484 research outputs found

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

    Get PDF
    I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.Comment: 35 pages, 3 figures, based on KES 2008 keynote and ALT 2007 / DS 2007 joint invited lectur

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Pathways to cellular supremacy in biocomputing

    Get PDF
    Synthetic biology uses living cells as the substrate for performing human-defined computations. Many current implementations of cellular computing are based on the “genetic circuit” metaphor, an approximation of the operation of silicon-based computers. Although this conceptual mapping has been relatively successful, we argue that it fundamentally limits the types of computation that may be engineered inside the cell, and fails to exploit the rich and diverse functionality available in natural living systems. We propose the notion of “cellular supremacy” to focus attention on domains in which biocomputing might offer superior performance over traditional computers. We consider potential pathways toward cellular supremacy, and suggest application areas in which it may be found.A.G.-M. was supported by the SynBio3D project of the UK Engineering and Physical Sciences Research Council (EP/R019002/1) and the European CSA on biological standardization BIOROBOOST (EU grant number 820699). T.E.G. was supported by a Royal Society University Research Fellowship (grant UF160357) and BrisSynBio, a BBSRC/ EPSRC Synthetic Biology Research Centre (grant BB/L01386X/1). P.Z. was supported by the EPSRC Portabolomics project (grant EP/N031962/1). P.C. was supported by SynBioChem, a BBSRC/EPSRC Centre for Synthetic Biology of Fine and Specialty Chemicals (grant BB/M017702/1) and the ShikiFactory100 project of the European Union’s Horizon 2020 research and innovation programme under grant agreement 814408

    Associative memory in artificial immune systems

    Get PDF
    The paper concentrates on analyzing associative properties of Artificial Immune Systems, especially on immunological memory, which is a member of a class of sparse and distributed associative memories [18]. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents [16]. Immunological memory is one of the defining characteristics of the adaptive immune system [4]. This memory is able to store and recall patterns when it is required, and can easily categorize new input data [11]. Immunological memory is distributed among the cells in the AIS memory population, and is robust, because when a portion of the memory population is lost, the remaining memory cells persist to produce a response. The major principle behind vaccination procedures in medicine and immunotherapy takes its source from associative properties of immunological memory [13]. Associative recall is a general phenomenon of immunological memory [18]

    Deep Learning Based Methods for Outdoor Robot Localization and Navigation

    Get PDF
    The number of elderly people is increasing around the globe. In order to support the growing of ageing society, mobile robot is one of viable choices for assisting the elders in their daily activities. These activities happen in any places, either indoor or outdoor. Although outdoor activities benefit the elders in many ways, outdoor environments contain difficulties from their unpredictable natures. Mobile robots for supporting humans in outdoor environments must automatically traverse through various difficulties in the environments using suitable navigation systems.Core components of mobile robots always include the navigation segments. Navigation system helps guiding the robot to its destination where it can perform its designated tasks. There are various tools to be chosen for navigation systems. Outdoor environments are mostly open for conventional navigation tools such as Global Positioning System (GPS) devices. In this thesis three systems for localization and navigation of mobile robots based on visual data and deep learning algorithms are proposed. The first localization system is based on landmark detection. The Faster Regional-Convolutional Neural Network (Faster R-CNN) detects landmarks and signs in the captured image. A Feed-Forward Neural Network (FFNN) is trained to determine robot location coordinates and compass orientation from detected landmarks. The dataset consists of images, geolocation data and labeled bounding boxes to train and test two proposed localization methods. Results are illustrated with absolute errors from the comparisons between localization results and reference geolocation data in the dataset. The second system is the navigation system based on visual data and a deep reinforcement learning algorithm called Deep Q Network (DQN). The employed DQN automatically guides the mobile robot with visual data in the form of images, which received from the only Universal Serial Bus (USB) camera that attached to the robot. DQN consists of a deep neural network called convolutional neural network (CNN), and a reinforcement learning algorithm named Q-Learning. It can make decisions with visual data as input, using experiences from consequences of trial-and-error attempts. Our DQN agents are trained in the simulation environments provided by a platform based on a First-Person Shooter (FPS) game named ViZDoom. Simulation is implemented for training to avoid any possible damage on the real robot during trial-and-error process. Perspective from the simulation is the same as if a camera is attached to the front of the mobile robot. There are many differences between the simulation and the real world. We applied a markerbased Augmented Reality (AR) algorithm to reduce differences between the simulation and the world by altering visual data from the camera with resources from the simulation.The second system is assigned the task of simple navigation to the robot, in which the starting location is fixed but the goal location is random in the designated zone. The robot must be able to detect and track the goal object using a USB camera as its only sensor. Once started, the robot must move from its starting location to the designated goal object. Our DQN navigation method is tested in the simulation and on the real robot. Performances of our DQN are measured quantitatively via average total scores and the number of success navigation attempts. The results show that our DQN can effectively guide a mobile robot to the goal object of the simple navigation tasks, for both the simulation and the real world.The third system employs a Transfer Learning (TL) strategy to reduce training time and resources required for the training of newly added tasks of DQN agents. The new task is the task of reaching the goal while also avoiding obstacles at the same time. Additionally, the starting and the goal locations are all random within the specified areas. The employed transfer learning strategy uses the whole network of the DQN agent trained for the first simple navigation task as the base for training the DQN agent for the second task. The training in our TL strategy decrease the exploration factor, which cause the agent to rely on the existing knowledge from the base network more than randomly selecting actions during the training. It results in the decreased training time, in which optimal solutions can be found faster than training from scratch.We evaluate performances of our TL strategy by comparing the DQN agents trained with our TL at different exploration factor values and the DQN agent trained from scratch. Additionally, agents trained from our TL are trained with the decreased number of episodes to extensively display performances of our TL agents. All DQN agents for the second navigation task are tested in the simulation to avoid any possible and uncontrollable damages from the obstacles. Performances are measured through success attempts and average total scores, same as in the first navigation task. Results show that DQN agents trained via the TL strategy can greatly outperform the agent trained from scratch, despite the lower number of training episodes.博士(工学)法政大学 (Hosei University
    corecore