
LCF-style Platform based on Multiway

Decision Graphs

Sa’ed Abed and Otmane Ait Mohamed 1

Department of Electrical and Computer Engineering
Concordia University
Montreal, Canada

Abstract

The combination of state exploration approach (mainly model checking) and deductive reasoning approach
(theorem proving) promises to overcome the limitation and to enhance the capabilities of each. In this
paper, we are interested in defining a platform for Multiway Decision Graphs (MDGs) in LCF-style theorem
prover. We define a platform to represent the MDG operations: conjunction, disjunction, relational product
and prune-by-subsumption as a set of inference rules. Based on this platform, the reachability analysis is
implemented as a conversion that uses the MDG theory within the HOL theorem prover. Finally, we present
some experimental results to show the performance of the MDG operations of our platform.

Keywords: Multiway Decision Graphs, LCF-Style, Inference Rules, Performance

1 Introduction

Hardware and software systems are very often critical in the sense that their fail-

ure can have considerable human/economical consequences. Therefore, there is a

real need of methods for hardware and software development to ensure that those

systems are secure and reliable. This includes verification techniques to detect au-

tomatically defective behavior of the system and to check that the implementation

of a system conforms to its specification (to establish its correctness).

Formal verification of hardware and software systems has gained more attention

in both academic world and computer industry since the famous Pentium bug in

1994. The two main approaches of formal verification are based, respectively, on

state exploration [17] (mainly model checking and equivalence checking) and de-

ductive reasoning (theorem proving). These two approaches have complementary

strengths and weaknesses. The gain obtained in hardware verification has led to

1 Email: {s abed,ait}@ece.concordia.ca

Electronic Notes in Theoretical Computer Science 246 (2009) 3–26
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.012
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82078753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s_abed@ece.concordia.ca,ait@ece.concordia.ca
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

the evolution of software verification to achieve similar profits in the context of

algorithm and code correctness.

Model checking models the system as a finite-state system and automatically

decides if a temporal property holds in the desired states of the system. Further-

more, model checking can produce a counterexample when the property does not

hold, which can be very important for the understanding of the corresponding er-

ror in the implementation under verification or in the specification itself. However,

model checking suffers from the states explosion problem when dealing with complex

systems.

Theorem proving models the system as a theorem in a mathematical logic and

the desired properties are proved by formal derivations. Based on first order and

higher order logic, these theorem provers are known for their abilities to express

relationships over unbounded data structures. Therefore, theorem proving tools

are not sensitive to states explosion problem when used to reason formally about

such data and relationships. Yet, they can handle complex systems but requires

skilled manual guidance for verification and human insight for debugging. Unfor-

tunately, if the property fails to hold, some theorem proving tools are able to give

counterexamples.

An increasing attention has been focused on combining these two approaches to

overcome the limitations and to enhance the capabilities of each.

Moreover, the growing importance of model checking in hardware verification

and the difficulty of producing correct software are driving a growing interest in

the application of model checking to software. This leads to many challenges of

scientific and practical interest in the core of model checking technology. However,

the transfer of this technique was very slow due to the state explosion problem

and the semantics gap between the software developers and the verification tools.

Two approaches can be used to tackle these problems: developing new dedicated

techniques for software. The advantage of this approach is that the difficulty of

applying software model checking is addressed directly [21]. The other approach

is the integration of existing tools by using high (abstract) modeling techniques.

The advantage of this approach is that the reusing an existing tool and therefore

the effort is oriented towards the integration part. The integration of Multiway

Decision Graph (MDG) with Bandera framework [8] is a good example of this

approach [18].The authors introduced a schema for translating the intermediate

representation of a JAVA program using the Bandera framework to the language of

the MDG model checking.

In this paper, we focus on the Multiway Decision Graphs (MDGs) [9]. MDG

generalizes ROBDD to represent and manipulate a subset of first order logic formula

which is more suitable for defining model checking inside a theorem prover. With

MDGs, a data value is represented by a single variable of an abstract type and

operations on data are represented in terms of uninterpreted functions. Considering

MDG instead of BDD will rise the abstraction level of what can be verified using

a state exploration within a theorem prover. Furthermore, a verification based on

abstract-implicit-state-enumeration can be carried out independently of datapath

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–264

width, substantially lessening the state explosion problem.

