
Deep Learning Based Methods for Outdoor Robot
Localization and Navigation

著者 NILWONG Sivapong
page range 1-78
year 2020-09-15
学位授与番号 32675甲第495号
学位授与年月日 2020-09-15
学位名 博士(工学)
学位授与機関 法政大学 (Hosei University)
URL http://doi.org/10.15002/00023445



Doctoral Dissertation Reviewed by 

Hosei University 

 

 

 

Deep Learning Based Methods for Outdoor 
Robot Localization and Navigation 

 

 

 

 

 

 

 

 

SIVAPONG NILWONG 

 

 



i 
 

ABSTRACT 

The number of elderly people is increasing around the globe. In order to support the 

growing of ageing society, mobile robot is one of viable choices for assisting the elders 

in their daily activities. These activities happen in any places, either indoor or outdoor. 

Although outdoor activities benefit the elders in many ways, outdoor environments 

contain difficulties from their unpredictable natures. Mobile robots for supporting 

humans in outdoor environments must automatically traverse through various difficulties 

in the environments using suitable navigation systems. 

Core components of mobile robots always include the navigation segments. 

Navigation system helps guiding the robot to its destination where it can perform its 

designated tasks. There are various tools to be chosen for navigation systems. Outdoor 

environments are mostly open for conventional navigation tools such as Global 

Positioning System (GPS) devices. In this thesis three systems for localization and 

navigation of mobile robots based on visual data and deep learning algorithms are 

proposed. The first localization system is based on landmark detection. The Faster 

Regional-Convolutional Neural Network (Faster R-CNN) detects landmarks and signs in 

the captured image. A Feed-Forward Neural Network (FFNN) is trained to determine 

robot location coordinates and compass orientation from detected landmarks. The dataset 

consists of images, geolocation data and labeled bounding boxes to train and test two 

proposed localization methods. Results are illustrated with absolute errors from the 

comparisons between localization results and reference geolocation data in the dataset. 

The second system is the navigation system based on visual data and a deep reinforcement 

learning algorithm called Deep Q Network (DQN). The employed DQN automatically 

guides the mobile robot with visual data in the form of images, which received from the 

only Universal Serial Bus (USB) camera that attached to the robot. DQN consists of a 

deep neural network called convolutional neural network (CNN), and a reinforcement 

learning algorithm named Q-Learning. It can make decisions with visual data as input, 

using experiences from consequences of trial-and-error attempts. Our DQN agents are 

trained in the simulation environments provided by a platform based on a First-Person 

Shooter (FPS) game named ViZDoom. Simulation is implemented for training to avoid 

any possible damage on the real robot during trial-and-error process. Perspective from 

the simulation is the same as if a camera is attached to the front of the mobile robot. There 

are many differences between the simulation and the real world. We applied a marker-

based Augmented Reality (AR) algorithm to reduce differences between the simulation 

and the world by altering visual data from the camera with resources from the simulation. 
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The second system is assigned the task of simple navigation to the robot, in which the 

starting location is fixed but the goal location is random in the designated zone. The robot 

must be able to detect and track the goal object using a USB camera as its only sensor. 

Once started, the robot must move from its starting location to the designated goal object. 

Our DQN navigation method is tested in the simulation and on the real robot. 

Performances of our DQN are measured quantitatively via average total scores and the 

number of success navigation attempts. The results show that our DQN can effectively 

guide a mobile robot to the goal object of the simple navigation tasks, for both the 

simulation and the real world. 

The third system employs a Transfer Learning (TL) strategy to reduce training time 

and resources required for the training of newly added tasks of DQN agents. The new 

task is the task of reaching the goal while also avoiding obstacles at the same time. 

Additionally, the starting and the goal locations are all random within the specified areas. 

The employed transfer learning strategy uses the whole network of the DQN agent trained 

for the first simple navigation task as the base for training the DQN agent for the second 

task. The training in our TL strategy decrease the exploration factor, which cause the 

agent to rely on the existing knowledge from the base network more than randomly 

selecting actions during the training. It results in the decreased training time, in which 

optimal solutions can be found faster than training from scratch. 

We evaluate performances of our TL strategy by comparing the DQN agents trained 

with our TL at different exploration factor values and the DQN agent trained from scratch. 

Additionally, agents trained from our TL are trained with the decreased number of 

episodes to extensively display performances of our TL agents. All DQN agents for the 

second navigation task are tested in the simulation to avoid any possible and 

uncontrollable damages from the obstacles. Performances are measured through success 

attempts and average total scores, same as in the first navigation task. Results show that 

DQN agents trained via the TL strategy can greatly outperform the agent trained from 

scratch, despite the lower number of training episodes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Mobile robots are robots with locomotion mechanisms that grant capabilities of 

transporting themselves from places to places. Importance of mobile robots rises as 

demands for service robots increase across the globe, especially autonomous mobile 

robots. The autonomous mobile robots usually packed with sensors and controllers which 

help them to understand their operating environments. They can navigate automatically 

using maps, dynamic algorithms, or any available data, instead of fixed routes and 

algorithms. Applications of mobile robots spread among various field. Mobile robots can 

be seen operating in daily life such as household caring, vacuum cleaning, and elderly 

supports. Industrial sections also employ mobile robots in their business. Robots 

operating in industrial settings increase manufacturing efficiency, while providing 

simplicity to their operators. Examples of industrial applications which implemented 

mobile robots include medicine delivery in hospitals, warehouse managements, scientific 

experiments, and maintenance of machines and structures. 

Domains of mobile robots can be separated by their operating environments into two 

domains: indoor robots and outdoor robots. Indoor robots are robots which operating in 

indoor areas such as areas inside houses, rooms, and buildings. Outdoor robots operate in 

outdoor areas such as fields, farms, and streets. Regardless of the domains, success of any 

mobile robots requires one significant principle: the navigation. Mobile robots require 

proper navigation systems to propel themselves to their goals and perform according to 
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their tasks. Goals of mobile robots can be either objects or places. In order to assist 

humans to their full extents, suitable navigation tools need the be chosen for robot 

navigation systems. Each environment poses various challenges for navigation systems, 

and choices of navigation tools are varied. There are conventional navigation tools 

implemented for navigation in daily life basis. Examples of these conventional navigation 

tools include the global positioning systems (GPS) and magnetic compass. Mobile robots 

also applied these conventional tools for their navigation systems, especially in outdoor 

environments. It is known throughout all fields of study that conventional navigation tools 

have a considerable amount of limitations. Many device manufacturers provide 

combinations of different tools and sensors to overcome these limitations. For instance, 

smartphones are provided with phone signals to improve accuracy of the embedded GPS. 

Mobile robots can complete their tasks effectively with accurate navigation systems. 

Navigation systems also require the ease of maintenance. While increasing number of 

sensors and tools can reduce limitations and increase accuracy, it also increases the 

complexity with addition of conditions. Reducing complexity of the navigation systems 

can result in decreasing chances of programming errors that can cause severe problems 

to robots. Mobile robots with simple and accurate navigation systems are mostly preferred 

for practical applications, particularly human-supporting applications. 

1.2 Motivation 

Many countries around the globe are moving into the ageing society. This 

circumstance lead to an increasing demand of service mobile robots. As outdoor activities 

can benefit elderly people in many ways, creating mobile robots for supporting elderly in 

outdoor environments can promote the sustainable life. For instance, a robot can 

accompany the elderly to places and guide them back to their home, as illustrated in 

Figure 1.1. Apart from specified tool designed for their designated tasks, mobile robots 

essentially require navigation systems to propel themselves to their goals and finish the 

tasks. Most of mobile robots in outdoor environments are applied with conventional 

navigation tools such as GPS and magnetic compass. These conventional tools are simple 

and efficient at some levels, which make them suitable for most of navigation tasks. In 

some applications of mobile robots, conventional navigation tools are not precise enough 
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for the tasks. This led to additions of sensors to reduce errors. However, additions of 

sensors also increase complexity to the navigation systems, with more conditional 

expressions from the sensors. 

The addressed problems inspired the motivation of this work. Normally, the use of 

multiple navigation tools causes larger codes in the programs. Natures of outdoor 

environments are complex and unpredictable, which also add more complexity and 

difficulties to the navigation systems. Outdoor robot navigation systems suffer from 

latency, inefficiency, and more chances of programming errors from employments of 

conventional navigation tools. Therefore, reducing the use of conventional tools and 

algorithms is crucial for advancements in outdoor robot navigation. This thesis focuses 

on the development of an automated outdoor localization and navigation system for 

mobile robots with less implementations of navigation tools. The developed localization 

system is expected to allow the mobile robot to know its location in outdoor environments, 

while the developed navigation system is expected to guide the robot to its goal 

automatically with the least number of navigation tools possible. 

1.3 Objectives 

The main objective of this work is to develop outdoor localization and navigation 

systems based on deep learning approaches. The localization system is planned to be 

 

Figure 1.1: A mobile robot accompany the elderly across the street. 
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developed using a supervised deep learning algorithm, while the navigation system is 

based on an unsupervised algorithm. Goal of both systems are to reduce large number of 

sensors required for the localization and navigation tasks to minimum, which not only 

reduce the number of conditional statements in the robot programs caused by each sensor, 

but also lower the risks from sensors that are occasionally unreliable. Camera is the key 

of both systems. The localization system should be able to know robot locations in the 

real world using only an image, replacing GPS devices and magnetic compasses. The 

navigation system should be able to use visual data to guide the robot to its goal within 

short distances, where errors of typical navigation devices cause them to be unavailable. 

The development of the deep learning-based outdoor localization system has the goal 

of reducing, or even replacing traditional sensors required for knowing current locations 

of the robots. As the robot learns from metadata from images of landmarks, it gradually 

knows locations of images from these data. This process resembles the way humans know 

their locations from landmarks. Therefore, the use of sensors can be reduced to the point 

where only a camera is required for localization. Thus, reducing programming burdens 

caused by additional sensors. 

The objective of the unsupervised outdoor navigation system is to implement an 

unsupervised deep reinforcement learning algorithm for outdoor navigation tasks. Deep 

reinforcement learning algorithms usually do not require supervisions from human, as 

these algorithms can learn their tasks through trial-and-error process. It can reduce 

number of data that humans have to feed for training the robot and reduce number of 

conditions during the navigation. With on visual data as input, the navigation system can 

guide the robot with only a camera, in which risks from unreliable sensors are lower. 

The last objective of this thesis is to employ a transfer learning strategy for multiple 

navigation tasks of the mobile robots. We train the first deep reinforcement learning 

model for the simple task of reaching the goal. The trained model is transferred to train a 

model for the second task that is more difficult with obstacles. We reduce exploration 

factor during the transfer learning. The reduced exploration factor causes the second 

model to utilize prior knowledge in the first model during the learning process. It can help 
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the second model find the optimal navigation solutions for the task faster, with better 

navigation performances. 

