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Image quality assessment (IQA) is desired to evaluate the perceptual quality of an image in a manner consistent with subjective
rating. Considering the characteristics of hierarchical visual cortex, a novel full reference IQA method is proposed in this paper.
Quality-aware features that human visual system is sensitive to are extracted to describe image quality comprehensively. Concretely,
log Gabor filters and local tetra patterns are employed to capture spatial frequency and local texture features, which are attractive to
the primary and secondary visual cortex, respectively. Moreover, images are enhanced before feature extraction with the assistance
of visual saliency maps since visual attention affects human evaluation of image quality. The similarities between the features
extracted from distorted image and corresponding reference images are synthesized and mapped into an objective quality score
by support vector regression. Experiments conducted on four public IQA databases show that the proposed method outperforms
other state-of-the-art methods in terms of both accuracy and robustness; that is, it is highly consistent with subjective evaluation
and is robust across different databases.

1. Introduction

Image processing plays an indispensable role in our daily lives
and numerous professional fields. However, there exist many
factors that would potentially degrade image quality during
image acquisition, compression, transmission, restoration,
and other procedures [1].Therefore, image quality assessment
(IQA), which aims to automatically estimate the quality loss
due to distortions, is crucial for various image process-
ing systems in performance estimate and optimization [2].
Since human visual system (HVS) is the ultimate receiver
of images, subjective IQA completed by human observers
always reflects the perceptual quality of images faithfully, yet
it is cumbersome, time-consuming, and unstable, resulting
in its impracticability to be applied in real-time systems
[3]. Thus, accurate and robust objective IQA methods that
automatically evaluate the image quality are urgently needed.
Generally, objective IQA methods can be divided into three
classes according to the availability of the corresponding
undistorted reference image, i.e., full reference (FR), reduced
reference (RR), and no reference (NR) [1–3]. FR methods
require full access to the distortion-free reference image;

conversely, NR methods have no access to the reference
image, while RR methods make use of partial information
about the reference image. In this paper, our work is confined
to FR methods, which evaluate image quality by measuring
the disparity between the reference and distorted images.

The early proposed FR methods, such as mean squared
error and peak signal-to-noise ratio, are calculated simply
according to the pixel-wise intensity. Without regarding
the properties of HVS, they are widely criticized for not
correlating well with subjective ratings [4]. Later explored
methods that try to simulate the function of HVS, such as
noise quality measure [5], are blamed for high computational
complexity with small performance gain. The popular struc-
tural similarity method (SSIM) [6], along with its improved
versions [7, 8], calculates the structural information fidelity
to measure the quality degradation. Moreover, natural image
statistics are also introduced for feature extraction [9]. Great
efforts have been made to develop more comprehensive
features to accurately quantify human’s subjective perception
upon image quality.The implementation ofmore complicated
feature extraction schemes can be found inmore recentworks
[10, 11].
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Figure 1: General framework of full reference IQA.
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Figure 2: Framework of the saliency-assisted hierarchical feature extraction.

Numerous studies have confirmed that the desirable
image features for IQA should be relevant to image quality
closely and correlate well with human’s subjective sensation
[5]. Since each of the quality indexes only reveals image
quality from a certain aspect, a constructive solution is to
employ a comprehensive description that includes features
representing quality in different aspects, which is exactly
what we attempt to achieve based on the knowledge of
the hierarchical properties of HVS. Specifically, different
areas in visual cortex show different interests in images,
and the primary and secondary visual cortex (areas V1 and
V2), occupying the two largest parts in visual cortex and
which are most responsible for the generation of vision,
are sensitive to spatial frequency information and texture
information of images, respectively [12, 13]. Based on this fact,
log Gabor filters and local pattern analysis are employed in
this paper to extract the two kinds of features, respectively.
Moreover, the feature extraction and further implementation
stages are conducted with the assistance of visual saliency
information.

The contribution of this paper lies in the following: (1) a
comprehensive indicator of image quality is proposed based
on extracting hierarchical quality-aware features that are
attractive to HVS with the assistance of visual saliency maps;
(2) by statistically quantifying the difference between the
quality indicators of distorted images and the corresponding
reference images, an effective quality assessment method is
developed, which is proved accurate and robust on multiple
databases.

2. Proposed Method

The proposed method follows a three-step framework as
shown in Figure 1. Firstly, features assumed to well represent
image quality are extracted from the tested and reference
images. Then, the similarities between these features are
quantified and regarded as indices that reveal the quality of
the tested image. The final step is to build a function that
synthesizes the quality indices into an objective quality score𝑄𝑂.

The framework of feature extraction is shown in Figure 2,
which can be divided into two stages. In the first stage, the
visual important regions of the test and reference images are
enhanced with the assistance of saliency map. The second
stage is hierarchical feature extraction. As is explained and
shown in Figure 2, the spatial frequency and local texture
information are captured separately as the lower- and higher-
level features. Each procedure involved will be elaborated in
the sections below.

2.1. Saliency-Assisted Visual Regions Highlight. Visual atten-
tion is usually represented by visual saliency in computer
vision; higher saliency value denotes more attention it
receives. Distortions in the regions with more attention have
a larger impact on subjective sensation than that in less
attractive regions [14]. Intuitively, visual saliency is intrinsi-
cally related to IQA, since both depend on the behavior of
HVS.Thus, researchers have been trying to integrate saliency
models into IQA and made a significant progress [15, 16]. In



Journal of Engineering 3

(a)

(b)

(c)

(d)

(e)

Saliency detection

Saliency-assisted

enhancement

Saliency-assisted

enhancement

Figure 3: Image enhancement with the assistance of saliency map.

this paper, we use visual saliency to enhance the images by
highlighting the more important regions in an image.

The saliency map is computed based on the reference
image since the significant information for capturing saliency
maps may be damaged in a distorted image. Among various
approaches to construct saliency maps, the spectral residual
(SR) visual saliency model [17] is adopted in this paper
owing to its robustness and low complexity. The obtained
saliency map is then combined with the images by pixel-wise
multiplication,

𝐼𝐸 (𝑥, 𝑦) = 𝐼𝑂 (𝑥, 𝑦) × SM (𝑥, 𝑦) , (1)

where SM is the saliency map, 𝐼𝑂 is the original image,
and 𝐼𝐸 is the enhanced image. Subsequent feature extraction
is operated on 𝐼𝐸. Figure 3 shows the effect of saliency-
assisted enhancement, (a) is the reference image “bikes,”
(b) is its distortion version contaminated by JPEG 2000
compression (JP2K), both taken from the LIVE database [18],
(c) is the saliency map computed based on the intensity of
the reference image (a), and (d) and (e) are the enhanced
reference and distorted images. It can be observed that the
luminance in more salient regions are relatively brighter than
other regions.

2.2. Hierarchical Quality-Aware Feature Extraction. As is
known, the hierarchical properties of the visual cortex are
very complex. Each hierarchy is interested in different kinds
of visual features; among them, the primary and secondary
visual cortex areas (V1 and V2) are the first receivers of
visual signal from eyes, occupy the two largest parts in the
visual cortex, and are most responsible for the generation of
early vision [12]. Therefore, we emphasize the importance of
V1 and V2 in IQA problem. Since V1 is sensitive to simple

features like edge, bar, local frequency, etc., while V2 tends
to be attracted to higher-level features like local texture and
shape information [13], in this paper, the spatial frequency
features and local texture features are captured and integrated
for a comprehensive description of image quality. Concretely,
the spatial frequency features are represented by the energy
maps deriving from a log Gabor filter bank, and the local
texture features are denoted as the coding results from local
directional texture analysis.

