627 research outputs found

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Uncertainty Theories Based Iris Recognition System

    Get PDF
    The performance and robustness of the iris-based recognition systems still suffer from imperfection in the biometric information. This paper makes an attempt to address these imperfections and deals with important problem for real system. We proposed a new method for iris recognition system based on uncertainty theories to treat imperfection iris feature. Several factors cause different types of degradation in iris data such as the poor quality of the acquired pictures, the partial occlusion of the iris region due to light spots, or lenses, eyeglasses, hair or eyelids, and adverse illumination and/or contrast. All of these factors are open problems in the field of iris recognition and affect the performance of iris segmentation, its feature extraction or decision making process, and appear as imperfections in the extracted iris feature. The aim of our experiments is to model the variability and ambiguity in the iris data with the uncertainty theories. This paper illustrates the importance of the use of this theory for modeling or/and treating encountered imperfections. Several comparative experiments are conducted on two subsets of the CASIA-V4 iris image database namely Interval and Synthetic. Compared to a typical iris recognition system relying on the uncertainty theories, experimental results show that our proposed model improves the iris recognition system in terms of Equal Error Rates (EER), Area Under the receiver operating characteristics Curve (AUC) and Accuracy Recognition Rate (ARR) statistics

    Uncertainty Theories Based Iris Recognition System

    Get PDF
    The performance and robustness of the iris-based recognition systems still suffer from imperfection in the biometric information. This paper makes an attempt to address these imperfections and deals with important problem for real system. We proposed a new method for iris recognition system based on uncertainty theories to treat imperfection iris feature. Several factors cause different types of degradation in iris data such as the poor quality of the acquired pictures, the partial occlusion of the iris region due to light spots, or lenses, eyeglasses, hair or eyelids, and adverse illumination and/or contrast. All of these factors are open problems in the field of iris recognition and affect the performance of iris segmentation, its feature extraction or decision making process, and appear as imperfections in the extracted iris feature. The aim of our experiments is to model the variability and ambiguity in the iris data with the uncertainty theories. This paper illustrates the importance of the use of this theory for modeling or/and treating encountered imperfections. Several comparative experiments are conducted on two subsets of the CASIA-V4 iris image database namely Interval and Synthetic. Compared to a typical iris recognition system relying on the uncertainty theories, experimental results show that our proposed model improves the iris recognition system in terms of Equal Error Rates (EER), Area Under the receiver operating characteristics Curve (AUC) and Accuracy Recognition Rate (ARR) statistics.

    Smart Health Predicting System Using Data Mining

    Get PDF
    An overview of the data mining techniques with its applications, medical, and educational aspects of Clinical Predictions. In medical and health care areas, due to regulations and due to the availability of computers, a large amount of data is becoming available. Such a large amount of data cannot be processed by humans in a short time to make diagnosis, and treatment schedules. A major objective is to evaluate datamining techniques in clinical and health care applications to develop accurate decisions. It also gives a detailed discussion of medical data mining techniques which can improve various aspects of Clinical Predictions. It is a new powerful technology which is of high interest incomputer world. It is a sub field of computer science that uses already existing data in different databases to transform it into new researches and results. It makes use of machine learning and database management to extract new patterns from large datasets and the knowledge associated with these patterns. The actual task is to extract data by automatic orsemi- automatic means. The different parameters included in data mining include clustering, forecasting, path analysis and predictive analysis. It might have happened so many times that you or someone yours need doctors help immediately, but they are not available due to some reason. The Health Prediction system is an end user support and online consultation project. Here we propose a system that allows users to get instant guidance on their health issues through an intelligent health care system online. The system is fed with various symptoms and the disease/illness associated with those systems. The system allows user to share their symptoms and issues. It then processes userssymptoms to check for various illness that could be associated with it. Here we use some intelligent data mining techniques to guess the most accurate illness that could be associated with patient’s symptoms. If the system is not able to provide suitable results, it informs the user about the type of disease or disorder it feels user’s symptoms are associated with. If users symptoms do not exactly match any disease in our database

