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School of Engineering, Monash University, Sunway Campus. 

46150 Petaling Jaya, Selangor,  
Malaysia 

1. Introduction 

Swarm robotics is a new approach to the coordination of large numbers of relatively simple 
physically embodied robots, that are autonomous, not controlled centrally, capable of local 
communication and operates based on some sense of biological inspiration (Sharkey & 
Sharkey, 2006a). Swarm robotic systems have become a major research area since 1980’s, as 
new solution approaches are being developed and validated, it is often possible to realize 
the advantages of swarm robotic systems. Table 1 shows the key advantages of swarm  
  

BENEFITS  DESCRIPTIONS  

Parallelism  In task-decomposable application domains, robots can accom-
plish a given task more quickly than a single robot by dividing 
the task into sub tasks and executing them concurrently.  

Robustness  No single point of failure for the system. This is an important 
characteristic since many of the applications rely on continued 
progress even if some components in the system fail.  

Scalability  As the swarm of robots becomes larger, its relative performance 
in comparison to a centralized system becomes better.  

Heterogeneousness  Since a group of robots may be heterogeneous, it can utilize 
“specialists” -robots whose physical properties enable them to 
perform efficiently certain well defined tasks.  

Flexibility  Easily adaptable for different applications as different applica-
tions will have different requirements, a general architecture 
will need the ability to be easily reconfigured for the different 
problems it proposes to solve.  

Complex Tasks  Tasks may be inherently too complex (or impossible) for a 
single robot to accomplish or performance benefits can be 
gained from using a swarm of robots.  

Cheap Alternative  Building and using several simple robots can be easier, cheaper, 
more flexible and more fault tolerant than having a single pow-
erful robot for each separate task.  

Table 1. Characteristics of swarm robotic systems. 
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robotic systems (Cao et al., 1997; Altshuler et al., 2006; De le Torre & Stentz, 2001; Bruemmer 
et al., 2002): The early work on classification of research areas of swarm robotic systems was 
done by Dudek et al. (1993). The paper classified the areas into five areas which are swarm 
size, communication range, communication topology, communication bandwidth, swarm 
reconfigurability and swarm unit processing ability. Cao et al. (1997) presented the survey of 
cooperative robotics in a hierarchical way. They split the publications into five main axes: 
group architecture, resource conflicts, origins of cooperation, learning and geometric 
problems. Group architecture is further divided into centralization/decentralization, 
differentiation (denotes the homogeneous or heterogeneous robot groups), communication 
structure and modeling of other agents dimensions. Modeling of other agents dimension 
contains studies which models the intentions, beliefs, actions, capabilities, and states of 
other agents to obtain more effective cooperation between robots (Bayindir & Sahin, 2007). 
Iocchi et al. (2001) presented an analysis of multi robot systems by looking at their 
cooperative aspects. They have also proposed taxonomy of multi robot systems and a 
characterization of reactive and social deliberative behaviors of the multi robot system as a 
whole. Rather than summarizing the research area of swarm robots into a taxonomy of 
cooperating systems, Parker (2003) has organized the areas by the principal topics that have 
generated significant levels of research. The categorization done in this paper has the main 
structure as in the work of Parker (2003). The research axes are biological inspiration, 
communication, control approach, mapping and localization, object transportation and 
manipulation, reconfigurable robotics, motion coordination, learning and task allocation. 
Each of the research axes are further separated into sub-categories for in detailed discussion. 

2. Research axes 

2.1 Biological inspiration 

Swarm robotics and the related concept of swarm intelligence, is inspired by an 
understanding of the decentralized mechanisms that underlie the organization of natural 
swarms such as ants, bees, birds, fish, wolfs and even humans. Jung & Zelinsky (2000) 
described the implementation of a heterogeneous cooperative multi-robot system that was 
designed with a goal of engineering a grounded symbolic representation which was 
inspired by the communication methods employed by biological systems. 
Social insects provide one of the best-known examples of biological self organized behavior. 
By means of local and limited communication, they are able to accomplish impressive 
behavioral feats: maintaining the health of the colony, caring for their young, responding to 
invasion and so on (Sharkey, 2006b). Labella et al. (2006) has analyzed the behavior of a 
group of robots involved in an object retrieval task where the robots’ control system is 
inspired by a model of ants’ foraging behaviors. The sub-tasks assigned to the robots are 
extracted from simple behavior of ant swarms such as search, retrieve, deposit, return and 
rest. Ideas inspired from such collective behaviors have led to the use of pheromones (Panait 
& Luke, 2004), a chemical substance deposited by ants and similar social insects in order to 
mark the environment with information to assist other ants at a later time. 
Similarly Payton et al. (2003) and Cazangi et al. (2005) used pheromones to achieve inter-
robot communication mechanism in their research. Pheromones in swarm robotics can be 
viewed as a mechanism for inter-robot communication that can help reduce the complexity 
of individual agents. Pheromone communication adopted from necrophoric bee behavior 
was introduced in (Purnamadjaja & Russell, 2004) to develop interaction between the 
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members of a robot swarm. The term “Necrophoric” signifies the removal of bee corpses 
from inside of the hive. Nevertheless, the introduction of pheromones has driven the 
research exploitation in communication and localization in the studies of swarm robotics. 
A higher level of studies in this area leads to exploit the cooperation and interaction abilities 
in mammals. Unlike insects, mammals behave differently toward individual social partners, 
rather than interacting with all entities in the same way. Tomlinson & Blumberg (2002) 
created an interactive virtual multi-agent system based on the behavior of packs of gray 
wolves. Their virtual wolves are able to form social relationships with each other via the 
mechanism of social relationship formation involves emotion, perception, and learning. 
Fong et al. (2003) have modeled their robots to adopt human’s social interactions. As 
research progresses in this area, more sophisticated teamwork architectures are being 
explored into to cater the increase in problem complexity. Such sophisticated teamwork 
architectures was demonstrated by Kitano et al. (1998). Robocup is an attempt to foster 
intelligent robotics by including design principles of autonomous agents, multi agent 
collaboration, strategy acquisition, real-time reasoning, robotics and sensor fusion. 

2.2 Communication 

The role of communication among mobile robots remains one of the most important 

research issues in swarm robotics system design. When a task requires cooperation, there is 

a need for some form of communication between the participating agents. Cooperation 

work requires communication whenever one agent’s actions depend critically on knowledge 

that is accessible only from other agents. There has been much debate about the level of 

communication that should be allowed between such systems. Most of the open literatures 

have made distinctions between implicit/indirect and explicit/direct communications. 

Implicit communication (also referred to as stigmergy (Trianni et al., 2004)) is a method of 

communicating through the environment. 

Mir & Amavasai (2007) have modeled an autonomous swarm which is able to make 

decentralized decisions and demonstrate implicit communication. The paper also stressed 

that the swarm exhibits behavior based cooperation in the absence of explicit 

communication. White & Pagurek (1998) presented a new architectural description for an 

agent that is based on ants’ stigmergy behavior for inter-swarm communication is 

introduced. Ramos et al. (2005) discusses several concepts related to self-organization, 

stigmergy and social foraging in animals. The paper also suggested and stressed the role 

played not only by the environmental media as a driving force for societal learning, as well 

as by positive and negative feedbacks produced by the many interactions among agents. 

Pheromone signal plays an important role in communication domain as its capability of 

establishing communication between a sender and a receiver when there is no direct clear 

path between them. Pheromone communication is a type of implicit communication. There 

a many papers that have explored the use of pheromone signal to convey messages to other 

robots in a swarm such as the work by Purnamadjaja & Russell (2004) and Purnamadjaja et 

al. (2007). An improved form of pheromone communication method called “virtual 

pheromone” was used by (Payton et al., 2003; Meng et al., 2007) to employ simple 

communication and coordination to achieve large scale results in the areas of surveillance, 

reconnaissance, hazard detection, and path finding. More implementations of implicit 