To begin with, Gabor filters are widely used to capture
spatial frequency information from images for the multiscale
and multidirection properties similar with HVS. However,
there exists apparent flaws with Gabor filters for the purpose
of IQA application [19]. Firstly, the DC componentmakes the
filter response depend largely on the gray scale of the smooth
regions, which is undesirable because stronger responses are
expected to occur in complicated regions rather than smooth
bright regions. Secondly, the maximum bandwidth of Gabor
filters is limited to approximately 1 octave. Thirdly, they are
insufficient to cover broad spectral informationwithmaximal
spatial localization. As an alternative to Gabor filters, log
Gabor filters remove the DC component and have a Gaussian
transfer function on logarithmic axis, enabling it to capture
information on a broader bandwidth [20]. The filters are
defined in a polar coordinate; its radial and angular responses
are defined as

LG (𝑓) = exp(− [log (𝑓/𝑓0)]22𝜎𝑓2 ) ,
LG (𝜃) = exp(− (𝜃 − 𝜃0)22𝜎𝜃2 ) ,

(2)
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Figure 4: The magnitude maps of the log Gabor filter responses of an enhanced original image and its distorted version.

where (𝑓, 𝜃) represent the polar coordinates,𝑓0 and 𝜃0 denote
the center frequency and orientation angle of the filter, and𝜎𝑓
and 𝜎𝜃 denote the scale and angular bandwidths, respectively.
The overall frequency response is calculated as the product of
the two components. With different 𝑓0 and 𝜃0, a log Gabor
filter can be defined in various scales and orientations. In this
paper, a 6-scale and 4-direction filter bank is involved for
multiscale and multidirection feature extraction. Moreover,
a fast Fourier transform (FFT) is applied to speed up the pro-
cess. After filtering the redundant information in frequency
domain, an inverse FFT is operated to project the responses
back to spatial domain. For each filter of specific scale and
orientation, the response is composed of a complex matrix,
the magnitude of which is regarded as the extracted spatial
frequency feature.

Given the enhanced reference image and its distorted
version, shown as Figures 3(d) and 3(e), Figure 4 shows the
log Gabor filter responses of them at a certain scale in four
directions; that is, 0∘, 45∘, 90∘, and 135∘, (a–d) are response
magnitude maps of the enhanced reference image and (e–h)
are that of the distorted image. It shows that the distortion
causes obvious damage on the log Gabor filter responses,
indicating that log Gabor filters can act as effective indicators
of image quality.

The log Gabor filter bank gives a quality description from
the prospective of low-level spatial frequency information;
however, it is unable to capture the higher-level texture and
shape information, which is of great significance for V2 [13].
For compensation, local texture features are extracted to
comprehensively describe image quality. Specifically, the first-
order local tetra pattern analysis in directional perspective is
adopted [21], because it captures more detailed and discrim-
inative information than simple local pattern analysis tools
like local binary pattern and is only moderately complex in
computation.

Given a pixel 𝑔 in an image, let 𝐼𝑔, 𝐼ℎ, and 𝐼V denote
the intensity of 𝑔 and its right and below adjacent pixels,
respectively; then the directions of the pixels are defined as 1,

2, 3, or 4 according to the relationship between the intensities
of target pixel and its horizontal and vertical neighbors,

Dir (𝑔) =
{{{{{{{{{{{{{{{

1, 𝐼ℎ ≥ 𝐼𝑔, 𝐼V ≥ 𝐼𝑔2, 𝐼ℎ ≥ 𝐼𝑔, 𝐼V < 𝐼𝑔3, 𝐼ℎ < 𝐼𝑔, 𝐼V < 𝐼𝑔4, 𝐼ℎ < 𝐼𝑔, 𝐼V ≥ 𝐼𝑔.
(3)

In this way, the image is coded to a texture map with each
item equal to an integer ranged from 1 to 4. Finally, based on
the resulting direction value of pixels in image, four texture
maps TM𝑖 (𝑖 = 1, 2, 3, 4) are calculated as the texture features,

TM𝑖 (𝑔) = 7∑
𝑗=1

(2𝑗 × sgn (𝑔𝑗)) ,
sgn (𝑔𝑗) = {{{

1, Dir (𝑔𝑗) = 𝑖
0, Dir (𝑔𝑗) ̸= 𝑖,

(4)

where 𝑔𝑗 (j = 0 to 7) denotes the jth pixel out of eight
neighboring pixels of 𝑔.

