211,191 research outputs found

    Dark matter spikes in the vicinity of Kerr black holes

    Full text link
    The growth of a massive black hole will steepen the cold dark matter density at the center of a galaxy into a dense spike, enhancing the prospects for indirect detection. We study the impact of black hole spin on the density profile using the exact Kerr geometry of the black whole in a fully relativistic adiabatic growth framework. We find that, despite the transfer of angular momentum from the hole to the halo, rotation increases significantly the dark matter density close to the black hole. The gravitational effects are still dominated by the black hole within its influence radius, but the larger dark matter annihilation fluxes might be relevant for indirect detection estimates.Comment: Published version plus corrected typo in Fig 1

    On the distribution of stellar-sized black hole spins

    Get PDF
    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X-ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.Comment: 4 pages, 2 figures, pre-GW150914 detection, refereed and accepted contribution to proceedings of 11th Edoardo Amaldi Conference on Gravitational Waves, June 2015, Gwangju, Kore

    Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    Full text link
    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole-spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary spin and inclination for the axial case considered here

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×1071.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres

    Escape of black holes from the brane

    Full text link
    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation, that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the `black hole plus brane' system evolves once the black hole is given an initial velocity, that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.Comment: 4 pages, 6 figure

    Black hole particle emission in higher-dimensional spacetimes

    Get PDF
    In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross-sections, the relative emissivities and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders.Comment: 4 pages, RevTeX 4. v3: Misprints in Tables correcte

    Theoretical Black Hole Mass Distributions

    Get PDF
    We derive the theoretical distribution function of black hole masses by studying the formation processes of black holes. We use the results of recent 2D simulations of core-collapse to obtain the relation between remnant and progenitor masses and fold it with an initial mass function for the progenitors. We examine how the calculated black-hole mass distributions are modified by (i) strong wind mass loss at different evolutionary stages of the progenitors, and (ii) the presence of close binary companions to the black-hole progenitors. Thus, we are able to derive the binary black hole mass distribution. The compact remnant distribution is dominated by neutron stars in the mass range 1.2-1.6Msun and falls off exponentially at higher remnant masses. Our results are most sensitive to mass loss from winds which is even more important in close binaries. Wind mass-loss causes the black hole distribution to become flatter and limits the maximum possible black-hole mass (<10-15Msun). We also study the effects of the uncertainties in the explosion and unbinding energies for different progenitors. The distributions are continuous and extend over a broad range. We find no evidence for a gap at low values (3-5Msun) or for a peak at higher values (~7Msun) of black hole masses, but we argue that our black hole mass distribution for binaries is consistent with the current sample of measured black-hole masses in X-ray transients. We discuss possible biases against the detection or formation of X-ray transients with low-mass black holes. We also comment on the possibility of black-hole kicks and their effect on binaries.Comment: 22 pages, submitted to Ap
    corecore