communication in robots swarm has been reported by D’Angelo & Pagello (2005) and 

Bruemmer et al. (2004). 
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Explicit communication is the type of communication in which the robots directly pass 
messages to each other and/or to the human operator. McPartland et al. (2005) has made 
comparison between implicit and explicit communications theory by applying it to two 
different swarms of robot which is assigned to explore a given environment in the shortest 
period of time. Rybski et al. (2007) introduced and explored simple communication 
strategies which implemented implicit and explicit communication. 
Trianni et al. (2004) studied the use of direct communication in order to achieve a reaction to 

the detection of a hole. Hayes et al. (2003) described a distributed algorithm for solving the 

full odor localization task, and shown that group performance can exceed that of a single 

robot using explicit communication. Christodoulopoulos et al. (2007) implemented an ad 

hoc wireless network communication to exchange information between all its individual 

agents within the swarm. Ad-hoc mode is a method for wireless devices to directly 

communicate with each other. Operating in ad-hoc mode allows all wireless devices within 

range of each other to discover and communicate in peer-to-peer fashion without involving 

central access points. 

Communication between robots can multiply their capabilities and increase the efficiency. 

This has been shown in simulation and on real robots. The amount of communication has 

also been studied. Sometimes even little communication will enhance the performance of 

the system (Adolfsson, 2001). Even though there is no clear conclusion on what type of 

communication is better for robot swarms, but most of the current research is aiming 

towards implicit communication for its robust characteristics. 

2.3 Control approach 

In general, swarm robot coordination strategies assume either a centralized approach, where 
a single robot plans for the group, or a distributed approach, where each robot is responsible 
for its own planning (De le Torre & Stentz, 2001). Iocchi et al. (2001) has clearly 
distinguished between centralized and distributed control as: 

• Centralized: the organization of a system having a robotic agent (a leader) that is in 
charge of organizing the work of the other robots; the leader is involved in the 
decisional process for the whole team, while the other members act according to the 
directions of the leader. 

• Distributed: the organization of a system composed by robotic agents which are 
completely autonomous in the decisional process with respect to each other; in this class 
of systems a leader does not exist. 

Table 2 shows the advantages and disadvantages of centralized and distributed control 

approach. Parker (1993) experimented on the advantages and the disadvantages of the 

control approaches and reported that deciding the proper balance between centralized and 

distributed control is the key to achieve the desired emergent group behavior in a swarm of 

robots. Steele Jr & Thomas (2007) introduced “Directed Stigmergy-Based Control” which 

incorporates the advantages of distributed control and centralized control. The aim of the 

paper is to stress the need of a supervisor in useful tasks that require searching large areas 

such as planetary science exploration, urban search and rescue, or land mine remediation. 

However, both distributed and centralized control approaches have contributed 
individually to the study of swarm robotics and have generated interesting experimental 
results. Extensive studies in distributed control approaches (Spaan et al., 2006; Shen et al., 
2002) lead to implementation of control laws or force laws (Gazi & Passino, 2002; 
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Dimarogonas & Kyriakopoulos, 2007) incorporating both attraction and repulsion features. 
On the other hand, centralized control approach (Li et al., 2007) has contributed in 
supporting several capabilities of swarm robotic systems such as hierarchical planning, 
concurrent planning, execution and perception, reactivity to environmental changes, error 
recovery, and coordination of multiple tasks. 
 

APPROACH CRITERIA DESCRIPTION 

Advantages  Optimal plans can be produced. The leader can take 
into account all the relevant information conveyed by 
the members of the team and generate an optimal plan 
for the team.  

Strongly rely on communication. Thus, when a com-
munication failure takes place, it results in a failure of 
the entire system.  

A strongly centralized system can fail in accomplish-
ing its task when its leader goes out of order.  

Centralized  

Disadvantages  

System response to changes in the environment is 
sluggish since all relevant information must be con-
veyed to the leader before any action can be taken.  

Do not have a single point of failure. The loss of a 
single agent will not cripple the system, as can be the 
case in single-agent or centrally controlled systems.  

Can achieve complex results with relatively simple 
system design. The designer need only create simple, 
low level behaviors, instead of a single, computation-
ally intense control system to govern all possible situ-
ations.  

Advantages  

Are inherently parallel, which allows for extremely 
scalable systems and faster task completion.  

Often result in highly sub-optimal solutions because 
all plans are based solely on local information.  

Distributed  

Disadvantages  

Independent task execution by the system compo-
nents causes problems in the area of coordination be-
tween the system agents.  

Table 2. Advantages and disadvantages of control approaches (Iocchi et al., 2001; Steele Jr & 
Thomas, 2007). 

2.4 Mapping and localization 
Mapping and localization is an exceedingly well-studied problem in swarm robotics which 
gathered a lot of research papers the last two decades. Mapping is a representation of the 
physical environments through the mobile robots sensory data into spatial models (Thrun, 
2002). Localization is defined as finding the absolute or rational location of robot in the 
spatial models generated. Since the development of research in mapping and localization 
progressed, the problems that addresses mapping and localization has been referred to as 
simultaneous localization and mapping (SLAM) or concurrent mapping and localization 
(CML). 
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SLAM or CML is the problem of acquiring a map of an unknown environment with a 

moving robot, while simultaneously localizing the robot relative to this map (Thrun, 2002). 

The SLAM problem addresses situations where the robot lacks a global positioning sensor. 

Instead, it has to rely on a sensor (e.g., laser scanner, sonar and vision) of incremental 

egomotion for robot position estimation (e.g., odometry). To solve the problem of odometry 

in SLAM, many approaches have been made thru the application of various filters 

introduced in (Thrun, 2001; Se et al., 2002; Thrun et al., 2004; Howard, 2006). 

There are two distinct mapping approaches available namely topological mapping and 

geometric mapping. A topological map is an abstract encoding of the structural 

characteristics of an environment. Often, topological maps (Kuipers & Byun, 1991; Fabrizi & 

Saffiotti, 2000; Choset & Nagatani, 2001) represent the environment as a set of distinctive 

places using points (e.g., rooms), connected by sequences of robot behaviors using lines 

(e.g., wall-following). A geometric map, on the other hand, is a representation of the precise 

geometric characteristics of the environment, much like a floor plan (Wolter et al., 2004). 

This area also covers the studies in the type of terrains (Seraji, 1999; Triebel et al., 2006) and 

dynamic environments (Wolf & Sukhatme, 2004). 

2.5 Object transportation and manipulation 

 
 

  

                         (a) Force closure.                                                      (b) Form closure. 

  

                      (c) Conditional closure.                                             (d) Object closure. 

Fig. 1. Closure techniques for object manipulation. 
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Researches in this area of swarm robotics have drafted three types object manipulation 
method which are namely grasping, pushing and caging. In grasping, all robots are 
arranged so that the total robots system is grasping the object (Wang et al., 2007; 
Agassounon, 2004). Grasping incorporates form closure (refer to Fig.1(b)) and force closure 
(refer to Fig.1(a)) techniques. Force closure is a condition that implies that the grasp can 
resist any external force applied to the object. Form closure can be viewed as the condition 
guaranteeing force closure, without requiring the contacts to be frictional. In general, robots 
are the agents that induce contacts with the object, and are the only source of grasp forces. 
Pushing (Miyata et al., 1997; Yamada & Saito, 2001) on the other hand doesn’t guarantee 
form closure or force closure, but requires external forces to be applied to the object such as 
gravity and friction. For this type of object manipulation, conditional closure (refer to 
Fig.1(c)) is introduced. Pushing behaviors gives an advantage where any objects that can’t 
be grasped to be moved and to perform pushing to multiple objects as well. The main 
difficulty on object manipulation via pushing is that the robots cannot pull the object 
directly when it needs to slow down or move back the object. 
Caging (Pereira et al., 2003; Wang & Kumar, 2002; Wang et al., 2004) introduces a bounded 
movable area for the object. Then, the contact between object and robotics mechanism need 
not be maintained by robot’s control. This makes motion planning and control of each 
robotic mechanism become simple and robust. This condition is called object closure (refer 
to Fig.1(d)). Caging has been widely used in manipulation of swarm robotics because this 
makes motion planning and control of each robotic mechanism simple and robust. 
A leader-follower type multiple robot system was addressed by Wang et al. (2007) where 
the proposed system consists of a pushing leader, a robot without grasping mechanisms, 
and multiple follower robots. During the object transportation, a desired trajectory is given 
to the leader robot only, and follower robots estimate the trajectory of the leader based on 
force/moment from the object. In Behavior-based Multiple Robot System with Host for 
Object Manipulation (BeRoSH) (Wang et al., 1996), the unit which processes all common 
tasks is named the host. The host is incorporated into one of the robots, by giving the robot 
the ability to organize other robots and generate motivations/goals for the other robots. 
More papers reporting leader-follower implementations can be found in (GroB et al., 2006; 
Song & Kumar, 2002). 

2.6 Reconfigurable robotics 
Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are 
autonomous kinematic machines with variable morphology. Beyond conventional actuation, 
sensing and control typically found in fixed-morphology robots, self-reconfiguring robots 
are also able to deliberately change their own shape by rearranging the connectivity of their 
parts, in order to adapt to new circumstances, perform new tasks, or recover from damage. 
Modular self-reconfigurable robotic systems can be generally classified into several 
architectural groups by the geometric arrangement of their units (Mark et al., 2007; 
Østergaard et al., 2006; Tuci et al., 2006). 

• Lattice Architectures (refer to Fig.2(a)): have units that are arranged and connected in 
some regular, three-dimensional pattern, such as a simple cubic or hexagonal grid. 
Control and motion can be executed in parallel. Lattice architectures usually offer 
simpler reconfiguration, as modules move to a discrete set of neighboring locations in 
which motions can be made open-loop. The computational representation can also be 
more easily scaled to more complex systems. 
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(a) Lattice type. (Brandt et 
al., 2007) 

(b) Chain type. (Yim et al., 
2007) 

(c) Mobile type. (Mondada 
et al., 2003) 

Fig. 2. Architectural group. 

• Chain Architectures (refer to Fig.2(b)): have units that are connected together in a string 
or tree topology. This chain or tree can fold up to become space filling, but the 
underlying architecture is serial. Through articulation, chain architectures can 
potentially reach any point or orientation in space, and are therefore more versatile but 
computationally more difficult to represent and analyze and more difficult to control. 

• Mobile Architectures (refer to Fig.2(c)): have units that use the environment to 
maneuver around and can either hook up to form complex chains or lattices or form a 
number of smaller robots that execute coordinated movements and together form a 
larger “virtual” network. 

The types of modular self-reconfigurable robotic systems reported in the gathered 
literatures have been classified into their architectural groups and is presented in Table 3. 
Self-reconfigurable robots hold potential to be able to move robotics into new areas of 
application. In addition to traditional mass production environments, self-reconfigurable 
robots may become useful in real-world environments. These environments are 
characterized by being unstructured, complex, dynamic, and unknown. Self-reconfigurable 
robots have an advantage over fixed-shape robots in these environments because of their 
special abilities which include versatility, robustness, adaptability, scale extensibility and 
even self-repair. 

2.7 Motion coordination 

Exploring into this domain, path-planning in swarm robotics has attracted a lot of attention 
in the past two decades. The problem of mobile robots path-planning is defined as follows: 
“for a given robot and an environment description, plan a route between two specific 
locations, which must be clear of obstacles and attend all the optimizations criteria” (Langer 
et al., 2007). Studies in path-planning can be divided to local path-planning and global path-
planning. In local path-planning, the planning is based on the information given by sensors 
installed on the robot, which provide details about the unknown environment (Lei et al., 
2006; Lei & Li, 2007). In the global planning case, the environment’s model is precisely 
defined (Kang et al., 2007), and the navigation is performed with the information known in 
priori. 
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SYSTEM  CLASS  DOF  REFERENCE(s)  

CEBOT  Mobile  various  Fukuda et al. (1989)  

Polypod  Chain  2  Yim (1993)  

Metamorphic  Lattice  3  Chirikjian et al. (1996)  

3d Fracta  Lattice  6  Murata et al. (1998)  

Molecule  Lattice  4  Kotay & Rus (1998)  

CONRO  Chain  2  Castano et al. (2002)  

Polybot  Chain  1  Golovinsky et al. (2004)  

Telecube  Lattice  6  Suh et al. (2002)  

Vertical  Lattice  2  Hosokawa et al. (1999)  

Crystal  Lattice  4  Rus & Vona (2000)  

I-Cube  Lattice  3  Unsal & Khosla (2001)  

Pneumatic  Lattice  2  Inou et al. (2002)  

Uni Rover  Mobile  2  Damoto et al. (2001)  

M-TRAN  Hybrid  2  Murata et al. (2002)  

Atron  Lattice  1  Brandt et al. (2007)  

Swarm-bot  Mobile  3  Groß et al. (2006)  

Superbot  Hybrid  3  Shen et al. (2006)  

Catom  Lattice  0  Kirby et al. (2005)  

Molecube  Chain  1  Studer & Lipson (2006)  

YaMoR  Chain  1  Upegui et al. (2005)  

Miche  Lattice  0  Gilpin et al. (2008)  

Proteo  Hybrid  0  Bojinov et al. (2000)  

ACM  Chain  various  Hirose & Mori (2004)  

Fractum  Hybrid  0  Tomita et al. (1999)  

Miniturized  Lattice  2  Yoshida et al. (1999)  

Semi-Cylindrical  Hybrid  2  Murata et al. (2000)  

M-TRAN II  Hybrid  2  Kurokawa et al. (2003)  

RIKEN Vertical  Lattice  2  Hosokawa et al. (1999)  

Table 3. List of self reconfigurable modular systems (Mark et al., 2007; Jantapremjit & 
Austin, 2001; Østergaard et al., 2006) 

The basic path-planning problem deals with static environments (Garro et al., 2007; Li et al., 

2007), in which the workspaces solely containing stationary obstacles of which the geometry 

is known. A natural extension to the basic path planning problem is planning in dynamic 

environments (Van Den Berg et al., 2006; Tian et al., 2007), in which besides stationary 

obstacles, also moving obstacles are present. Planning in such environment is challenging as 

in many cases the motions of the moving obstacles are not known beforehand, so often their 

future trajectories are estimated by extrapolating current speed in order to plan a path. This 

path may become invalid when some obstacle changes its speed, so then a new path should 

be planned. However, there is actually no time for planning; as the world is continuously 

changing, the computation would already be outdated even before it is finished 

(Smierzchalski & Michalewicz, 2007). 

Various algorithms has been introduced to tackle the problems in path-planning for 
example fuzzy-logics (Lei & Li, 2007), particle-swarm optimization (PSO) (Rigatos, 2008), 
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distributed gradient (Rigatos, 2008), ant-colony optimization (ACO) (Garro et al., 2007), 
genetic algorithm (GA) (Lei et al., 2006), D*(Van Den Berg et al., 2006) and K-Bug(Langer et 
al., 2007). Most of the algorithms aim to solve the shortest path (Garro et al., 2007) problem 
in path-planning. Nearly all the previous work has been aimed at 2D environment; only 
some papers considered 3D environments such as the work presented by Kitamura et al. 
(1995) and Yamashita et al. (2000). 
Nonholonomic path-planning is also covered in this category. Nonholonomic systems are 
characterized by constraint equations involving the time derivatives of the system 
configuration variables. These equations are non integrable; they typically arise when the 
system has less controls than configuration variables. For instance a car-like robot has two 
controls (linear and angular velocities) while it moves in a 3-dimensional configuration 
space (Laumond et al., 1998). Nonholonomic constraint generally exists in wheeled system. 
Under the nonholonomic constraint, the vehicles and wheeled mobile robots can only run 
along the tangential direction of trajectory within the steering angle limit, and the motion is 
non-slipping and pure rolling (Liu et al., 2007). In another word, the robot can instantly 
move forward and backward, but cannot move sideward. 
Formation or pattern generation is another area in motion coordination that received a lot of 
author’s attention. The formation generation problem is defined as the coordination of a 
group of robots to get into and maintain a formation with a certain shape, such as circle 
(Defago & Konagaya, 2002), line (Arkin & Balch, 1999) or even arbitrary shapes (Sahin et al., 
2002). Current application areas of pattern formation include search and rescue operations, 
landmine removal, remote terrain and space exploration, control of arrays of satellites and 
unmanned aerial vehicles (UAVs). Bahceci et al. (2003) has divided formation generation 
into two groups. The first group includes studies where the coordination is done by a 
centralized (Belta & Kumar, 2002) unit that can oversee the whole group and command the 
individual robots accordingly. The second group contains distributed (Pavone & Frazzoli, 
2007) strategies for achieving the coordination. Chen & Wang (2005) discussed various 
control strategies in formation generation such as behavior-based approach (Arkin & Balch, 
1999), potential field approach (Bruemmer et al., 2002), leader-follower approach (Desai et 
al., 2001) and more. 