Apparently, the distortion that an image suffers also have
impact on texture patterns, as shown in Figure 5, where
(a–d) are the patterns calculated from the enhanced reference
image, (e–h) are calculated from the distorted image, and the
involved reference and distorted images are the same with
that used in Figure 4.The extracted patterns (a–d) are texture
clear, while the texture information in (e–h) is apparently
disrupted.

2.3. Difference Measurement of Extracted Features. It is no
doubt that the inherently quality-aware information con-
tained in extracted features will be damaged by distortion,
and the difference between the features extracted from the
enhanced reference and distorted images is considered as



Journal of Engineering 5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: The texture maps of an enhanced reference image and its distorted version.
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Figure 6: Scatter map of distortion level versus CD in different directions.

quality indices. In this paper, chi-square distance (CD) is
used to measure the difference between the spatial frequency
features extracted by log Gabor filters,

CD (LG𝐷𝑓,𝜃, LG𝑅𝑓,𝜃) = 1𝑀
𝑀∑
𝑘=1

(LG𝐷𝑓,𝜃 (𝑘) − LG𝑅𝑓,𝜃 (𝑘))2
LG𝐷
𝑓,𝜃 (𝑘) + LG𝑅

𝑓,𝜃 (𝑘) , (5)

where the inputs LG𝑓,𝜃 denote the log Gabor response at
frequency 𝑓 and orientation 𝜃, superscripts 𝐷 and 𝑅 denote
distorted and reference images, respectively, and 𝑀 is the
total number of items in a magnitude map.

For validation of the effectiveness of CD measurement
as a quality index, Figures 6 and 7 exhibit the relation
between the distortion level and CD in different directions
and scales. And the reference image Figure 3(a) and its
distorted images contaminated by JP2K at six levels are
used to calculate the CD. The vertical axis represents CD,
and the horizontal axis represents distortion level, which
is determined by differential mean opinion score (DMOS).
Note that, for an image in database, its mean opinion score
(MOS) or differential mean opinion score (DMOS) is the
subjective image quality score assigned to it obtained from
experiments conducted on human observers. The features
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involved in Figure 6 are the responses of log Gabor filters in
four directions at the first scale, that is, 0∘, 45∘, 90∘, and 135∘,
marked with different color.The features involved in Figure 7
are the log Gabor filter responses at six scales in direction 0∘,
with a view to demonstrate the distinction among different
scales. Intuitively, with the filter scale increasing, the relative
CD decreases rapidly, which is mainly because responses in
higher scales abandon a lot of detailed information and the
difference between the responses of reference and distorted
images is thus relatively subtler. It can be clearly seen from
Figures 6 and 7 that severer distortion always results in larger
CD, which agrees with the human visual perception.

In addition, cosine similarity (CS) is utilized to quantify
the difference between the local texture features of the
reference and distorted images,

CS (TM𝐷𝑖 ,TM𝑅𝑖 ) = ∑𝑁𝑙=1 (TM𝐷𝑖 (𝑙) ⋅ TM𝑅𝑖 (𝑙))
√∑𝑁𝑙=1 TM𝐷𝑖 (𝑙) ⋅ ∑𝑁𝑙=1 TM𝑅𝑖 (𝑙) , (6)

where the inputs TM𝑖 denote pattern of direction 𝑖, the
superscripts 𝐷 and 𝑅 denote distorted and reference images,
respectively, and N is the total number of items in TM.

