19 research outputs found

    Assessment of 3D mesh watermarking techniques

    Get PDF
    With the increasing usage of three-dimensional meshes in Computer-Aided Design (CAD), medical imaging, and entertainment fields like virtual reality, etc., the authentication problems and awareness of intellectual property protection have risen since the last decade. Numerous watermarking schemes have been suggested to protect ownership and prevent the threat of data piracy. This paper begins with the potential difficulties that arose when dealing with three-dimension entities in comparison to two-dimensional entities and also lists possible algorithms suggested hitherto and their comprehensive analysis. Attacks, also play a crucial role in deciding a watermarking algorithm so an attack based analysis is also presented to analyze resilience of watermarking algorithms under several attacks. In the end, some evaluation measures and potential solutions are brooded over to design robust and oblivious watermarking schemes in the future

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Robust digital image watermarking

    Full text link
    This research presents a novel rank based image watermarking method and improved moment based and histogram based image watermarking methods. A high-frequency component modification step is also proposed to compensate the side effect of commonly used Gaussian pre-filtering. The proposed methods outperform the latest image watermarking methods

    An Oblivious Watermarking for 3-D Polygonal Meshes Using Distribution of Vertex Norms

    Full text link

    A robust region-adaptive digital image watermarking system

    Get PDF
    Digital image watermarking techniques have drawn the attention of researchers and practitioners as a means of protecting copyright in digital images. The technique involves a subset of information-hiding technologies, which work by embedding information into a host image without perceptually altering the appearance of the host image. Despite progress in digital image watermarking technology, the main objectives of the majority of research in this area remain improvements in the imperceptibility and robustness of the watermark to attacks. Watermark attacks are often deliberately applied to a watermarked image in order to remove or destroy any watermark signals in the host data. The purpose of the attack is. aimed at disabling the copyright protection system offered by watermarking technology. Our research in the area of watermark attacks found a number of different types, which can be classified into a number of categories including removal attacks, geometry attacks, cryptographic attacks and protocol attacks. Our research also found that both pixel domain and transform domain watermarking techniques share similar levels of sensitivity to these attacks. The experiment conducted to analyse the effects of different attacks on watermarked data provided us with the conclusion that each attack affects the high and low frequency part of the watermarked image spectrum differently. Furthermore, the findings also showed that the effects of an attack can be alleviated by using a watermark image with a similar frequency spectrum to that of the host image. The results of this experiment led us to a hypothesis that would be proven by applying a watermark embedding technique which takes into account all of the above phenomena. We call this technique 'region-adaptive watermarking'. Region-adaptive watermarking is a novel embedding technique where the watermark data is embedded in different regions of the host image. The embedding algorithms use discrete wavelet transforms and a combination of discrete wavelet transforms and singular value decomposition, respectively. This technique is derived from the earlier hypothesis that the robustness of a watermarking process can be improved by using watermark data in the frequency spectrum that are not too dissimilar to that of the host data. To facilitate this, the technique utilises dual watermarking technologies and embeds parts of the watermark images into selected regions of the host image. Our experiment shows that our technique improves the robustness of the watermark data to image processing and geometric attacks, thus validating the earlier hypothesis. In addition to improving the robustness of the watermark to attacks, we can also show a novel use for the region-adaptive watermarking technique as a means of detecting whether certain types of attack have occurred. This is a unique feature of our watermarking algorithm, which separates it from other state-of-the-art techniques. The watermark detection process uses coefficients derived from the region-adaptive watermarking algorithm in a linear classifier. The experiment conducted to validate this feature shows that, on average, 94.5% of all watermark attacks can be correctly detected and identified

    Nouvelles méthodes de synchronisation de nuages de points 3D pour l'insertion de données cachées

    Get PDF
    This thesis addresses issues relating to the protection of 3D object meshes. For instance, these objects can be created using CAD tool developed by the company STRATEGIES. In an industrial context, 3D meshes creators need to have tools in order to verify meshes integrity, or check permission for 3D printing for example.In this context we study data hiding on 3D meshes. This approach allows us to insert information in a secure and imperceptible way in a mesh. This may be an identifier, a meta-information or a third-party content, for instance, in order to transmit secretly a texture. Data hiding can address these problems by adjusting the trade-off between capacity, imperceptibility and robustness. Generally, data hiding methods consist of two stages, the synchronization and the embedding. The synchronization stage consists of finding and ordering available components for insertion. One of the main challenges is to propose an effective synchronization method that defines an order on mesh components. In our work, we propose to use mesh vertices, specifically their geometric representation in space, as basic components for synchronization and embedding. We present three new synchronisation methods based on the construction of a Hamiltonian path in a vertex cloud. Two of these methods jointly perform the synchronization stage and the embedding stage. This is possible thanks to two new high-capacity embedding methods (from 3 to 24 bits per vertex) that rely on coordinates quantization. In this work we also highlight the constraints of this kind of synchronization. We analyze the different approaches proposed with several experimental studies. Our work is assessed on various criteria including the capacity and imperceptibility of the embedding method. We also pay attention to security aspects of the proposed methods.Cette thèse aborde les problèmes liés à la protection de maillages d'objets 3D. Ces objets peuvent, par exemple, être créés à l'aide d'outil de CAD développés par la société STRATEGIES. Dans un cadre industriel, les créateurs de maillages 3D ont besoin de disposer d'outils leur permettant de vérifier l'intégrité des maillages, ou de vérifier des autorisations pour l'impression 3D par exemple. Dans ce contexte nous étudions l'insertion de données cachées dans des maillages 3D. Cette approche permet d'insérer de façon imperceptible et sécurisée de l'information dans un maillage. Il peut s'agir d'un identifiant, de méta-informations ou d'un contenu tiers, par exemple, pour transmettre de façon secrète une texture. L'insertion de données cachées permet de répondre à ces problèmes en jouant sur le compromis entre la capacité, l'imperceptibilité et la robustesse. Généralement, les méthodes d'insertion de données cachées se composent de deux phases, la synchronisation et l'insertion. La synchronisation consiste à trouver et ordonner les éléments disponibles pour l'insertion. L'un des principaux challenges est de proposer une méthode de synchronisation 3D efficace qui définit un ordre sur les composants des maillages. Dans nos travaux, nous proposons d'utiliser les sommets du maillage, plus précisément leur représentation géométrique dans l'espace comme composants de base pour la synchronisation et l'insertion. Nous présentons donc trois nouvelles méthodes de synchronisation de la géométrie des maillages basées sur la construction d'un chemin hamiltonien dans un nuage de sommets. Deux de ces méthodes permettent de manière conjointe de synchroniser les sommets et de cacher un message. Cela est possible grâce à deux nouvelles méthodes d'insertion haute capacité (de 3 à 24 bits par sommet) qui s'appuient sur la quantification des coordonnées. Dans ces travaux nous mettons également en évidence les contraintes propres à ce type de synchronisation. Nous discutons des différentes approches proposées dans plusieurs études expérimentales. Nos travaux sont évalués sur différents critères dont la capacité et l'imperceptibilité de la méthode d'insertion. Nous portons également notre attention aux aspects sécurité des méthodes

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore