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View-invariant object recognition is a challenging problem that has attracted much

attention among the psychology, neuroscience, and computer vision communities.

Humans are notoriously good at it, even if some variations are presumably more difficult

to handle than others (e.g., 3D rotations). Humans are thought to solve the problem

through hierarchical processing along the ventral stream, which progressively extracts

more and more invariant visual features. This feed-forward architecture has inspired a

new generation of bio-inspired computer vision systems called deep convolutional neural

networks (DCNN), which are currently the best models for object recognition in natural

images. Here, for the first time, we systematically compared human feed-forward vision

and DCNNs at view-invariant object recognition task using the same set of images and

controlling the kinds of transformation (position, scale, rotation in plane, and rotation in

depth) as well as their magnitude, which we call “variation level.” We used four object

categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated

in 10 experiments in which they had to discriminate between two or four categories

after rapid presentation with backward masking. We also tested two recent DCNNs

(proposed respectively by Hinton’s group and Zisserman’s group) on the same tasks.

We found that humans and DCNNs largely agreed on the relative difficulties of each kind

of variation: rotation in depth is by far the hardest transformation to handle, followed by

scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs

would be reasonable models of human feed-forward vision. In addition, our results show

that the variation levels in rotation in depth and scale strongly modulate both humans’

and DCNNs’ recognition performances. We thus argue that these variations should be

controlled in the image datasets used in vision research.

Keywords: rapid invariant object recognition, ventral stream models, feed-forward vision, deep networks, 2D and

3D object variations
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1. INTRODUCTION

As our viewpoint relative to an object changes, the retinal
representation of the object tremendously varies across different
dimensions. Yet our perception of objects is largely stable.
How humans and monkeys can achieve this remarkable
performance has been a major focus of research in visual
neuroscience (DiCarlo et al., 2012). Neural recordings showed
that some variations are treated by early visual cortices, e.g.,
through phase- and contrast-invariant properties of neurons
as well as increasing receptive field sizes along the visual
hierarchy (Hubel and Wiesel, 1962, 1968; Finn et al., 2007).
Position and scale invariance also exist in the responses
of neurons in area V4 (Rust and DiCarlo, 2010), but
these invariances considerably increase as visual information
propagates to neurons in inferior temporal (IT) cortex (Brincat
and Connor, 2004; Hung et al., 2005; Zoccolan et al., 2005,
2007; Rust and DiCarlo, 2010), where responses are highly
consistent when an identical object varies across different
dimensions (Cadieu et al., 2013, 2014; Yamins et al., 2013; Murty
and Arun, 2015). In addition, IT cortex is the only area in the
ventral streamwhich encodes three-dimensional transformations
through view specific (Logothetis et al., 1994, 1995) and view
invariant (Perrett et al., 1991; Booth and Rolls, 1998) responses.

Inspired by these findings, several early computational
models (Fukushima, 1980; LeCun and Bengio, 1998; Riesenhuber
and Poggio, 1999; Masquelier and Thorpe, 2007; Serre et al.,
2007; Lee et al., 2009) were proposed. These models mimic feed-
forward processing in the ventral visual stream as it is believed
that the first feed-forward flow of information, ∼ 150 ms post-
stimulus onset, is usually sufficient for object recognition (Thorpe
et al., 1996; Hung et al., 2005; Liu et al., 2009; Anselmi et al., 2013).
However, the performance of these models in object recognition
was significantly poor comparing to that of humans in the
presence of large variations (Pinto et al., 2008, 2011; Ghodrati
et al., 2014).

The second generation of these feed-forward models are
called deep convolutional neural networks (DCNNs). DCNNs
involve many layers (say 8 and above) and millions of
free parameters, usually tuned through extensive supervised
learning. These networks have achieved outstanding accuracy
on object and scene categorization on highly challenging image
databases (Krizhevsky et al., 2012; Zhou et al., 2014; LeCun
et al., 2015). Moreover, it has been shown that DCNNs can
tolerate a high degree of variations in object images and
even achieve close-to-human performance (Cadieu et al., 2014;
Khaligh-Razavi and Kriegeskorte, 2014; Kheradpisheh et al.,
2016b). However, despite extensive research, it is still unclear
how different types of variations in object images are treated
by DCNNs. These networks are position-invariant by design
(thanks to weight sharing), but other sorts of invariances must
be acquired through training, and the resulting invariances have
not been systematically quantified.

In humans, early behavioral studies (Bricolo and Bülthoff,
1993; Dill and Edelman, 1997) showed that we can robustly
recognize objects despite considerable changes in scale, position,
and illumination; however, the accuracy drops if the objects

are rotated in depth. Yet these studies used simple stimuli
(respectively paperclips and combinations of geons). It remains
largely unclear how different kinds of variation on more realistic
object images, individually or combined with each other, affect
the performance of humans, and if they affect the performance of
DCNNs similarly.

Here, we address these questions through a set of behavioral
and computational experiments in human subjects and
DCNNs to test their ability in categorizing object images
that were transformed across different dimensions. We
generated naturalistic object images of four categories: car, ship,
motorcycle, and animal. Each object carefully varied across either
one dimension or a combination of dimensions, among scale,
position, in-depth and in-plane rotations. All 2D images were
rendered from 3D object models. The effects of variations across
single dimension and compound dimensions on recognition
performance of humans and two powerful DCNNs (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014) were compared in a
systematic way, using the same set of images.

Our results indicate that human subjects can tolerate a high
degree of variation with remarkably high accuracy and very short
response time. The accuracy and reaction time were, however,
significantly dependent on the type of object variation, with
rotation in-depth as the most difficult dimension. Interestingly,
the results of deep neural networks were highly correlated
with those of humans as they could mimic human behavior
when facing variations across different dimensions. This suggests
that humans have difficulty to handle those variations that
are also computationally more complicated to overcome. More
specifically, variations in some dimensions, such as in-depth
rotation and scale, that change the amount or the content of input
visual information, make the object recognition more difficult for
both humans and deep networks.