1.4 Contributions 

The progress of this thesis is separated into several phases. The first phase includes 

the development of a deep learning-based localization system, which trained with data 

from the real world. The second phase involves the development of a deep reinforcement 

learning agent for navigation, using an algorithm called Deep Q Network (DQN). The 

development of the DQN agent in the second phase focuses on the simple task of reaching 

the goal. The second phase includes the creation of simulation environments, the learning 

process of DQN agents through trial-and-error attempts, and experiments in the 

simulation and the real environment. The final phase of this work focuses on the 

implementation of a transfer learning strategy, which applied the agent trained in the 

second phase for more advanced tasks. The address issues lead to main contributions of 

this thesis, which are detailed in following subsections. 

1.4.1 Creating landmark-based outdoor robot localization system using 

deep learning algorithms 

Deep learning algorithms have been widely implemented for the tasks of object 

detection and recognition. Convolutional Neural Network (CNN) based algorithms, that 

are specialized with two-dimensional data, are especially implemented for the detection 

tasks. These algorithms are accurate with proper training data. From performances of 

CNN based algorithms, they can be applied for further tasks, including localization. 

Humans can know places just by watching signs or landmarks nearby. As deep learning 

methods are modeled after human brains, deep learning models can mimic one of those 

abilities, the ability of knowing places from landmarks. Models can be trained with proper 

geolocation data and landmarks that can be detected in images. This results in following 

advantages: 
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a) The sensors for robot localization can be reduced to only a single camera. It can 

reduce risks from unreliable sensors which have performances depend on 

environmental conditions. 

b) As the number of sensors reduced, programming burdens from conditional 

statements caused by each sensor are also reduced. 

c) The localization system contains the object detection part that can be reuse 

extensively for countless purposes. 

1.4.2 Implementing Deep Q Network (DQN) agents for simple outdoor 

navigation tasks 

Deep Q Network is a reinforcement learning algorithm which make decisions from 

visual data. DQN is proved to be formidable for making decisions in various 

implementations. As a reinforcement learning algorithm, it trains its agents through trial-

and-error process. DQN agents are almost always trained in simulations to prevent 

possible damage to real machines. Agents must work in real environments with 

knowledge learned from simulation environments. We employ a simple marker-based 

Augmented Reality (AR) algorithm to augment robot vision to be similar to what the 

robot agent learned in simulations. Contributions from this section include: 

a) It makes the robot make decisions from visual data on its own, reducing sensor 

dependence and computation complexity of navigation algorithms. 

b) There is no need to input training data to the system, since the DQN is 

unsupervised learning. This saves time and efforts in preparing training datasets. 

c) The implemented AR algorithm is based on object detection. Choices for object 

detection algorithms are countless. It can be either simple or complex, depending on 

choices of users. 

1.4.3 Transferring knowledge from DQN agents for the training of 

agents for more advanced tasks 
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In order to navigate the robot in specified tasks, navigation agents can be simply 

created for each task. However, many navigation tasks share close similarities to each 

other. Knowledges from agents which were created for simple tasks can be added to new 

agents that have to perform advanced tasks. Therefore, we apply a transfer learning 

strategy for the training of advanced DQN agent using knowledge from the agent for the 

simple navigation task with the same objective. There are advantages from transferring 

knowledge over creating new agent from scratch, as follows: 

a) It replaces the random DQN parameters with some parameters form the old agent. 

Some explorations in trial-and-error process are more optimized. 

b) It improves training performances of DQN agents. New agents can utilize existing 

knowledge during training, finding optimal solutions more effectively. 

c) It reduces a significant amount of training time by reducing some parts of trial-

and-error exploration process. 

1.5 Thesis Outline 

The structure of our thesis reflects the methodological steps and contributions of our 

work. This thesis is divided into eight chapters. Description of each section is provided 

to simplify the perception of this thesis. 

 Chapter 1 introduces this thesis. Background, motivation, objectives, and 

contributions of the thesis are enclosed in this chapter. 

 Chapter 2 presents a literature review of related works. Significant and 

distinguished works including vision-based localization and navigation systems, 

deep reinforcement learning algorithms, and transfer learning strategies are 

explained. This chapter also includes previous works with implementations of 

simulation platforms on robots. 

 Chapter 3 illustrates an overview of the proposed systems for outdoor mobile 

robots and their flows. Localization tasks and navigation tasks are described. The 

applied transfer learning strategy for the employed DQN is also explained 
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 Chapter 4 displays results from our experiments. There are three sections in this 

chapter, including the results from the deep learning based outdoor localization 

system, results from the DQN navigation system for outdoor mobile robots, and 

results from an improvement of DQN with the transfer learning strategy. 

 Chapter 5 concludes the thesis and discuss future works which can be evolved or 

applied from this research. 
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CHAPTER 2 

RELATED WORKS 

Various elements are involved in developing systems for localization and navigation 

for mobile robots in outdoor environments using visual data and deep learning. Such 

elements include robot vision systems, navigation algorithms, deep learning algorithms. 

For some deep learning algorithms, simulation environments are also included in their 

development processes. Literature review in this chapter consists of four main sections, 

including existing vision-based systems for mobile robot localization and navigation, 

deep learning approaches for vision systems, deep reinforcement learning algorithms, and 

existing transfer learning strategies for deep learning. 

2.1 Vision-Based Localization and Navigation Systems 

Navigation is one of core principles that mobile robots need in order to accomplish 

their given tasks. Success in navigation requires many factors. One of significant factors 

is the localization, which allows the robots to be able to determine their positions in the 

environments [1]. Typically, navigation systems of mobile robots can rely on 

conventional navigation tools, same as humans. Examples of these tools include Global 

Positioning Systems (GPS) devices and magnetic compasses, which are widely used for 

localization in navigation systems. Due to their simplicity, these conventional tools are 

used extensively in different mobile robot tasks, some of which include the patrolling 

robot in outdoor environments in [2] that employed GPS and robot odometer in its 

navigation system, the integrated navigation system from [3] which combines differential 

magnetic compass and GPS with an algorithm based on federated Kalman filter, and the 

simple mobile robot navigation system in [4] that introduced with low-cost GPS receivers. 

Despite the large number of implementations of conventional navigation tools, these tools 
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have been proved to possess reliability problems. One significant instance is the GPS. 

According to the report [5] cited by the US government, typical GPS devices applied in 

smartphones have an average error of 4.9 m. The report [6] added that GPS devices have 

more errors, or even unavailable in environmental conditions that can block GPS signals. 

Different approaches were proposed to improve or replace the use of these 

conventional tools. Examples of these approaches include the General Packet Radio 

Service (GPRS) signals [7], implementations of GPRS signals and remote sensing 

networks [8–9], the robot wheel odometers [10], and the wireless local area networks 

(WLAN) for robot navigation [11]. Among the available navigation and localization 

approaches, vision-based systems are widely implemented for the mobile robots. The 

vision-based systems introduce the use of vision systems such as cameras to localize and 

navigate the robots in their environments. In the simplest approaches, vision systems are 

employed together with image processing algorithms, in which the approaches can start 

from edges and lines detection [12–15]. As more image processing and computer vision 

algorithms were proposed, so did the vision-based localization and navigation algorithms. 

Localization of mobile robots and their navigation could be accomplished through 

features of different properties in visual data [16–25], or bonded together with feature-

based computer vision algorithms such as the Scale-Invariant Feature Transform (SIFT) 

[26–31] and the Speeded Up Robust Features (SURF) [32–36]. 

In recent years, vision-based systems were more oriented to deep learning-based 

algorithms, due to their capabilities of learning and understanding abstract relationships 

in images. These capabilities are lacked in image processing algorithms and feature 

detection algorithms. Some examples of such deep learning for visual navigation include 

the use of Convolutional Neural Networks (CNN) in [37–39]. Vision-based deep learning 

approaches and their applications into the robot localization and navigation tasks are 

described in the next section: Deep Learning Approaches for Vision Systems. 

2.2 Deep Learning Approaches for Vision Systems 

Deep learning is part of a family of machine learning methods, which based on 

artificial neural networks and representation learning. It allows computational models 
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with multiple processing layers to learn representation of data with multiple level of 

abstraction [40]. Representation learning in deep learning allows a machine to be fed with 

raw data and to discover representations of the fed data, according to their desired goals. 

There are various domains that deep learning can be employed to improve, some of which 

include visual object recognition, object detection, speech recognition, and natural 

language processing [41]. 

There are many deep learning approaches that proposed specifically for the tasks with 

visual information. Examples of such approaches include Convolutional Neural Networks 

(CNN) and Deep Belief Networks (DBNs). Though many works suggested that the 

simple Feed-Forward Neural Network (FFNN) can handle tasks with visual information 

such as [42], it required tough efforts on the preprocessing of the data when used. 

DBN is a probabilistic generative model that introduced with a novel method of pre-

training neural networks, using the Restricted Boltzmann Machine (RBN) [43]. RBN was 

employed to initialize weights in deep autoencoder networks. DBN performed well with 

impressively low amount of errors in MNIST handwritten digit recognition tests. 

However, DBN had scalability problems, which make it inferior to 2D structure of images. 

Later variations of DBN solved this problem by applying the probabilistic max-pooling 

technique, became the Convolutional Deep Belief Networks (CDBN) [44]. 

CNN is by far an approach among the most implemented deep learning instances for 

computer vision tasks. Its inspiration can be traced back to the year 1962, as Hubel and 

Wiesel [45] proposed receptive fields in visual cortex of the cat. Inspiration from the 

animal visual cortex creates different vision-based neural network models. The 

Neocognitron by Fukushima in 1980 [46] is directly inspired by this visual cortex, with 

the neural network model that include “S-cells” which represent simple receptive fields, 

and “C-cells” that represent complex receptive fields of the animals. Lecun et al. proposed 

the CNN in 1998 [47]. It combines three ideas of network architecture, which are the local 

receptive fields, shared weights, and spatial subsampling. CNN consists of convolutional 

layers which can extract features from the input data with 2D shapes. It performed greatly 

for handwriting recognition tasks. CNN was evolved into many different deep learning 

approaches regarding their implementations. For instance, object detection task evolved 
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CNN into regional-based CNN algorithms. Girshick et al. proposed the method called R-

CNN in 2014 [48]. It uses the selective search algorithm to extract regions from the image. 

