14 research outputs found

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    A noise based novel strategy for faster SNN training

    Full text link
    Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN conversion, it requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this paper, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN(T=1) by approximating the neural potential distribution with random noise, then convert the single-step SNN(T=1) to a multi-step SNN(T=N) losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bio-plausible

    Learning to Recognize Actions from Limited Training Examples Using a Recurrent Spiking Neural Model

    Full text link
    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3%/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competetive accuracy with respect to state-of-the-art non-spiking neural models.Comment: 13 figures (includes supplementary information

    Humans and deep networks largely agree on which kinds of variation make object recognition harder

    Get PDF
    View-invariant object recognition is a challenging problem, which has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g. 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best algorithms for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition using the same images and controlling for both the kinds of transformation as well as their magnitude. We used four object categories and images were rendered from 3D computer models. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position. This suggests that humans recognize objects mainly through 2D template matching, rather than by constructing 3D object models, and that DCNNs are not too unreasonable models of human feed-forward vision. Also, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research

    Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition

    No full text
    Retinal image of surrounding objects varies tremendously due to the changes in position, size, pose, illumination condition, background context, occlusion, noise, and nonrigid deformations. But despite these huge variations, our visual system is able to invariantly recognize any object in just a fraction of a second. To date, various computational models have been proposed to mimic the hierarchical processing of the ventral visual pathway, with limited success. Here, we show that the association of both biologically inspired network architecture and learning rule significantly improves the models' performance when facing challenging invariant object recognition problems. Our model is an asynchronous feedforward spiking neural network. When the network is presented with natural images, the neurons in the entry layers detect edges, and the most activated ones fire first, while neurons in higher layers are equipped with spike timing-dependent plasticity. These neurons progressively become selective to intermediate complexity visual features appropriate for object categorization. The model is evaluated on 3D-Object and ETH-80 datasets which are two benchmarks for invariant object recognition, and is shown to outperform state-of-the-art models, including DeepConvNet and HMAX. This demonstrates its ability to accurately recognize different instances of multiple object classes even under various appearance conditions (different views, scales, tilts, and backgrounds). Several statistical analysis techniques are used to show that our model extracts class specific and highly informative features
    corecore