2.8 Learning 

At present most learning algorithms can be classified as supervised and unsupervised 
learning. Supervised learning requires the use of an external supervisor. With supervised 
learning the robot knows what the best output is in a certain situation as the supervisor 
provides the corrective information to the learner. Unsupervised learning is a method of 
learning with minor or without any external corrective feedback from the environment 
(Alpaydin, 2004). This method allows for automated design of efficient, robust controllers, 
which saves much design time and effort. Furthermore, it is useful for allowing robots to 
adapt to situations where the task/environment is unknown beforehand or is constantly 
changing (Pugh & Martinoli, 2006). 
There are many paradigms in supervised learning that have been identified in the open 
literatures. Inductive learning is one of the supervised learning paradigms which is a 
method that generalize from observed training examples by identifying features that 
empirically distinguish positive from negative training examples (Mitchell & Mitchell, 1997). 
Decision tree learning (Quinlan, 1986), neural network learning (Pomerleau, 1990) and 
inductive logic programming (Konik & Laird, 2002) are all examples of inductive methods 
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that operate in this fashion. Another well studied paradigm would be explanation-based 
learning (EBL) (Mitchell & Thrun, 1993) where prior knowledge is used to analyze, or 
explain, how each observed training examples satisfies the target concept. This explanation 
is then used to distinguish the relevant features of the training example from the irrelevant, 
so that examples can be generalized based on logical reasoning (Mitchell & Mitchell, 1997). 
EBL studies how domain knowledge about the function being learned can be used to speed 
up learning (Mahadevan, 1996). Other common paradigms that have been applied to robot 
learning are case-based learning (CBL) and memory-based learning (MBL) which were 
reported by Sim et al. (2003). 
Similarly, in unsupervised learning, paradigms such as evolutionary learning and 
reinforcement learning (RL) received massive attention from the researchers recently. 
Genetic algorithms (Ram et al., 1994) and genetic programming (Koza, 1994) are the most 
prominent computational techniques for evolutionary learning. Evolutionary learning starts 
with a population of policies, and combines them to produce better policies till an optimal 
policy is found. The evolutionary learning paradigm is normally set with a good set of 
policies to start which helps to accelerate the learning process. 
Reinforcement leaning (RL) (Fernandez et al., 2005) is defined as learning what to do, how 
to map situations to actions so as to maximize a numerical reward signal. The learner is not 
told which actions to take, as in most forms of machine learning, but instead must discover 
which actions yield the most reward by trying them. Actions may affect not only the 
immediate reward but also the next situation and, through that, all subsequent rewards 
(Sutton & Barto, 1998). Trial-and-error search and delayed reward are two most important 
distinguishing features of RL. 
Among RL algorithms, Q-learning has attracted a great deal of attention in research. Q-
learning (Yang et al., 2007; Ahmadabadi & Asadpour, 2002) is a recently explored RL 
algorithm that stores the expected reinforcement values associated with each state-action 
pair usually in a lookup table. In a survey conducted by Yang & Gu (2004) on multi-agent 
reinforcement learning, they have highlighted that traditional Q-learning is not directly 
applicable in swarm robots application as involvement of multiple robots in the 
environment makes the environment dynamic. Due to that reason, many researchers have 
put efforts to modify the Q-learning framework to suit dynamic environment involving 
multiple robots. Algorithms such as Minimax-Q learning (Littman, 1994), Nash-Q learning 
(Hu&Wellman, 2003), Friend-or-Foe Q-learning (Littman, 2001), rQ-learning (Suh et al., 
1997), Fictitious Play (Claus & Boutilier, 1998), SARSA learning (Sutton & Barto, 1998) and 
Policy Hill Climbing (Ng & Jordan, 2000) were gathered and reported by Yang & Gu (2004). 
As far as robot learning is concern, it is still at the infant stage of research and is one of the 
interesting and difficult machine learning problems. This domain can be further explored by 
exploiting more paradigms and scaling the algorithms to solve more problems related to 
robot learning. 