Similarly, Figure 8 further illustrates the validity of CS
measurement as a quality index. Figure 8 shows a monotonic
relationship between distortion level and CS; severer distor-
tion always results in smaller CS, which demonstrate that the
extracted local texture features are of great effectiveness to
indicate image quality and the CS is an efficient quality index.

2.4. Objective Quality Mapping by Support Vector Regression.
For multifeature extraction based methods, a necessary
operation is to construct a regression function that projects
the calculated quality indices to an objective quality score.
Different regression techniques such as general regression
neural networks (GRNN) [22], multiple kernel learning
(MKL) [23], and SVR [24] can be used to learn the regression
model. In this paper, the SVR technique is adopted for
its high performance on high-dimensional regression [3].
Specifically, 𝜀-SVR is employed, and a LIBSVM package is
utilized for the implementation [25].

Given a training set {(x1, 𝑦1), . . . , (x𝑘, 𝑦𝑘)}, where x𝑖, 𝑖 =1, . . . , 𝑘, is the feature vector of the 𝑖th image in the training set
of size k and 𝑦𝑖 is the subjective quality score (MOS/DMOS),
we try to find a function 𝐹 that has the deviation of at most 𝜀
from 𝑦𝑖 for all the training data with the constraint of flatness,
that is, seeking a smallw [25].The regression function can be
represented as

𝐹 (x) = w𝑇𝜑 (x) + 𝑏, (7)

where 𝜑 is a nonlinear function used to map the input feature
vector x into a high-dimensional space,w is theweight vector,
and 𝑏 is the bias term.

Appropriate w and 𝑏 should be found to satisfy the
following constraint:

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝐹 (x𝑖)󵄨󵄨󵄨󵄨 ≤ 𝜀. (8)

By introducing the slack variables 𝜉𝑖 and 𝜉∗𝑖 , w and 𝑏 can
be obtained by solving the following optimization problem
[24]:

minimize 12 ‖w‖2 + 𝐶 𝑘∑
𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 )
subject to w𝑇𝜑 (x𝑖) − (𝑦𝑖 − 𝑏) ≤ 𝜀 + 𝜉𝑖

𝑦𝑖 − 𝑏 − w𝑇𝜑 (x𝑖) ≤ 𝜀 + 𝜉∗𝑖
𝜉𝑖, 𝜉∗𝑖 ≥ 0,

(9)

and the constant 𝐶 determines the trade-off between w and
the slack variables.

As shown in [24], w can be calculated by

w = 𝑛SV∑
𝑖=1

(𝜂𝑖∗ − 𝜂𝑖) 𝜑 (x𝑖) , (10)

where 𝜂𝑖∗ and 𝜂𝑖 are the Lagrange multipliers used in the
Lagrange function optimization and 𝑛sv is the number of sup-
port vectors. For data points satisfying (8), the corresponding𝜂𝑖∗ and 𝜂𝑖 will be zero, and the training data with nonzero 𝜂𝑖∗
and 𝜂𝑖 are support vectors used to find w. Combining (7) and
(10), the regression function can be written as

𝐹 (x) = 𝑛SV∑
𝑖=1

(𝜂𝑖∗ − 𝜂𝑖) 𝜑 (x𝑖)𝑇 𝜑 (x) + 𝑏, (11)

and then the radius basis kernel function 𝐾 can be defined as

𝐾 = 𝜑 (x𝑖)𝑇 𝜑 (x) = 𝑒−𝛾‖x𝑖−x‖2 , (12)

where 𝛾 defines the width of the kernel.
In addition, a fivefold cross-validation scheme is adopted

for the training and testing procedure. Concretely, images in a
database are divided randomly into five nonoverlapping sets,
four of them are used for training and the remaining one
for testing, that is, 80% for training and 20% for testing. The
cross-validation procedure is repeated 1,000 times and the
experimental results presented in this paper are the averaged
value.