These regions are called “region of proposals”. The extracted regions are processed in 

CNN to generate CNN features. Theses features are fed to a support vector machine 

(SVM) to classify the object in the region. R-CNN is practically slow. Thus, an upgrade 

for R-CNN called Fast R-CNN was proposed [49]. Instead of generating regions first, 

CNN is first used to generate a convolutional feature map. Then the selective search 

algorithm is applied to identify region of proposals. These regions are processed with a 

fully connected layer, identifying the object and regress values of bounding boxes of the 

objects at the same time. Fast R-CNN received another upgrade called Faster R-CNN 

[50]. It replaces the selective search with the Region Proposal Network (RPN). RPN is 

used to predict region proposals instead of searching. Thus, greatly reduced the detection 

time. Another CNN-based object detector is the algorithm named You Only Look Once 

(YOLO) [51]. YOLO uses a single CNN to predict both bounding boxes and class 

probabilities of the objects from full images. It performed very fast with an acceptable 

amount of errors. Though it has some problems with small objects in images and has less 

accuracy than the Faster R-CNN. 

2.2.1 Vision-Based Deep Learning for Object Detection and Recognition 

Vision-based deep learning approaches mostly focused in the tasks of object detection 

and recognition. Object detection and recognition applications started from the simplest 

model such as the FFNN. Khasnobish et al. [42] used FFNN to recognize shapes of 

objects from tactile images which are the consequence from human touching such objects. 

Jänen et al. [52] detected and tracked multiple objects in camera images with FFNN. 

Rázuri et al. [53] recognize human emotions within facial expression using an artificial 

neural network with the structure of FFNN. Despite being available available on the 

simple FFNN, all object detection and recognition algorithms proposed for their tasks 

require a significant amount of preprocessing during their operation time. 

For more advanced deep learning approaches for vision tasks, DBN is greatly 

implemented for object detection and recognition. Chen et al. [54] applied DBN to detect 

aircrafts from remote sensing images. Multiple thresholds were used to extract segments 
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that have the possibility to be aircrafts. The DBN then processed the segments to 

recognize aircrafts in those segments. Diao et al. [55] also detected objects from remote 

sensing images. In this case, however, DBN was trained directly with raw object images 

and saliency maps. Liang et al. [56] employed two DBNs to recognize and estimate poses 

of 3D objects detected by an object detector based on K-mean clustering. Zhao et al. [57] 

detected drowsiness of drivers using facial landmarks and facial textures as inputs for the 

DBN. Kamada and Ichimura [58] improved the DBN by optimizing RBM through the 

neuron generation-annihilation algorithm. The improved was tested on the Chest X-ray 

benchmark and received better classification and localization results than CNN methods. 

Object detection and recognition tasks for deep learning generally include the 

implementations of CNN. It is widely implemented for detection and recognition tasks. 

We will cover some of the examples, as there are more than a thousand of CNN 

implementations available. Back in 2000s, the tasks of the CNN are mostly for 

classification purposes. Chen et al. [59] applied the CNN for the classification of faces 

and license plates. Input sizes of the CNNs are static, and the separate networks needed 

to be trained for each type of the classification. Szarvas, Sakai, and Ogata [60] combined 

a LIDAR and a CNN to detect pedestrian. LIDAR was employed to propose candidates 

for the regions of interest, while CNN detected pedestrian in those regions. In the 

following decade, CNN approaches were greatly implemented and improved. There were 

different CNN settings proposed, some changed the network name to fit in their tasks, 

while some employed the word CNN as the network name. Zong et al. [61] applied 

different CNN structures to detect human presences in millimeter wave images. Mane 

and Mangale [ 62] utilized CNN for tracking moving objects in images. Haque, Lim, and 

Kang [63] employed ResNet with residual learning and the CNN with the structure named 

VGG network in the task of object detection. The CNN evolved for object detection and 

recognition tasks into R-CNN [48], Fast R-CNN [49], and Faster R-CNN [50]. 

Applications for object detection using these CNN-based detectors were opened into 

more possibilities. Li et al. [64] employed the Faster R-CNN for detecting aircrafts in 

remote sensing images. The method did not require much preprocessing during its 

operation time. Saleh et al. [65] utilized Faster R-CNN for detecting pedestrian in 

synthesized depth images. Zhang et al. [66] detected pedestrians in images from security 
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cameras using Faster R-CNN. Wang et al. [67] detected ships in images with foggy 

weather. A CNN-based network was also proposed to classify scenes in images. 

2.2.2 Vision-Based Deep Learning for Robotics Tasks 

Vision-based deep learning approaches are implemented in different sections of 

robotics works. These vision algorithms are always implemented with the use of cameras, 

as they can help robots understand representations of things that visualized to the robots. 

One of the most proposed tasks for robots with vision systems is object detection, since 

vision systems can help robots identify objects better than using combinations of different 

sensors. For instance, robots can detect objects using LIDAR [68]. However, shapes of 

visible objects are limited, and require a plenty of calculations. For the tasks of detection 

and recognition in robots, different deep learning applications were proposed. Zhihong et 

al. [69] employed Faster R-CNN with VGG-16 as its CNN for the task of garbage sorting. 

The robot manipulator acquired visual data of the conveyor belt filled with garbage. 

Faster R-CNN detected the garbage and sort them with the manipulator. Zunjani et al. 

[70] predicted optimal grasping locations of different objects based on their intents. The 

algorithm for detecting object and predict grasping locations is the CNN-based algorithm 

called Mark R-CNN. Yoshimoto and Tamukoh [71] employed an algorithm based on the 

VGG-16 model of CNN to recognize objects through the 3D Kinect camera for service 

robots. Akbar et al. [72] used CNN to detect runways for Unmanned Aerial Vehicles 

(UAV). Chen et al. [73] applied the deep learning model called ENet to detect obstacles 

in outdoor environments through robot cameras. The ENet contains convolutional layers, 

similar to CNNs. Ibrahim Khalilullah et al. [74] detected roads in images using the Deep 

Belief Neural Network (DBNN). This road detection helped the robot for its navigation 

in outdoor environments. Le, Huynh, and Pham [75] addressed the problem of human-

robot interaction by applying Mark R-CNN to help localize human faces in images. 

Konoplich, Putin, and Filchenkov [76] combined CNN and multilayer perceptron (MLP) 

for the task of vehicle detection in UAV images. Budiharto et al. [77] detect objects in 

images from the camera attached to the quadcopter drone using the CNN-based Single 

Shot Detector (SSD). Chao, Chen, and Xiao [78] applied Faster R-CNN to detect objects 

and their grasping points for the robot manipulator with five fingers. Nuzzi et al. [79] also 
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implemented Faster R-CNN for recognition. Their work used Faster R-CNN to detect 

hand gestures from RGB images taken from a Kinect camera. 

Vision-based deep learning algorithms also involved in different designs of the robots, 

some of which include the use of the CNN-based algorithm to determine actions of the 

robot for folding clothes [80], and the design of the shop assistant robot using CNN in the 

Robot Operating System (ROS) platform [81]. As for the tasks of determining actions of 

the robot from visual data, many approaches moved on to the deep reinforcement learning. 

2.3 Deep Reinforcement Learning Algorithms 

In order to cover the basics of the deep reinforcement learning, we have to start from 

its predecessor: the reinforcement learning. Reinforcement learning is an area of machine 

learning that focuses on how artificial agents take actions in their environments to 

maximize the cumulative rewards [82]. Reinforcement learning algorithms can be 

modeled basically in the form of Markov Decision Processes (MDP), in which decision 

makers or agents find optimal solutions through processes that are partly random [83]. 

The learning process of reinforcement learning requires a balance between the 

exploration and exploitation. Exploration refers to the process where the agents explore 

consequences of actions by randomly selecting actions. Exploitation, however, is the 

process where agents “use” their known knowledge and perform actions which might be 

the optimal solutions. The method of ε-greedy is typically employed to balance the 

amounts between exploration and exploitation. The agents applying the ε-greedy method 

decide whether to explore or exploit based on the probability value stored in ε [84]. 

Reinforcement learning algorithms can be separated into two categories, according to 

their learning policies. The first category is the off-policy algorithms. The term “off-

policy” means the algorithms learn with no regard to any policy. The only policy that off-

policy reinforcement learning algorithms consider is the way to maximize cumulative 

reward [85]. One significant instance of the off-policy reinforcement learning algorithms 

is the Q-Learning [86]. Agents in Q-Learning use a table to store quality values (Q values) 

of actions in each state. The quality values are calculated through the Bellman equation. 

Actions which result in the maximum total rewards are performed in Q-Learning. The 
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second category is the on-policy algorithms. On the contrary to off-policy algorithms, on-

policy algorithms learn the to optimize values of the policies which are being carried out 

by the agents. An example of the on-policy algorithms is the SARSA [86]. While SARSA 

employs Q values same as the Q-Learning, it also includes the current policy of actions 

into the calculations of Q values. 

Reinforcement learning algorithms mostly have scalability problems, they cannot 

work in large or complex environments. Deep reinforcement learning algorithms are 

proposed to solve these problems by fusing deep learning with reinforcement learning. A 

significant milestone in deep reinforcement learning algorithm is the introduction of the 

Deep Q Network (DQN) [87]. It combines the CNN with the Q-Learning. Therefore, it 

can take visual inputs that are considerably too large for Q-Learning. DQN was able to 

play different video games at human-level performances using only visual information 

from the video game screen. Another deep reinforcement learning algorithm is the 

Asynchronous Advantage Actor Critic (A3C) that combines deep learning and the actor-

critic together with asynchronous running scheme [88]. DQN has its improvements as the 

Double DQN [89] and the Dueling DQN [90], which utilize multiple instances of DQN 

during the learning process. 

2.3.1 Applications of Deep Reinforcement Learning for Robots 

Performances of DQN for playing video games in [87] reveal capabilities of deep 

reinforcement learning algorithms in making decisions from visual data. Many robotics 

systems struggle with a large number of conditions that the robots have to deal with. Deep 

reinforcement learning algorithms are employed in various robotics works that require 

decent decision makers. Chen and Dai [91] proposed a control policy for the grasping 

tasks with the robot manipulator. The control policy was based on the DQN, while an 

additional CNN detector was attached to the control system to detect objects for grasping. 

Bejar and Morán controlled the autonomous truck-trailer systems in their backing 

movements using the Deep Deterministic Policy Gradient (DDPG) [92]. Özaln et al. [93] 

controlled the locomotion of the humanoid robot through the visual information from the 

camera. They employed the Double Dueling Deep Q Network (D3QN) and the DQN for 

controlling the robot. Kim et al. [94] applied DQN for the wheeled robots that play soccer. 
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Seo, Kim, and Kim [95] employed DQN to the humanoid robot for the task of push-

recovery that help balancing the robot. Xue et al. [96] proposed a method for collision 

avoidance in mobile robots along with navigation capabilities, using the Double DQN. 

Bui and Chong [97] controlled speech volume in social robots using DQN. Lobos-

Tsunekawa et al. [98] navigated biped humanoid robots through visual information. They 

controlled the robot using the DDPG algorithm and the Long-Short Term Memory 

(LSTM). Navigation is one of the tasks that widely employed deep reinforcement learning 

algorithms, as they are less restricted by robot sensors, places, or other environmental 

conditions. Deep reinforcement learning was implemented throughout almost every 

aspect for robot navigation, from path planning to locomotion [99–109]. 

