is the diagonal matrix, which 

is given by 

(4.2.15) 

Define a Lu x 1 vector hm,. = [h(O), h(1)WAi,' .. , h(L:_1)W~"'(Lu-I)]T and construct 

a (2L'U -1) x 1 vector 13m.,. = h * hm .,., where * denotes the convolution operator. The 

circular convolution property in [60] shows that 

(4.2.16) 

where F is formed by col1ecting the first (2L'U - 1) columns of an AI x AI DFT matrix 

FM • Hence, (4.2.14) can be rewritten as 

( 4.2.17) 

As a2) and a4) confirm that 4>m.,. has full rank and AI ~ 2Lu, the result of 4>m.,.F has 

full column rank and the estimate of 13m.,. can be expressed as 

(4.2.18) 

This result shows that the vector 13m,. can be uniquely identified regardless of channel 

zeros locations, if the assumption a2) is satisfied. When 13m.,. becomes available, the 

channel identifiability will be shown as follows. 

Lemma 4.2.1. Defining a polynomial 

2L,,-2 

f(x, m-r) = 2: i3m.,.(l)XI (4.2.19) 
l=O 

where i3m,. (l) is the lth element of 13m.,.· Suppose Xl to be one of roots of f(x, m-r), 
then there must be another root X2 such that XIX; = w~m"'IXI12. 
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Proof. See Appendix 4.8. 

Theorem 4.2.1. If a2} and a4} holds. For mr E B, and as} f(x, mr) has 2Lv. - 2 
distinct roots, the CIR h Can be uniquely identified from 13m .,. with a sign ambiguity. 

Proof. See Appendix 4.C. 

The proof of Theorem 4.2.1 also suggests a root-based channel estimation algo

rithm, which is summarized as follows: 

Step 1: Estimate the vector 13m.,. using (4.2.18) and form the polynomial f(x, mr); 

Step 2: Find the 2Lv. - 2 roots of f(x, mr), and determine the roots for p(x), which 

is used to construct the matrix V; 

Step 3: Identify h(O) using h(O) = )..vj3m.,.(O), and determine a using (4.5.9). 

The remaining sign ambiguity ).. can be easily resolved using several pilot symbols. 

However, the root based algorithm is restricted to the condition (a5). If (a5) does 

not hold, the following result will show the channel identifiability. 

Lemma 4.2.2. If h(O),' .. ,h(L') are available, then the (L' + l)th tap h(L' + 1) can 
be uniquely 'identified from the (L' + l)th term of f(x, mr). 

Proof. See Appendix 4.D. 

This result shows that h(L' + 1) is uniquely identifiable only when the term 1 + 

lVif'+! =I- 0, which is guaranteed by the condition a4). 

Theorem 4.2.2. If h(O) is available, the CIR h can be uniq'u,cly identified from 13m.,.. 

Proof. Lemma 4.2.2 has shown that the identifiability of h(L' + 1) depends on the 

knowledge of h(O), ... ,h(L'). Using the linear equation (LE) algorithm addressed 

in [66], all channel taps are identifiable via (4.5.11) when h(O) becomes available. 

However, the LE algorithm is sensitive to the noise and is prone to error propagation. 
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4.3 Blind channel estimation for BP-OFDM 

Section 4.2 has established that the channel identifiability can be guaranteed with 

a sign ambiguity if the vectors 13m.,. become available. As the proposed root-based 

and LE algorithms have their own drawbacks, this ,section introduces other blind 

algorithms to improve the channel estimate performance in the noisy c~e. 

Theorem 4.3.1. Define a polynomial fo(x) = p2(x). Ifmr E Band a4) holds, fo(x) 
can be uniquely identified from f(x, mr)' 

Proof See Appendix 4.E. 

Let 130 = h * h, it can be observed that the lth element of 130 is actually the 

coefficient for the lth term of fo(x). It means that 130 can be uniquely identified 

when 13m.,. is available. Hence, the CIR can be obtained by minimizing the Euclidean 

distance 

h = argm.in lI,Bo - h * hll2 

h 
(4.3.1) 

In the presence of noise, the blind channel estimation method is presented as follows. 

Step 1: COllstruct vectors W m.,. (n) and Ym.,.{n) by circularly shifting w(n) and y(n) 

respectively with the offset mr. Then, the second joint moment M (y, Y m.,.) = 

£{y(n) 8 Ym.,.(n)} is given by 

£{z(n) 8 zm.,.(n)} + £{ w(n) 8 wm.,. (n)} 

M(z, zm.,.) 

where a2) makes £{w(n) 8 wm.,.(n)} = OMXl; 

Step 2: Find ,Bm.,. from (4.2.18), and obtain,Bo using (4.5.15) and (4.5.16); 

Step 3: Estimate h by solving (4.3.1). 

(4.3.2) 
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The channel estimation issue by now becomes how to solve the equation (4.3.1). [66] 

has proposed a number of blind algorithms, including minimum distance (MD) and 

phase directed (PD) algorithms. This paper applies some of them to solve (4.3.1), 

and also proposes a new algorithm as the tradeoff between the estimate performance 

and the complexity. 

4.3.1 Minimum distance algorithm 

Let fio(l) be the lth element of /30' DFT of /30 can be expressed as 

2L-2 
Xo(m) = L fio(l)TV~ = ii2(m) (4.3.3) 

1=0 

and the estimate iJ(m) can be obtained as the following with a sign ambiguity). E 

{1, -1} 

ii(m) = )..y'Xo(m) (4.3.4) 

So, the estimate h has totally 2M possible states. Let it = Fth, where Fb collects the 

first L columns of the DFT matrix FM , (4.3.1) can be solved by exhaustively searching 
A 

over all possible states of h. However, the complexity for the MD algorithm increases 

considerably with increac;ing AI. In practical systems, e.g. \VLAN, AI is normally 

far larger than the channel length Lu. Selecting Lu out of A! tones for the channel 

estimation, the computation complexity can be reduced to 2Lu. This is called the 

modified MD(MMD) algorithm in [66]. 

4.3.2 Sign directed (SD) algorithm 

To further reduce the complexity, a sign directed algorithm can be applied for avoiding 

the exhaustive searching. This is actually a modified version of the phase directed 

algorithm in [66]. Its realization is described as follows. 
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Step 1: Find the initial estimate ho and its frequency response Ho(m) using a low 

complexity algorithm, e.g. the LE algorithm; 

Step 2: Resolve the sign ambiguity via 

H(m) = argmin IHo(m) - AVXo(m)1 
>. 

(4.3.5) 

and identify h using h = F~h; 
A 

Step 3: Let ho = hand ho = Fhho, and repeat Step 2 several times. The number of 

iterations can be decided by users. 

Using one iteration, the estimate performance for the LE-SD algorithm is relatively 

poor. [66] has demonstrated that the performance may be improved by conducting 

more than three iterations. Certainly, there must be a tradeoff between the estimate 

performance and the complexity. Alternatively, a training block can be employed to 

obtain the initial channel estimate ho accurately. However, in a time-varying channel, 

the training block has to be frequently used to keep a good estimation performance, 

which results in relatively low spectrum efficiency. 

4.3.3 Modified SD algorithm 

To achieve a good tradeoff between the complexity and the estimation performance, 

a modified SD (MSD) algorithm is proposed here. 

Theorem 4.3.2. If f3m-r' for m". E B, is available, then the CIR can be obtained 
using 

T ]T - 2A " f3 [h ,01 x (L .. -l) - A! I7-iTr\\(O) L...J m.,. 
V fJO~ v } m.,.EB 

(4.3.6) 

Proof. See Appendix 4.F. 
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Theorem 4.3.2 shows that the CIR can be uniquely identified from f3""'r' for mT E B 

with a sign ambiguity A. Unlike the LE algorithm, (4.3.6) is not prone to the error 

propagation, and thus improves the channel estimation performance. (4.3.6) also 

shows that the channel estimation performance is related to the energy of h(O). It 

becomes the best only when the strongest path is well synchronized to the first path. 

Otherwise, the SD algorithm can further improve the performance when (4.3.6) is 

used to obtain the initial channel estimate. 

4.4 Simulation results 

In the simulation, the BER performance is used to benchmark the BP-OFDM system 

equipped with the proposed channel estimators in the unknown multipath fading 

channel. The system parameters are given by: Lv. = 4, K = 28, Af = K + Lv. = 32, 

which are the same as HIPERLAN/2 [8]. Two pilot symbols are employed within 

each frame to resolve the sign ambiguity. The precoder E> is formed by an M x K 

Vandermonde matrix, whose (m, k)th entry is given by JRlVMmk
• The information

bearing symbols are drawn from a QPSK constellation with the equal probability. 

The proposed channel estimators are tested for static as well as slowly time-varying 

channels. 

Test Case 1 (static channels) : The channel taps are randomly generated 

with equal variance 1/(Lv. + 1). The simulation results are averaged over 500 random 

channels. The proposed channel estimation algorithms, i.e. MD, MSD, LE-SD, Tr-SD 

and MMD-SD are used to solve the equation (4.3.1). Those algorithms are evaluated , 

for the data record length N == 300. Figure 4.2 shows that all the curves are very 

close for the SNR in the range of 0-25 dB but the LE-SD algorithm. Relying on the 
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exhaustive searching, the system equipped with the MD blind estimator demonstrates 

the best overall system performance. When the initial channel estimate is obtained 

using (4.3.6), it can be observed from Figure 4.2 that the system equipped with the 

MSD estimator only has 2 dB performance lost in the high SNR (> 25 dB). Next, we 

collect N = 150 OFDM blocks for the channel estimation. Figure 4.3 shows that the 

BER performance is worse than those illustrated in Figure 4.2, because the channel 

estimate accuracy is reduced with the decrease of the data record length. It also 

shows that all the curves are not close anymore. The MD estimator always offers the 

best overall system performance. As conclusions, we can further summarize that: 

1. The proposed channel estimators are capable of identifying the time-invariant 

eh,annel. Its channel estimate performance can be improved by increasing the 

data record length. 

2. The MD and MMD-SD algorithms demonstrate their excellent performance, 

but the cost is the relatively high computation complexity. The training based 

SD and MSD algorithms may achieve a good tradeoff between complexit.y and 

the channel estimate performance. 