3. Experimental Results and Discussions

3.1. Experiment Setup. The performance of the proposed
method is examined on four large-scale databases, including
LIVE [18], TID2008 [26], TID2013 [27], and CSIQ [2]. Each
database contains distorted images contaminated by various
types of distortions at different levels, and each distorted
image is assigned a subjective quality score (MOS/DMOS).
The basic information of the four public databases is intro-
duced in Table 1.

To evaluate the performance of IQA methods in terms
of accuracy, monotonicity, and consistency, four commonly
used metrics are calculated, including Pearson Linear Cor-
relation Coefficient (PLCC), Spearman Rank-Order Corre-
lation Coefficient (SROCC), Kendall Rank-Order Correla-
tion Coefficient (KROCC), and Root Mean Squared Error
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Table 1: Basic information of four databases.

Database Reference images Distorted images Distortion types Resolution Observers
LIVE 29 779 5 Various 161
CSIQ 30 866 6 512 × 512 35
TID2008 25 1700 17 512 × 384 838
TID2013 25 3000 24 512 × 384 971

(RMSE) [8]. Note that a better IQA method is supposed to
achieve higher PLCC, SROCC, KROCC, and lower RMSE
values. PLCC indicates the linear coherency between the
objective and subjective scores. For the 𝑖th image in a database
of size N, given its subjective quality score 𝑆𝑖 and predicted
objective quality score 𝑂𝑖, PLCC and RMSE can be computed
as

PLCC = ∑𝑁𝑖=1 (𝑂𝑖 − 𝑂) (𝑆𝑖 − 𝑆)
√∑𝑁𝑖=1 (𝑂𝑖 − 𝑂)2√∑𝑁𝑖=1 (𝑆𝑖 − 𝑆) ,

RMSE = √ 1𝑁
𝑁∑
𝑖=1

(𝑂𝑖 − 𝑆𝑖)2.
(13)

The nonparametric rank-based correlation metrics,
SROCC and KROCC, which test the coherency between
the rank orders of the scores to measure the prediction
monotonicity, are given by

SROCC = 1 − 6 ∑𝑁𝑖=1 (𝑂𝑖 − 𝑆𝑖)2𝑁 (𝑁2 − 1) ,
KROCC = 𝑁𝑐 − 𝑁𝑑(1/2) 𝑁 (𝑁 − 1) ,

(14)

where 𝑁𝑐 and 𝑁𝑑 are the numbers of concordant and
discordant pairs in the dataset, respectively.

Particularly, since the numerical ranges of the objective
and subjective scores are different, and the relationship
between the subjective and objective scores may not be linear
due to the nonlinear quality rating of human observers,
before the calculation of linear correlationmetrics PLCC and
RMSE, a nonlinear mapping function should be involved for
a fair comparison of IQA methods as suggested in [18]. The
five-parameter logistic regression function is given by

𝑦 = 𝛽1 (0.5 − 11 + 𝑒𝛽2(𝑥−𝛽3) ) + 𝛽4 × 𝑥 + 𝛽5, (15)

where 𝑥 and 𝑦 are the objective scores before and after the
mapping and 𝛽1 to 𝛽5 are parameters obtained numerically
by a nonlinear regression process in MATLAB optimization
toolbox to maximize the correlations between subjective and
objective scores. Since the four databases adopt different
schemes to quantify subjective quality scores, 𝛽1 to 𝛽5 of
different databases are shown in Table 2.

Table 2: Numerical values of parameters.