2.4 Transfer Learning for Deep Learning 

The ability of transferring knowledge across tasks is inherited in humans among 

generations. It can be implied that a man can learn how to ride a motorcycle better, if he 

knows how to ride a bicycle. The similar strategies are implemented in learning and deep 

learning algorithms. In learning algorithms, generalization and the insufficient data 

problems are needed to be solved [110]. Inductive transfer mechanism is proposed to 

overcome these problems [110–111]. It can improve generalization problems by 

leveraging specified information of related tasks. Different knowledges are transferred in 

the category of vision-based algorithms, with some of the most popular include the feature 

representation transfer and the classifier-based knowledge transfer [112].  

Vision-based deep learning algorithms widely employed transfer learning into their 

implementations. The main reason is the insufficient training data. It is evident from some 

works that deep learning for computer vision tasks require a large amount of data in 

training, such as [113] that might require more than half a million datasets. Transfer 

learning helped vision-based deep learning with this data issue. Huang et al. [114] 

replaced layers of several the pre-trained CNN models, then re-trained the models for the 

task of plant classification. Kulkarni et al. [115] replaced the CNN inside the Faster R-

CNN with the pre-trained Inception V2 model. Their Faster R-CNN model can detect 

traffic lights with better accuracy. Li et al. [116] classified protein patterns in human cells 

using the CNN-based model that acquired some parts from the pre-trained Inception V3 
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model. Pelletier et al. [117] applied the pre-trained ImageNet model to initialize 

convolutional layers in their classifier of marine resources. Dalal and Moh [118] 

transferred the deep learning model trained with the COCO dataset to be used on the large 

dataset that might require approximately five million iterations of training. Huber-fliflet 

et al. [119] used 13 convolutional layers of the pretrained VGG16 and replaced fully 

connected layers. The model was re-trained with the fine-tuning strategy for detection 

tasks of legal documents. Sferrazza and D’Andrea [120] applied transfer learning for 

vision-based tactile sensing. Their method transferred representations of features from 

one tactile sensor across different settings. 

2.4.1 Transfer Learning for Deep Reinforcement Learning and Robots 

While not only in the field of big data and computer vision, the implementations of 

transfer learning found themselves in reinforcement learning algorithms and their applied 

tasks, including the robotics tasks. In reinforcement learning, transfer learning can be 

used to transfer parameters of the same model structure [121]. Shao, Zhu, and Zhao [122] 

employed a transfer learning strategy to a reinforcement learning model for playing 

StarCraft in different scenarios. They trained a reinforcement learning model for the 

source task, then transfer the trained knowledge to other tasks. In robotics tasks, transfer 

learning can be applied to transfer knowledge from one task to another, in which the 

source tasks are usually simpler such as mentioned in [123]. 

The significant implementation of transfer learning for reinforcement learning 

algorithm in robotics works is the transferring of knowledge between the simulation and 

the real world. Typically, robots with reinforcement learning algorithms are preferred to 

be trained in simulations, since the learning process contains the exploration with random 

actions. These random actions can harm robot parts. Various methods were proposed for 

transferring the knowledge between the simulations and real environments, in which 

many of them include the transfer using the fine-tuning strategy [124–130]. 
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CHAPTER 3 

METHODOLOGY 

The eruption of deep learning algorithms enables more possibilities for 

implementations of vision systems into robotics works. Many deep learning algorithms 

can support human in tasks related to visual data with human-level performances. As 

discussed in chapter two, there are various methods of deep learning available, even for 

visual data. Different advantages and disadvantages come with different deep learning 

instances at different circumstances.  

In this chapter, three systems are presented regarding to their tasks. The first system 

is the localization system for outdoor mobile robots using the Faster Regional-

Convolutional Neural Network (Faster R-CNN) and visual data in the form of images. 

Faster R-CNN can detect landmarks in images, in which landmarks can be utilized for 

determining the robot locations in real environments. The second system is the navigation 

system for mobile robots in outdoor environments using the deep reinforcement learning 

algorithm called Deep Q Network (DQN) with visual data from a single camera. DQN 

can be trained without input data, as it learns through trial-and-error experiences. The last 

system is an upgrade for the second system, where DQN agents can be trained using past 

experiences from other agents which do similar tasks. 

3.1 Landmark-Based Outdoor Robot Localization with 

Faster Regional-Convolutional Neural Network 

Faster Regional-Convolutional Neural Network (Faster R-CNN) is a deep learning 

algorithm specifically for visual object detection purposes. It is derived from its 

predecessor, the Fast Regional-Convolutional Neural Network (Fast R-CNN), which is 
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also a deep learning algorithm for object detection based on the Convolutional Neural 

Network (CNN). Input for any Faster R-CNN models is in the form of an image. After 

the image is processed throughout the structure of the Faster R-CNN, outputs are 

generated. These outputs include bounding boxes of detected objects, corresponding 

labels of the objects, and detection scores for each detected object.  

During the application for the task of landmark-based localization proposed in [131], 

the Faster R-CNN model can be trained to detect landmarks. Faster R-CNN model can 

generate bounding boxes of landmarks along with their corresponding labels. These 

properties of landmarks generated from the trained Faster R-CNN model can be used to 

determine locations of mobile robots. From the system flows illustrated in Figure 3.1, 

image of a location is input through the camera into the Faster R-CNN. The bounding 

boxes, labels, and detection scores of detected landmarks are generated. These generated 

properties are then processed to acquire locations and orientations of the robot in the form 

of latitude and longitude coordinates, along with the compass orientation. A simple Feed-

Forward Neural Network (FFNN) is employed to process detect landmarks and their 

properties which generated from the Faster R-CNN. The FFNN is employed since it is 

 

 

Figure 3.1: Flows of the proposed landmark-based localization system. 
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simple. It can determine locations and orientations from landmark properties, which are 

difficult for simple conditional programming statements, while keeping its simplicity 

through the learning process that has less human interference. Further details and reason 

for implementations of two core algorithms for the localization system, including Faster 

R-CNN and FFNN, are described in following subsections. 

3.1.1 Faster R-CNN for Landmark Detection 

As mentioned prior in this chapter, Faster R-CNN is a deep learning-based object 

detection algorithm that derived from Fast R-CNN and CNN. The Faster R-CNN contains 

two main parts, including the Fast R-CNN and the Region Proposal Network (RPN). In 

the typical Fast R-CNN models, Fast R-CNN utilizes CNN to generate a map of features 

from the input image. The generated feature map is then progressed to the selective 

searching procedures, where bounding boxes or region proposals of detected objects are 

drawn according to features and search results. 

In Faster R-CNN, the CNN is still utilized for generating feature maps from images. 

However, the generation of bounding boxes or region proposals are not the same. Faster 

R-CNN is introduced with RPN, which is a neural network that shares the same structure 

as the CNN within. Figure 3.2 shows the framework of Faster R-CNN and relationships 

of its components [50]. The feature maps extracted from the image is used by two separate 

parts. The RPN uses the feature maps to predict region proposals which are candidates of 

bounding boxes for detect objects. The feature maps are also appeared in the RoI pooling 

part, where they are bounded with the proposals predicted by the RPN. Feature maps and 

the region proposals are sent to the fully connected layers that include the classifier and 

the regressor. Classifier recognizes features in the area bounded by the region proposals, 

while the regressor optimizes sizes of region proposals to fit the object areas. 

There are four steps into the training of the Faster R-CNN.  

1) The first step is the training of the RPN, in which the RPN is trained individually. 

The initial weights can be randomized or set with pre-trained networks. 
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2) The Fast R-CNN module for detection is trained individually, using the region 

proposals from the RPN in the first step. 

3) The RPN is re-trained for the fine-tuning purpose. In this step, weights of the RPN 

and the Fast R-CNN are shared. 

4) The Fast R-CNN part is re-trained using the trained RPN from the third step. 

Even though there are more advanced object detectors available such as YOLO, the 

Faster R-CNN is chosen for the landmark detection task instead. Faster R-CNN is chosen 

due to several reasons. The first reason is that Faster R-CNN is fast enough for real-time 

implementations on the robots. Secondly, detection accuracy of the Faster R-CNN has no 

problem with small objects, which may refer to landmarks located in the far distance. 

Finally, Faster R-CNN require less preprocessing of the raw visual data when used. It 

reduces programming burdens and computation resources that required for the 

preprocessing of visual data. Further subsections include the explanations for the 

preparation of data required in the training of our Faster R-CNN model, and details for 

the structure of our implemented Faster R-CNN for landmark detection. 

 

Figure 3.2: Framework of the Faster R-CNN. 
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3.1.1.1 Data Preparation of the Faster R-CNN for Landmark Detection 

Faster R-CNN is a supervised deep learning algorithm. It needs to learn 

representations of features and objects in images. Therefore, the data need to be prepared 

for the training of the implemented Faster R-CNN model. Since the main goal of the 

implemented Faster R-CNN in the landmark-based localization system is to detect 

landmarks in images, visual data with landmarks must be obtained. 

The first step into the data preparation is the data gathering, as our desired data is 

unusual and not available online. The planned dataset includes images and their 

corresponding geolocation data, which consists of latitude and longitude coordinates and 

compass orientation. We set the data gathering tools as shown in Figure 3.3. The tools 

included the wheelchair robot, camera, GPS receiver, and compass sensor. Camera, GPS 

receiver, and compass sensor were attached to the top of the robot. The wheelchair robot 

is 55 cm in width, 120 cm in length and 140 cm in height. We used a Logitech C920 HD 

(Logitech, Lausanne, Switzerland) as the robot camera, BU-353S4 (GlobalSat, Taipei, 

Taiwan) as the GPS receiver and an Octopus 3-axis digital compass sensor. All images 

in the dataset were taken from the area near Koganei campus of Hosei University, Japan. 

Two areas were selected for robot localization in outdoor environments, as shown in 

Figure 3.4. The length and width of area 1 is 70 and 30 m, respectively. Area 2 is 75 m in 

 

Figure 3.3: Wheelchair robot equipped with sensors for data gathering: (a) 
overall view of the wheelchair robot; (b) sensors for data gathering: 1. Camera, 
2. Global Positioning Systems (GPS) receiver, and 3. Compass sensor. 
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length and 30 m wide. The two areas for experiments were in a distance of 250 m from 

each other. There are different types of landmarks available in each area, which 

distinguished one experimental area from the another. 