Our approach is based on embedding the Directed Formulae (DFs): an alterna-

tive vision for MDGs in terms of logic and set theory [3], in LCF-style interactive

theorem prover as inference rules. We define a platform to represent the MDG op-

erations: conjunction, disjunction, relational product and prune-by-subsumption as

a set of inference rules. Based on this platform, the reachability analysis is imple-

mented as a conversion that uses the MDG theory within the HOL theorem prover.

Thus, by representing the primitive MDG operations as inference rules added to

the core of the theorem prover, we can model the execution of a model checker for a

given property as well as raise the security of our platform. Finally, we present some

experimental results to show the performance of our platform. The obtained results

show that this platform offers a considerable gain in terms of automation without

sacrificing CPU time and memory usage. The performance penalty is compensated

by the secure and correct infrastructure offered by the HOL theorem Prover.

The paper is organized as follows: Section 2 reviews some related work to our

area. Section 3 gives some preliminaries on MDG and HOL systems, respectively.

Section 4 explains the inference rules of well-formedness conditions. Section 5

presents the inference rules representing the basic MDG operations. Section 6 in-

troduces the reachability analysis tactic in HOL and summarizes some experimental

results and statistics to show the performance of our platform. Finally, Section 7

concludes the paper and gives some future research directions.

2 Related Work

The development of software/hardware verification methods allowing to handel

many technological challenges. Both static analysis and model checking research

communities are concerned with these challenges to verify properties of software

and hardware systems. The main concepts used are based on transition systems,

fixpoint computations, reachability analysis, etc. On the other hand, large number

of verification techniques are in use as stand alone or in combination with one an-

other [10]. The best advances come from a combination of techniques from different

research areas and hence our research is motivated toward this direction.

Gordon integrated the BDD based verification system BuDDy (BDD package

implemented in C) into HOL by implementing BDD-based verification algorithms

inside HOL, the embedding is built on top of provided primitives. The aim of using

BuDDy is to get near the performance of C-based model checker, whilst remaining

fully expansive, though with a radically extended set of inference rules [12,13].

In [15], Harrison implemented BDDs inside HOL without making use of an

external oracle. The BDD algorithms were used by a tautology-checker. However,

the performance was a thousand times slower than a BDD engine implemented in

C. Harrison mentioned that by re-implementing some of HOL’s primitive rules, the

performance could be improved by around ten times.

Amjad [4] demonstrated how BDD based symbolic model checking algorithms

for the propositional μ − calculus (Lμ) can be embedded in HOL theorem prover.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 5

This approach allows results returned from the model checker to be treated as

theorems in HOL. By representing primitive BDD operations as inference rules

added to the core of the theorem prover, the execution of a model checker for

a given property is modeled as a formal derivation tree rooted at the required

property. These inference rules are hooked to a high performance BDD engine

[13] which is external to the theorem prover. Thus, the HOL logic is extended

with these extra primitives. Empirical evidence suggests that the efficiency loss in

this approach is within reasonable bounds. The approach still leaves results reliant

on the soundness of the underlying BDD tools. A high assurance of soundness is

obtained at the expenses of some efficiency. Therefore, the security of the theorem

prover is compromised only to the extent that the BDD engine or the BDD inference

rules may be unsound.

In fact, while BDDs are widely used in state exploration methods, they can

only represent Boolean formulae. Our work deals with MDGs rather than BDDs,

since MDGs subsume BDDs while accommodating abstract data and uninterpreted

function symbols. So we can expect more level of abstraction and more compact

representation. Mhamdi and Tahar [19] follow a similar approach to the BuDDy

work [13]. The work builds on the MDG-HOL [16] project, but uses a tightly

integrated system with the MDG primitives written in ML rather than two tools

communicating as in MDG-HOL system. The syntax is partially embedded and

the conditions for well-formedness must be respected by the user. In contrast, their

work linked HOL and an external MDG library, while we provide a set of inference

rules to represent the MDG operations. Later, these operators can be used as an

infrastructure for MDG model checking. Perhaps the experience gained from the

work described here will inform the design of a second generation tool integration

platform supporting a spectrum from loose to tight integration of external tools.