2.9 Task allocation 

Task allocation means assigning tasks among the robots in swarm in a productive and 
efficient manner. Task allocation must ensure that not only the global mission is achieved, 
but also the tasks are well distributed among the robots. An effective task allocation 
approach considers the available resources, the entities to optimize (time energy, quality 
and etc.), the capabilities of the deployable robots and appropriately allocates the tasks 
accordingly (Baghaei & Agah, 2002). Task refers to a sub-goal that is necessary for achieving 
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the overall goal of the system. Tasks can be discrete or continuous and also can vary in a 
number of other ways, including time scale, complexity and specificity (Gerkey & Mataric, 
2004). 
Often in task allocation problems, the comparison between heterogeneous system and 
homogeneous systems are made. Heterogeneous system consists of a team of robots whose 
members have a difference either in the hardware devices or in the software control 
procedures. Homogeneous system consists of a team of robots whose members are exactly 
the same both in the hardware and in the control software (Iocchi et al., 2001). Such 
comparison results can be found in papers presented by Goldberg & Mataric (2002). 
The problem of multi-robot task allocation (MRTA) has been investigated using different 
techniques such as physical modeling (Parker, 2002), distributed planning (Ortiz et al., 
2005), market-based techniques (Dias et al., 2006), auction based techniques (Bertsekas & 
Castanon, 1991) and ALLIANCE (Parker, 2001). One of the first algorithms for market based 
solutions for the MRTA problem was described in the MURDOCH system developed by 
Gerkey & Mataric (2002). The implemented methodologies served as design guidelines to 
allow swarm robot systems to gain more efficiency. 

3. Conclusion 

A state of the art survey of swarm robotic research is presented in this paper. The research 
in the area of swarm in these nine research axes are critically reviewed and reported for the 
benefit of researchers in this field. Swarm robotic systems have a very high potential in 
solving highly complex tasks as they are competent of parallelism, robustness, scalability 
and low cost. It is clear that since the initiation of the field of swarm robotics, significant 
progress has been made on domains such as biological inspiration, communication, control 
approach, mapping and localization, object transportation and manipulation, reconfigurable 
robotics, motion coordination, learning, and task allocation. Most of the research conducted 
was based on the biological inspirations adopted from the behaviors of ants, bees and birds. 
Implicit communication seems to give more robustness in the communication architecture 
of swarm robotics. Distributed control architecture was preferred compared to centralized 
architecture to prevent single point failures. As far as mapping and localization is 
concerned, work is still being carried out to fine tune the problems faced in this domain. In 
object transportation and manipulation, caging is preferred over the available methods as 
the constraints in the domain can be reduced and kept simple. In last two decades, research 
in reconfigurable robotics has taken a good progress. Even so, this domain is still at its infant 
stage. Path-planning and formation generation is one of the main domains that received a 
lot of attention from the authors. A lot of new heuristics and algorithms were introduced to 
solve the problems in this domain. In the learning domain, reinforcement learning (RL) was 
given much interest by the researchers. In task allocation domain, heterogeneous and 
homogeneous systems are widely discussed. This domain has contributed in development 
of various techniques as listed in the paper. 
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