The dataset was constructed from 1,625 images in the form of JPEG color images at 

the size of 320 × 240 pixels. During data gathering, the robot was pushed by a human, 

and images were taken manually. Each time an image was taken, the corresponding 

geolocation data was tagged to the image automatically. The tagged geolocation data 

includes location coordinates and compass orientation. Location coordinates were 

received from the GPS receiver in the form of a GGA message. Latitude and longitude 

information inside the GGA message was extracted and tagged to the image. Compass 

orientation was received from the compass sensor, converted to magnetic compass 

orientation, before being tagged to the image. We collected the data in different weather 

conditions in order to increase the robustness of the proposed algorithms. Among 1,625 

sets of data gathered, 1,198 sets of data were randomly selected for training, while the 

remaining sets were used for testing the trained models. 

The second step is the labeling. All gathered images in the dataset were hand-labeled 

with bounding boxes of landmarks in images. Nine types of landmarks were utilized for 

robot localization: ‘FamilyMart’, ‘CocaCola’, ‘BicycleLane’, ‘NoTruck’, ‘Crossing’, 

 

Figure 3.4: Map of the experimental areas (Google map). The areas of 
experiments are marked with the red rectangles. 
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‘Lawson’, ‘TimesParking’, ‘LawsonParking’, and ‘RoadSign 1’. Figure 3.5 shows 

pictures of these nine landmarks in the area of experiments. Each bounding box is in the 

form of a vector with four member elements, which contains horizontal and vertical 

position coordinates of the top-left corner, width, and height of the bounding box in the 

image. Unit of position coordinates, width, and height of the bounding box is determined 

by the number of pixels. Horizontal and vertical position coordinates are referenced from 

top-left corner of the image. For example, a bounding box that has a vector of {10, 20, 

 

Figure 3.6: Image Labeler application in MATLAB. 

 

Figure 3.5: Landmarks used in the experiments: (a) ‘FamilyMart’; (b) 
‘CocaCola’; (c) ‘BicycleLane’; (d) ‘NoTruck’; (e) ‘Crossing’; (f) ‘Lawson’; (g) 
‘TimesParking’; (h) ‘LawsonParking’; (i) ‘RoadSign 1’. 
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56, 72} has its top-left corner at the pixel number 10 horizontally and 20 vertically, and 

the width and height of the box are 56 and 72 pixels, respectively. 

The labeling process was completed in the application named Image Labeler, which 

is one of applications in the MATLAB software. Sample appearance of the Image Labeler 

is illustrated in Figure 3.6. 

3.1.1.2 Structure of the Faster R-CNN for Landmark Detection 

The standard edition of the Faster R-CNN was implemented for the landmark 

detection task. Figure 3.7 shows the structure of the implemented Faster R-CNN model. 

The process of our Faster R-CNN is the same as the model proposed in [50]. The 

difference between out Faster R-CNN and the vanilla version is the structure of the CNN 

inside. Our CNN in the Faster R-CNN were designed based on trial-and-error method and 

different principles for designing CNN in [132].  

The set of convolutional layers of the CNN analyzes the whole input image to 

construct a convolutional feature map. As the size of the smallest landmarks in the utilized 

dataset is nearly 32 × 32 pixels, the input size is set to 32 × 32 × 3, where the last 3 is for 

 

 

Figure 3.7: Faster R-CNN for landmark detection and its components. 
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three color channels: red, green and blue. The set of convolutional layers contains two, 

two-dimensional convolutional layers, with a rectified linear unit (ReLU) attached after 

each convolutional layer. The set also includes one max pooling layer for down-sampling 

purposes. Each convolutional layer employs a 3 × 3 filter and has the stride settings of 1 

pixel for both horizontal and vertical strides. The number of filters in the first 

convolutional layer is 48, while 96 filters are used for the second convolutional layer. The 

max pooling layer is placed at the end of the layers set, in which the pooling size is 2 × 2 

and the stride settings is 1 pixel for both horizontal and vertical strides. This small pooling 

size is applied to prevent premature down-sampling of the input image, which may cause 

the loss of features in the result feature map. The training of our Faster R-CNN uses the 

whole images as input, and the labeled bounding boxes as the target. Training continues 

for 20 epochs, with 1 × 10−4 initial learning rate. 

3.1.2 Feed-Forward Neural Network for Location Estimation 

Feed-Forward Neural Network (FFNN) is an artificial neural network which has its 

internal connections in such ways that do not form a cycle. FFNN is the simplest artificial 

neural networks available. It contains nodes, layers, and connections between nodes, 

which resembles the way neural systems in animals work. FFNNs usually contain only 

three layers, consisting of the input layer, the hidden layer, and the output layer. Input 

layer of FFNNs acquire inputs to be processed in the network, while the computations are 

done in the hidden layer. The answers are given in the output layer, according to the 

representations of input data. Despite its simplicity, FFNNs possess the ability of learning 

representations of data and desirable outcomes from the given data, same as advanced 

deep learning algorithms. The learning or the training processes of FFNN usually include 

back propagation algorithms which help the networks better understand representations 

of data that they must work with. 

The localization part of the landmark-based localization system has the goal of 

generating robot locations from bounding boxes and labels of detected landmarks from 

the Faster R-CNN. Due to the simplicity and the ability of learning the representations of 

data, FFNN is chosen for the localization part. The FFNN for localization considered the 

bounding boxes which arranged by their labels as the input. From labeled bounding boxes, 
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FFNN must generate proper latitude and longitude coordinates, along with proper 

compass orientations. Further details on the data preparation for the FFNN and the 

implemented FFNN structure are described in following subsections. 

3.1.2.1 Data Preparation of the FFNN for Localization 

Same as all other neural networks, FFNN requires data to train its models. With proper 

settings and training data, FFNN can understand input data in its given tasks and give 

proper answers regarding the input. In this subsection, the matters of data preparation for 

the training of the FFNN for localization are discussed. 

The main goal of the localization part is to generate proper latitude and longitude 

coordinates and compass orientations from labeled bounding boxes of detected landmarks. 

The first step in the data preparation is data gathering. The data for the FFNN were shared 

with the Faster R-CNN part. As mentioned in 3.1.1.1, the gathered data were in the form 

of images that embedded with location coordinates from the GPS receiver and compass 

orientations from the magnetic compass. The total number of gathered data are 1,625 sets. 

The gathered images were labeled through the application called Image Labeler which 

resides within MATLAB software. The labeled images include labeled bounding boxes 

which can be used to train both the Faster R-CNN and the FFNN. 

In the training of FFNN, labeled bounding boxes of landmarks from the Image 

Labeler are arranged by their labels. There are nine classes of landmarks for the 

localization system, as mentioned in 3.1.1.1. Each class can store two bounding boxes of 

four elements at most. Placeholders of bounding boxes for each landmark class are filled 

with {0, 0, 0 ,0} in the case that the bounding boxes are not available. Among 1,625 sets 

of data gathered, 1,198 sets of data were randomly selected for training. These random 

sets of data were the same sets which are used to train the Faster R-CNN. 

3.1.2.1 Structure of the FFNN for Localization 

The implemented structure for the FFNN for localization is illustrated in Figure 3.8. 

Our FFNN structure consists of 72 input neurons, 48 neurons in the hidden layer, and 3 

neurons for the output layer. The number of 72 for the input neurons comes from the input 
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that contains arranged placeholders of bounding boxes from nine landmark classes, in 

which each class having two placeholders for bounding boxes of detected landmarks. 

Since each bounding box has four elements for its position in the image and its size, 18 

placeholders need to be multiplied by 4, having 72 input neurons for each bounding box 

element as the result. The output neurons of 3 come from 3 desired outputs, including 

values of latitude, longitude, and compass orientation. The number of hidden neurons of 

48 is found through optimization in the trial-and-error process. 

3.2 Vision-Based Navigation System with Deep Q Network 

Navigation systems require decent decision makers to guide the robots to their goals. 

The second system proposed in this thesis is the vision-based navigation system for 

outdoor mobile robots using the Deep Q Network (DQN) [133]. DQN is the significant 

milestone in the field of deep reinforcement learning. It combines CNN and Q-Learning 

together. As based on Q-Learning, DQN is an off-policy algorithm. It finds the optimal 

policies that actions of agents under such policies maximize total cumulative rewards 

from the consequences of actions to the environments. DQN replaces tables in Q-

Learning with neural networks. The networks in DQN generates action values for the 

DQN agents instead of looking up the action values in the table. The strategy is still the 

same as Q-Learning though, in which actions with the highest action values in any given 

states are chosen. Training strategies in DQN are introduced with the experience replay 

and the target-action value function. Experience replay is the strategy in which 

experiences of actions are stored in the memory, and randomly selected to train the DQN 

 

Figure 3.8: Feedforward neural network (FFNN) for localization with detected 
landmarks from Faster R-CNN. 
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model. Experiences generally contain the state, action committed, reward received from 

such action, and the consequence state after the action. States in experiences are originally 

stacks of visual frames from video games [87]. The calculation of target action-values 

can be completed through two equations: 

 yi = ri   



 yi = ri + g×maxa’Qn (si+1, a’)   



where yi is the target-action value of the experience i, ri is the reward from committing an 

action stored in the experience, g is the reward discount, and maxa’Qn (si+1, a’) is the 

maximum target-value from the target-value function in the consequence state of the 

experience. Target action-value will be calculated by (1) if the training episode of DQN 

is terminated at the given step. Calculation from (2) will be applied to other cases. 

We implemented the vanilla version of the DQN in our navigation system. The 

training process of DQN agents includes the exploration and exploitation, in which the 

agents find optimal solutions through the trial-and-error strategy. This process can harm 

parts of the robots if the training process is carried on the real robot directly. The 

simulation environments based on the First-Person Shooter (FPS) game was created for 

the training of DQN agents in navigation tasks. ViZDoom platform [134] was chosen for 

creating the simulations for our DQN agents. The game-based platform was chosen over 

traditional simulations platforms because it contains convenient resources, which can be 

used to create simulation environments faster and simpler. However, the choice of 

creating the game-based simulations led to another problem. There are big differences 

between simulations and the real world. As discussed in chapter 2, many works transfer 

experiences from the simulations to the real world by applying transfer learning strategies. 

We saw these strategies to be heavy and require a large amount of efforts and resources. 

Instead, a marker-based Augmented Reality (AR) algorithm was employed to calibrate 

visual data from the real camera to be similar with experiences in the simulation. 

It resulted in the navigation system illustrated in Figure 3.9. The simple marker-based 

AR algorithm and a simple color-based object detector are used to enhance robot 
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perspectives. Camera image is fed to the AR module, where the goal object in the image 

is detected. The goal is replaced with the simulated object that DQN was trained with. 

Therefore, our DQN decides proper actions for the robot from augmented camera images. 

There are three main components in our navigation system, including DQN, simulation 

environments, and the AR module. Further details of the navigation system components 

are described in following subsections. 

