19 research outputs found

    Peramalan Kunjungan Wisatawan Mancanegara Menggunakan Generalized Regression Neural Networks

    Get PDF
    Peramalan kunjungan wisatawan mancanegara (wisman) sangat penting bagi pemerintah dan industri, karena peramalan menjadi dasar dalam perencanaan kebijakan yang efektif. Penelitian ini menggunakan Generalized Regression Neural Network (GRNN) untuk meramalkan kunjungan wisman menurut 19 pintu masuk utama dan kebangsaan, seperti: Ngurah Rai, Soekarno-Hatta, Batam, Tanjung Uban, Polonia, Juanda, Husein Sastranegara, Tanjung Balai Karimun, Tanjung Pinang, Tanjung Priok, Adi Sucipto, Minangkabau, Entikong, Adi Sumarmo, Sultan Syarif Kasim II, Sepinggan, Sam Ratulangi, Bandara Internasional Lombok, dan Makassar. GRNN memiliki kelebihan tidak memerlukan estimasi jumlah bobot jaringan untuk mendapatkan arsitektur jaringan optimal, sehingga tidak memerlukan pengaturan parameter bebas. Uji coba penelitian dilakukan dengan menggunakan spread dari 0,1 sampai 1,0. Hasil uji coba menunjukkan bahwa kinerja Peramalan terbaik dengan menggunakan spread 0,1 baik untuk data latih maupun data uj

    Performance Analysis of No Reference Image quality based on Human Perception

    Get PDF
    In this work, a No-Reference objective image quality assessment based on NRDPF-IQA metric and classification based metric are tested using LIVE database, which consisting of Gaussian white noise, Gaussian blur, Rayleigh fast fading channel, JPEG compressed images, JPEG2000 images. We plot the Spearman’s Rank Order Correlation Coefficient [SROCC] between each of these features and human DMOS from the LIVE-IQA database using our proposed method to ascertain how well the features correlate with human judgement quality. The analysis of the testing and training is done by SVM model. The proposed method shows better results compared with the earlier methods. Finally, the results are generated by using MATLAB.DOI:http://dx.doi.org/10.11591/ijece.v4i6.678

    Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Get PDF
    Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted) ELM, and propose a modified (weighted) extreme learning machine (M-ELM and M-WELM). Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment

    An Algorithm for Real-Time Blind Image Quality Comparison and Assessment

    Get PDF
    This research aims at providing means to image comparison from different image processing algorithms for performance assessment purposes. Reconstruction of images corrupted by blur and noise requires specialized filtering techniques. Due to the immense effect of these corruptive parameters, it is often impossible to evaluate the quality of a reconstructed image produced by one technique versus another. The algorithm presented here is capable of performing this comparison analytically and quantitatively at a low computational cost (real-time) and high efficiency. The parameters used for comparison are the degree of blurriness, information content, and the amount of various types of noise associated with the reconstructed image. Based on a heuristic analysis of these parameters the algorithm assesses the reconstructed image and quantify the quality of the image by characterizing important aspects of visual quality. Extensive effort has been set forth to obtain real-world noise and blur conditions so that the various test cases presented here could justify the validity of this approach well. The tests performed on the database of images produced valid results for the algorithms consistently. This paper presents the description and validation (along with test results) of the proposed algorithm for blind image quality assessment.DOI:http://dx.doi.org/10.11591/ijece.v2i1.112 

    Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment

    Get PDF
    In the current world, user experience in various platforms matters a lot for different organizations. But providing a better experience can be challenging if the multimedia content on online platforms is having different kinds of distortions which impact the overall experience of the user. There can be various reasons behind distortions such as compression or minimal lighting condition while taking photos. In this work, a deep CNN-based Non-Screen Content and Screen Content NR-IQA framework is proposed which solves this issue in a more effective way. The framework is known as DNSSCIQ. Two different architectures are proposed based upon the input image type whether the input is a screen content or non-screen content image. This work attempts to solve this by evaluating the quality of such image

    Quality assessment for virtual reality technology based on real scene

    Get PDF
    Virtual reality technology is a new display technology, which provides users with real viewing experience. As known, most of the virtual reality display through stereoscopic images. However, image quality will be influenced by the collection, storage and transmission process. If the stereoscopic image quality in the virtual reality technology is seriously damaged, the user will feel uncomfortable, and this can even cause healthy problems. In this paper, we establish a set of accurate and effective evaluations for the virtual reality. In the preprocessing, we segment the original reference and distorted image into binocular regions and monocular regions. Then, the Information-weighted SSIM (IW-SSIM) or Information-weighted PSNR (IW-PSNR) values over the monocular regions are applied to obtain the IW-score. At the same time, the Stereo-weighted-SSIM (SW-SSIM) or Stereo-weighted-PSNR (SW-PSNR) can be used to calculate the SW-score. Finally, we pool the stereoscopic images score by combing the IW-score and SW-score. Experiments show that our method is very consistent with human subjective judgment standard in the evaluation of virtual reality technology

    A cockpit of multiple measures for assessing film restoration quality

    Get PDF
    In machine vision, the idea of expressing the quality of a films by a single value is very popular. Usually this value is computed by processing a set of image features with the aim of resembling as much as pos- sible a kind of human judgment of the film quality. Since human quality assessment is a complex mech- anism involving many different perceptual aspects, we believe that such approach may scarcely provide a comprehensive analysis. Especially in the field of digital movie restoration, a single score can hardly provide reliable information about the effects of the various restoring operations. For this reason we in- troduce an alternative approach, where a set of measures, describing over time basic global and local visual properties of the film frames, is computed in an unsupervised way and delivered to expert evalu- ators for checking the restoration pipeline and results. The proposed framework can be viewed as a car or airplane cockpit , whose parameters (i.e. the computed measures) are necessary to control the machine status and performance. This cockpit, which is publicly available online, would like to support the digital restoration process and its assessment

    Hierarchical Feature Extraction Assisted with Visual Saliency for Image Quality Assessment

    Get PDF
    corecore