2. MATERIALS AND METHODS

2.1. Image Generation
We generated object images of four different categories: car,
motorcycle, ship, and animal. Object images varied across four
dimensions: scale, position (horizontal and vertical), in-plane
and in-depth rotations. Depending on the type of experiment,
the number of dimensions that the objects varied across were
determined (see following sections). All two-dimensional object
images were rendered from three-dimensional models. There
were on average 16 different three-dimensional example models
per object category (car: 16, ship: 18, motorcycle: 16, and animal:
15). The three-dimensional object models are constructed by
O’Reilly et al. (2013) and are publicly available.

The image generation procedure is similar to our previous
work (Ghodrati et al., 2014). To generate a two-dimensional
object image, first, a set of random values were sampled from
uniform distributions. Each value determined the degree of
variation across one dimension (e.g., size). These values were
then simultaneously applied to a three-dimensional object model.
Finally, a two-dimensional image was generated by taking a
snapshot from the transformed three-dimensional model. Object
images were generated with four levels of difficulty by carefully
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controlling the amplitude of variations across four levels, from
no variation (level 0, where changes in all dimensions were
very small: 1Sc = ±1%, 1Po = ±1%, 1RD = ±1◦, and
1RP = ±1◦; each subscript refers to one dimension: Sc: Scale,
Po: Position, RD: in-depth rotation, RP: in-plane rotation; and 1

is the amplitude of variations) to high variation (level 3: 1Sc =

±60%, 1Po = ±60%, 1RP = ±90◦, and 1RD = ±90◦).
To control the degree of variation in each level, we limited the
range of random sampling to a specific upper and lower bounds.
Note that the maximum range of variations in scale and position
dimensions (1Sc = ±60% and 1Po = ±60%) are chosen in a
way that the whole object completely fits in the image frame.

Several sample images and the range of variations across four
levels are shown in Figure 1. The size of two-dimensional images
was 400 × 300 pixels (width×height). All images were initially
generated on uniform gray background. Moreover, identical
object images on natural backgrounds were generated for some
experiments. This was done by superimposing object images on
randomly selected natural backgrounds from a large pool. Our
natural image database contained 3907 images which consisted of
a wide variety of indoor, outdoor, man-made, and natural scenes.

2.1.1. Different Image Databases
To test humans andDCNNs in invariant object recognition tasks,
we generated three different image databases:

• All-dimension: In this database, objects varied across all
dimensions, as described earlier (i.e., scale, position, in-
plane, and in-depth rotations). Object images were generated
across four levels in terms of variation amplitude (Level 0–3,
Figure 1A).

• Three-dimension: The image generation procedure in this
database was similar to all-dimension database, but object
images varied across a combination of three dimensions only,
while the forth dimension was fixed. For example, objects’ size
were fixed across all variation levels while other dimensions
varied (i.e., position, in-plane, and in-depth rotations). This
provided us with four databases (see Figure 1A): (1) 1Sc = 0:
objects’ size were fixed to a reference size across variation
levels; (2) 1Po = 0: objects’ position were fixed at the
center of the image; (3) 1RP = 0: objects were not rotated
in plane; (4) 1RD = 0: objects were not rotated in depth
(three-dimensional transformation) across variation levels.

• One-dimension: Object images in this database varied across
only one dimension (e.g., size), meaning that the variations
across other dimensions were fixed to reference values. Thus,
we generated four databases (see Figure 1B): (1) 1Sc: only the
scale of objects varied; (2) 1Po: only the position of objects
across vertical and horizontal axes varied; (3) 1RD: objects
were only rotated in depth; (4) 1RP: objects were only rotated
in plane.

2.2. Human Psychophysical Experiments
We evaluated the performance of human subjects in invariant
object recognition through different experiments and using
different image databases. In total, the data of 89 subjects (aged
between 23 and 31, mean = 22, 39 female and 50 male) were

recorded. Subjects had normal or corrected-to-normal vision.
In most experiments, data of 16–20 sessions were recorded
(two experiments were run for 5 sessions); therefore, some
subjects completed all experiments and others only participated
in some experiments. All subjects voluntarily participated to the
experiments and gave their written consent prior to participation.
Our research adhered to the tenets of the Declaration of Helsinki
and all experimental procedures were approved by the ethic
committee of the University of Tehran.

Images were presented on a 17′′ CRT monitor (LG T710BH
CRT; refresh rate 80 Hz, resolution 1280 × 1024 pixels)
connected to a PC equipped with an NVIDIA GeForce GTX
650 graphic card. We used MATLAB (www.mathworks.com)
with psychophysics toolbox (Brainard, 1997; Pelli, 1997) (http://
psychtoolbox.org) to present images. Subjects had a viewing
distance of 60 cm and each image covered ∼ 10 × 11 degrees
of visual angle.

Details of each experiment are explained in the following
sections. Generally, we used rapid image presentation paradigm
with mask to only account for the feed-forward processing
in the ventral visual pathway (see Figure 1C). Each trial was
started with a black fixation cross, presented at the center of the
screen for 500 ms, followed by a randomly selected image from
the database that was presented for either one or two frames
depending on the experiment type (see the description for each
experiment). Afterwards, a gray blank screen was presented as
inter-stimulus interval (ISI). Finally, a 1/f noise mask image was
presented. The timing of the image presentation, ISI, and mask
depended on the experiment type (see the following sections).
Subjects’ task was to categorize the presented object images.
Subjects were asked to keep their focus around the fixation cross.
They were instructed to respond as fast and accurate as they
could by pressing a key on computer keyboard (each key was
labeled with a category name). The next trial was started after
the key press and there was a random time delay before the start
of the next trial. We recorded subjects’ reaction times (reported
in Supplementary Information) and accuracies. Each experiment
was divided into a number of blocks and subjects could rest
between blocks.

In a training phase prior to the main experiment, subjects
performed some practice trials. During the training, for each
image, subjects received a feedback indicating if their decision
was correct or not. Images in the practice trials were not
presented in the main experiments. Every subject performed 40
training trials. It was sufficient for them to understand the task
and reach reasonable precision.

