1,582 research outputs found

    Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality

    Full text link
    [EN] Fixation identification is an essential task in the extraction of relevant information from gaze patterns; various algorithms are used in the identification process. However, the thresholds used in the algorithms greatly affect their sensitivity. Moreover, the application of these algorithm to eye-tracking technologies integrated into head-mounted displays, where the subject's head position is unrestricted, is still an open issue. Therefore, the adaptation of eye-tracking algorithms and their thresholds to immersive virtual reality frameworks needs to be validated. This study presents the development of a dispersion-threshold identification algorithm applied to data obtained from an eye-tracking system integrated into a head-mounted display. Rules-based criteria are proposed to calibrate the thresholds of the algorithm through different features, such as number of fixations and the percentage of points which belong to a fixation. The results show that distance-dispersion thresholds between 1-1.6 degrees and time windows between0.25-0.4s are the acceptable range parameters, with 1 degrees and0.25s being the optimum. The work presents a calibrated algorithm to be applied in future experiments with eye-tracking integrated into head-mounted displays and guidelines for calibrating fixation identification algorithmsWe thank Pepe Roda Belles for the development of the virtual reality environment and the integration of the HMD with Unity platform. We also thank Masoud Moghaddasi for useful discussions and recommendations.Llanes-Jurado, J.; Marín-Morales, J.; Guixeres Provinciale, J.; Alcañiz Raya, ML. (2020). Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality. Sensors. 20(17):1-15. https://doi.org/10.3390/s20174956S1152017Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02086Chicchi Giglioli, I. A., Pravettoni, G., Sutil Martín, D. L., Parra, E., & Raya, M. A. (2017). A Novel Integrating Virtual Reality Approach for the Assessment of the Attachment Behavioral System. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00959Marín-Morales, J., Higuera-Trujillo, J. L., De-Juan-Ripoll, C., Llinares, C., Guixeres, J., Iñarra, S., & Alcañiz, M. (2019). Navigation Comparison between a Real and a Virtual Museum: Time-dependent Differences using a Head Mounted Display. Interacting with Computers, 31(2), 208-220. doi:10.1093/iwc/iwz018Kober, S. E., Kurzmann, J., & Neuper, C. (2012). Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. International Journal of Psychophysiology, 83(3), 365-374. doi:10.1016/j.ijpsycho.2011.12.003Borrego, A., Latorre, J., Llorens, R., Alcañiz, M., & Noé, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation, 13(1). doi:10.1186/s12984-016-0174-1Clemente, M., Rodríguez, A., Rey, B., & Alcañiz, M. (2014). Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Systems with Applications, 41(4), 1584-1592. doi:10.1016/j.eswa.2013.08.055Borrego, A., Latorre, J., Alcañiz, M., & Llorens, R. (2018). Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation. Games for Health Journal, 7(3), 151-156. doi:10.1089/g4h.2017.0114Jensen, L., & Konradsen, F. (2017). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529. doi:10.1007/s10639-017-9676-0Jost, T. A., Drewelow, G., Koziol, S., & Rylander, J. (2019). A quantitative method for evaluation of 6 degree of freedom virtual reality systems. Journal of Biomechanics, 97, 109379. doi:10.1016/j.jbiomech.2019.109379Chandrasekera, T., Fernando, K., & Puig, L. (2019). Effect of Degrees of Freedom on the Sense of Presence Generated by Virtual Reality (VR) Head-Mounted Display Systems: A Case Study on the Use of VR in Early Design Studios. Journal of Educational Technology Systems, 47(4), 513-522. doi:10.1177/0047239518824862Bălan, O., Moise, G., Moldoveanu, A., Leordeanu, M., & Moldoveanu, F. (2020). An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy. Sensors, 20(2), 496. doi:10.3390/s20020496Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8), 704-723. doi:10.1016/j.cpr.2012.09.004Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. doi:10.1037/0033-2909.124.3.372Irwin, D. E. (1992). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 307-317. doi:10.1037/0278-7393.18.2.307Tanriverdi, V., & Jacob, R. J. K. (2000). Interacting with eye movements in virtual environments. Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’00. doi:10.1145/332040.332443Skulmowski, A., Bunge, A., Kaspar, K., & Pipa, G. (2014). Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00426Juvrud, J., Gredebäck, G., Åhs, F., Lerin, N., Nyström, P., Kastrati, G., & Rosén, J. (2018). The Immersive Virtual Reality Lab: Possibilities for Remote Experimental Manipulations of Autonomic Activity on a Large Scale. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00305Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., & Hooge, I. T. C. (2018). Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers. Royal Society Open Science, 5(8), 180502. doi:10.1098/rsos.180502Diaz, G., Cooper, J., Kit, D., & Hayhoe, M. (2013). Real-time recording and classification of eye movements in an immersive virtual environment. Journal of Vision, 13(12), 5-5. doi:10.1167/13.12.5Duchowski, A. T., Medlin, E., Gramopadhye, A., Melloy, B., & Nair, S. (2001). Binocular eye tracking in VR for visual inspection training. Proceedings of the ACM symposium on Virtual reality software and technology - VRST ’01. doi:10.1145/505008.505010Lim, J. Z., Mountstephens, J., & Teo, J. (2020). Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges. Sensors, 20(8), 2384. doi:10.3390/s20082384Manor, B. R., & Gordon, E. (2003). Defining the temporal threshold for ocular fixation in free-viewing visuocognitive tasks. Journal of Neuroscience Methods, 128(1-2), 85-93. doi:10.1016/s0165-0270(03)00151-1Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the symposium on Eye tracking research & applications - ETRA ’00. doi:10.1145/355017.355028Duchowski, A., Medlin, E., Cournia, N., Murphy, H., Gramopadhye, A., Nair, S., … Melloy, B. (2002). 3-D eye movement analysis. Behavior Research Methods, Instruments, & Computers, 34(4), 573-591. doi:10.3758/bf03195486Bobic, V., & Graovac, S. (2016). Development, implementation and evaluation of new eye tracking methodology. 2016 24th Telecommunications Forum (TELFOR). doi:10.1109/telfor.2016.7818800Sidenmark, L., & Lundström, A. (2019). Gaze behaviour on interacted objects during hand interaction in virtual reality for eye tracking calibration. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. doi:10.1145/3314111.3319815Alghamdi, N., & Alhalabi, W. (2019). Fixation Detection with Ray-casting in Immersive Virtual Reality. International Journal of Advanced Computer Science and Applications, 10(7). doi:10.14569/ijacsa.2019.0100710Blignaut, P. (2009). Fixation identification: The optimum threshold for a dispersion algorithm. Attention, Perception, & Psychophysics, 71(4), 881-895. doi:10.3758/app.71.4.881Shic, F., Scassellati, B., & Chawarska, K. (2008). The incomplete fixation measure. Proceedings of the 2008 symposium on Eye tracking research & applications - ETRA ’08. doi:10.1145/1344471.1344500Vive Pro Eyehttps://www.vive.com/us