 

Figure 3.9: Diagram of the outdoor robot navigation system with DQN. 
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3.2.1 Simulation Environments based on ViZDoom Platform 

ViZDoom is a software platform for machine learning research based on the FPS 

game Doom which was released in 1993 [134]. It contains convenient game resources 

and easily accessible sets of codes that link between the simulation and control programs. 

Simulation environments in ViZDoom can be created faster and easier than building 

simulations from their bases. Doom game itself is lightweight and can be processed fast 

on typical personal computers. ViZDoom is also compatible with different game editing 

tools and is highly customizable. The simulation environments created for ViZDoom are 

projects to their agents in first-person perspective. This first-person perspective is the 

same perspective that mobile robots can see through the attached camera, supposed that 

the camera is directed to the front of the robots. 

Doom Builder [135] was the tool selected for creating simulation environments for 

our DQN agents. The simulation environment was created with the field of Hosei 

University, Koganei campus, Japan, as the reference, as illustrated in Figure 3.10. Details 

of the created environment were not precisely measured. Textures and objects in the 

environments were also of the video game resources. Settings of the simulation can be 

completed via different methods. Game settings such as the spawn locations, background 

reactions in the environments, and game completion criteria, can be set through the scripts 

in Action Code Script (ACS) language. The ACS scripts are embedded with the game 

 

Figure 3.10: The area used for the simulation. 
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environments created by Doom Builder and can be edited with the Doom Builder. 

Simulation settings such as simulation time, rewards, and possible actions of agents, can 

be set with an additional text file. Figure 3.11 illustrates some samples of the created 

environment in the first-person perspective. Figure 3.12 compares the real world and the 

created simulation environment. Interactions between the environment and artificial 

agents are more oriented into games. Agents in the simulation can interacts by moving 

and gathering items. The simulation can respond to the agents in many ways, such as 

increasing or decreasing agent status, giving rewards, and the agent termination. 

Simulation settings of the created simulation environment are shown in Table 1. The 

step limit is set to 250 steps in each simulation instance, in which one step is set to 1/35 

s. This means one simulation instance has the time limit of approximately 7 s. Visual data 

that agents see from the simulation is in the form of RGB frames at the size of 320×240 

pixels. Agents can commit 3 actions, including moving forward, turning left, and turning 

right. Rewards from the environment are stated in Table 2. Agents tend to move toward 

 

Figure 3.11: Sample of the created simulation environment. 
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the goal as fast as possible, since in each step -3 is added to the accumulated reward. 

Distances between the agent and the goal are also calculated as rewards, which become 

more negative as the agent moves away from the goal. Termination state is also 

considered bad. The large negative reward of -2,000 will be given if the agent moves into 

the grass and terminated. On the other hand, the rewards are increased as the agent moves 

toward the goal, with the big reward of +2,000 provided as the agent reaches the goal. A 

simulation instance has three termination conditions: (1) the agent reaches the goal, (2) 

the agent is terminated, and (3) the simulation exceeds the step limit. 

Table 1. Simulation settings of the created environment. 

Simulation properties Applied settings 

Step limit per run 250 steps 

Time per step 1/35 s 

Agent input 320×240×3 (RGB image) 

Agent actions 3 (forward, turn left, turn right) 

 

 

Figure 3.12: Comparisons between (a) the real world and (b) the simulation. 
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Table 2. Reward provided by the simulation environment. 

Agent states Provided rewards 

Moved – (distance_x + distance_y) – 3  

Dead (step on grass) – 2,000 

Goal + 2,000 

 

The task for the DQN agent for navigation is the simple navigation task, in which the 

starting location is fixed, and the goal location is random within the specified area. The 

simulation area is limited to approximately 20×18 m, as seen in Figure 3.13. This 

simulation area was used for both DQN training and experiments. The robot starting 

location and orientation are fixed, so as the target area. The target area is 5 m far from the 

robot starting position. The robot initially faces toward the target goal location. The target 

area has the size of 10×5 m, with the goal object randomly generated inside it. Green 

grass areas are set to instantly terminate the agents if stepped on it. 

 

Figure 3.13: Simulation area with the agent (robot) start and the target area. 
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3.2.2 Deep Q Network for Vision-Based Navigation 

The vanilla version of the DQN is employed for the navigation task. Settings and 

learning process are the same as the original proposal in [87]. The differences in our DQN 

include the structure, training settings, and the way our states is stored. Structure of our 

DQN is displayed in Figure 3.14. Visual data is fed through the input layer, continuing 

into convolutional layers, then processed through a fully connected layer and output one  

 

 

Figure 3.14: Structure of the CNN in DQN for navigation. 
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Table 3. DQN training settings. 

Training properties Applied settings 

Episodes 1201 

Steps per episode 250 

Initial exploration parameter 1.0 

Exploration decay 0.000192 

Learning rate 0.00024 

Reward discount 0.949 

Memory batch per training 96 

Memory size 1,000,000 

 

of three possible actions. The input size of the DQN is 128×128×3, which is refers to the 

size of RGB image. Our DQN considers a single RGB image as an input, instead of a 

traditional stack of luminance frames [87]. The single RGB image was employed to 

reduce effects of framerate differences between the real robot camera and the simulation. 

However, the use of single RGB image input for DQN can cause temporal limitation 

problems and reduce DQN performances. Convolutional layers in our DQN were inspired 

by the pyramidal design [136]. The first convolutional layer has a large filter size of 7×7, 

with the stride of 4×4. The later convolutional layers apply small filters of 3×3, with stride 

2×2. The number of filters starts at 48 for the first convolutional layer. For the deeper 

convolutional layers, the number of filters has increased to 108 and 192 in the second and 

the third convolutional layers, respectively. Batch normalization and ELU activation are 

attached after each convolutional layer. Our DQN structure was optimized through trial-

and-error process. 

During training and navigation, the input RGB images have the first 20 rows on the 

top of images cropped. The removed areas mostly are the sky or the background buildings, 

which have no impact on the robot navigation. The cropped images are resized to 

128×128×3 pixels, then fed to the DQN. As aforementioned, we implemented the vanilla 

DQN and its training process for our DQN. Variables for our DQN training are different 
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from [87], as described in Table 3. The training variables were set through trial-and-error 

procedures. We used the “Basic” scenario in ViZDoom [134] to test our DQN structures 

and training settings, before tuning the DQN to our navigation simulation. The number 

of episodes was set to 1201, with the step limit of 250 steps per episode. The epsilon-

greedy algorithm was implemented with the exploration parameter of 1.0 and the 

exploration decay rate of 0.000192 for each performed action step. Learning rate of the 

network was set to 0.00024. The rewards for calculating the target-action values were 

discounted by the factor of 0.949. The DQN was trained in every step of actions with 

experiences from the memory, in which the experiences were sampled in a batch of 96. 

The memory size was set to be able to store 1,000,000 experiences at maximum.  

Each value in the settings has significant meaning to the DQN training. The 

exploration factor and exploration decay play important roles in balancing the exploration 

and exploitation process. The reward discount determines probabilities of the end of 

episodes. More reward discount makes the DQN agents consider more on long-term 

rewards. Episode rewards during training are convolved and shown in Figure 3.15. The 

DQN robot agent chose proper actions and received more rewards in later episodes. 

 

Figure 3.15: Training reward of the DQN agent for navigation. 
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3.2.3 Marker-Based Augmented Reality 

Augmented Reality (AR) algorithms are algorithms for augmented visual information 

received from the reality. They can be categorized into different sectors. By markers, AR 

algorithms can be divided into the marker-based AR algorithms and marker-less AR 

algorithms. Marker-based AR is considered to be the basic method of implementing AR, 

since it typically requires only markers and some computer vision algorithms [137]. On 

the other hand, marker-less AR require different types of sensors to augment visual 

information, such as the GPS and compass. 

The marker-based AR algorithm is employed to improve the robot vision in our 

navigation system. A simple color-based detector was used in our AR to detect the marker 

 

 

Figure 3.16: Flows of the augmented reality module. 
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objects in camera images. The color-based object detector was selected over neural 

network-based detection algorithms due to its lightweight and simplicity. Neural network 

and deep learning detection methods such as the method in [138] require the detectors to 

be trained. Neural network-based methods also consume more computation resources 

than simple color detectors when used. Flows of the AR module is illustrated in Figure 

3.16. We selected the goal object which has different color to the environment. Camera 

image is smoothened through the filter to reduce noises. We used a gaussian filter with 

the kernel size of 5×5 to smoothen camera images. The object detector then finds the goal 

by detecting object colors. The goal object is detected and replaced with the object from 

the simulation, which resized according to the goal object. 

Since an object is needed to be detected as the real goal, we used a traffic cone as the 

goal object. The traffic cone was chosen because of its appearances. The appearances of 

traffic cones are the same from all directions. Colors of the traffic cones are usually 

unique and recognizable in almost every environmental condition. Its orange color can be 

easily detected with specific hue values. Our AR module replaces the traffic cone in Fig. 

3.17 (a) with the green armor from the simulation in Fig. 3.17 (b). Fig. 3.18 shows the 

traffic cone in camera images and their augmented images at different ranges. We 

augmented camera images by replacing the traffic cone with the green armor, before 

feeding the augmented image to the DQN for robot navigation. The replaced object was 

smaller as the distance increased. 

 

Figure 3.17: The goal objects: (a) the real traffic cone, (b) the green armor. 
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3.3 Improvement of Deep Q Network for Outdoor Navigation 

using the Transfer Learning Strategy 

The DQN can be used to navigate mobile robots with visual information from the 

attached camera. More navigation tasks added to the robot result in more DQN agents 

that need to be trained for each specified task. This repeating process of acquiring new 

tasks and training new DQN agents greatly consume computational time and resources. 

As discussed in chapter 2, transfer learning strategies can be used to transfer knowledge 

from the source task to others. 

 

Figure 3.18: Camera images (left) and augmented images (right) at (a) 2 m, (b) 
5 m, and (c) 10 m. 
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A transfer strategy is employed to transfer knowledge from the simple navigation task 

in section 3.2 to other tasks. From the simple diagram in Figure 3.19, the whole session 

of the trained DQN agent is loaded for the training of the new model without changes. In 

order to utilize the knowledge in the loaded DQN agent, the initial exploration factor is 

reduced. The training of the new agent has less chance to select random actions, and select 

actions based on prior knowledge instead. This process helps the DQN agent to find the 

optimal solution faster than fully randomized trial-and-error strategy. 

 

Figure 3.19: Simple diagram of the employed transfer learning strategy. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

Three deep learning-based systems have been proposed for the localization and 

navigation tasks of mobile robots. Each system has its own task and specialized 

characteristics. The methods of how each system works were described in the third 

chapter of this thesis. 

In this chapter, three proposed systems were tested with different experiments 

according to their assignments. The first system of localization was tested with the 

experiments for object detection and the localization tests. The second system for 

navigation was tested with experiments in the simulation and the real robot. The third 

system was tested with simulation settings that contain higher difficulties than the second 

one. Experimental results and the robot which was the testbed for two of the proposed 

systems are described in following sections. 