3 Preliminaries

In this Section, we give a brief introduction to the MDG system as well as to the

HOL theorem prover. The intent is to familiarize the reader with the main ideas

and notations that are used in the rest of the paper.

3.1 Multiway Decision Graphs

MDGs subsume the class of Bryant’s (ROBDD) [5] while accommodating abstract

data and uninterpreted function symbols. It can be seen as a Directed Acyclic

Graph (DAG) with one root, whose leaves are labeled by formulae of the logic True

(T)[9]. The internal nodes are labeled by terms, and the edges issuing from an

internal node v are labeled by terms of the same sort as the label of v. Terms are

made out of sorts, constants, variables, and function symbols. Two kinds of sorts

are distinguished: concrete and abstract:

• Concrete sort: is equipped with finite enumerations, lists of individual constants.

Concrete sorts are used to represent control signals.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–266

• Abstract sort: has no enumeration available. It uses first order terms to represent

data signals.

MDGs are canonical representations, which means that an MDG structure has: a

fixed node order, no duplicate edges, no redundant nodes, no isomorphic subgraphs,

terms concretely reduced that have no concrete subterms other than individual

constants, disjoint primary (nodes label) and secondary variables (edges label).

Directed Formulae (DF)

Let F be a set of function symbol and V a set of variables. We denote the set of

terms freely generated from F and V by T (F ,V). The syntax of a Directed Formula

is given by the grammar below [22]. The underline is used to differentiate between

the concrete and abstract variables.

Sort S ::= S | S

Abstract Sort S ::= α | β | γ | · · ·

Concrete Sort S ::= α | β | γ | · · ·

Generic Constant C ::= a | b | c | · · ·

Concrete Constant C ::= a | b | c | · · ·

Variable X ::= V | V

Abstract Variable V ::= x | y | z | · · ·

Concrete Variable V ::= x | y | z | · · ·

Directed formulae DF ::= Disj | � | ⊥

Disj ::= Conj ∨ Disj | Conj

Conj ::= Eq ∧ Conj | Eq

Eq ::= A = C (A ∈ T (F , V))

| V = C

| V = A (A ∈ T (F ,X))

The vocabulary consists of generic constants, concrete constants (individuals),

abstract variables, concrete variables and function symbols. DFs are always dis-

junctions of conjunctions of equations or � (true) or ⊥ (false). The conjunction

Conj is defined to be an equation only Eq or a conjunction of at least two equations.

Atomic formulae are the equations, generated by the clause Eq. Equation can be an

equality of concrete terms and an individual constant, equality of a concrete vari-

able and an individual constant, or equality of an abstract variable and an abstract

term.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 7

MDGs provide efficient representation to a class of well-formed first-order for-

mulas defined on well-typed equations. A well-typed equation is an expression

A1 = A2, where A1 and A2 are terms of the same sort. Given two disjoint sets of

variables U and V , a Directed Formulae of type U → V is a formula in Disjunctive

Normal Form (DNF). Just as ROBDD must be reduced and ordered, DFs must obey

a set of well-formedness conditions given in [9] such that:

(i) Each disjunct is a conjunction of equations of the form:

A = a, where A is a term of concrete sort α containing no variables other than

elements of U , and a is an individual constant in the enumeration of α, or

u = a, where u ∈ (U ∪V) is a variable of concrete sort α and a is an individual

constant in the enumeration of α, or

v = A, where v ∈ V is a variable of abstract sort α and A is a term of type α

containing no variables other than elements of U ;

(ii) In each disjunct, the LHSs of the equations are pairwise distinct; and

(iii) Every abstract variable v ∈ V appears as the LHS of an equation v = A in

each of the disjuncts. (Note that there need not be an equation v = a for every

concrete variable v ∈ V).