3. The computation time for different curves are given by: MD (2.1 ms), MMD-SD 

(1.14ms), Tr-SD (0.7ms), LE-SD (0.611ms), MSD (0.39ms). 
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Test Case 2 (slowly time-varying channels): The slowly time-varying FIR 

channels are generated according to the channel model A specified by ETSI for 

HIPERLAN/2 [67], where each tap varies according to Jakes' model with the maxi

mum Doppler frequency of 52Hz corresponding to a typical terminal speed v = 3m/s 

and a carrier frequency of 5.2 GHz. The subcarrier spacing is set to 312.5KHz, which 

is the same as the specification of HIPERLAN/2 [8]. \Ve assume that each data burst 

contains N = 600 OFDM blocks, where the first block is a training sequence. In 

the time-varying channel, the data-aided approach needs frequent training to track 

the CSI. Figure 4.4 shows that one training sequence is not enough for tracking the 

time-varying channel and results in relatively large error floor. This also affects the 

performance of the training based SD algorithm, and the MSD algorithm outper

forms the training based SD algorithm in the time-varying channel. Similar to the 

simulations in static channels, the MD algorithm still has the best performance in all 

approaches. With decreasing the data record length to N = 150, Figure 4.5 shows 

that the overall system performance becomes worse. This simulation example shows 

that the proposed channel estimators can track the slowly time-varying channel if 

the data record length is large enough, e.g. N = 300. In order to compare with 

st.ate-of-the-art approaches, I also plot BER performance by employing the subspace

based approach (see [64]) in Figures 4.4 and 4.5. We can see that the subspace-based 

approach does not perform well in the low SNR. This is because the subspace-based 

approach needs to resolve t.he residual scalar ambiguity. However, the scalar cannot 

be precisely estimated in the low SNR, particularly when the number of pilots is 

small. In the high SNR, the subspace-based approach has close BER performance to 

the MD approach. 
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Figure 4.4: BER Vs SNR for BP-OFDM in the slowly time varying channel with 
N=300. 
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4.5 Conclusion 

This chapter has introduced second-order joint moment based blind or semi-blind 

channel estimation algorithms for BP-OFDM systems. To enable the proposed algo

rithms, a modified BP-OFDM model has also been pr?posed. Exploiting the subcar

rier correlation, it has been established that the channel identifiability w8:8 guaranteed 

regardless of channel zeros locations. Unlike the subspace approach, the proposed 

channel estimators did not rely on the precoding redundancy, and the present ad

ditive noise is not necessary white. Simulation results compared the overall system 

performance for all proposed channel estimators. It has been shown that the MD 

algorithm always had the best performance by paying the cost of high computation 

complexity. In the slowly time varying channel, the MSD algorithm may give the 
~ 

best tradeoff between the complexity and the channel estimate performance. 

Appendix 4.A: Proof of Result 4.2.1 

If ml and m2 are in the same set, Mx(m}, m2) can be expressed as 

Mx(m}, m2) £{x(n, ml)x(n, m2)} 

_ {o(md£{s(n)sT(n)}OT(m2)' ml, m2 E A 

O*(mI)£{s(n)sT(n)}*O'H(m2)' mI, m2 E B 
(4.5.1) 

al) indicates that £{s(n)sT(n)} = OK, where OK stands for a zero matrix of size 

I< x I<, such that Mx(mI' m2) = O. When ml and m2 are in different sets, without 

loss of generality, let mI E A and m2 E B, the function Mx(ml' m2) is given by 

O(ml)£ {s(n)s'H(n) }O'H(m2) 

(J;O(ml)O'H(m2) (4.5.2) 
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81) assures O(ml)O'H(m2) f:- 0, Result 4.2.1 is therefore proved. 

Appendix 4.B: Proof of Lemma 4.2.1 

For f3m.r = h * hm.r, the polynomial (4.2.19) can be represented as 

f(x, mT ) = p(x)g(x, mT ) (4.5.3) 

where 
Lu- l 

p(x) = I: h(l)x' (4.5.4) 
1=0 

Lu-l 

g(x, mT ) = I: h(l)(lV;:iX)' (4.5.5) 

If Xl is a root of f(x, mT ), then it must be a root of either p(x) or g(x, mT ). Assume 

Xl is a root of p(x), then the following equation can be obtained 

Lu-1 

p(xt} = I: h(l)xi 
1=0 

Lu- 1 

- I: h(l)lVM1m,. (lV;:ixd' 
l=O 

g(TVMm"XI, mT ) 

- 0 (4.5.6) 

It means that X2 =; lVMm"XI is also a root of f(x, mT ), which results in Xl * X; = 

lV;r Ixtl2• Alternatively, if g(xt, mT ) = 0, then it is easy to obtain p(lV;;" xd = O. 

Let X2 = lV;:i Xl, it can be found that Xl * X; = lVMm "'lx I1 2
• 

Appendix 4.C: Proof of Theorem 4.2.1 

Since a2) and a4) guarantee that the polynomial f(x, mT ) is available, it is easy to 

find the 2Lu - 2 distinct roots of f(x, mT ). As shown in Lemma 4.2.1, f(x, mT ) can 
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be factorized into two polynomials, p(x) and g(x, mr). Let Xp,i and Xg,i be the ith 

roots of p(x) and g(x, mr ) respectively, Lemma 4.2.1 has shown that Xp,i = l¥MX9,i. 

Therefore, the roots for p( x) can be determined and is used to form a (Lu -1) x (Lu -1) 

Vandermonde matrix as 

( 

Xp,1 

V= : 

Xp ,L-l 

L-l' ) Xp ,1 

L-l 
xp,L_l 

(4.5.7) 

Let a = [h(l),··· ,h(Lu - 1)]T and 'Y = [h(O),··· ,h(O)]T, (4.5.4) and (4.5.5) show 

that 

'Y=Va (4.5.8) 

Since all roots are distinct, the Vandermonde matrix must be full rank. If h(O) can 

be determined, then a can be uniquely identified using 

a=Vt'Y (4.5.9) 

Due to f3m,.(O) = h2(O), the first tap of the channel vector can be obtained by letting 

It(O) = >"y'f3m,.(O), and >""E {I, -I}. In this case, (4.5.9) shows that a can be uniquely 

identified with a sign ambiguity. 

Appendix 4~D: Proof of Lemma 4.2.2 

(4.5.7)-(4.5.8) implies that the (L' + l)th term of l(x, mr ) can be expressed as 

!3m,.(L' + l)xL'+l h(O)h(L' + 1)(1 + W£+1)xL'+1 

+ 1:::,.+1 (h(O),··· ,h(L'), x) (4.5.10) " 
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where f~+1(h(O),··· ,h(L'), x) is a function of the parameters h(O),··· ,h(L') and x. 

Let x = 1, h(L' + 1) can be obtained using 

h(L' 1) = f3m.r(L' + 1) - f~+1(h(O),··· ,h(L'), 1) 
+ h(O)(l + lV~+1) . 

(4.5.11) 

, 

Appendix 4.E: Proof of Theorem 4.3.1 

Using (4.5.3) and (4.5.4), f(x, mT) can be rewritten into 

L-1 

f(x, mT) = LP(x)h(l)lV;('x' (4.5.12) 
1=0 

For m T E B, (4.5.12) can be expressed as the following matrix form 

(4.5.13) 

where a = [f(x, 1), f(x, 3),· .. ,f(x, A1-1)]T, b = [p(x)h(O),··· ,p(x)h(L-1)xL- 1V, 
and VI is a Vandermonde matrix of size (A1/2) xL 

(4.5.14) 

Since a4) assures t.hat !l1 /2 ~ L, V I must have full column rank, and b can be found 

using 

b=V}a (4.5.15) 

The sum of all clements of b is given by 

L-1 L-1 

LP(x)h(l)x' = p(x) Lh(l)x' = p2(X) (4.5.16) 
1=0 1=0 



Appendix 4.F: Proof of Theorem 4.3.2 

Consider the right hand of (4.3.6) 

L 13m,. = h* L hm,. 
m,.EB m,.EB , 

Chapter 4.2.4 has defined that 

hm,. - [h(O), h(l)W~T, . .. ,h(Lu - l)lV~,.(Lu-l)f 

- D(fh(mT))h 

73 

(4.5.17) 

(4.5.18) 

where fh(mT) denotes the mrth row vector of the matrix F h : Substitute (4.5.18) into 

(4.5.17), we may obtain 

- h*[diag{Al/2,0, ... ,O}h] 

- ~ h(O) [hT, OlX(Lu-l)]T 

AI f7Ji"r\\[ T T - T Av,8o(O) h ,OlX(Lu-l)] (4.5.19) 

This is the equivalent result of (4.3.6). 



Chapter 5 

Superimposed training scheme for 
OFDM systems 

r Dlind channel estimation algorithms usually need the second-order or high-order 

statistics, and thereby require a relatively large data record length. This chapter 

introduces a superimposed training scheme for the channel estimation in OFDM sys

tems. This technique offers the first-order statistics based channel estimation method, 

and has the potential to shorten the required data record length and reduce the com

putation complexity. Part of this work is presented in [86]. 

5.1 Introduction 

The superimposed ~raining scheme was originally proposed to identify the frequency 

selective fading channel in single carrier systems [71]-[72]. The major advantages of 

this scheme are: 

. 1. Like the blind channel estimation approaches, the superimposed training does 

not need extra bandwidth consumption, and is capable of tracking time-invariant , 

or slowly time-varying channels. 

74 
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2. The superimposed training scheme enables the first-order statistics based chan

nel estimation, and thereby outperforms the second or high order statistics 
I 

based channel estimators in computation complexity. 

On the other side, this training scheme superimposes ~he periodic training sequences 

on the information-bearing symbols, and lower the effective signal to noise ratio. This 

drawback may eventually decrease the overall system performance. 

In this chapter, we first apply this training scheme in multicarrier systems. A 

first-order statistics based channel estimation algorithm is developed for both CP

OFDM and ZP-OFDM. The mean square error (MSE) analysis is given to evaluate 

the channel estimation performance. Then, we investigate the superimposed training 

scheme in the space-time coding scenario. Simulation results are provided to confirm 

the theoretical analysis. Finally, future research on this work is also proposed. 

5.2 Superimposed training models 

Figure 5.1 il.1ustrates the superimposed training scheme for OFDM systems. Differed 

from the conventional OFDM model, the data fed to the OFDM modulator is the 

sum of information-bearing symbols s(n) and the periodic training sequences c(n), 

i.e. 

s(n) = s(n) + c(n) (5.2.1) 

\Vhcn the energy of s(n) is given, the energy allocation strategy can be reflected from 

the average signal to training ratio TI, which is given by 

Tr{ £ {s(n)s'H(n)}} 
TI = Tr{£{c(n)c71(n)}} 

(5.2.2) 
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Since the training sequences c(n) are periodic signals, i.e. the blocks c(n) are constant 

for the block index n, then (5.2.2) becomes 

Tr{£{s(n)s'H(n)} } 
"7 = Tr{ c(n)c'H(n)} (5.2.3) 

Next, it will be shown that "7 is a very important factor and affects the overall system 

performanC:J[g (,) 

5.2.1 Superimposed training scheme for CP-OFDM 

\\Then the blocks s(n) are fed to the CP-OFDM modulator, (1.2.7) infers that the 

transmitted blocks can be expressed as 

x(n) E>cps(n) 

E>cps(n) + E>cpc(n) (5.2.4) 

and the received post-FFT blocks are given by 

(5.2.5) 

If the channel matrix VAt is perfectly known, then the information symbols ca.n be 

sen) 

C(lI) 

-~ -, 

Figure 5.1:'-nlock diagram of the superimposed training scheme for OFDM 
I , 
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recovered using 

(5.2.6) 

It has been emphasized that the above ZF method is applicable only when 'D M has 

full rank. Otherwise, technique using channel coding can be employed to guarantee 

the signal recovery. 