4.1 Wheelchair Robot Platform 

The wheelchair robot is the testbed for two of the proposed deep learning-based 

systems. Appearance of the wheelchair robot is illustrated in Figure 4.1. The wheelchair 

robot itself consist of two Yamaha AC motors and a motor controller. The AC motors are 

powered by a 24-voltage battery which can be stored beneath the seat. Motors can be 

controlled through serial commands. Users can send commands from the laptop that can 

be attached to the motor controller via a USB cable. Commands for controlling the motors 

are only for controlling speed and steer of the motors. 

The wheelchair robot has three visible compartments, located on the top, back, and 

the lower left side of the robot. The top compartment can be placed with different sensors 
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such as GPS receiver and magnetic compass. In our experiments however, it was placed 

with only a single web camera. The back compartment can store a laptop which is used 

as the main controller. The lower left compartment is designed specifically for housing a 

small laser rangefinder module. 

4.2 Landmark-Based Outdoor Localization System 

The localization system contains the detection part by Faster R-CNN and the 

localization part using FFNN. We conducted different experiments according to 

capabilities of each module in the localization system. There are detection tests for the 

Faster R-CNN detector and localization tests of the FFNN included in this section. 

4.2.1 Detection Test of Faster R-CNN for Landmark Detection 

The goal of the landmark detection experiments was to evaluate the performance of 

the Faster R-CNN, since the localization part is strongly related with the landmark 

detection. All 427 images remaining in the test set were processed through the Faster R-

CNN and embedded with bounding boxes and labels of landmarks detected by Faster R-

CNN. Evaluation of detection results includes the qualitative and quantitative tests. 

 

Figure 4.1: Wheelchair robot platform. 
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The qualitative evaluation was done by analyzing the detection results through human 

eyes. Some of detection results from the Faster R-CNN on images in the test set are shown 

in Figure 4.2. Most of generated bounding boxes are placed well on detected landmarks 

with proper positions and sizes. Labels attached to the boxes correspond to the classes of 

landmarks shown in Figure 3.5. However, some landmarks such as ‘CocaCola’ in Figure 

4.2 (c) has its bounding box placed in the area of the actual landmark, but the box size 

did not match with the landmark size. 

For the quantitative evaluation, Mean Average Precision (mAP) was used for the 

quantitative evaluation in landmark detection experiments. mAP is considered to be the 

actual metric to measure the accuracy of object detectors. The mAP is the mean value of 

average precisions (AP) from all object classes. In this paper, we refer to this as landmark 

classes. AP is the average of maximum precisions at different recall values, in which both 

precision and recall can be calculated by the following equations: 

� =  
��

�����
     (3) 

 

Figure 4.2: Samples of images in the test set and the Faster R-CNN landmark 
detection results: (a) Sample 1; (b) Sample 2; (c) Sample 3. 
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where P is the precision, R is the recall, TP is the amount of the correct bounding 

boxes comparing from detection and reference boxes in the dataset, FP is the amount of 

missed or misplaced bounding boxes that appeared in detection results, and FN is the 

amount of missed bounding boxes that did not appear in detection results, but existed in 

the reference dataset. The correct bounding boxes were measured from the ratio of 

Intersection over Union (IoU), which is the ratio between the intersection area and union 

area of bounding boxes, comparing detection results with reference data. The higher IoU 

ratio means less detection error allowance, which can also reduce the outcome of AP 

values. In this paper, the IoU of 0.5 and 0.7 were employed for measuring detection 

accuracy, similar to [50] which used an IoU of 0.7. AP values of all landmark classes and 

the mean values (mAP) of 0.5 and 0.7 IoU ratio values are displayed in Table 4. 

Table 4. AP of detection results from the Faster R-CNN. 

Class AP0.5 AP0.7 

1 (‘FamilyMart’) 0.9024 0.8786 

2 (‘CocaCola’) 0.8281 0.5823 

3 (‘BicycleLane’) 0.8040 0.5466 

4 (‘NoTruck’) 0.8573 0.8573 

5 (‘Crossing’) 0.8500 0.8500 

6 (‘Lawson’) 0.7682 0.7206 

7 (‘TimesParking’) 0.6156 0.4966 

8 (‘LawsonParking’) 0.8360 0.7815 

9 (‘RoadSign1’) 0.9904 0.9235 

Mean 0.8280 0.7375 

 

From Table 4, the mAP values are 0.8280 and 0.7375 for 0.5 and 0.7 IoU, respectively. 

This implies that the landmark detection accuracies of Faster R-CNN are 82.80% for 0.5 
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IoU and 73.75% for 0.7 IoU. Though mAP values were higher than 80% when IoU is 0.5, 

mAP decreased to around 70% as IoU increased to 0.7. This means landmarks could be 

detected but may not be precise or have high accuracy. This reduction in detection 

accuracy is the cause of a lower localization accuracy, as landmark detection results are 

required to generate localization results in the Faster R-CNN localization method. 

4.2.2 Localization Experiments 

The localization methods presented in this paper were implemented and evaluated in 

several localization experiments. All 427 images in the test set were processed in the 

Faster R-CNN localization system to generate localization results. We added a CNN 

localization system based on the well-known CNN for classification called ‘AlexNet’ 

[139] to compare its performances with our Faster R-CNN. We replaced the last layers of 

AlexNet with regression layers, which cause the AlexNet to be able to generate 

localization results from the whole images. The AlexNet was trained with the same 

training dataset as the Faster R-CNN system. Results from localization methods, 

including location coordinates in latitude and longitude, and compass orientations were 

then passed on to the evaluation. 

Evaluation of localization results was done by calculating absolute errors and the 

distance between two points, the generated results and the reference geolocation data in 

the test dataset. Three absolute errors were considered in the experiments: mean, 

minimum and maximum absolute errors. The mean absolute error is calculated from the 

following equation: 
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where MAE is the mean absolute error, a is the result from localization, b is the reference 

value in the test dataset, and n is the amount of data in the test set, which was 427 in the 

experiments. The minimum and maximum absolute errors are the smallest and largest 

values in absolute errors. 

The distances between two points were calculated from the location coordinates of 

the generated and reference data. We used the haversine formula to calculate distances 

from latitude and longitude of two points. The haversine formula is widely used in 
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computer programming to determine the distance between two points on a great sphere, 

which commonly referred to as the Earth. The implemented haversine formula is as 

follows: 
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where D is the distance between two points in kilometers, r is the earth radius, which 

were applied as 6378.1 km [140], y1 is latitude of localization results in radius, y2 is the 

reference latitude in radius, x1 is longitude of localization results in radius, and x2 is the 

reference longitude in radius. 

In addition to absolute errors and distance errors, we also calculated the standard 

errors from localization results and distance errors. The standard errors were calculated 

to measure deviations of all results, in which the equation for standard errors can be 

described mathematically as; 

n
SE


       (7) 

where SE is the standard error, σ is the standard deviation of the result, and n is the amount 

of data, which was 427 for the test set. 

Table 5 shows each localization error and the distances between the real and generated 

robot location. The mean, minimum, maximum and standard errors are calculated from 

absolute errors. Localization errors are the distances in meters calculated from location 

coordinates. Faster R-CNN system outperformed the AlexNet in terms of location and 

distance errors. Mean absolute errors of latitude and longitude from the Faster R-CNN 

method are slightly lower than the AlexNet, while minimum errors are also slightly lower 

in the case of Faster R-CNN. These small errors in latitude and longitude cause significant 

differences in distance errors. The average distance error of the Faster R-CNN is 28 m 

which is about half of the distance error of the AlexNet (~50 m). In the case of minimum 

errors, the distance error from Faster R-CNN is less than 1 m, while AlexNet has the 

minimum error around 3 m. On the maximum errors, the Faster R-CNN method has a 

distance error around 177 m, greatly less than the error from AlexNet of 322 m. 

However, performances of Faster R-CNN localization suffer a decline in compass 

accuracy. On average, compass orientations from the Faster R-CNN method can have the 
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errors around 55°, while the AlexNet gave an average error of 17°. The same trends went 

together with the minimum and maximum errors, in which the Faster R-CNN performed 

worse with larger compass errors. 

The standard errors indicated that latitude and longitude coordinates resulted from all 

localization methods share the similar deviation, while the Faster R-CNN has higher 

compass differences, and the AlexNet have higher distance error differences in the results. 

Table 5. Localization errors of proposed methods. 

Errors Faster R-CNN CNN (AlexNet) 

Mean  Latitude 2.4367 × 10−4 3.4441 × 10−4 

Errors Longitude 4.0868 × 10−5 2.2187 × 10−4 

 Compass 54.9425 17.0498 

 Distance (m) 28.4739 49.8166 

Min  Latitude 1.0000 × 10−6 2.3391 × 10−6 

Errors Longitude 1.8654 × 10−7 2.4863 × 10−7 

 Compass 0.3826 0.0374 

 Distance (m) 0.5396 3.3838 

Max  Latitude 0.0011 0.0026 
Errors Longitude 1.6409 × 10−4 0.0013 

 Compass 179.0098 173.2717 
 Distance (m) 176.9496 321.9153 

Standard  Latitude 4.0797 × 10−5 4.0797 × 10−5 

Errors Longitude 2.1783 × 10−6 2.1783 × 10−6 
 Compass 6.0188 4.9259 

 Distance (m) 1.4299 1.5464 
 

 

4.3 Vision-Based Navigation System using Deep Q Network. 

The navigation system was tested with simple navigation tasks in two environments: 

the simulation and the real outdoor environment. The robot had to move to the goal, which 

was randomly placed in front of the robot. The robot and the goal setups were the same 

as the training environment in Figure 3.13. There was a target area for random goal 

locations. The goal object was randomly placed in the target area. For the simulated 

experiments, the green armor in Fig. 3.17 (b) was used as the goal. The traffic cone in Fig. 

3.17 (a) was used as the goal for the real robot. The starting position of the robot was the 
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same as in the training environment. Simulation experiments included the navigation 

using the trained DQN. Real robot tests had an addition of the AR module to augment 

camera images. We measured the robot performance based on the reaching the target 

success rate and crash rate, since the rewards in the real environment cannot be measured 

in the same way as in the simulation. Success rate was measured by the times that our 

robot reached the goal. Crash rate was measured by the times that our robot moved into 

the grass Experimental results are presented in Table 6. 

Table 6. Experimental results of the vision-based navigation system. 