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5
LIVE 2.6762 1.1525 50.9363 1.0024 1.0566
TID2008 7.8189 2.6964 8.5277 0.9833 −3.1470
TID2013 −2.7263 4.6724 40.4188 1.1185 −4.7654
CSIQ 3.6708 0.9432 16.4166 0.9426 2.0596

3.2. Performance Comparison. In this section, we present
the performance of the proposed method in comparison to
existingmethods includingMAD [2], SSIM [6], VIF [9], LLM
[10], MCSD [11], VSI [15], FSIMvs [16], GMSD [28], IFS [29],
LCSIM [30], and GLD [31] on four public databases. The
overall performance comparison results on LIVE database
are presented in Table 3, with the best performance for each
metric being highlighted in boldface, which shows that the
proposed method outperforms other listed methods in terms
of almost every performance metric. Apparently, the pro-
posed method acquires quite large leading margin on LIVE
database. The performance comparison results on TID2008
and TID2013 databases are listed in Table 4, where the best
result is also highlighted in boldface. Obviously, the proposed
method remains an advantage on the databases, with two
exceptions appearing in the SROCC as the state-of-the-art
method LLM performs slightly better than our method,
yet the disparity between the two methods are quite small.
Table 5 shows the performance comparison results on CSIQ
database, from which we can clearly find that the proposed
method exhibits the best andmost stable performance among
all listed methods.

Obviously, the performance of the proposed method
shows evident superiority on most metrics and maintains a
high level across all databases. By contrast, the previousmeth-
ods are either generally inaccurate in predicting subjective
evaluation or incapable to stay high level on all databases. For
example, the predicting accuracy of classical methods SSIM
and VIF is worse than most of the state-of-the-art methods,
while the novel methods LCSIM and LLM perform very
well on certain database but failed to be as competitive on
other databases. Thus, it can be confirmed that the proposed
method is accurate and robust.

In addition, since the performance of the proposed
training-based method slightly varies during each time of
experiments, a 𝑡-test with significant level at 10% is carried
out on PLCC and SROCC to show whether a performance
disparity is significant; the results are shown in Table 6,
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Table 3: Performance comparison on LIVE database.

SSIM VIF MAD VSI GMSD IFS MCSD LCSIM GLD LLM Our

LIVE

PLCC 0.9449 0.9604 0.9683 0.9482 0.9600 0.9586 0.9675 0.9757 0.9521 0.9578 0.9820
SROCC 0.9479 0.9636 0.9675 0.9524 0.9603 0.9599 0.9668 0.9749 0.9631 0.9608 0.9759
KROCC 0.7963 0.8282 0.8421 0.8058 0.8269 0.8254 0.8407 0.8600 0.8297 0.8230 0.8735
RMSE 8.9455 7.6137 6.9073 8.6816 7.6211 7.7764 6.9079 5.9821 8.3667 7.7678 4.3403

Table 4: Performance comparison on TID databases.

SSIM FSIMVS VIF MAD VSI GMSD IFS MCSD LCSIM GLD LLM Our

TID2008

PLCC 0.7732 0.8929 0.8084 0.8306 0.8762 0.8651 0.8810 0.8844 0.8965 0.8909 0.8971 0.9086
SROCC 0.7749 0.8941 0.7491 0.8340 0.8979 0.8750 0.8903 0.8911 0.8892 0.8849 0.9077 0.9053
KROCC 0.5768 0.7133 0.5860 0.6445 0.7123 0.6880 0.7009 0.7133 0.7053 0.7030 0.7368 0.7391
RMSE 0.8511 0.5997 0.7899 0.7468 0.6466 0.6737 0.6349 0.6263 0.5945 0.6099 0.5982 0.5580

TID2013

PLCC 0.7895 NA 0.7720 0.8267 0.9000 0.8542 0.8791 0.8589 0.8651 NA 0.9068 0.9080
SROCC 0.7417 NA 0.6769 0.7807 0.8965 0.8045 0.8697 0.8015 0.8086 NA 0.9037 0.9022
KROCC 0.5588 NA 0.5147 0.6035 0.7183 0.6331 0.6785 0.6385 0.6292 NA 0.7209 0.7359
RMSE 0.7608 NA 0.7880 0.6975 0.5404 0.6444 0.5909 0.6349 0.6218 NA 0.5277 0.5182

Table 5: Performance comparison on CSIQ database.