2.2.1. Rapid Invariant Object Categorization
In these experiments, subjects categorized rapidly presented
images from four object categories (see Figure 1). Each trial
started with a fixation cross presented at the center of the screen
for 500 ms. An image was then randomly selected from the
pool and was presented for 25 ms (2 frames of 80 Hz monitor)
followed by a gray blank screen for 25 ms (ISI). Immediately
after the blank screen, a 1/f noise mask image was presented
for 100 ms. Subjects were asked to rapidly and accurately press
one of the four keys, labeled on keyboard, to indicate which
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FIGURE 1 | Image databases and the paradigm of the psychophysical experiment. (A) Sample object images from all- and three-dimension databases for

different categories and variation levels. Each column indicates a variation level and each row refers to a database. First four rows are images from three-dimension

database: 1st row: 1Sc = 0; 2nd row: 1Po = 0; 3rd row: 1RD = 0; and 4th row: 1RP = 0. The last row shows sample images from all-dimension database. The

range of variations across different levels is depicted below the images. Colored frames refer to the type of database (this color code is the same throughout the

paper). (B) Sample images from the one-dimension databases. Each row corresponds to one type of database: 1st row: 1Sc, Scale-only; 2nd row: 1Po,

Position-only; 3rd row: 1RP, In-plane-only; 4th row: 1RD, In-depth-only. The range of variation in each level is the same as (A). (C) Psychophysical experiment for

rapid and ultra-rapid object categorization (see Materials and Methods).

object category was presented. The next trial started after a key
press with a random time delay (2 ± 0.5 s). This experiment was
performed in two types that are explained as following:

• Using all-dimension database: We used all-dimension
database where object images varied across all dimensions
(i.e., scale, position, in-plane and in-depth rotations). In each
session, subjects were presented with 320 images: 4 categories

× 4 levels × 20 images per category. Images were presented
into two blocks of 160 images. For each background condition
(i.e., uniform and natural backgrounds), we recorded the data
of 16 different sessions.

• Using three-dimension databases: In this experiment, we
used the three-dimension databases. Using these databases, we
could measure how excluding variations across one dimension
can affect human performance in invariant object recognition:
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if the fixed dimension is more difficult than the others, subjects
would be able to categorize the object more accurately and
within shorter time than in the case where the fixed dimension
is much easier. We presented subjects with 960 images: 4
categories × 4 levels × 4 conditions (1Sc = 0, 1Po =

0, 1RP = 0, and 1RD = 0) × 15 images per category.
Images were presented in four blocks of 240 images. Note
that we inter-mixed images of all conditions in each session;
therefore, subjects were unaware of the type of variations. We
recorded the data of 20 sessions for the case of objects on
natural backgrounds and 17 sessions for objects on uniform
background.

To have more accurate reaction times, we also performed two-
category (car vs. animal) rapid invariant object categorization
tasks with similar experimental settings. The details of these
two-category experiments and their results are presented in
Supplementary Information.

2.2.2. Ultra-rapid Invariant Object Categorization
To assess whether the experimental design (presentation
time and variation conditions) could affect our results and
interpretations, we run two ultra-rapid invariant object
categorization tasks, using three-dimension and one-dimension
databases. In each trial, we presented a fixation cross for
500 ms. Then, an image was randomly selected from the
pool and presented to the subject for 12.5 ms (1 frame at
80 Hz monitor). The image was then followed by a blank
screen for 12.5 ms. Finally, a noise mask was presented for
200 ms. Subjects had to accurately and rapidly press one
of the four keys, labeled on the keyboard, to declare their
responses. The next trial started after a key press with a
random time delay (2 ± 0.5 s). As mentioned above, this
experiment was performed in two types that are explained as
following:

• Using three-dimension databases: We recorded the data
of five sessions. Object images were selected from three-
dimension database with natural backgrounds. Images are
identical to those of three-dimension rapid presentation
experiment described in previous section. But, here, images
were presented for 12.5 ms followed by 12.5 ms blank and then
200 ms noise mask.

• Using one-dimension databases: In this experiment, we
used one-dimension databases with natural backgrounds to
evaluate the effect of variations across individual dimensions
on human performance. Subjects were presented with 960
images: 4 categories × 4 levels × 4 conditions (1Sc, 1Po,
1RP, 1RD) × 15 images per category. The experiment was
divided into four blocks of 240 images. We collected the
data of five sessions. Note that we only used objects on
natural backgrounds because this task was easier compared
to previous experiments; therefore, categorizing objects on
uniform background would be very easy. For the same reason,
we did not used the one-dimension databases in the rapid task.

2.3. Behavioral Data Analysis
We calculated the accuracy of subjects in each experiment
as the ratio of correct responses (i.e., Accuracy % = 100 ×

Number of correct trials / Total number of trials). The accuracies
of all subjects were calculated and the average and standard
deviation were reported. We also calculated confusion matrices
for different conditions of rapid invariant object categorization
experiments, which are presented in Supplementary Information.
A confusion matrix allowed us to determine which categories
were more miscategorized and how categorization errors were
distributed across different categories. To calculate the human
confusion matrix for each variation condition, we averaged the
confusion matrices of all human subjects.

We also analyzed subjects’ reaction times in different
experiments which are provided in Supplementary Information.
In the two-category experiment, first, we removed reaction times
longer than 1200 ms (only 7.8% of reaction times were removed
across all experiments and subjects). We then compared the
reaction times in different experimental conditions. The reported
results are the mean and standard deviation of reaction times.
In four-category experiments, we removed reaction times longer
than 1500 ms because in these tasks it could take longer time to
press a key (only 8.7% of reaction times were removed across all
experiments and subjects). Although the reaction times in four-
category experiments might be a bit unreliable as subjects had
to select one key out of four, they provided us with clues about
the effect of variations across different dimensions on humans’
response time.