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    An Investigation of Skill Acquisition under Conditions of Augmented Reality

    Get PDF
    Augmented reality is a virtual environment that integrates rendered content with the experience of the real world. There is evidence suggesting that augmented reality provides for important spatial constancy of objects relative to the real world coordinate system and that this quality contributes to rapid skill acquisition. The qualities of simulation, through the use of augmented reality, may be incorporated into actual job activities to produce a condition of just-in-time learning. This may make possible the rapid acquisition of information and reliable completion of novel or infrequently performed tasks by individuals possessing a basic skill-set. The purpose of this research has been to investigate the degree to which the acquisition of a skill is enhanced through the use of an augmented reality training device

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    Evaluating the effectiveness of a priori information on process measures in a virtual reality inspection task

    Get PDF
    Due to the nature of the complexity of the aircraft maintenance industry, much emphasis has been placed on improving aircraft inspection performance. One proven technique for improving inspection performance is the use of training. Several strategies have been implemented for training, one of which is giving feedforward information. The use of a priori (feedforward) information is known to positively affect inspection performance (Ernst and Yovits, 1972; Long and Rourke, 1989; McKernan, 1989; Gramopadhye et al., 1997). This information can consist of knowledge about defect characteristics (types, severity/criticality, and location) and the probability of occurrence. Although several studies have been conducted that demonstrate the usefulness of feedforward as a training strategy, there are certain research issues that need to be addressed. This study evaluates the effects of feedforward information on process measures in a simulated 3-dimensional environment (aircraft cargo bay) by the use of virtual realityPeer Reviewe

    Особливості розробки інформаційної асистивної технології навчання осіб з особливими потребами

    Get PDF
    У статті розглянуті особливості розробки інформаційної асистивної технології навчання осіб з особливими потребами.The article describes the features of the development of assistive information technology training for people with special needs

    Gaze Estimation Technique for Directing Assistive Robotics

    Get PDF
    AbstractAssistive robotics may extend capabilities for individuals with reduced mobility or dexterity. However, effective use of robotic agents typically requires the user to issue control commands in the form of speech, gesture, or text. Thus, for unskilled or impaired users, the need for a paradigm of intuitive Human-Robot Interaction (HRI) is prevalent. It can be inferred that the most productive interactions are those in which the assistive agent is able to ascertain the intention of the user. Also, to perform a task, the agent must know the user's area of attention in three-dimensional space. Eye gaze tracking can be used as a method to determine a specific Volume of Interest (VOI). However, gaze tracking has heretofore been under-utilized as a means of interaction and control in 3D space. This research aims to determine a practical volume of interest in which an individual's eyes are focused by combining past methods in order to achieve greater effectiveness. The proposed method makes use of eye vergence as a useful depth discriminant to generate a tool for improved robot path planning. This research investigates the accuracy of the Vector Intersection (VI) model when applied to a usably large workspace volume. A neural network is also used in tandem with the VI model to create a combined model. The output of the combined model is a VOI that can be used as an aid in a number of applications including robot path planning, entertainment, ubiquitous computing, and others

    Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda

    Get PDF
    Workers play essential roles in manufacturing and logistics. Releasing workers from routine tasks and enabling them to focus on creative, value-adding activities can enhance their performance and wellbeing, and it is also key to the successful implementation of Industry 4.0. One technology that can help identify patterns of worker-system interaction is Eye Tracking (ET), which is a non-intrusive technology for measuring human eye movements. ET can provide moment-by-moment insights into the cognitive state of the subject during task execution, which can improve our understanding of how humans behave and make decisions within complex systems. It also enables explorations of the subject’s interaction mode with the working environment. Earlier research has investigated the use of ET in manufacturing and logistics, but the literature is fragmented and has not yet been discussed in a literature review yet. This article therefore conducts a systematic literature review to explore the applications of ET, summarise its benefits, and outline future research opportunities of using ET in manufacturing and logistics. We first propose a conceptual framework to guide our study and then conduct a systematic literature search in scholarly databases, obtaining 71 relevant papers. Building on the proposed framework, we systematically review the use of ET and categorize the identified papers according to their application in manufacturing (product development, production, quality inspection) and logistics. Our results reveal that ET has several use cases in the manufacturing sector, but that its application in logistics has not been studied extensively so far. We summarize the benefits of using ET in terms of process performance, human performance, and work environment and safety, and also discuss the methodological characteristics of the ET literature as well as typical ET measures used. We conclude by illustrating future avenues for ET research in manufacturing and logistics

    Augmented reality meeting table: a novel multi-user interface for architectural design

    Get PDF
    Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559)
    corecore