To examine the equalization performance, (5.2.6) can be represented as 

s(n) = s(n) + 'DLv(n) 

Hence, the effective signal-ta-noise ratio (ESNR) is given by 

ESNRcp = 
Tr{ £{ s(n)s1i(n)}} 

o-;Tr{ ('D M'D'Z )t} 
Tr{ £ {s(n)s1i(n)}} 

< 
o-;Tr{ ('D M'D'Z )t} 
0-; . AI + Tr{c(n)c1i(n)} 

o-;Tr{('D M'D'Z )t} 
(1 + l/1J)M . 0-; 

0-; Tr {('D M'D'Z )t} 

SNIlcp 

The difference between ESNR and SNR is given by 

SNRl SNRcp - ESNRcp 

!If . 0-2 
/I 

- Wi; L~:~ 1/IH(m)12 

(5.2.7) 

(5.2.8) 

(5.2.9) 

which may lead to a considerable degradation of the overall system performance when 

the factor 7] is small. 
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5.2.2 Superimposed training scheme for ZP-OFDM 

When the blocks x(n) are fed to the ZP-OFDM modulator, (1.2.15) infers that the 

received post-FFT blocks can be expressed as 

and the channel equalization can be simply implemented using 

sen) (1'JGzp)t(Yzp(n) - 1'JGzpc(n)) 

sen) + (V JGzp)tv J(n) 

Therefore, ESNR for ZP-OFDM can be deduced by 

ESNRzp = 
Tr{ £{ s(n)s'H(n)}} 

and SNR for ZP-OFDM can also be derived as 

Tr{£{s(n)s'H(n)} } 

O";Tr{ Glp V j(1'j) 'H (Glp )'H} 
(1 + l/T])Jvl . 0"; 

So the difference between SNR and ESNR is given by 

. SNRt SNr~p - ESNRzp 

Al . 0"2 s 

(5.2.10) 

(5.2.11) 

(5.2.12) 

(5.2.13) 

(5.2.14) 

Let g(j) be column vectors of the matrix Glp, (5.2.14) can be represented as 

(5.2.15) 

Next, we investigate the channel estimation algorithm for the superimposed training 

based OFDM systems. 
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5.3 First-order statistics based channel estimation 

The superimposed training scheme enables the first-order statistics algorithm for the 

channel estimation. It is suitable for tracking time-invariant or slowly time-varying 

channels, and therefore is applicable in WLAN s. 

5.3.1 Channel estimation for CP-OFDM 

The channel estimation is based on the expectation of the received post-FFT blocks 

(5.2.5), which is given by 

my £{ycp(n)} 

VM£{s(n)} + Vu£{c(n)} + £{v(n)} 

Vuc(O) (5.3.1) 

where c(O) denotes the Oth training block, and c(n) = c(O). This result is quite like 

the training-based model (2.2.2) in Chapter 2. Hence, (5.3.1) can be rewritten into 

my D(c(O))h 

vMD(c(O))Fhh (5.3.2) 

Let Qc = D(c(O))Fh' the channel estimate can be obtained using 

(5.3.3) 

It shows that the successful channel estimation depends on that the matrix Qc has full 

column rank. This condition can be guaranteed by carefu11y designing the training 

blocks c(n), for instance, c(n) does not contain a zero element. 
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In practice, the expectation vector is replaced by the sample average based on 

finite (say, N) blocks 

where 

N-l 

my ~ LYcp(n) 
n=O 

.JMQch + es + ev 

1 N-l 

es = N1JM Ls(n) 
n=O 

N-l 

ev = ~ Lv(n) 
n=O 

Then, the channel estimate is given by 

(5.3.4) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.7) reflects that the channel estimate error eh = h - h is caused by the remaining 

interference es and ev • 

Theorem 5.3.1. Based on (5.3.7), the mean-square channel estimate error £"eh,,2 
is given by 

11
2 cr;Lu ~ Ill(m)12 Lu ~ cr;,m 

£"ell = N M2 ~ Ic(m)12 + N A12 ~ Ic(m)12 (5.3.8) 

Proof See Ap'pendix 5.A. 

(.5.6.4) also infers the following result 

. 2 cr;Lu M-l IIJ(m)12 
}un £"eh" = N ~12 L 1.( )12 

(1l1,m-O II m=O C m 
(5.3.9) 

It means that, if the data record length (N) is fixed, the mean-square channel es

timate error is asymptotic to the bound (5.3.9) with increasing SNR. The estimate 

performance mainly depends on the data record length (N) rather than SNR. 
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Observing (5.6.4), we can find that the channel estimate error is also affected by 

another important factor Ic(m)12. If the total energy of the training sequence is given, 

the optimum training sequence is designed as the following result. 

Theorem 5.3.2. If the total energy of the superimposed training sequence is 

M-l 

L Ic(m)12 = ec (5.3.10) 
m=O 

then the channel estimate error achieves its minimum 

M-l 

(min = N ;,~, 1<7; ~ (lH(mll' + <7~,mll (5.3.11) 

when the signal energy is equally allocated along the subcarriers. 

Proof. See Appendix 5.B. 

This result implies that (5.6.7) is the optimum superimposed training sequence 

design regardless of the channel knowledge and noise color. 

5.3.2 Channel estimation for ZP-OFDM 

The channel estimation for ZP-OFDM is based on the expectation of (5.2.10) 

my = £{yzp(n)} 

'DJGzp£{s(n)} + 'DJGzp£{c(n)} + £{vAn)} 

'DJGzpc(O) 

vJD(Gzpc(O»Fhh (5.3.12) 

where Fh is formed by collecting the first Lv. columns of F J. Let Qz = D(Gzpc(O»Fh' 

the CSI can be estimated using 

(5.3.13) 
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The channel identifiability is guaranteed only when Qz has full column rank. 

Similar to the channel estimation for CP-OFDM, the expectation vector my is 

realized using the sample average based on N blocks 

N-l 

my ~ LYcp(n) , 
n=O 

VJQzh + es + ev (5.3.14) 

where 
N-l 

es = ~ 1)J Gzp L s(n) 
n=O 

(5.3.15) 

N-l 

ev = ~ LVJ(n) 
n=O 

(5.3.16) 

The channel estimate is therefore given by 

(5.3.17) 

and the channel estimate error for ZP-OFDM is given in the following result. 

Theorem 5.3.3. Ba.sed on (5.3.17), the mean-square cha.nnel estimate error t'lIehll2 
is given by 

(5.3.18) 

where u(j) are column vectors, and ).e(j) are real, which are defined in the proof. 

Proof. See Appendix 5.C. 

Similar to the CP-OFDM, (5.3.18) infers that 

(5.3.19) 
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So, the mean-square channel estimate error is asymptotic to the bound (5.3.19) with 

the increasing of SNR. The power allocation strategy for ZP-OFDM is actually the 

same as that for CP-OFDM. The proof will not be addressed here for its complexity. 

5.4 Superimposed training for space-time block coded 
OFDM 

Transmit diversity has been studied extensively for combating fading and improving 

capacity (see [73]-[74]). Specifically, transmit diversity schemes based on space-time 

(ST) coding exploit multiple transmissions to provide diversity gain. ST trellis codes 

were first proposed in [75] to achieve maximum diversity gain at the expense of 

increased complexity of optimal decoding at the receiver. ST block coding (STBC) 

emerged as an attractive alternative because it leads to ML decoding using only linear 

receiver processing [76], [78]. 

ST codes were originally designed for known slow flat fading channels [75], [76]. 

Unlike narrowband transmission, the flat-fading channel assumption is no longer jus

tified in wideband communications, which motivated recent extension of ST coding 

to frequency selective channels for OFDM [22], [77]. With transmit diversity, ST 

coded OFDM can ameliorate fading effects caused by channel nuns. However, when 

transmit ant.ennas are not we]] separated, the multiple channels become correlated, 

and symbol recovery is not guaranteed because nulls common to the multiple channels 

are possible to occur. 

\\Then the frequency-selective fading channels are not known to the transceiver, we 

are going to use the superimposed training scheme to conduct the channel estimation 

and signal recovery in ST£3C-OFDM. 
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5.4.1 STBC-OFDM model with superimposed training 

The superimposed training scheme for STBC-OFDM is depicted in Figure 5.2, where 

the ST transceiver is equipped with two transmit antennas and one receive antenna 

as in [65]. Prior to transmission, the information bearing symbol blocks, s(n), are 
, 

first fed to the ST encoder. The encoder takes two consecutive input blocks, s(2n) 

and s(2n + 1), to output the following 2M x 2 code matrix 

( 
81 (2n) 81 (2n + 1) ) = ( s(2n) -s*(2n + 1) ) 

82 (2n) 82(2n + 1) s(2n + 1) s*(2n) 
(5.4.1 ) 

Next, the periodic training blocks, Cl (n) and c2(n), are superimposed on the ST 

coded blocks 

(5.4.2) 

Each block is transmitted over successive time intervals with the blocks 51 (n) and 

s2(n) sent from transmit antennas 1 and 2, respectively. 

J 1\ (11) 
S( 11) -S1 "'" OFOM 

h ~ encoder .1 modulator 

X2 (11) Z(lI) 

('2 (u) 
L 
'- ,. (n) 

S(l1 ) S1 - Remove 
decoder training I+- FFT --

Figure 5.2: nJock diagram of the superimposed training scheme for STBC-OFDM 
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To simplify our discussion, this chapter only considers the CP-OFDM transmission 

over the frequency-selective fading channels. Let Vi = diag{ Hi(O) ... Hi(AI - I)} 

be the channel matrices, the received post-FFT blocks y(n) can be expressed as 

2 

y(n) = 2: Visi(n) + v(~) (5.4.3) 
i=I 

Using (5.4.1) and (5.4.2), the consecutive received blocks, y(2n) and y(2n + 1), is 

given by 
2 

y(2n) = VIs(2n) + V2s(2n + 1) + 2: ViCi(2n) + v(2n) (5.4.4) 
i=I 

2 

y(2n + 1) = -Vls*(2n + 1) + V2s*(2n) + 2: ViCi(2n + 1) + v(2n + 1) (5.4.5) 

Next, we define 
i=I 

2 

y(n) = y(n) - 2: ViCi(n) 
i=I 

y(n) = [yT(2n), y1i(2n + l)]T 

s(n) = [sT(2n), sT(2n+ l)jT 

V = (VI V2) 
V* -V* 2 I 

Then, (5.4.4) and (5.4.5) can be represented as 

y(n) = Vs(n) + v(n) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

(5.4.10) 

where v(n) = [vT(2n), vT(2n + l)]T is the corresponding noise vector. \\Then the 

channel matrices VI and V 2 become available at the receiver, it is possible to de

modulate y(n) by a simple matrix multiplication 

d(n) V 1iy(n) 

( 

VI2 0 ) v ?-l v _ s(n) + V v(n) 
o ,VI2 

(5.4.11) 
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where the diagonal matrix V 12 = V~Vl + 1';1'2. Equation (5.4.11) reveals that ZF 

recovery of s(n) from d(n) requires the matrices V 12 to have full column rank. This 

condition is assured only when the matrices VI and 1'2 do not share common zeros 

along the diagonal. 

Based on (5.4.10), we next address the superimposed training based channel esti

mation algorithm and its performance analysis. 

5.4.2 Channel estimation algorithm 

The channel estimation algorithm is based on the first-order statistics of the signal 

model (5.4.10), which is given by 

£{y(n)} = V£{s(n)} + £{v(n)} = 0 (5.4.12) 

From (5.4.6) and (5.4.7), it can be derived that 

2 

£{y(n)} = £{y(n)} - LVi£{Ci(n)} 
i=1 

i=1 . 

o (5.4.13) 

which further leads to 

i=l 
2 

v'ML D(Ci(O))Fhhi (5.4.14) 
i=1 

into the following matrix form· 

(5.4.15) 
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It can be seen that the matrix Qs has size M x 2Lu. If the rank of Qs is 2Lu, then 

the channel vector h can be uniquely identified using 

(5.4.16) 

To guarantee the full column rank of Qs, the training sequences Cl and C2 must be 

carefully designed. 