2.4. Deep Convolutional Neural Networks
(DCNNs)
DCNNs are a combination of deep learning (Schmidhuber,
2015) and convolutional neural networks (LeCun and Bengio,
1998). DCNNs use a hierarchy of several consecutive feature
detector layers. The complexity of features increases along
the hierarchy. Neurons/units in higher convolutional layers
are selective to complex objects or object parts. Convolution
is the main process in each layer that is generally followed
by complementary operations such as pooling and output
normalization. Recent deep networks, which have exploited
supervised gradient descend based learning algorithms, have
achieved remarkable performances in recognizing extensively
large and difficult object databases such as Imagenet (LeCun et al.,
2015; Schmidhuber, 2015). Here, we evaluated the performance
of twomost powerful DCNNs (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014) in invariant object recognition. More
information about these networks are provided as following:

• Krizhevsky et al. (2012): This model achieved an impressive
performance in categorizing object images from Imagenet
database and significantly outperformed other competitors
in the ILSVRC-2012 competition (Krizhevsky et al., 2012).
Briefly, the model contains five convolutional (feature
detector) and three fully connected (classification) layers.
The model uses Rectified Linear Units (ReLUs) as the
activation function of neurons. This significantly sped up the
learning phase. The max-pooling operation is performed in
the first, second, and fifth convolutional layers. The model
is trained using a stochastic gradient descent algorithm.
This network has about 60 millions free parameters. To
avoid overfitting during the learning procedure, some data
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augmentation techniques (enlarging the training set) and the
dropout technique (in the first two fully-connected layers)
were applied. Here, we used the pre-trained (on the Imagenet
database) version of this model (Jia et al., 2014) which is
publicly available at http://caffe.berkeleyvision.org.

• Very Deep (2014): An important aspect of DCNNs is
the number of internal layers, which influences their final
performance. Simonyan and Zisserman studied the impact
of the network depth by implementing deep convolutional
networks with 11, 13, 16, and 19 layers (Simonyan and
Zisserman, 2014). For this purpose, they used very small
convolution filters in all layers, and steadily increased the
depth of the network by adding more convolutional layers.
Their results showed that the recognition accuracy increases
by adding more layers and the 19-layer model significantly
outperformed other DCNNs. Here, we used the 19-layer
model which is freely available at http://www.robots.ox.ac.
uk/~vgg/research/very_deep/.

2.5. Evaluation of DCNNs
We evaluated the categorization accuracy of deep networks on
three- and one-dimension tasks with natural backgrounds. To
this end, we first randomly selected 600 images from each object
category, variation level, and variation condition (three- or one-
dimension). Hence, we used 8 different image databases (4
variation levels× 2 variation conditions), each of which consisted
of 2500 images (4 categories × 600 images). To compute the
accuracy of each DCNN for given variation condition and
level, we randomly selected two subsets of 1200 training (300
images per category) and 600 testing images (150 images per
category) from the corresponding image database. We then fed
the DCNN with the training and testing images and calculated
the corresponding feature vectors of the last convolutional
layer. Afterwards, we used these feature vectors to train the
classifier and compute the categorization accuracy. Here we used
a linear SVM classifier (libSVM implementation (Chang and
Lin, 2011), www.csie.ntu.edu.tw/~cjlin/libsvm) with optimized
regularization parameters. This procedure was repeated for 15
times (with different randomly selected training and testing sets)
and the average and standard deviation of the accuracy were
computed. This procedure was done for both DCNNs over
all variation conditions and levels. Finally, the accuracies of
humans and DCNNs were compared in different experiments.
For statistical analysis, we used Wilcoxon rank-sum test with
α = 0.05. All p-values were corrected for multiple comparisons
(FDR-corrected, α = 0.05).

To visualize the similarity between the accuracy pattern of
DCNNs and human subjects, we performed a Multidimensional
Scaling (MDS) analysis across the variation levels of the three-
dimension task. For each human subject or DCNN, we put
together its accuracies over different variation conditions in
a vector. Then we plotted the 2D MDS map based on the
cosine similarities (distances) between these vectors. We used
the cosine-similarity measure to factor out the impact of mean
performance values. Because of the small size of accuracy vectors,
correlation-based distance measures were not applicable. Also,
contrary to Euclidean distance, the cosine-similarity let us see

how the pattern of the accuracy of human subjects and models
over different variations are similar or dissimilar, independent of
the actual accuracy values.

3. RESULTS

We run different experiments in which subjects and DCNNs
categorized object images varied across several dimensions (i.e.,
scale, position, in-plane and in-depth rotations, background).We
measured the accuracies and reaction times of human subjects
in different rapid and ultra-rapid invariant object categorization
tasks, and the effect of variations across different dimensions
on human performance was evaluated. Human accuracy was
then compared with the accuracy of two well-known deep
networks (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014) performing the same tasks as humans. We first report
human results in different experiments and then compare them
with the results of deep networks.

3.1. Human Performance Is Dependent on
the Type of Object Variation
In these experiments, subjects were asked to accurately and
quickly categorize rapidly presented object images of four
categories (car, ship, motorcycle, and animal) appeared in
uniform and natural backgrounds (see Section 2.2.1).

Figures 2A,B provide the average accuracy of subjects
over different variation levels in all- and three-dimension
conditions while objects had uniform and natural backgrounds,
respectively. Figure 2A shows that there is a small and negligible
difference between the categorization accuracies in all- and three-
dimension conditions with objects on uniform background.
Also, for both experimental conditions, the categorization errors
significantly increased at high variation levels (see the color-
coded matrices in the right side of Figure 2A). Despite the
small, but significant, accuracy drop, this data shows that
humans can robustly categorize object images when they have
uniform background even at the highest variation levels (average
accuracy above 90%). In addition, the reaction times in all-
and three-dimension experiments were not significantly different
(Figure S9A).

Conversely, in the case of objects on natural backgrounds
(Figure 2B), the categorization accuracies in both experimental
conditions substantially decreased as the variation level was
increased (see the color-coded matrices in the right side of
Figure 2B; Wilcoxon rank sum test), pointing out the difficulty
of invariant object recognition in clutter. Moreover, in contrast to
the uniform background experiments, there is a large significant
difference between the accuracies in all- and three-dimension
experiments (see p-values depicted at the top of Figure 2B;
Wilcoxon rank sum test). Overall, it is evident that excluding
one dimension can considerably reduce the difficulty of the task,
especially in the natural background case. A similar trend can be
seen in the reaction times (see Figure S9B), where the reaction
times in both conditions significantly increased as the variation
level increased.
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FIGURE 2 | Accuracy of subjects in rapid invariant object

categorization task. (A) The accuracy of subjects in categorization of four

object categories, when objects had uniform backgrounds. The dark, blue

curve shows the accuracy when objects varied in all dimensions and the light,

blue curve demonstrates the accuracy when objects varied in three

dimensions. Error bars are the standard deviation (STD). P-values depicted at

the top of curves, show whether the accuracy between all- and

three-dimension experiment are significantly different (Wilcoxon rank sum test;

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Color-coded matrices,

at the right, show whether changes in accuracy across levels statistically

significant (Wilcoxon rank sum test; each matrix corresponds to one curve;

see color of the frame). (B) Categorization accuracy when objects had natural

backgrounds.