    An enhanced iris recognition and authentication system using energy measure

    Get PDF
    In order to fight identity fraud, the use of a reliable personal identifier has become a necessity. Using Personal Identification Number (PIN) or a password is no longer secure enough to identify an individual. Iris recognition is considered to be one of the best and accurate form of biometric measurements compared to others, it has become an interesting research area. Iris recognition and authentication has a major issue in its code generation and verification accuracy, in order to enhance the authentication process, a binary bit sequence of iris is generated, which contain several vital information that is used to calculate the Mean Energy and Maximum Energy that goes into the eye with an adopted Threshold Value. The information generated can further be used to find out different eye ailments. An iris is obtained using a predefined iris image which is scanned through eight (8) different stages and wavelet packet decomposition is used to generate 64 wavelet packages bit iris code so as to match the iris codes with Hamming distance criteria and evaluate different energy values. The system showed 98% True Acceptance Rate and 1% False Rejection Rate and this is because some of the irises weren’t properly captured during iris acquisition phase. The system is implemented using UBIRIS v.1 Database.Keywords: Local Image Properties, Authentication Enhancement, Iris Authentication, Local Image, Iris Recognition, Binary Bit Sequenc

    Cloud Services with A Biometric Authentication Method And Privacy Protection

    Get PDF
    In recent years, biometric identification has grown in popularity. With the rise of cloud computing, database owners are compelled to outsource huge amounts of biometric data and identification chores to the cloud in order to save money on storage and processing, but this poses a risk to users' privacy. We provide a biometric identification outsourcing method that is both efficient and private. Biometric information is encrypted and sent to a cloud server. The database owner encrypts the query data before sending it to the cloud to perform biometric identification. The cloud conducts ID operations over the encrypted database and provides the results to the owner of the database. A careful security analysis shows that the approach suggested is safe even if attackers can make identity requests and collaborate with the cloud. The suggested system provides higher performance in both preparation and identification operations in comparison with the prior protocols

    RESEARCH ANALYSIS ON BIOMETRIC: A SCIENTOMETRIC STUDY

    Get PDF
    The focus of this study is to assess the research output of Biometric publications from the period of 2010 – 2019 through scientometric analysis. The total number of records were 7335 which is from Web of Science and analyzed using various tools like Histcite, Bibexcel and interpreted using Microsoft Excel and Google sheets. The laws of bibliometrics are also analyzed along with Relative growth rate, doubling time, Degree of collaboration and Collaborative indexes is also interpreted

    Result Oriented Based Face Recognition using Neural Network with Erosion and Dilation Technique

    Get PDF
    It has been observed that many face recognition algorithms fail to recognize faces after plastic surgery and wearing the spec/glasses which are the new challenge to automatic face recognition. Face detection is one of the challenging problems in the image processing. This seminar, introduce a face detection and recognition system to detect (finds) faces from database of known people. To detect the face before trying to recognize it saves a lot of work, as only a restricted region of the image is analyzed, opposite to many algorithms which work considering the whole image. In This , we gives study on Face Recognition After Plastic Surgery (FRAPS )and after wearing the spec/glasses with careful analysis of the effects on face appearance and its challenges to face recognition. To address FRAPS and wearing the spec/glasses problem, an ensemble of An Optimize Wait Selection By Genetic Algorithm For Training Artificial Neural Network Based On Image Erosion and Dilution Technology. Furthermore, with our impressive results, we suggest that face detection should be paid more attend to. To address this problem, we also used Edge detection method to detect i/p image properly or effectively. With this Edge Detection also used genetic algorithm to optimize weight using artificial neural network (ANN)and save that ANN file to database .And use that ANN file to compare face recognition in future DOI: 10.17762/ijritcc2321-8169.16041

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about
    • …
    corecore