5.4.3 Performance analysis 

To analyze the channel estimate performance, we represent (5.4.13) as 

£{y(n)} my-VMQJl 
2 

L Vi£{Si(n)} + £{v(n)} (5.4.17) 
i=l 

and the channel estimate error is given by 

1 2 1 
. ru Q! LVi£{Si(n)} + . ruQ!£{v(n)} (5.4.18) 
vM i=l vM 

Similar to the SISO cases, £{si(n)} and £{v(n)} are replaced by the assemble average 

1 N-l 

£{v(n)} = N L v(n) 
n=O 

The mean-square channel estimate error is therefore derived as 

(5.4.19) 

(5.4.20) 

(5.4.21) 
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where 

1 2 2 

E8 M Tr{Q!:L:L 1)j£{sAn)}£{Si(n)}1i1)~(Q!)1i} 
j=l i=l 

2 2 :M Tr{Q! :L1)i1)~(Q!)1i} (5.4.22) 
i=l 

Ev ~ Tr{Q!£{v(n)}£{v(n)}1i(Q!)1i} 

N~1 Tr{Q!diag{cr~,o,'" ,cr~,M_d(Q!)1i} (5.4.23) 

Define a diagonal matrix 

2 

Ae = cr;:L 1)i1)~ + diag{ cr;,o, '" ,cr;,M-d (5.4.24) 
i=l 

The channel estimate error E can be represented as 

(5.4.25) 

5.4.4 Superimposed training sequences design 

The objective of the superimposed training sequences design is to minimize the mean

square channel estimate error and reduce the computation complexity. 

Theorem 5.4.1. The channel estimate error (5.4.25) achieves its minim:l1,m 

4Lu 
E - ---:--;--:--;--:~~-:--:-:-;:-

min - N "M-l ICJ(mW+h(m)12 
L."m=O Ae(m) 

(5.4.26) 

only when the following condition is satisfied 

where, Ae(m) = cr;(IIh (m)12 + IH2(m)12) + cr;,m denotes the (m, m)th entry of Ae. 
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Proof See Appendix S.D. 

Theorem 5.4.2. The condition {5.6.19} occurs when the superimposed training se-
quences ci(n) satisfy . 

D(Cl(n)) = D7D(c2(n)) 

where D f = diag{1, WIt,··· ,H!i[u(M-I)}. 

Proof See Appendix 5.E. 

(5.4.27) 

Theorems 5.4.1 and 5.4.2 show that the mean-square channel estimate error can 

be minimized when the training sequences satisfy (5.4.27). Using this design, the 

matrix Qs can be represented as 

Qs [D( Cl (0) )Fh' D fD( Cl (0) )Fh ] 

D(CI (O))Fh (5.4.28) 

Substituting this result into (5.4.16), the channel estimation can be implemented as 

(5.4.29) 

From (5.4.16) and (5.4.29), we can see that the inverse of Qs may introduce O(AI2 log AI) 

complexity into (5.4.16). By employing the carefully designed training sequences, 

(5.4.29) can be impiemented using IFFT, and thus reduces the complexity to O(Allog AI). 

5.5 Simulations 

The simulation results include two examples: 1) the mean-square channel estimate 

error and the overall system performance are examined in static channels, and 2) the 

overall syst.em performance is also evaluat.ed in slowly time varying channels. The 
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system parameters are set as L1/. = 4, AI =32, which is the typical settings for OFDM-

based WLAN (e.g. HIPERLAN). The information bearing symbols are drawn from 

the QPSK constellation with the equal probability. The frequency selective channels 

are modelled as a FIR filter. SNR for the superimposed training scheme is defined 

as the total transmitted energy from transmit antennas and noise ratio. Another 

important factor used in the simulations is the training to information ratio (TIR), 

which is defined by IIc(O) 112/ M 0";. 
Test Case 1 (static channels): The channel taps are randomly generated 

with equal variance 1/ L1/.. The total variance for all taps of each channel is set to unity: 

£{lIhi Il2} = 1, Vi E {1,2}. The simulation results are averaged over 500 channels. 

\Ve first investigate the channel estimate performance for the superimposed training 

scheme in the SISO scenario. The mean-square channel estimate error is defined as 

1 ~ A 2 
MSE = I L L..J Ilhi - hill 

1/. i=l 

where I = 500 denotes the number of random channels. Each channel estimation 

collects N = 100 symbol blocks for the first-order statistics. Using the optimum 

training sequences designed for minimizing the channel estimate error, Figure 5.3 

illustrates the channel estimate performance for CP-OFDM systems. It shows that: 

1) The simulation results fit very well with theoretical MSE bounds, particularly 

within the SNIt range from 14 - 20 dB. 

2) When TIR is increased from 0.033 to 0.25, the channel estimate performance 

is significantly improved. This result confirms our theoretical MSE analysis. 

However, increasing of TIR will lower the effective SNR. 

3) In static channels, the training-based scheme outperforms the superimposed 
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training scheme. However, the training approach needs extra bandwidth con

sumption. The performance of superimposed training can be further improved 

by collecting more symbol blocks for the estimation. 

Using the estimated CSI, Figure 5.4 illustrates the equ~lization performance in various 

TIR cases. It shows that: 

4) With the knowledge of the perfect CSI, the case with lower TIR (= 0.033) 

outperforms the case with higher TIR (= 0.25), because it has a higher effective 

SNR. 

5) When TIR is low (e.g. 0.033), the BER performance is sensitive to the data 

record length, N. The performance can be significantly improved by increasing 

N. When TIR is high (e.g. 0.25), the channel estimation is very accurate even 

for N = 100, such that their BER performance is close to the case with the 

perfect CS!. 

Next, we investigate the overall system performance for STBC-OFDM systems. 

The results reflected in Figure 5.5 are similar to 4) and 5) for uncoded CP-OFDM 

systems. Thanks to the STC technique, when the channel estimate is accurate (for 

TIR= 0.25), the DER performances are very close to the case with the perfect CS!. 

Since the training-based approach does not reduce the effective SNR, its BER perfor

mance is better than that of the superimposed training approach in static channels. 

Test Case 2 (slowly time-varying channels): The simulation environment 

used here is the same as that in Chapter 4.4. Since test case 1 has shown that 

uncoded OFDM and STBC-OFDM have many common features in the overall system 

performance, this test case only examines STBC-OFDM for concise presentation. 



w 
en 
:E 

TIR.O.25 

_______ N.1 00, low power 
-+- N.lOO,high_ 
...... MSE boI.nd, tow powor 
-e- MSE boI.nd, high powor 
- MSE boI.rId. training 
... Traini . one block 

10~L---~--~--~----~--~--~--~----~--~---J 
o 2 4 6 8 10 12 14 16 18 20 

SNR(dB) 

Figure 5.3: Mean-square channel estimate error in static channels 

ffi 
ID 

I~.----r----r----r----'----'----~~~~~r====rl ___ N.lOO, high po_ 

TIRoO.033 

...... N.200. high pow. 
-+- N.,OO.low_ 
-e- N.'OO.low_ 
. . .. Period CSI. high powor 
- Period CSI, low 

10-'0~--~2:----4:----6:----8:----:1'::0----1'::2----':'-4----':':-6-----"8 

SNR(dB) 

Figure 5.4: BER Vs SNR for CP-OFDM in static channels 

92 



93 

Figure 5.6 shows that the training-based approach using one training block cannot 

track the time-varying channel and results in large error floor in relatively high SNR 

(e.g. > 12 dB). The superimposed training scheme demonstrates its good performance 

particularly when DRL is large, e.g N = 200. In fact, its performance can be further 

improved by increasing N. Similar to the case in static channels, TIR is also a very 

important factor to affect the channel estimate and overall system performance in 

time-varying channels. 

One of major drawbacks of the superimposed-training based scheme is its relatively 

low effective SNR, which results in the loss of the overall system performance [71]-[72]. 

Hence, as shown in Figures 5.4 and 5.5, the BER performance is very sensitive to the 

TIR. Due to the low effective SNR, the BER is not good even for the case with the 

perfect channel knowledge. Although the superimposed-training scheme offers low

complexity channel estimator, it is very sensitive to channel variation. This is the 

reason why Figure 5.6 shows the poor performance. My future research will consider 

a superimposed-training scheme for BP-OFDM to improve the effective SNR. New 

channel estimation and equalization algorithm will also be considered for tracking the 

time-varying channel. 

It should be noted here, the simulation results for ZP-OFDM are very similar 

to CP-OFDM. So,' this document will not provide the simulations and analysis for 

ZP-OFDM. 
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5.6 Conclusion 

This chapter introduced a superimposed training scheme for various OFDM systems, 

including CP-OFDM, ZP-OFDM and STBC-OFDM, to track frequency selective fad

ing channels. The channel estimator only used the ~rst-order statistics and did not 

consume extra bandwidth. The mean-square channel estimate error ,was carefully 

analyzed, and MSE bounds for various OFDM systems were derived to examine the 

channel estimate performance. Optimum superimposed training sequences were gen-

erated to minimizing the MSE performances. Simulation results were provided to 

validate the theoretical analysis. It was sh~wn th~_t:..~he_maj.~r drawback for t~~~~

perimposed training scheme is the loss of effective SNR. In my future research, this 

Appendix 5.A: Proof of Theorem 5.3.1 

Based on (5.3.7), the MSE can be derived as 

Tr{£{ ehe~}} 

Tr{£{(Q~es + Q~ev)(Q~es + Q~ev)'"l}} 

~ Tr{Q~£{ ese~}(QD'H} + ~ Tr{Q~£{eve~}(Q~)'H} (5.6.1) 
vA! vA! 

For 

1 N-l N-l 

N2 V M L L £{s(nl)s'H(n2)}V~ 
nl=On2=O 

2 
(fs -n -n'H 
-J./MJ./M 
N 

(5.6.2) , 
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N-l N-l 

£{eVe~} - ~2 L L £{V(nl)V'H(n2)} 
nl=On2=O 

- ~diag{O";,o, ... ,00;,M_l} (5.6.3) 

(5.6.1) can be represented as 

2 2 

£llehl1 2 :M Tr{Q!1)M1)~(Q!)'H} + :~ Tr{(Q~Qc)t} 
2 . - :M Tr{FtDt(c(O))1)M1)~(Dt(c(O)))'H(Ft)'H} 
2 

+ ;~ Tr{FtDt(c(O))(Dt(c(O)))'H(Ft)'H} 

O";Lu M-l IH(m)12 Lv. M-l O";,m 
- N A12 ~ Ic(m)12 + N A12 ~ lc(m)12 (5.6.4) 

Appendix 5.B: Proof of Theorem 5.3.2 

Rewrite the MSE result (5.3.8) into 

M-l 2( ) 

II 11 2 Lv. """ O"e m 
£ eh = N A12 ~ Ic(m)12 , (5.6.5) 

where 

(5.6.6) 

then, the MSE result for the superimposed training scheme has the similar form to 

Eqn. (2.2.7). Theorem 2.2.1 has shown that t.he optimum training sequence design 

for the model (5.6.5) is 

Ic(O)1 2 = ... = Ic(M - 1)12 = ~c/M (5.6.7) 

Plugging (5.6.7) into (5.6.4), the result (5.3.11) can be easily obtained, and Theorem 

5.3.2 is therefore proved. 