We then broke the trials into different conditions and
calculated the mean accuracy in each condition (i.e., 1Sc = 0,
1Po = 0, 1RP = 0, 1RD = 0 ). Figure 3A demonstrates
the accuracies in all and three-dimension conditions, for the
case of objects on uniform background. As seen, there is a
small difference in the accuracies of different conditions at low
and intermediate variation levels (level 0–2). However, at the
highest variation level, the accuracy in 1RD = 0 (red curve)
is significantly higher than the other conditions, suggesting that
excluding in-depth rotation made the task very easy despite
variations across other dimensions. Note that in 1RD = 0
the accuracy curve is virtually flat across levels with average
of ∼95%. Interestingly, the accuracies were not significantly
different between all-dimension experiment and 1Po = 0, 1Sc =

0, and 1RP = 0. This confirms that much of the task difficulty

arises from in-depth rotation, although other dimensions have
some weaker effects (e.g., scale, and rotation in-plane). This is
also reflected in the bar plot in Figure 3A as the absolute accuracy
drop in 1RD = 0 is less than 5%, while it is more than 10% in
1Po = 0. It is also clear that humans had the maximum errors in
1Po = 0 condition, suggesting that removing position variation
did not considerably affect the task difficulty (i.e., position is the
easiest dimension).

The reaction times were compatible with the accuracy results
(see Figure S10A), where at the highest variation level, the human
reaction times in 1Sc = 0, 1Po = 0, and 1RP = 0 significantly
increased, while it did not significantly change in 1RD = 0. In
other words, when objects were not rotated in-depth, humans
could quickly and accurately categorize them.

In a separate experiment, subjects performed similar task
while objects had natural backgrounds. Results show that there
were small differences between the accuracies in all- and three-
dimension conditions at the first two variation levels (Figure 3B).
This suggests that human subjects could easily categorize object
images on natural backgrounds while objects had small and
intermediate degree of variations. However, accuracies became
significantly different as the variation level increased (e.g., levels
2 and 3; see color-coded matrices in Figure 3B). As shown
in Figure 3B, there is about 20% accuracy difference between
1RD = 0 and all-dimension condition at the most difficult level,
confirming that the rotation in depth is a very difficult dimension.
The bar plot in Figure 3B shows that the highest accuracy drop,
between levels 0 and 3, belonged to 1Po = 0 and all-dimension
conditions while the lowest drop was observed in 1RD = 0. In
addition, the accuracies in 1Sc = 0 and 1RP = 0 fall somewhere
between 1Po = 0 and 1RD = 0, indicating that scale variations
and in-plane rotation imposed more difficulty than variations in
position; however, they were easier than rotation in depth. This is
also evident in the accuracy drop.

Different objects have different three-dimensional properties;
so, the categorization performance might be affected by these
properties. In this case, one object category might bias the
performance of humans in different variation conditions. To
address this question, we broke the trials into different categories
and calculated the accuracies (Figure S5) and reaction times
(Figures S10B, S11B) for all variation and background conditions.
The results indicated that although the categorization accuracy
and reaction time may differ between categories, the order of the
difficulty of different variation conditions are consistent across all
categories. That is, in-depth rotation and position transformation
are respectively the most difficult and easy variations to process.
We also calculated the confusion matrix of humans for each
variation condition and level, to have a closer look at error rate
and miscategorization across categories. The confusion matrices
for uniform and natural background experiments are presented
in Figure S6.

Analyses so far have provided information about the
dependence of human accuracy and reaction time on the
variations across different dimensions. However, one may ask
how these results can be influenced by low-level image statistics
such as luminance and contrast. To address this, we computed
the correlation between low-level image statistics (contrast and
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FIGURE 3 | Accuracy of subjects in rapid invariant object categorization task for all-dimension and different three-dimension conditions. (A)

Accuracies for uniform background experiments. Left, The accuracy of subjects in categorization of four object categories (i.e., car, animal, ship, motorcycle). Each

curve corresponds to one condition: 1Sc = 0, 1Po = 0, 1RP = 0, 1RD = 0 (as specified with different colors). Error bars are the standard deviation (STD). P-values

depicted at the top of curves, show whether the accuracy between all-dimension and other three-dimension conditions are significantly different (Wilcoxon rank sum

test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s., not significant). Color-coded matrices, at the right, show whether changes in accuracy across levels

are statistically significant (e.g., accuracy drop is significant from one level to the other; Wilcoxon rank sum test; each matrix corresponds to one curve; see color of

the frame). Right, absolute accuracy drop between level 0 and level 3 (mean+/-STD). The horizontal lines at the top of bar plot shows whether the differences are

significant (gray line: insignificant, black line: significant). (B) Accuracies for natural backgrounds experiments. Figure conventions are similar to (A).

luminance) and the performance of human subjects. The results
show that neither luminance (Figure S7) nor contrast (Figure S8)
could explain human accuracy and reaction time in our invariant
object recognition tasks.

We also performed similar two-category rapid tasks and their
results are provided in Supplementary Information (Figures S1–
S4). Interestingly, the results of two-category experiments are
consistent with the four-category tasks, indicating that our results
are robust to the number of categories.

3.2. Human Performance Is Independent of
Experimental Setup
Although the effect of variations across different dimensions
of an object on subjects’ performance was quite robust, we
designed two other experiments to investigate how decreasing
the presentation time would affect our results. Therefore, we
reduced the time of image presentation and the following blank
screen from 25 ms to 12.5 ms (ultra-rapid object presentation).