Measurements 
Experimental results 

Simulation Real robot 

Number of experiments 100 50 

Success count 98 13 

Success rate 98% 26% 

Crash count 1 3 

Crash rate 1% 6% 

Maximum distance 10 m 4 m 

 

4.3.1 Navigation in the Simulation Environment 

The outdoor navigation system was tested inside the same simulation with the same 

simulation settings as in the training. We set the goal randomly in the target area. Goal 

distances were in the range of 5-10 m, same as in the training environment. The robot 

initial location is the at the same place, with the same orientation in every test. Goal 

locations were changed every time the test started. The robot had to move to the goal 

which was placed in front of it. Figure 4.3 shows an example of the navigation system in 
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the simulation, from the start to the goal. Our robot was tested in the simulation for 100 

times. From the simulation results, the robot successfully reached the goal 98 times out 

of 100, or 98% success rate was achieved. The robot moved into the grass 1 time, which 

resulted in 1% crash rate. Another 1% was due to the time out, in which the robot moved 

over the designated step limit of 250 steps. 

 

Figure 4.3: The agent reaching the goal object in the simulation at (a) starting; 
(b) midway; (c) goal reached. 
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Though 98% success rate was achieved, there was a crash rate of 1% in simulation 

tests. It is suspected that the robot crashed because the robot lacks the knowledge of prior 

image frames. As implemented in [87], the DQN applied a 4-frame stack as an input for 

playing video games. However, we implemented only a single RGB image frame as the 

DQN input. The reason for the other fail to reach the goal due to the time out is related 

with the nature of DQN. Because DQN has a greedy policy as its core, it tried its best to 

achieve the most reward possible by avoiding taking risky actions that may cause large 

negative rewards. 

4.3.2 Navigation in the Real Environment 

Figure 4.4 shows the real experimental area, with the target area and the starting point 

included. We randomly placed the goal object in the target area. The robot started at the 

same location, with the same orientation in every test. Target area in real experiments was 

closer to the robot, in which the distances were reduced to 2-7 m instead of 5-10 m in 

simulation tests. Width of the target area was also changed to 7 m to match with the field 

of view in the robot camera. The closer distances were chosen to test the DQN from the 

shortest distance, which are typically easier for the robot. We gradually increased goal 

distances as the experiments proceed. The robot was tested for 50 times in the real 

 

 

Figure 4.4: Experimental area in the real robot experiments. 
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environment. Augmented images from the camera were used as states. Robot performed 

an action according to the state and its knowledge from the simulation. A single action of 

the robot performed for 0.5 second before moving on to the next state and commit the 

next action. 

 

Figure 4.5: Wheelchair robot reaching the goal object at (a) 3 m, (b) 2 m and (c) 
reached the goal object. 
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From experimental results (Table 6), the robot successfully reached the goal object 

13 times, resulted in 26% success rate. We counted the success when the robot reached 

the goal object, as displayed in Figure 4.5. The robot moved into the grass 3 times, which 

resulted in 6% crash rate. Other 68% of the real robot results were time out. The robot 

was designated with the time out status if the robot stuck in the same area for longer than 

1 minute. All success attempts in the 26% success rate were from the navigation within 

the maximum distance of 4 m. 

As seen in Figure 3.18, the robot could detect the goal object up to 10 m. However, 

the DQN could not guide the robot to the goal beyond 4 m. There are several reasons 

behind these results. First is the difference between the real environment and the 

simulation. Our DQN use convolutional neural networks to generate actions according to 

states, which is the whole augmented images that also include the background 

environments. This difference in backgrounds could reduce performances of the DQN. 

Secondly, the augmented reality module could possess several problems, since we 

employed a simple color-based object detector. Pedestrians could be mistaken as the goal 

object if they were wearing clothes with similar color to the object while walking into 

camera frames. Another problem could come from the DQN training. The training of 

DQN aims to have DQN generate and select actions based on action values. Some unseen 

states could cripple DQN performances by a large margin. 

Despite the failure of 74%, the success rate of 26% showed that the simulation made 

from a video game can be used to train the DQN to guide the real robot for simple 

navigation tasks. However, assists from some other algorithms such as augmented reality, 

are highly recommended for real robot implementations. 

4.4 Results from the Transfer Learning Implementation. 

The task for the DQN for robot navigation is changed. The new task is introduced to 

the navigation system. Most of the environments were the same as the time of training 

the DQN for the simple navigation task. In this new task, the starting location and the 

goal location are random within the same designated zone which illustrated in Figure 4.6. 
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The new zone is a square with 10 m of length per side. There are new obstacles included 

within the navigation. Obstacles are in the form of barrels of Figure 4.7. The task for the 

navigation system is to guide the robot from its starting location to the goal, which is the 

same green armor from the previous task. During its navigation, the robot must be able 

to avoid the barrels which are considered as obstacles. The locations of all obstacles are 

random within the navigation zone. 

The transfer learning was implemented to train the new DQN agents by loading all 

the DQN parameters trained for the simple navigation task. The initial exploration factor 

was changed, to make the new DQN decide their actions during the training based on 

prior knowledge. Performances of our transfer learning strategy were tested with the new 

navigation task in the simulation environment. 

We trained a reference DQN for the new navigation task without the use of any 

transfer learning strategies. This DQN was used as a performance reference point for 

other networks with transfer learning. The transfer learning strategy was employed in the 

training of other three DQN agents of the new task. These three new DQN agents contain 

 

Figure 4.6: The new navigation zone. 
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the same training settings as the reference model, which are listed in Table 7. There are 

two differences in the settings. First, the number of training episodes in the DQN agents 

with transfer learning are reduced by half. Second, the initial values of the exploration 

factor are varied among three new models. 

Table 7. Training settings for agents with transfer learning applications (A). 

Training properties Reference A1 A2 A3 

Episodes 1501 751 

Steps per episode 250 

Initial exploration 
parameter 

1.0 0.72 0.60 0.48 

Exploration decay 0.000048 

Learning rate 0.00024 

Reward discount 0.932 

Memory batch per 

training 
96 

Memory size 1,000,000 

 

Four DQN agents were tested in the simulation environment for their designated task 

of reaching the goal with obstacle avoidance for 100 times. Results from the navigation 

task are listed in Table 8. These results include the success rate which counted from the 

success attempted in reaching the goal, the crash rate that counted each time the robot 

 

Figure 4.7: The obstacle (barrel). 
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crashed into obstacles, and average scores that each agent received throughout 100 times 

of navigation tests. 

Table 8. Results of the vision-based navigation systems with transfer learning. 

Measurements Reference 
Transfer Learning 

A1 (0.72) A2 (0.60) A3 (0.48) 

Number of 
experiments 

100 100 100 100 

Success count 1 50 58 52 

Success rate 1% 50% 58% 52% 

Crash count 14 25 13 29 

Crash rate 14% 25% 13% 29% 

Average Score - 1246.34 - 255.40 + 104.88 - 215.38 

 

The results stated that our transfer learning strategy helped in the training process of 

DQN agents. As the new navigation task is much more difficult than the simple reaching 

the goal, the reference model succeed only 1%. Agents with helps from the transfer 

learning performed far better than the reference, with better performances in all 

measurements. Among the new three agents, the DQN agent with balanced exploration 

and exploitation performed the best. The agent with 60% initial exploration factor 

balanced the use of prior knowledge, while also exploring new experiences. 

It can be concluded from the results that transfer learning of the whole DQN agent 

helps the learning process of other agents with related tasks. Though the use of prior 

knowledge needs to be balanced between exploration and exploitation. 
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CHAPTER 5 

CONCLUSIONS 

This thesis is progressed to the final part. Matters in this thesis are concluded. We also 

suggest possible future works in this chapter. 

5.1 Conclusion 

In this thesis, we proposed three vision-based systems using deep learning algorithms 

for the localization and navigation tasks. The first system is the localization system based 

on landmarks in images. The second system is the navigation system using the Deep Q 

Network. The third system is the improvement of Deep Q Network, with implementations 

of a transfer learning strategy. 

In the first localization system, Faster R-CNN was employed to detect landmarks in 

images. The detected landmarks and their properties which include the bounding boxes, 

labels, and detection scores were sent to the FFNN to generate the corresponding 

geolocation data of the image. The Faster R-CNN can detect landmarks in the real-time 

applications. Localization from the combination of the Faster R-CNN with the simple 

FFNN was proved to be more accurate than using a single state-of-the-art CNN model to 

localize the outdoor robots from images. In the best-case scenario, Faster R-CNN and 

FFNN can localize the robots in outdoor environments better than the GPS devices. 

For the second system, Deep Q Network was employed for the vision-based 

navigation of an outdoor mobile robot. The DQN was trained in the game-based 

simulation environment to avoid possible damages from the training process. The 

implementation of the DQN on the real robot did not apply the traditional transfer learning. 

Instead, a marker-based AR algorithm was used to augment raw visual to fit with the 
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trained experiences. A simple color detection algorithm was employed in the AR module. 

The trained DQN agent was able to guide the robot in the simulation flawlessly, while the 

navigation in the real robot was reduced in the navigation distances. The second system 

proved that game resources can be used to create practical simulation environments for 

outdoor mobile robots. Additionally, the AR algorithm can reduce unnecessary training 

procedures during the transition between the simulation and the real world. 

The third system applied a transfer learning strategy to improve the training process 

of DQN agents. DQN is known for its training process with random actions through trial-

and-error process. This training process can be drastically improved using knowledge of 

the existing DQN agents which do related tasks. The DQN for navigation trained with 

transfer learning strategy greatly improved in their performances. Their training can be 

reduced shorter, which save a large amount of computation time and resources. 

All the system proposed showed performances of supervised and unsupervised deep 

learning algorithms for the practical localization and navigation tasks of outdoor mobile 

robots. Regardless of the category, deep learning algorithms can be practically employed 

for robotics tasks. Performances of deep learning algorithms are related to how they are 

prepared, and the tasks they are up to. 

5.2 Future works 

From three systems proposed for the outdoor mobile robots, there are many issues left 

for the future works. This section separates the possibilities by the system. 

1) Faster R-CNN for landmark-based localization: Even though good 

performances were inspected from the system, there are plenty of properties to be 

improved. There are newer object detectors available. Some of those detector 

yield benefits of speed and accuracy. The transition of knowledge between types 

of landmarks in different areas is also an interesting topic. 

2) Deep Q Network for Vision-Based Outdoor Navigation: DQN is a greedy 

algorithm. It does not possess any kind of policy within. It is wise to try and 
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implement on-policy algorithms such as A3C. The detection system for the AR 

module should also be changed to the algorithms based on features such as SIFT. 

3) Transfer Learning for DQN Improvements: Transfer learning is one of the 

most interesting topics for the field of unsupervised learning. There are many 

different ways to transfer knowledge from one model to another. Since the whole 

model is transferred in this thesis, it is nice to see the selective transferring 

algorithm for deep reinforcement learning algorithms. Some algorithms such as 

Genetic Algorithms (GA) can be used to select parts of the model to transfer, or 

which features to transfer. 
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