97 

Appendix 5.C: Proof of Theorem 5.3.3 

The mean-square channel estimate error can be derived from (5.3.17) 

£lIh - hll2 

1 ,1 
Tr{ JQ~£{ese~}(QD'H} + Tr{ JQ~£{eve~}(Q~)'H} (5.6.8) 

Using (5.3.15) and (5.3.16), the following results can be obtained 

(5.6.9) 

(5.6.10) 

So, the error arising from the additive noise is given by 

tv Tr{ ~Q~£{eve~}(Q1)'H} 

Tr{ ~Ft.Dt (Gzpc(O»£ {eve~} (Dt (Gzpc(O» )'H(Ft.)'H} 

L J-l (72 

- N ;2 ~ Igzp(rr:):(0)12 (5.6.11) 

where, gzp(m) denotes the row vector of the matrix G zp . Next, we calculate the error 

induced by the signal part 

ts Tr{ ~Q~£{ese~}(Q~)'H} 
2 ;j Tr{F~ pt(Gzpc(O»V JGzpG~V7 (Dt(Gzpc(O»)~(Ft.)'H} (5.6.12) 

V' 

He 

It is easy to see that He is a Hermitian matrix. So, its eigendecomposition is given 

by 

(5.6.13) 
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where U is the unitary matrix, and Ae is the real diagonal matrix. Then, (5.6.12) 

can be rewritten into 

(5.6.14) 

where V = F'{!U?-l. Let u(j) be the jth column vector of V, and Ae (j) be the (j, j)th 

entry of Ae, then fs is given by 

(5.6.15) 

Plugging (5.6.11) and (5.6.15) into (5.6.8), the channel estimate error (5.3.18) is 

therefore obtained. 

Appendix 5.D: Proof of Theorem 5.4.1 

Consider the channel estimate error 

f -

(5.6.16) 

(5.4.24) shows that Ae is a real diagonal matrix, so Q~ A!Qs forms a 2Lv. x 2Lv. 

Hermitian matrix. Let AD,'" ,A2L,,-1 be eigenvalues of this Hermitian matrix, its 

trace is given by 

l=O 

(5.6.17) 
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Next, the channel estimate error can be calculated as 

(5.6.18) 

The equality DCCurs only when all the eigenvalues {Al} are identical and 

(5.6.19) 

Thus, the error, f, is possible to achieve its minimum 

(5.6.20) 

Appendix 5.E: Proof of Theorem 5.4.2 

Define an M X 2Lu matrix . 

(5.6.21) 

and 

(5.6.22) 

(5.6.19) can be rewritten into 

Q~ A!Qs AI2Lu 

Q~Q8 

(5.6.23) 
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where Fh is formed by collecting the first 2Lu columns of the DFT matrix F M . 

(5.6.23) reveals that, the condition (5.6.19) can be satisfied when 

Thus, we have 

which results in 

v"XFh Qs 

[f\1D(Cl(O))Fh , f\1D(C2(O))Fhl 

[v"XFh, v"XDfFhl 

D(Cl(O)) - /"AeD}f\1D(C2(O)) 

- D}D(C2(0)) 

- D7D (C2(O)) 

For ci(n) = Ci(O), Theorem 5.4.2 is therefore proved. 

(5.6.24) 

(5.6.25) 

(5.6.26) 



Chapter 6 

Channel estimation for 
MIMO-OFDM using guard interval 
diversity 

This chapter introduces a novel blind channel estimation method for MIMO-OFDM 

by exploiting guard interval diversity introduced by the transmitter. This blind chan

nel estimator uses the second-order cyclostationary to yield unique channel estimates. 

To enable the proposed algorithm, the transmitter transmits uncorrelated CP-OFDM 

and ZP-OFDM signals from two different transmit antennas. Using this technique, 

the proposed blind channel estimator can deal with subchannels individually. Simu

lation results demonstrate the comparable channel estimate performance of this new 

method. This chapt.er is partly presented in [87]. 

6.1 Introduction 

Deploying multiple antennas at both the transmitter and the receiver of OFDM sys

tems has recently received considerable attentions to improve channel capacity (see 

[73]-[74]). Similar to other MIMO syst.ems, signal recovery for MIMO-OFDM needs 

the knowledge of multichannel information. If signals from different antennas are 

101 
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uncorrelated, [61] exploits non-constant antenna precoding (window) for the multi

channel estimation. Thanks to the distinct precodings, the blind estimator can deal 

with subchannels individually. However, the channel estimation performance is not 

good enough. Recently, a subspace-based blind channel estimation algorithm has been 

proposed for block precoded ST-OFDM systems. It 'uses the precoding redundancy 

to yield a unique channel estimate. However, the subspace approach needs relatively 

large DRL and high computation complexity. It is only applicable for BP-OFDM 

systems. The objective of this chapter is to propose a new blind channel estimation 

algorithm for MIMO-OFDM systems, which has good channel estimate performance 

and fast convergence. 

As introduced in Chapter 1, conventional OFDM has two transmission schemes, 

Le. CP-OFDM and ZP-OFDM transmissions. The length of CP or ZP is normally 

longer than the upper bound of the channel order to avoid the lSI. Relying on the 

redundancy introduced by CPs or ZPs, a cyclostationary based blind channel estima

tion algorithm has been proposed for SISO systems (see [57]). The proposed estimator 

demonstrates its good estimate performance and fast convergence. We notice that 

the cyclostationarity for CP-OFDM and ZP-OFDM is different. If the transmitter 

equipped with two antennas can transmit CP-OFDM and ZP-OFDM signals simul

taneously, it is possible to design a multichannel estimator, which may enable unique 

multichannel estimation. This motivates us to propose the following MIMO-OFDM 

transmission scheme with guard interval diversity. 
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6.2 MIMO-OFDM with guard interval diversity 

Consider a wireless communication system equipped with two transmit antennas and 

two receive antennas. Figure 6.1 depicts the MIMO-OFDM transceiver with guard in

terval diversity. Prior to transmission, the informatio? symbols are first grouped into 

blocks 8i(n) = [si(n,O), "', si(n, AI - 1)]T, for i = 1,2, of size M x 1. !,hen, symbol 

blocks 81 (n) are fed to CP-OFDM modulator, and 82(n) are fed to ZP-OFDM mod-

ulator. So, the output of OFDM modulators are uncorrelated, and can be expressed 

as 
M-1 

CP-OFDM: Xl (n, p) = LSI (n, m)WMm(r-Lu ) (6.2.1) 
m=O 

Lu-l M-l 

ZP-OFDM: x2(n, p) = (1 - L 6(q - p)) L s2(n, m)WMm(r-Lu) (6.2.2) 
q=O m=O 

for p = 0"" ,P - 1, and P = Lv. + AI, where si(n, m) denotes the mth element of 

the nth block 8i(n}. 

sl(n) 
CP-OFDM L 51 (11) 

S 
H Equalization 

S2 (11) 52(11) 
jb1.1 i~.l jillJ ZP-OFDM b1.l 

C ... (lu-lr.O) D;q\.4.T.O) 

i j 

Figure f).1: Transceiver for ~lIMO-OFDrvI with guard interval diversity 
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Due to the multipath propagation, the received signal at the jth receive antenna 

can be expressed as 

(6.2.3) 

where vj(n,p) is the additive white Gaussian noise with zero mean and variance 0";, 
and uncorrelated for different n's and p'S, and independent with the signal; ZI,j(n,p) 

is the received CP-OFDM signal expressed by 

M-l L,,-1 
ZI,j(n,p) = L sl(n, m)lVMm(p-L,,) L h1,j(l)lV;:; 

m=O l=O 

P-l M-l 
xL 6(r - (p -I)) + L Sl(n - 1, m)lVMm(P-Lu) 

r=O m=O 

Lu-l P-l 
X L h1,j(l)lV;:;(l-P) L 6(r - (p -I + P)) (6.2.4) 

r=O 

and Z2,j(n, p) is the received ZP-OFDM signal given by 

L,,-1 M-l 
(1- L 6(q - p + I)) L s2(n, m)WMm(P-Lu) 

q=O m=O 

. Lu-l P-l -

x L h2,j(l)lV;:;l L 6(r - (p -l)) 
l=O r=O 

L,,-1 M-l 
+(1 - L 6(q - p + 1 - P)) L s2(n - 1, m)lV;:;(p-Lu

) 

q=O 

L,,-1 P-l 
X L h2,j(1)W;:;(l-P) L o(r - (p -I + P)) (6.2.5) 

l=O r=O 

The blind channel estimation algorithm is based on Eqn. (6.2.3). However, (6.2.3) 

brings difficulty for the description of channel equalization. To simplify the discussion 

on channel equalization, we next represent the received signal model in matrix form. 

Prior to equalization, the guard intervals are first removed to eliminate lSI. The 
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remaining information for each block is given by 

(6.2.6) 

According to the introduction in Chapter 1, Y'j(n) can be expressed as 

(6.2.7) 

where r 1,; denotes the circulant channel matrix of size AI x M; A 2,; de~otes the lower 

triangle channel matrix of size M x AI; v j (n) denotes the M x 1 noise vector. \Vith the 

knowledge of multichannel information, the original signal is possible to be recovered 

when at least two uncorrelated antennas are employed at the receiver. Let us consider 

the simplest case, i.e. j = 1,2, and define a vector y(n) = [yf(n) , yf{n)]T. The 

input signals to the demodulator can be expressed as 

y(n) = .JM (F~ 'H) (rl,l A2,1) s(n) + v(n) 
FM r 1,2 A 2,2 

(6.2.8) 

where, s(n) = [snn) , sf{n)]T and v(n) = [vf(n) , vf(n)]T. If the multichannel 

matrix is invertible, then ZF method can be employed to recover the original signals 

§(n) ~ _1_ ( FM ) (rl,l A 2,1) t y(n) 
m FM r l ,2 A 2,2 

(6.2.9) 

It can be observed that, the computation complexity for (6.2.9) is mainly arising from 

the matrix inverse"around O( 4AI2 log 2A1). It means that MIMO-OFDM with guard 

interval diversity may increase the receiver complexity compared with conventional 

CP-OFDM and ZP-OFDM transmissions. 

6.3 Blind channel estimation algorithm 

The blind channel estimation algorithm uses cyclostationarity of the received signal 

(6.2.3). To clarify the analysis, we first investigate the autocorrelation for CP-OFDM 
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and ZP-OFDM. 

According to the result in [57], the autocorrelation for transmitted CP-OFDM 

signals is given by 

£{Xl(n,p)x~(n,p f r)} 
P-M-l 

0";AI8(r) + [8(r - M) L 8(p - r) 
r=O 

P-l 

+8(r + A!) L 8(p - r)] (6.3.1) 
r=M 

Using (6.2.2) and (6.3.1), the autocorrelation for transmitted ZP-OFDM signals can 

be derived as 

P-M-l 

CX2X2 (nP + p j r) = 0"; AI 8 ( r ) (1 - L 8 (p - r)) (6.3.2) 
r=O 

where 0"; is the variance of information bearing symbols. 

Based on (6.3.1) and (6.3.2), we next investigate the autocorrelation for the re

ceived signals. Due to Zl,j(n,p), z2J(n,p) and vj(n,p) are uncorrelated each other, 

the autocorrelation for (6.2.3) can be expressed as 

CX1,;Xl,j (nP + p j r j q) + CX2 ,;X2,; (nP + p j r j q) + 0";8( r) 
Lu-l 

L hl,j(l)h~)l + r - q)CX1X1 (nP + p -1 ; q) 

Lu-1 

+ L h2,j(l)h;,j(l + r - q)CX2X2 (nP + p -1 ; q) 
l=O 

+0";8(r) (6.3.3) 

Let us define 

(6.3.4) 
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and plug (6.3.1) and (6.3.2) into (6.3.3), we can obtain 

L,,-1 

CYjYj(nP+PiTiq) = MO";[8(q) L(A1(l,T,q)+A2(I,T,q)) 
l=O 

L,,-1 P-M-l 

+8(q-M) L A1(l ,T ,q) L 8(p-r-l) 
l=O r=O 

L,,-1 P-M-l 

-8(q) L A2 (1 ,T ,q) L 8(p - r -1) 
l=O r=O 

L,,-1 P-l 

+8(q+M) L A1(l ,T ,q) L8(p-r-I)] 
r=M. 