We also increased the time of the subsequent noise mask from
100 ms to 200 ms. In the first experiment, we repeated the natural
background three-dimension categorization task with the ultra-
rapid setting. We did not run uniform background condition
because our results showed that this task would be easy and some
ceiling effects may mask differences between conditions. For
the second experiment, we studied the effect of each individual
dimension (e.g., scale only) on the accuracy and reaction time
of subjects. In the following, we report the results of these two
experiments.

3.2.1. Shorter Presentation Time Does Not Affect

Human Performance
Figure 4A illustrates the results of the ultra-rapid object
categorization task in three-dimension conditions with objects
on natural backgrounds. Comparing the results in rapid (see
Figure 3B) and ultra-rapid experiments (see Figure 4A, the left
plot) indicates that there is no considerable difference between
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FIGURE 4 | Accuracy of human subjects in ultra-rapid invariant object categorization task for three- and one-dimension conditions, when objects had

natural backgrounds. (A) Left, the accuracy of human subjects in three-dimension experiments. Each curve corresponds to one condition: 1Sc = 0, 1Po = 0,

1RP = 0, 1RD = 0 (as specified with different colors). Error bars are the standard deviation (STD). P-values depicted at the top of curves, show whether the accuracy

between all-dimension and other three-dimension conditions are significantly different (Wilcoxon rank sum test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001,

n.s., not significant). Color-coded matrices, on the right show whether changes in accuracy across levels in each condition are statistically significant (e.g., accuracy

drop is significant from one level to the other; Wilcoxon rank sum test; each matrix corresponds to one curve; see color of the frame). Note that the results of the

average and STD of 5 subjects. Middle, categorization accuracy in level 3 in different three-dimension conditions (each bar corresponds to a condition). The horizontal

lines on top of the bar plot shows whether the differences are significant (gray line: insignificant, black line: significant). Right, absolute accuracy drop between level 0

and level 3 (mean+/−STD). Each bar, with specific color, corresponds to one condition. (B) Similar to part (A), where the plots present the results in one-dimension

experiments.

the accuracies in these two experiments. This shows the ability
of human visual system to extract sufficient information for
invariant object recognition even under ultra rapid presentation.

Similar to the rapid experiment, subjects had the highest
categorization accuracy in 1RD = 0 condition, even at the most
difficult level, with significant difference to other conditions (see
the middle plot in Figure 4A). However, there is a significant
difference in accuracies (∼ 10%) between 1Sc = 0 and 1RP =

0. In other words, tolerating scale variation seems to be more
difficult than in-plane rotation in ultra-rapid presentation task.
It suggests that it is easier to recognize a rotated object in plane
than a small object. Comparing the accuracies in level 3 indicates
that 1RD = 0 and 1Sc = 0 were the easiest tasks while 1Po = 0
and 1RP = 0 were the most difficult ones. Moreover, although
there was no significant difference in reaction times of different
conditions (Figure S12A), subjects had shorter reaction times in
1RD = 0 at level 3 while the reaction times were longer in

1Po = 0 at this level.
Overall, the results of ultra-rapid experiment showed that

different time setting did not change our initial results about the
effect of variations across different dimensions, despite imposing

higher task difficulty.

3.2.2. Humans Have Consistent Performances in

One-dimension Experiment
In all experiments so far, object images varied across more than
one dimension. In this experiment, we evaluated the performance
of human subjects in ultra-rapid object categorization task while
objects varied across a single dimension. Object images were
presented on natural backgrounds. Figure 4B illustrates that the
accuracies were higher in 1RP and 1Po than in 1RD and 1Sc

conditions. Hence, similar to results shown in Figure 4A for
three-dimension experiments, variations across position and in-
plane rotation were easier to tolerate than in scale and in-depth
rotation (again the most difficult). Subjects also had the highest
accuracy drop between levels 0 and 3 in 1RD and 1Sc conditions
while the accuracy drop in 1RP was significantly lower (bar plots
in Figure 4B).

The reaction times in different conditions are shown in
Figure S12B. Although the differences were not statistically
significant, the absolute increase in reaction time in 1Sc and
1RD was higher than the other conditions, confirming that these
variations needed more processing time (note that the results are
average of five subjects, and increasing the number of subjects
might lead to significant differences).
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3.3. DCNNs Perform Similarly to Humans in
Different Experiments
We examined the performance of two powerful DCNNs on
our three- and one-dimension databases with objects on natural
backgrounds. We did not use gray background because it
would be too easy for categorization. The first DCNN was
the 8-layer network, introduced in Krizhevsky et al. (2012),
and the second was a 19-layer network, also known as Very
Deep model (Simonyan and Zisserman, 2014). These networks
achieved great performance on Imagenet as one of the most
challenging current images databases.

Figures 5A–D compare the accuracies of DCNNs with
humans (for both rapid and ultra-rapid experiments) on different
conditions for three-dimension databases (i.e., 1Po = 0, 1Sc =

0, 1RP = 0, and 1RD = 0). Interestingly, the overall trend in
accuracies of DCNNs were very similar to humans in different
variation conditions of both rapid and ultra-rapid experiments.
However, DCNNs outperformed humans in different tasks.
Despite significantly higher accuracies of both DCNNs compared
to humans, DCNNs accuracies were significantly correlated
with those of humans in rapid (Figures 5G,H) and ultra-rapid
(Figures 5I,J) experiments. In other words, deep networks can
resemble human object recognition behavior in the face of
different types of variation. Hence, if a variation is more difficult
(easy) for humans, it is also more difficult (easy) for DCNNs.

We also compared the accuracy of DCNNs in different
experimental conditions (Figures 5E,F). Figure 5E shows that
the Krizhevsky network could easily tolerate variations in the first
two levels (levels 0 and 1). However, the performance decreased
at higher variation levels (levels 2 and 3). At the most difficult
level (level 3), the accuracy of DCNNs were highest in 1RD = 0
while this significantly dropped to lowest accuracy in 1Po = 0.
Also, accuracies were higher in 1Sc = 0 than 1RP = 0. Similar
result was observed for Very Deep model with slightly higher
accuracy (Figure 5F).