SSIM VIF MAD VSI GMSD IFS MCSD LCSIM GLD LLM Our

CSIQ

PLCC 0.8613 0.9277 0.9502 0.9279 0.9543 0.9576 0.9560 0.9704 0.9515 0.9000 0.9704
SROCC 0.8756 0.9195 0.9466 0.9423 0.9571 0.9581 0.9592 0.9624 0.9549 0.9050 0.9673
KROCC 0.6907 0.7393 0.7970 0.7857 0.8122 0.8158 0.8171 0.8323 0.8108 0.7238 0.8425
RMSE 0.1334 0.0980 0.0818 0.0979 0.0791 0.0757 0.0770 0.0634 0.0810 0.1232 0.0630

Table 6: Significance testing results of PLCC and SROCC.

SSIM VIF MAD VSI GMSD IFS MCSD LCSIM GLD LLM

PLCC

LIVE 1 1 1 1 1 1 1 1 1 1
TID2008 1 1 1 1 1 1 1 1 1 1
TID2013 1 1 1 1 1 1 1 1 NA 1
CSIQ 1 1 1 1 1 1 1 0 1 1

SROCC

LIVE 1 1 1 1 1 1 1 1 1 1
TID2008 1 1 1 1 1 1 1 1 1 −1
TID2013 1 1 1 1 1 1 1 1 NA −1
CSIQ 1 1 1 1 1 1 1 1 1 1

where 0 denotes there is no significance difference between
the comparing method and the proposed one and 1 or−1 represents a significant superiority or inferiority of the
proposed method. The results demonstrate that except for
inferiority comparing to LLM of SROCC on TID2008 and
TID2013 and the nondistinguishable difference with LCSIM
of PLCC on CSIQ, the proposed method shows significant
superiority over othermethods, indicating that the predicting
accuracy of the proposed method maintains a relatively high
level on these databases.

In order to test the computational cost, the running time
of each IQA method processing a tested image of size 512 ×
512 is listed in Table 7. All experiments are performed on a
PC with Intel i5-6500 3.2GHz CPU and 8G RAM. Since the
source codes of some methods are not openly accessible, five
of the compared methods are involved in efficiency compar-
ison. The operating system is Windows 10 and the software
platform is MATLAB R2016b. As indicated in Table 7, SSIM
is the most efficient method and runs much faster than
others. Based on multiscale contrast similarity deviation
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Figure 9: Scatter maps of objective and subjective scores on LIVE
(a) and TID2013 (b) databases.

Table 7: Running time of the competing IQA methods.

SSIM VIF MAD VSI GMSD MCSD Our
Time (s) 0.0108 0.8067 0.9866 0.2161 0.0175 0.0315 0.5859

and gradient magnitude similarity deviation quantification,
the computational complexities of MCSD and GMSD are
much low, so that they are so efficient compared with other
IQA methods. The proposed method exploits properties of
HVS to extract hierarchical features that comprehensively
indicate image quality. Thus, the proposed method, which
exceeds VIF and MAD in efficiency, has a relatively high
complexity. However, it can be improved further through
code optimization and parallelization in the future work.

To further demonstrate the effectiveness of the proposed
method, scatter maps of subjective ratings versus objective
scores on LIVE and TID2013 databases are given in Figure 9,
where each point represents an image in database. Intuitively,
the fitted curves show that the subjective scores display a
substantial correlationwith the objective scores, and the point
cluster is closely around the fitted curve, which illustrates

that the proposed method is quite consistent with human
perceptual rating.

4. Conclusion

According to the hierarchical property of visual cortex, a
novel full reference IQA method is proposed in this paper.
Specifically, log Gabor filters and local pattern analysis are
employed to extract the hierarchical features that well reflect
image quality. Moreover, the feature extraction is assisted
with visual saliency maps since visual attention has great
impact upon human evaluation of image quality. The exper-
imental results show that the proposed method achieves
outstanding performance in terms of prediction accuracy as
well as robustness across different databases.
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