(6.3.5) 

Now, we let q = M and simplify (6.3.5) as 

L,,-1 

CYjYj (nP + PiT i A1) A10"; L A1(l ,T ,AI) 
l=O 

P-M-l 

X L 8(p-r-l)+0";8(T) (6.3.6) 
r=O 

If q = 0, (6.3.5) can be rewritten into 

L,,-1 

Cyjyj(nP+p·;T ;0) = A10";[L(A1(l ,T ,0)+A2(l ,T ,0)) 
l=O 

L,,-1 P-M-l 

- L A2(l ,T ,0) L 8(p - r -l)] 
r=O 

(6.3.7) 

It can be observed that (6.3.6) only contains one subchannel information, which is 

possible to be blindly estimated. Assuming that the first subchannel information 
. 

is obtained, it is possible to blindly identify another subchannel information from 

(6.3.7). Based on (6.3.6) and (6.3.7), the following results will show the multichannel 

identifiability. 
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Theorem 6.3.1. (Sufficient condition) The channel impulse response hIJ can be 
uniquely identified from (6.3.6) with a phase ambiguity when conditions 1) p = 0, 
and 2) M ~ T ~ M + Lv. - 1 are satisfied. 

Proof. See Appendix 6.A. 

Theorem 6.3.1 shows that the first subchannel can be uniquely identified with a 

constant phase ambiguity. This ambiguity can be resolved using several pilot symbols 

in the frequency domain. However, (6.5.9) implies that the channel estimate perfor

mance is related to the power of h(O). The best performance will be achieved only 

when the strongest path is synchronized as the first path. Next, we introduce how to 

identify the other subchannel from (6.3.7). 

Theorem 6.3.2. (Sufficient condition) The channel impulse response h2,j can be 
uniquely identified from (6.3.7) when the conditions 1) p =" Lv., and 2) 0 ~ T ~ Lv.-1 
are satisfied. 

Proof. See Appendix 6.B. 

By now, we have shown that the multichannel information is uniquely identifiable 

by employing guard interval diversity. Unlike the technique using nonconstant pre

coding, the proposed scheme here does not impose anything on OFDM transmissions, 

and therefore will not affect the overall syst.em performance. Next, we use computer 

simulations to examine the channel estimate performance. 

6.4 Simulation Results 

To make a fair comparison with the nonconstant precoding approach, we set the 

system parameters as M = 12, Lv. = 4, and P = A1 + Lu = 16, which are the 

same as the settings in [61]. Each subcarrier is QPSK modulated. The sampled 

channel impulse responses used for our tests are also the same as that used in [61]. 
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The normalized MSE (NMSE) and the channel average bias (CAB) are both used to 

benchmark the channel estimation performance, which have been defined in [61] as 

the following 
I 2 A 2 

NMSE = _1_ L L IIhJL,i - hJL II 
2Lu1 i=l JL=l II ~JL 112 

and the channel average bias (CAB) defined as 

where 1 denotes the number of Monte Carlo trials. 

Test Case 1: In the first test, we examine CAB and MSE of the proposed blind 

channel estimator as a function of SNR for the fixed DRLs (N = 80, 500). Figure 

6.2 shows the following results: 

0.07 

'" 0.06 "', ili 

] 005 

(.,) 

& 0.04 

j 
0.03 

'Il> + ........... '+. 

°0~--~2~--~4----78----~8--~1~0--~12~--~14~ 

SNR (dB) 

Figure 6.2: The average channel bias as a function of SNR 
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1) \Vhen the DRL is not long enough (e.g. N = 80), the noise effects cannot be 

mitigated significantly. So, the CAB performance is not good in low SNR (e.g. 

< 4 dB). With increasing SNR, the performance are generally improved. 

2) When the DRL is much longer (e.g. N = 500), the CAB performance is sig

nificantly improved. Since the noise effects are well mitigated, the CAB is not 

very sensitive to SNR. 

3) The channel estimate performance is also affected by transmission schemes. \Ve 

can see that the channel estimate performance for the CP-OFDM transmission is 

better than that for the ZP-OFD1\1 transmission in the proposed MIMO system, 

because zero sequences in the ZP-OFDM transmission brings no inter-antenna 

interference to the CP-OFDM transmission. 

The MSE performance illustrated in Figure 6.3 also reflects the above features. In 

addition, we make a comparison between the proposed approach and the nonconstant 

precoding approach for N = 500. It is shown that the proposed approach outperforms 

the nonconstant precoding one within the SNR range 0 - 15 dB. Since these two 

approaches are not sensitive to SNR, we do not plot more result for higher SNR. 

Test Case 2: In this test, we benchmark the CAB and MSE as a function of 

DRL for the fixed SNR (= 11, 15 dB). Figure 6.4 shows that 

1) The CAB performance generally improves with increasing the DRL. However, 

the improvement is not significantly when the DRL is longer than 200. 

2) All curves are very close when the DRL is longer than 50. 

The MSE performance illustrated in Figure 6.5 confirms the above results again and 

also shows that 
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Figure 6.3: The mean square error as a function of SNR 
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Figure 6.4: The average channel bias as a function of data record length 
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3) The MSE results degrade fast with increasing the DRL, for N < 120. After 

this, the MSE performances become very good and degrade slowly. It can be 

observed the proposed approach has much faster convergence than that of the 

non constant precoding approach. 

4) For the DRL within the range (50 - 500), the proposed approach demonstrates 

much better channel estimate performance than the nonconstant precoding ap

proach when the SNR is 11 dB. Taking MSE= 0.2 as an example, the required 

DRL for the nonconstant precoding approach is around 400, but only 50 is 

needed for the proposed estimator. 
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Figure 6.5: The mean square error as a function of data record length 
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6.5 Conclusion 

This chapter has introduced a novel blind channel estimation method for MIMO

OFDM by exploiting guard interval diversity. This blind channel estimator exploited 

the second-order cyclostationary to yield unique ch(~.nnel estimates. Relying on the 

guard interval diversity, subchannels could be dealt with individually: The channel 

estimate performance has been examined for different SNR and DRL cases. Simu

lation results has shown that the proposed approach outperformed the nonconstant 

precoding approach in CAB and MSE performances. Based on the proposed MIMO-

OFDM system, future research may focus on improving the blind channel estimator 

by exploiting Cholesky decomposition. 

Appendix 6.A: Proof of Theorem 6.3.1 

To assure that (6.3.G) contain enough information for channel identification, the fol

lowing condition should be satisfied 
P-M-l 

L 8(p - r -1) = 1 (6.5.1) 
r=O 

Otherwise, (6.3.6) will only contains the noise part. The condition to fulfil (6.5.1) is 

given by 

o ::::; 1 = p - r ::::; Lu - 1 (6.5.2) 

For r E [0, Lu - 1], the range of p can be broadened as 

0::::; p::::; 4Lu - 2 (6.5.3) 

Based on this result, (6.3.6) can be rewritten into 

Lu- 1 

CYjYj (nP + p ; 7 ; AI) = Ala; L h1,j(l)hr,j(l +7 - AI) + a;8(7) (G.5.4) 
l=O,l=p-r 
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Now, we let p = O. (6.5.1) shows that (6.5.4) will not be zero only when I = 0 and 

r = o. Substituting these results into (6.5.4), we have 

(6.5.5) 

In order to guarantee the channel identifiability, (6.5.1) shows that the following 

condition should be satisfied 

o ~ 7- M ~ Lu-1 (6.5.6) 

which results in 

11,1 ~ 7 ~ M + Lu - 1 (6.5.7) 

Based on (6.5.7), we can see that 0-;<5(7) = 0, and the first channel tap h(O) can be 

obtained by setting 7 = A1, 

(6.5.8) 

where ¢ is the remained phase rotation. With the knowledge of h'l,j(O), the ot.her 

taps can be uniquely identified by setting A1 + 1 ~ 7 ~ A1 + Lu - 1, 

(6.5.9) 

This theorem is therefore proved. 

Appendix 6.B: Proof of Theorem 6.3.2 

Eqn. (6.3.7) contains two items, Ef;;1(A1(l ,7 ,0) + A2(1 ,7 ,0)) and 0-;<5(7), which 

are independent of the index p. lIenee, these two items can be removed from (6.3.7) 
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using the differential operation with respect to p, i.e., 

Vyjyj(nP + PiT i 0) Cyjyj(nP+p iT iO) -Cyjyj (nP+p-1 iT iO) 
Lu-1 P-M-l 

1\1 a; [L A2 (1 ,T ,0) L <5 (p - r - 1 - 1) 
l=O r=O 

Lu-l P .... M-l 

- L A2 (1 ,T ,0) L <5 (p - r - 1)] , 
r=O 

Lu-l P-M-l 

1\la; L A2 (1 ,T ,0)( L <5(p - r -1-1) 
l=O r=O 

P-M-l 

- L <5(p - r -1)) (6.5.10) 
r=O 

To assure V YjYj (nP + PiT i 0) '=I 0, the following condition should be satisfied, 

P-M-l P-M-l 

L <5 (p - r - 1 - 1) - L <5 (p - r - 1) '=I 0 
r=O r=O 

which leads to two cases 

{ 

~P:M-l <5( - r -1 - 1) -.l 0 
C 2 

L.....r-O p I ase . 
. E~:oM -1 <5 (p - r - I) = 0 

Let p = Lu = P -,1\1, Case 1 occurs only when 

{ 
0 ~ r = Lu - 1 - 1 ~ Lu - 1 

Lu - 1 > Lu - 1 ,or Lu - 1 < 0 

The solution to (6.5.14) is 1 = O. Similarly, Case 2 occurs only when 

{ 
1 ~ 1 ~ Lu - 1 

1 < 0 ,or 1 > Lu - 1 

(6.5.11) 

(6.5.12) 

(6.5.13) 

(6.5.14) 

(6.5.15) . 
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which results in 1 = Lv.. For 1 E [0, Lv. - 1], Case 2 will not occur. Next, we plug 

p = Lv. and 1 = 0 into (6.5.1O) and obtain 

(6.5.16) 

Hence, for 0 ::::; 7 ::::; Lv. - 1, the channel impulse response can be estimated using 

(6.5.17) 

h .( ) = [vYjYj(nP+Lti j7 jO)]* 
2,J 7 AIO";h2,j(0) (6.5.18) 

Theorem 2 is therefore proved. 



Chapter 7 (J) 

Performance on pilot-assisted 
channel estimation techniques 

7.1 Introduction 

Pilot-assisted channel estimation techniques are usually used in rapidly time-varying 

scenario, such as vehicle communications. Several OFDM-based standards have al

ready applied the pilot-assisted technique to track rapidly time-varying channels (see 

[5] and [lOlly By now, a number of pilot-assisted channel estimation algorithms have 

been reported, for instance LS-bascd ideal interpolation [40], transform domain inter

polation [47] and model-based interpolation [46], [80]. Among all existing approaches, 

the LS-based ideal interpolation always holds the best channel estimate performance 

when the availaLle pilot subcarriers are enough. Once the available pilot subcarri

ers are not enough, model-based approaches offer non-ideal interpolation algorithms. 

However, the interpolation error cannot be avoided and may decreases the overall 

system performance. 

In this chapter, we intend to analyze performance of some classical pilot-assisted 

channel estimation approaches and their applications. To achieve the tradeoff be

tween performance and Landwidth efficiency, a combined channel estimation method 

117 



118 

is proposed by employing the decision-directed (DD) algorithm. A pilot allocation 

scheme is also addressed for improving the channel estimate performance. Part of 

this chapter has been presented in [85]. 

7.2 Pilot-assisted channel estimation method 

7.2.1 Ideal interpolation: LS based method 

The LS-based method has been partly introduced in Chapter 2.3. To clarify our 

analysis, we rewrite (2.3.4) here 

zp(n) D(sp(n))F ph + vp(n) 

Qph + vp(n) 

and it is possible to identify the CSI using 

(7.2.1) 

(7.2.2) 

For the CIR, h, with length L'l.tl the channel identifiability is guaranteed only when 

the matrix Qp has full column rank. It means that the size of sp(n), which is denoted 

by Mp , should not be smaller than the channel length Lv.. This is the major limitation 

for the LS-based algorithm. In this case, the maximum bandwidth efficiency for CP

OFDM is given by 
AI- Lu 

T/max = At + Lv. (7.2.3) 

where, AI denotes the total number of subcarriers. Usually, the ratio between channel 

length and OFDM symbol duration is around 0.2 (see [10]). Using this coefficient, 

the maximum bandwidth efficiency, T/max, should be 0.67. 
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The channel estimate performance can be evaluated using the mean-square error, 

which can be derived from (7.2.2) 

f lib. - hll2 

Tr{QbE{vp (n)vp {n)?t} {Qb)?t} (7.2.4) 

(7.2.4) shows that the channel estimate error is caused only by the additive noise. If 

the additive noise is white, then (7.2.4) becomes 

(7.2.5) 

[40] has shown that, if the pilots are uniformly distributed over the whole bandwidth, 

the MSE result can be minimized as 

(7.2.6) 

We can see that the channel estimate performance is related to the number of pilots. 

Since the transform-domain approach (see [47]) is actually a kind of LS algorithm, 

the above results are also suitable for it. Next, we introduce the model-based channel 

estimation method. 

7.2.2 Polynomial interpolation: model-based channel esti
mation 

Model-based channel estimation is actually a kind of curve fitting approach. The main 

idea of this approach is using polynomial interpolation to recover the channel transfer 

function. Mathematically, the time-frequency polynomial model is a 2-dimensional 

Taylor expansion of the channel transfer function, which can be expressed as 

I-I J-l 

Hm,n = LLCm,n' nim; + GI,J 

;'=0 ;=0 

(7.2.7) 
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where Cm,n is the model coefficient, I and J are the polynomial order for the frequency 

and time domain respectively, m and n are the subcarrier and block indices respec

tively, and GI,J is the modelling error. To simplify our discussion, we just consider 

I-dimensional regression model in this document, i.e. 

I-I 

Hm= LCm·mi+GI (7.2.8) 
i=O 

where GI = rTf( al~V). If the polynomial order, I, is determined, (7.2.8) can be 

presented as the following matrix form 

h = VMc+g (7.2.9) 

where fi denotes the channel frequency-response vector of size AI x 1; the (l + 1) x 1 

vector c contains the polynomial coefficients; g is the interpolation error vector of 

size M x 1; V M is the Vandermonde matrix given by 

1 1 1 

1 2 21- 1 

VM = (7.2.10) 

1 All-1 

Hence, if c is determined, then the channel frequency-response can be estimated using 
" h = V MC with the estimate error g. 

Let p be the pilot spacing, the channel frequency-response on pilot subcarriers can 

be expressed as 

(7.2.11) 

where 

hp = [H(po) ,H(po + p), ... ,H(po + (Alp - l)p)V (7.2.12) 



121 

1 Po I-I 
Po 

1 Po+P (Po + p)I-l 
VM = (7.2.13) p 

1 (Po + (Alp - l)p)I-l 

and gp denotes error occurring on pilot subcarriers. :0 improve the channel estimate 

performance, gp is expected to be zero. This case occurs only when 

(7.2.14) 

(7.2.14) leads to the following three results: 

rl) If Mp < 1+1, then the polynomial coefficients, c, cannot be determined, because 

V Mp losses the full column rank. 

r2) If Alp = I + 1, then c can be determined using 

t -c = V M hp 
p 

(7.2.15) 

r3) If Alp> 1+ 1, then c can be determined using (7.2.15). Since V Mp is no longer 

a square matrix, i.e. V Mp vL
p 
i- IMp, errors on pilot subcarriers are given by 

(7.2.16) 

So, to mitigate the modelling error, we can divide Alp pilots into several groups, 

and each group contains I + 1 pilots. The vector c is then determined for different 

groups, and the channel frequency-response is identified group by group. The channel 

estimate error arising from additive noise can be found in [46]. 
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7.3 Combined channel estimators 

Chapter 7.2 has introduced that the LS-based channel estimator outperforms the 

model-based estimator when the number of pilots is not smaller than the channel 

length. The channel estimate performance can be increased by increasing the number 
, 

of available pilots. However, increasing available pilots may reduce the bandwidth 

efficiency. If the available pilots are not enough (Mp < Lu ), then the LS-based 

estimator does not work. To solve these problems, we propose combined channel 

estimators by employing the decision-directed (DD) algorithm. 

7.3.1 Double-LS estimator 

As illustrated in Figure 7.1 (a), the double-LS estimator employs two LS channel 

estimators to realize the DD algorithm with one iteration. It works only when the 

available pilots are large enough (Alp ~ Lu). The objective of this combined channel 

estimator (CCE) is to improve the channel estimate performance when Alp is specified. 

ncy-domain Freque 
sym bois K>- L 

ncy-domain Freque 
sym bois K <L 

~ 1st ML 
Estimator 

SOPM 
(Coarse estimation) 

~ Ideal 
Interpolation 2K 

(a) 

~ 
Interpolation 

~ within each 
grol4l K>L 

(b) 

(IV.s) LS channel MLchannel -1l. 
estimation 2K estimator 

Grol4l A'U) II equalization & MLchannel 
LS channel 
~ 

estimator 
estimation K>L 

Figure 7.1: mock diagram of combined channel estimators (a) double L8 estimator, 
(b) Polynomial+ML 
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For the double-L8 estimator, the first L8 estimator is used to find the initial 

channel estimate, which is used to recover the information-bearing symbols. Once 

the information-bearing symbols are determined, the second L8 estimator updates the 

channel estimate by regarding the recovered symbols as pilot symbols. To improve the 

channel estimate performance, the second L8 estimator does not use the subcarriers 

on deep fading, where the error probability is much higher than other' subcarriers. 

7.3.2 Polynomial+LS estimator 

When the number of pilots Mp < Lu , most of pilot-assisted channel estimators do not 

work, for instance L8 and transform domain interpolation approaches. Fortunately, 

the polynomial interpolation algorithm still works if the polynomial order I < Alp, 

even though its performance is not as good as that for ideal interpolation algorithm. 

Thus, for the case of I < Alp < Lu , we use polynomial+ ~8 estimator to improve the 

channel estimate performance. 

As illustrated in Figure 7.1 (b), the polynomial estimator is used to find the initial 

channel estimat~, which is used to recover the symbols. Next, the L8 estimator up

dates the channel estimate using the DD algorithm. [46] has shown that the channel 

estimate performance for the polynomial interpolation is affected by the pilot spacing. 

If the pilot spacing is too large, than the equalization performance may be consid

erably decreased. This may further affect the final channel estimate performance. 

Thus, we propose the following pilots arrangement for the CCE approach: 

1. The pilots are divided into Ng groups, and each group contains Np pilots with 

Np > I. 

2. The Ng groups are uniformly placed in the frequency band. 
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3. The Np pilots within each group are uniformly allocated with the pilot-spacing 

Pg· 

Based on this pilot arrangement scheme, the CCE estimator carries out the channel 

estimation as the following steps: 

s1) The polynomial estimator first finds the channel frequency-response within each 

group. The channel information between two consecutive groups will not be 

obtained. 

s2) Recover the symbols within each group using the partial channel estimate. 

s3) The L8 estimator utilizes the recovered symbols as the new pilots for the full 

channel estimation. 

From the above discussion, we can see that the full channel information is identifiable 

only when the number of available pilots fed to the L8 estimator is larger than the 

channel order. By employing the polynomial estimator, the total available pilots 

is increased fro~ }'1p to }'1p + pgNg. Thus, if }'1p + pgNg ~. L u , the full channel 

information can be uniquely identified. The channel estimate performance is affected 

by the parameters, Pg, Ng and Np• 

7.4 Simulations 

To investigate the pilot-assisted channel estimators, simulations examine the BER 

performance for OFDM systems with the following setup: A1 = 512 subcarriers, 

Lu = 50, information-bearing symbols are drawn from 16QAM constellations with 

equal probability. The multipath channel is modelled as a FIR filter. Each taps are 

generated according to the ET81 standard for digital cellular radios [79]. 
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Test Case 1: In this experiment, we make the performance comparison between 

LS and model-based methods. The model-based estimator employs a second-order 

polynomial for the interpolation, i.e. I = 2. The normalized maximum Doppler shift, 

c, is set to 4.16 x 10-3 and 10 x 10-3 respectively. The pilot spacing is set to p = 5. 

For a wide SNR range (0-50dB), Figure 7.2 shows the following results: 

1) When the pilot spacing is fixed, the LS estimator outperforms the model-based 

estimator throughout the wide SNR range. 

2) Within the low and middle SNR range (SNR< 40 dB), if the model-based es-

timator collects relatively more pilots, e.g. 9 pilots, for the channel estimation, 

then the overall system performance becomes much better. The reason here 

is that collecting more pilots can reduce the channel estimate error caused by 

additive Gaussian noise and leI [46]. In the high SNR range (SNR> 40 dB) 
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Figure 7.2: BER Vs SNR for the channel estimation in GSM channels (urban type). 
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with relatively small Doppler shift, the modelling error becomes the major in

terference, such that collecting less pilots, e.g. 3 pilots, may offer better BER 

performance. 

3) The ICI power affects the overall system performance particularly in the high 
, 

SNR range. 

Test Case 2: This experiment evaluates the performance of CCE estimators 

when the number of pilots is lager than the channel length. In simulations, the number 

of pilots is set to 50, which is the same as the channel length. The normalized Doppler 

shift is set to 2.13 x 10-3
• Figure 7.3 shows that, the double LS approach demonstrates 

the best performance among all approaches. It improves around 2 dB performance 

in comparison with the LS estimator for the middle SNR range (= 10 I"'<W 12 dB). 

The model-based approach has the worst performance because of its interpolation 

·0. 

10"OL--~2---'-4 ---8~-~---'-10---'12 

SNA (dB) 

Figure 7.3: BER Vs SNR for CCE estimators in GSM channels (urban type), c = 
2.13 X 10-3 • 
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error. Its performance can be improved by employing a LS estimator as the second 

estimator in the CCE approach. 

Test Case 3: When the number of pilots is smaller than the channel length, only 

model based and polynomial+LS estimators can be used for the channel estimation. 

To investigate the performance, the number of pilots'is set to 48. For the model-based 

approach, the pilots are uniformly allocated. For the CCE approach; the pilots are 

divided into Ng = 16 groups, and the pilot spacing is given by Pg = 5,10,15,20,25 

respectively. Wh~n the normalized Doppler shift is 4.16 x 10-3 , Figure 7.4 shows that 

the CCE approach may improve the BER performance for the SNR range (> 20 dB) 

when the pilot spacing is around 15. \\Then the normalized Doppler shift is decreased 

to 2.13 x 10-3, Figure 7.5 shows that the CCE approach may improve the BER 

performance when the pilot spacing P E [10,20]. It means that the CCE estimator is 

sensitive to ICI. 