We performed the MDS analysis based on cosine-similarity
measure (see Materials and methods) to visualize the similarity
between the accuracy pattern of DCNNs and all human subjects
over different variation dimensions and variation levels. For this
analysis, we used the rapid categorization data only (20 subjects),
and not the ultra-rapid one (5 subjects only, which is not
sufficient for MDS). Figure 6 shows that the similarity between
DCNNs and humans is high at the first two variation levels. In
other words, there is no difference between humans and DCNNs
in low variation levels and DCNNs treat different variations
as humans do. However, the distances between DCNNs and
human subjects increased at level 2 and became greater at level
3. This points to the fact that as the level of variation increases
the task becomes more difficult for humans and DCNNs and
the difference between them increases. Although DCNNs get
further away from humans, it is not much greater than human
inter-subject distances. Hence, it can be said that even in
higher variation levels DCNNs perform similarly to humans.
Moreover, the Very Deep network is closer to humans than
the Krizhevsky model. This might be the result of exploiting
more layers in Very Deep network which helps it to act more
human-like.

To compare DCNNs with humans in the one-dimension
experiment, we also evaluated the performance of DCNNs using
one-dimension database with natural backgrounds (Figure 7).
Figures 7A–D illustrate that DCNNs outperformed humans
across all conditions and levels. The accuracies of DCNNs were
about 100% at all levels. Despite this difference, we observed
a significant correlation between the accuracies of DCNNs and
humans (Figures 7E,F), meaning that when a condition was
difficult for humans it was also difficult for the models.

To see how the accuracies of DCNNs depend on the
dimension of variation, we re-plotted the accuracies of the
models in different conditions (Figures 7G,H). It is evident that
both DCNNs performed perfectly in 1Po, which is possibly
inherent by their network design (the weight sharing mechanism
in DCNNs Kheradpisheh et al., 2016a), while they achieved
relatively lower accuracies in 1Sc and 1RD. Interestingly,
these results are compatible with humans’ accuracy over
different variation conditions of one-dimension psychophysics
experiment (Figure 4), where the accuracies of1Po and1RP were
high and almost flat across the levels and the accuracies of 1Sc

and 1RD were lower and significantly dropped in the highest
variation level.

4. DISCUSSION

Although it is well known that the human visual system
can invariantly represent and recognize various objects, the
underlying mechanisms are still mysterious. Most studies have
used object images with very limited variations in different
dimensions, presumably to decrease experiment and analysis
complexity. Some studies investigated the effect of a few
variations (e.g., scale and position) on neural and behavioral
responses (Brincat and Connor, 2004; Hung et al., 2005; Zoccolan
et al., 2007; Rust and DiCarlo, 2010). It was shown that different
variations are differently treated trough the ventral visual
pathway, for example, responses to variations in position emerges
earlier than variations in scale (Isik et al., 2014). However,
there is no data addressing this for other variations. Depending
on the type of variation, the visual system may use different
sources of information to handle rapid object recognition.
Therefore, the responses to each variation, separately or in
different combinations, can provide valuable insight about how
the visual system performs invariant object recognition. Because
DCNNs claim to be bio-inspired, it is also relevant to check if
their performance, when facing these transformations, correlates
with that of humans.

Here, we performed several behavioral experiments to study
the processing of objects that vary across different dimensions
through the visual system in terms of reaction time and
categorization accuracy. To this end, we generated a series
of image databases consisting of different object categories
that varied in different combinations of four major variation
dimensions: scale, position, in-plane and in-depth rotations.
These databases were divided into three major groups: (1) objects
that varied in all four dimensions; (2) object that varied in
combination of three dimensions (all possible combinations);
and (3) objects that varied only in a single dimension. In addition,
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FIGURE 5 | The accuracy of DCNNs compared to humans in rapid and ultra-rapid three-dimension object categorization tasks. (A–D) The accuracy of

Very Deep (dotted line) and Krizhevsky models (dashed line) compared to humans in categorizing images from three-dimension database while objects had natural

background. (E,F) The average accuracy of DCNNs in different conditions. (G,H) Scatter plots of human accuracy in rapid three-dimension experiment against the

accuracy of DCNNs. (I,J) Scatter plot of human accuracy in ultra-rapid three-dimension experiment against the accuracy of DCNNs. Colors show different condition

and marker shapes refer to variation levels. The correlation is depicted on the upper-left and the p-value on lower-right shows whether human and models are

significant.

each database has two background conditions: uniform gray
and natural. Hence, our image database has several advantages
for studying the invariant object recognition. First, it contains
a large number of object images, changing across different
types of variation such as geometric dimensions, object instance,
and background. Second, we had a precise control over the
amount of variations in each dimension which let us generate
images with different degrees of complexity/difficulty. Therefore,
it enabled us to scrutinize the behavior of humans, while the
complexity of object variations gradually increases. Third, by
eliminating dependencies between objects and backgrounds,

we were able to study invariance, independent of contextual
effects.

Different combinations of object variations allowed us to
investigate the role of each variation and their combinations
in the task complexity and human performance. Interestingly,
although different variations were linearly combined, the effects
on reaction time and accuracy were not modulated in that
way, suggesting that some dimensions substantially increased
the task difficulty. The overall impression of our experimental
results indicate that humans responded differently to different
combination of variations, some variations imposed more
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FIGURE 6 | The similarity between DCNNs and humans. Scatter plots obtained using multidimensional scaling (MDS). Each plot shows the similarity distances

for a variation level. Gray dots illustrate human subjects while red (Very Deep) and blue (Krizhevsky) dots refer to the DCNNs.

difficulty and requiredmore processing time. Also, reaction times
and categorization accuracies indicated that natural backgrounds
significantly affects invariant object recognition.

