5 research outputs found

    A Certified Polynomial-Based Decision Procedure for Propositional Logic

    Get PDF
    In this paper we present the formalization of a decision procedure for Propositional Logic based on polynomial normalization. This formalization is suitable for its automatic verification in an applicative logic like Acl2. This application of polynomials has been developed by reusing a previous work on polynomial rings [19], showing that a proper formalization leads to a high level of reusability. Two checkers are defined: the first for contradiction formulas and the second for tautology formulas. The main theorems state that both checkers are sound and complete. Moreover, functions for generating models and counterexamples of formulas are provided. This facility plays also an important role in the main proofs. Finally, it is shown that this allows for a highly automated proof development

    LCF-style Platform based on Multiway Decision Graphs

    Get PDF
    AbstractThe combination of state exploration approach (mainly model checking) and deductive reasoning approach (theorem proving) promises to overcome the limitation and to enhance the capabilities of each. In this paper, we are interested in defining a platform for Multiway Decision Graphs (MDGs) in LCF-style theorem prover. We define a platform to represent the MDG operations: conjunction, disjunction, relational product and prune-by-subsumption as a set of inference rules. Based on this platform, the reachability analysis is implemented as a conversion that uses the MDG theory within the HOL theorem prover. Finally, we present some experimental results to show the performance of the MDG operations of our platform

    Formal verification of concurrent programs

    Get PDF
    Interactive theorem proving provides a general approach to modeling and verification of both finite-state and infinite-state systems but requires significant human efforts to deal with many tedious proofs. On the other hand, model-checking is limited to some application domain with small finite-state space. A natural thought for this problem is to integrate these two approaches. To keep the consistency of the integration and ensure the correctness of verification, we suggest to use type theory based theorem provers (e.g. Lego) as the platform for the integration and build a model-checker to do parts of the verification automatically. We formalise a verification system of both CCS and an imperative language in the proof development system Lego which can be used to verify both finite-state and infinite-state problems. Then a model-checker, LegoMC, is implemented to generate Lego proof terras for finite-state problems automatically. Therefore people can use Lego to verify a general problem with some of its finite sub-problems verified by LegoMC. On the other hand, this integration extends the power of model-checking to verify more complicated and infinite-state models as well. The development of automatic techniques and the integration of different reasoning methods would directly benefit the verification community. It is expected that further extension and development of this verification environment would be able to handle real life systems. On the other hand, the research gives us some experiences about how to automate proofs in interactive theorem provers and therefore will improve the usability and applicability of the theorem proving technology

    The verification of MDG algorithms in the HOL theorem prover

    Get PDF
    Formal verification of digital systems is achieved, today, using one of two main approaches: states exploration (mainly model checking and equivalence checking) or deductive reasoning (theorem proving). Indeed, the combination of the two approaches, states exploration and deductive reasoning promises to overcome the limitation and to enhance the capabilities of each. Our research is motivated by this goal. In this thesis, we provide the entire necessary infrastructure (data structure + algorithms) to define high level states exploration in the HOL theorem prover named as MDG-HOL platform. While related work has tackled the same problem by representing primitive Binary Decision Diagram (BDD) operations as inference rules added to the core of the theorem prover, we have based our approach on the Multiway Decision Graphs (MDGs). MDG generalizes ROBDD to represent and manipulate a subset of first-order logic formulae. With MDGs, a data value is represented by a single variable of an abstract type and operations on data are represented in terms of uninterpreted function. Considering MDGs instead of BDDs will raise the abstraction level of what can be verified using a state exploration within a theorem prover. The MDGs embedding is based on the logical formulation of an MDG as a Directed Formulae (DF). The DF syntax is defined as HOL built-in data types. We formalize the basic MDG operations using this syntax within HOL following a deep embedding approach. Such approach ensures the consistency of our embedding. Then, we derive the correctness proof for each MDG basic operator. Based on this platform, the MDG reachability analysis is defined in HOL as a conversion that uses the MDG theory within HOL. Then, we demonstrate the effectiveness of our platform by considering four case studies. Our obtained results show that this verification framework offers a considerable gain in terms of automation without sacrificing CPU time and memory usage compared to automatic model checker tools. Finally, we propose a reduction technique to improve MDGs model checking based on the MDG-HOL platform. The idea is to prune the transition relation of the circuits using pre-proved theorems and lemmas from the specification given at system level. We also use the consistency of the specifications to verify if the reduced model is faithful to the original one. We provide two case studies, the first one is the reduction using SAT-MDG of an Island Tunnel Controller and the second one is the MDG-HOL assume-guarantee reduction of the Look-Aside Interface. The obtained results of our approach offers a considerable gain in terms of heuristics and reduction techniques correctness as to commercial model checking; however a small penalty is paid in terms of CPU time and memory usag

    Sous-typage coercitif en présence de réductions non-standards dans un système aux types dépendants

    Get PDF
    Type Theory lies on the crossroad of Logics, Mathematics and Computer Science. It may be used to develop the "zero-error" programs. The aim of this thesis is to study an extension of a system with dependent types called UTT (including inductive types) that is obtained by adding to the rewrite relation of UTT new rewrite rules concerning finite types. We check that Strong Normalization, Church-Rosser property and Subject Reduction are preserved. We consider another extension by Coercive Subtyping that is seen as an abbreviation mechanism and give a conservativity proof for the system enriched by Coercive Subtyping with respect to underlying UTT (with an without new rewrite rules). The interest of such a system is that it will improve the efficiency of proof assistants and provides a general framework for treatment of the problems involving finite types (combinatorics, graphs etc).La théorie des types est une discipline au croisement de la logique, des mathématiques et de l'informatique. Elle peut servir de support au développement de programme "zéro faute". L'objet de cette thèse est d'étudier l'extension d'un système aux types dépendants UTT (comprenant notamment des types inductifs) par une relation de récriture concernant un fragment du calcul, à savoir les types finis. Nous nous assurons d'abord que les propriétés de normalisation forte, de confluence et de préservation du type sont toujours préservées malgré l'ajout de la réduction. Ensuite nous enrichissons ce système par la notion de sous-typage coercitif vue comme un mécanisme d'abréviation et effectuons la preuve de conservativité pour le système enrichi du sous-typage par rapport au système de base. L'intérêt d'un tel système est qu'il améliora l'efficacité des assistants à la preuve et offrira un bon cadre pour l'étude des problèmes faisant intervenir des ensembles finis (combinatoire, manipulation de graphe etc)
    corecore