7.5 Conclusion 

This chapter has investigated several pilot-assisted channel estimation approaches 

for OFDM systems in rapidly time-varying channels. It has been shown that the 

ideal int.erpolation algorithms were applicable only when t.he number of pilot.s was 

larger than t.he channel length. Otherwise, the polynomial interpolation approach 

could be employed for the channel estimation. To improve the channel estimate 

performance, two combine channel estimators have been proposed by employing the 

decision-directed algorithm. Simulation results have been provided to demonstrate 

the comparable performance of the CCE estimators. 
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Figure 7.4: BER Vs SNR for CCE estimators III GSM channels (urban type), c 
4.16 x 10-3 • 
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Chapter 8 

Blind estimation of frequency 
offset in unknown multipath fading 
channels 

This chapter introduces a novel blind estimation method of carrier frequency offset 

(CFO) for OFDM in unknown multipath fading channels. This method is based on 

the second-order cyclostationary statistics induced by the pulse shaping filter and 

sub carrier weighting function. A special weighting function is employed to make the 

estimation of frequency offset efficient. This chapter is partly presented in our paper 

[82]. 

8.1 Signal Model 

The baseband equivalent model of pulse-shaping OFDM signals can be expressed as 

(see [32]): 
N-l 00 

x(n) = L L Ck,lw(k)g(n - iAf)ej (21r/N)k(n-iM) (8.1.1 ) 
k=O i=-oo 

where N is the number of subcarriers; !l1 is the OFDM symbol length; g(n) is 

the pulse-shaping filter; w(k) is the suhcarrier weighting function, and Ck,l is the 
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information-bearing symbols. For 11.1 > N, the OFDM system is said to employ a 

time-frequency guard region. The guard region is usually introduced by cyclic prefix 

in the time domain and pilot subcarriers in the frequency domain. 

The symbol timing offset (STO) is modelled as a time shift, and the unknown 

CFO is represented as a frequency shift. The receivea complex envelope of the OFDM 

signals with STO and CFO is given by 

(8.1.2) 

where ne denotes the STO; Be E [-0.5, 0.5] denotes the normalized CFO; ¢ denotes 

the initial phase; v(n) denotes the wide sense stationary noise; XU) denotes the 

frequency domain representation of the OFDM signals. In the presence of multipath 

fading, the received signal become much complicated 

Lh-1 1 

r(n) = ei(27rO"n+¢) L f X (f) d 27rv(n-n,,-l)dj . h(l) + v(n) 
l=O Jo 

8.2 Blind estimation algorithm 

(8.1.3) 

To find the CFO, we consider the autocorrelation function of (8.1.3), which can be 

expressed as 

Rr(n, T) 
l=O m=O 

00 

x L g( n - ne - Tl - iA1) 
i=-oo 

(8.2.1) 

where 0'; is the variance of symbols; T is the autocorrelation delay; rl and r mare 

the multipath delay; lVN(r) = E~:ol Iw(k)12ei27r/Nkr. If T is fixed, (8.2.1) shows 
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that the function Rr(n, r) is periodic for the index n with the period M. The f cyclic 

spectrum of r( n, r) is defined as the kth slice of the two dimensional Fourier transform 

of r(n, r), i.e. 
M-l 

Qr(f, v) = I: I: Rr(n, r)e-i (2rr/M)lnee':"'i VT (8.2.2) 
n=O T 

It is tedious to prove but straightforward to show that 

Qr(f, v) = 2;;; 6(v - Oe) * [e-i(2rr/M)lnelVN(V) 

Lh-1 Lh-1 

X I: I: h1h:neiv(tm-taul)G(v + f~;) 
1=0 m=O 

xG*(v)] + Rv6(f) (8.2.3) 

where WN(v) = LT lVN(r)e-ivT . (8.2.3) shows that CFO only introduces a shift 

along the v direction. If the weighting function is defined as 

{

A (A > > 1), when k = ~ 
w(k) = 

1 , otherwise 

where A and ~ are constant, then we can obtain that 

_ { A2 (A »1), when k = ~ 
lVN(v) = . 

1 , otherwise 

(8.2.4) 

(8.2.5) 

Thus, WN(v) canbe looked as an impulse function in the v domain, and lVN(v) = 

A26(v -~) + 1. Let f =I- 0, (8.2.1) can be rewritten into 

(8.2.6) 

where 

Lh-1 Lh-l 

A = e-i (2rr/M)lne A2 I: I: hlh:neie(Tm-TdG(~ + f(27r / A1)G*(~) (8.2.7) 
l=O m=O 
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which is not related to the index v. It can be observed from (8.2.7) that the maximum 

value of Qr(t', v) with respect to v is achieved when v = ~ + Be. Let Fmax(Qr(f, v)) 

be this v, the blind estimate of CFO is given by 

(8.2.8) 

Since the effects of the channel distortion and other interferences are ,absorbed in A, 

(8.2.7) and (8.2.8) show that this CFO estimator is not sensitive to the channel fading 

and other interferences. Thus, it can be employed for the blind CFO estimation in 

the presence of unknown multipath fading. 

8.3 Simulations 

The simulations examine the proposed blind CFO estimator in a pulse shaping 16-

QAM OFDM system with 512 sub carriers and symbol duration of 5G2. The normal

ized CFO is set from 0.01 to 0.46. The multipath channel is modelled as a five-tap 

time-invariant FIR filter. The absolute error and MSE of the CFO estimate are il

lustrated in Figures 8.1 and 8.2, which demonstrate the good performance of the 

proposed estimator in the unknown multipath fading channel with SNR of 5 and 15 

dB respectively. From those figures, we can conclude that 

1) The absolute error and MSE are both very small even for small SNIt case, such 

as SNIt= 5 dB. 

2) The absolute error is not very sensitive to the frequency offset. Its range is 

limited within (0.001 """ 0.01). 

3) The MSE performance'is significantly improved with increasing CFO, particu

larly when the CFO is small. 
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4) For the small SNR (e.g. 5dB) and middle SNR (e.g. lOdB), the estimate 

performances have no significant difference. Thus, the proposed estimator is 

not very sensitive to the wide-sense stationary noise. 

8.4 Conclusion 

In this short chapter, we have introduced a novel blind CFO estimator for OFDM 

systems. Using the second-order cyclic statistics and a special subcarrier weighting 

function, the proposed estimator could identify the CFO parameter regardless of 

unknown multi path fading and unknown symbol timing mismatch. Simulation results 

have shown the excellent performance of this new CFO estimator. 
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Figure 8.1: Absolute error for CFO estimate with SNR= 5 dB and 15 dB respectively. 
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Figure 8.2: Mean square error for CFO estimate with SNR= 5 dB and 15 dB respec
tively. 



Chapter 9 

Conclusions and Future Work 

9.1 Thesis Summary 

In this thesis, we have investigated OFDM transmissions over unknown frequency

selective fading channels. It has been shown that, if the channel knowledge is un

known at receivers, most of OFDM systems need a channel estimator and a equalizer 

for the coherent or semi-coherent detection. When the channel is slowly time-varying, 

self-recovery equalization for OFDM systems is possible by employing blind channel 

estimators (addressed in Chapters 3, 4, and 6) and the superimposed training scheme 

(addressed in Chapter 5). When the channel is rapidly time-varying, pilot-assisted 

channel estimation method may be a good solution. Chapter 7 has investigated ex

isting pilot-assist,ed channel estimator for OFDM and proposed combined channel 

estimators by utilizing the iterative algorithm. In time-varying channels, CFO in

duced by Doppler shift may reduce the channel estimation performance. Thus, in 

Chapter 8, we has developed a novel CFO estimator, which can identify CFO with

out need of the channel knowledge. Detail of my PhD work is summarized as the 

following: 

Chapter 1 has briefly reviewed OFDM systems, including typical and BP-OFDM 
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transmissions. The symbol recovery conditions have been carefully investigated in 

frequency-selective fading channels. Several drawbacks of OFDM systems have also 

been addressed. 

Chapter 2 has introduced existing channel estimation methods for OFDM systems, 

including training based, pilot-assisted and blind approaches. The channel estimation 

performance for training based and pilot assisted approaches have been theoretically 

evaluated using MSE analysis. The optimum training sequences have been designed 

to minimize MSE in color noise environment. 

In Chapter 3, a novel self recovery scheme have been developed for the ICI self

cancelling OFDM system. To improve the overall system performance, we have pro

'posed a differential ICI self-cancelling scheme equipped with a semi-coherent signal 

detector. This new scheme only needs partial channel information for the signal 

detection, and thus reduces complexity for blind channel estimation. 

The blind channel estimation algorithms used for ICI self-cancelling scheme relies 

on the sub carrier correlation. In fact, the subcarrier correlation also exists in BP

OFDM systems., Based on this idea, Chapt.er 4 has proposed the modified BP-OFDM 

system to enable self recovery schemes. The modified BP-OFDM has demonstrated 

its very good performance in slowly time-varying channels. 

In Chapter 5, we have investigated a superimposed training scheme for OFDM sys

tems. A first-order statistics based channel estimation algorithm has been proposed 

for identifying time-invariant or slowly time-varying channels. The mean-square chan

nel estimate error has been carefully analyzed for CP-OFDM, ZP-OFDM and space

time block coded OFDM systems. Optimum superimposed training sequences have 

been designed for OFDM with single transmit antenna and STBC-OFDM with two 
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transmit antennas. It has been established that the superimposed training scheme 

offered a low-complexity channel estimator, and thus reduced the complexity of the 

blind receiver. 

Chapter 6 has developed a novel multi-antenna based OFDM transmission schemes. 

Two transmitted OFDM signals from two uncorrelated transmit antennas were gen

erated by different OFDM modulators. In other words, one transmit antenna sent 

CP-OFDM signals, and the other sent ZP-OFDM. This kind of transmission enabled 

a second-order cyclostationary based blind channel estimator at the receiver. The 

multichannel information could be easily separated without imposing any additional 

information on the transmitted signals. Simulation results demonstrated the compa

rable performance of the proposed channel estimator. 

Chapter 7 investigated performance of existing pilot-assisted channel estimation 

methods for OFDM systems, including ideal interpolation and polynomial interpola

tion approaches. Based on the performance analysis, two types of combined channel 

estimator have been developed using decision directed algorithms. It has been shown 

that the CCE approaches could improve the overall system performance in related to 

traditional approaches with increasing a little bit complexity. 

In Chapter 8, a novel CFO estimation method has been developed for pulse

shaping OFDM systems. This method exploited the cyclic statistics induced by pulse

shaping filter and subcarrier weighting function. It has been shown that the CFO 

could be well identified without need of the channel knowledge and the symbol timing 

mismatch. 
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9.2 Future Plan 

Recently, OFDM has been selected as a candidate for the fourth generation (4G) mo

bile communication systems. Due to the high mobility and large operation frequency 

( e.g. 5G-60G Hz), propagation channels become ~ery time-selective. The channel 

may varies even in one OFDM symbol. It brings big challenges in the channel es

timation and equalization. This problem is possible to be solved by employing the 

pilot-assisted joint frequency offset and channel estimation method. However, very 

few results have been reported so far on this subject. This motivates me to start 

my future work on piJot:-assisted joint frequency offset and channel estimation for the 

multiuser OFDM. Both downlink and uplink will be considered. 
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