Results showed that in-depth rotation is the most difficult
dimension either in combination with others or by itself.
In case of three-dimension experiments, subjects had high
categorization accuracy when object were not rotated in-depth,
while their accuracy significantly dropped in other three-
dimension conditions. The situation was similar for the reaction
times: when the in-depth rotation was fixed across levels, the
reaction time was shorter than the other conditions which objects
were rotated in-depth. Although we expected that rotation in
plane might be more difficult than scale, our results suggest the
opposite. Possibly, changing the scale of the object might change
the amount of information conveyed through the visual system
in which would affect the processing time and accuracy. Besides,
the accuracy was very low when the objects were located on the
center of the image but varied in other dimensions, while the
accuracy was higher when we changed the object position and
fixed any other dimensions. This suggests that subjects could
better tolerate variations in objects’ position.

Moreover, we investigated whether these effects are related to
low-level image statistics such as contrast and luminance. The
results showed that the correlation between these statistics and
reaction time as well as accuracy is very low and insignificant
across all levels, type of variations, and objects. This suggests that
although different variations affect the contrast and luminance,
such low-level statistics have little effect on reaction time and
accuracy.

We also performed ultra-rapid object categorization
experiments for the three-dimension databases with natural
backgrounds, to see if our results depend on presentation
condition or not. Moreover, to independently check the role of
each individual dimension, we run one-dimension experiments
in which objects were varied across only one dimension. These
experiments confirmed the results of our previous experiments.

In addition to object transformations, background variation
can also affect the categorization accuracy and time. Here,
we observed that using natural images as object backgrounds

seriously reduced the categorization accuracy and concurrently
increased the reaction time. Importantly the backgrounds we
used were quite irrelevant. We removed object-background
dependency, to purely study the impacts of background
on invariant object recognition. However, object-background
dependency can be studied in future to investigate how
contextual relevance between the target object and surrounding
environment would affect the process of invariant object
recognition (Bar, 2004; Rémy et al., 2013; Harel et al., 2014).

During the last decades, computational models have attained
some scale and position invariance. However, attempts for
building a model invariant to 3D variations has been marginally
successful. In particular, recently developed deep neural networks
has shown merits in tolerating 2D and 3D variations (Cadieu
et al., 2014; Ghodrati et al., 2014; Kheradpisheh et al., 2016b).
Certainly, comparing the responses of such models with humans
(either behavioral or neural data) can give a better insight
about their performance and structural characteristics. Hence,
we evaluated two powerful DCNNs over the three- and one-
dimension databases to see whether they treat different variations
as humans do. It was previously shown that these networks
can tolerate variations in similar order of the human feed-
forward vision (Cadieu et al., 2014; Kheradpisheh et al., 2016b).
Surprisingly, our results indicate that, similar to humans, DCNNs
also have more difficulties with in-depth rotation and scale
variation. It suggests that humans have more difficulty for those
variations which are computationally more difficult. Hence, our
findings do not argue in favor of three-dimensional object
representation theories, but suggests that object recognition can
be done mainly based on two-dimensional template matching.

However, there are several studies demonstrating that DCNNs
do not solve the object recognition problem in the same way as
humans do and can be easily fooled. In Nguyen et al. (2015),
authors generated a set of images that were totally unrecognizable
for humans, but DCNNs certainty believed that there are familiar
objects. Also, in Goodfellow et al. (2014), authors showed
that applying a tiny perturbation on input image, which is
not noticeable to humans, can drastically decrease the DCNNs
performance. Hence, although our results indicate that DCNNs
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FIGURE 7 | The accuracy of DCNNs compared to humans in invariant object categorization. (A–D) The accuracy of Very Deep (dotted line) and Krizhevsky

models (dashed line) compared to humans (solid line) in categorizing images from one-dimension database while object had natural background. (E,F) Scatter plot of

human accuracy against the accuracy of DCNNs. Colors show different condition and marker shapes refer to variation levels. The correlation is depicted on the

upper-left and the p-value on lower-right shows whether human and models are significant. (G,H) The average accuracy of DCNNs in different condition.

and humans face the same difficulties on different variations, they
do not mean that DCNNs also handle these variations similarly.
Of course, comparing the internal representation of DCNNs and
primates’ neural data when they are faced with different object
variations can provide a better understanding in this regard.

Moreover, the human visual system extensively exploits
feedback and recurrent information to refine and disambiguate
the visual representation. Hence, the human visual system
would have higher accuracies if it was allowed to use feedback

information and continuous visual input. But deep networks
lack such mechanisms that could help them to increase their
invariance and recognition ability. The future advances in deep
networks should put more focus on feedback and continuous
vision.

One possible limitation of our work is that we did not
assess to what extent previous experience is required for
invariant object recognition. Here, presumably humans (trough
the development) and DCNNs (through training on Imagenet)
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had previous experiences with the four classes we used (car,
ship, motorcycle, and animal) at different positions, scales,
and with different viewing angles, and it is likely that this
helped them to develop invariant responses. Certainly, more
investigations on how visual experience changes the object
representations and neural processing in visual cortex would
help to develop more powerful and human-like computational
models. For instance, some studies have shown that invariant
object representations in visual cortex can be altered through
a short learning phase (Cox et al., 2005; Li and DiCarlo, 2008,
2010), and theories like trace learning rule (Földiák, 1991) suggest
that temporal association is the key to learning invariance.
Applying such learning mechanisms may improve the invariance
of DCNNs. Also, another study showed that view-invariance in
visual cortex develops later than size-invariance (Nishimura et al.,
2015). It would be interesting to perform similar experiments as
ours with subjects at different ages, to unravel how invariances to
different variations evolve through the development.

Finally, our results showed that variation levels strongly
modulate both humans and DCNNs recognition performances,
especially for rotation in depth and scale. Therefore, these
variations should be controlled in all the image datasets
used in vision research. Failure to do so may lead to noisy
results, or even misleading ones. For example, in a given
dataset, a category may appear easier to recognize than another
one only because its variation levels are smaller. We thus
think that our methodology and image databases could be
considered as benchmarks for investigating the power of any

computational model in tolerating different object variations.
Such results could then be compared with biological data
(electrophysiology, fMRI,MEG, EEG) in terms of performance as
well as representational dissimilarity (Kriegeskorte et al., 2008).
It would help computational modelers to systematically evaluate
their models in fully controlled invariant object recognition tasks,
improve the variation tolerance in their models, and make them
more human-like.
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