Intuitively, in a DF of type U → V , the U variables play the role of independent

variables(secondary variables), the V variables play the role of dependent variables

(primary variables), and the disjuncts enumerate possible cases. In each disjunct,

the equations of the form u = a and A = a specify a case in terms of the U variables,

while the other equations specify the values of (some of the) V variables in that

case. The cases need not be mutually exclusive, nor exhaustive.

DFs are used for two purposes: to represent sets (viz. sets of states as well

as sets of input vectors and output vectors) and to represent relations (viz. the

transition and output relations).

For example, suppose that U = {u1, u2} and V = {v1, v2}, where u1 and v1 are

variables of concrete sort bool with enumeration {0, 1} while u2 and v2 are variables

of an abstract sort wordn. Also, suppose that g is an abstract function symbol of

type wordn → wordn and f is a cross-operator of type wordn → bool. Then, the

Figure below shows the MDG representing this example as well as its corresponding

DF formula.

f(u2)

v2

0

u1

1

T

u2

v1

0

v1

1

v2

0 1

g(u2)

((f(u2) = 0) ∧ (v2 = u2)) ∨

((f(u2) = 1) ∧ (u1 = 0) ∧ (v1 = 0) ∧ (v2 = g(u2))) ∨

((f(u2) = 1) ∧ (u1 = 1) ∧ (v1 = 1) ∧ (v2 = g(u2)))

The MDG model checking is based on an abstract implicit state enumeration.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–268

The system is expressed as an Abstract State Machine (ASM) and the properties to

be verified are expressed by formulae in LMDG [22] language. The MDG operations

and verification procedures are packaged as a tool and implemented in Prolog-style

hardware description language called (MDG-HDL) [7,23], which supports structural

specification, behavioral specification or a mixture of both.

3.2 The HOL Theorem Prover

The HOL system is an LCF [11] (Logic of Computable Functions) style proof system.

Originally intended for hardware verification, HOL uses higher-order logic to model

and verify variety of applications in different areas; serving as a general purpose

proof system. We cite for example: reasoning about security, verification of fault-

tolerant computers, compiler verification, program refinement calculus, software

verification, modeling, and automation theory.

HOL provides a wide range of proof commands, rewriting tools and decision

procedures. The system is user-programmable which allows proof tools to be de-

veloped for specific applications; without compromising reliability [14]. The basic

interface to the system is a Standard Meta Language (SML) interpreter. SML is

both the implementation language of the system and the Meta Language in which

proofs are written. Proofs are input to the system as calls to SML functions. The

HOL system supports two main different proof methods: forward and backward

proofs in a natural-deduction style calculus.

Theorems in HOL are represented by values of the ML abstract type thm.

There is no way to construct a theorem except by carrying out a proof based on the

primitive inference rules and axioms. HOL has many built-in inference rules and

ultimately all theorems are proved in terms of the axioms and basic inferences of the

calculus. By applying a set of primitive inference rules, a theorem can be created.

Once a theorem is proved, it can be used in further proofs without recomputation

of its own proof.

HOL also has a rudimentary library facility which enable theories to be shared.

This provides a file structure and documentation format for self contained HOL de-

velopments. Many basic reasoners are given as libraries such as mesonLib, bossLib,

and simpLib. These libraries integrate rewriting, conversion and decision procedures

to free the user from performing low-level proof.

4 Well-formedness Inference Rules

Using HOL recursive datatypes, the MDG sort is either concrete or abstract sort.

This is embedded using two constructors called Abst Sort and Conc Sort. The

Abst Sort takes as argument an abstract sort name of type alpha and the Conc Sort

takes a concrete sort name and its enumeration of type string as an input argument.

This is declared in HOL as follows:

Sort ::= Abst_Sort of ’alpha

| Conc_Sort of string => string list

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 9

Similarly, constants are either of concrete or abstract sort. Individual constant

can have multiple sorts depending on the enumeration of the sort, while abstract

generic constant is identified by its name and its abstract sort. We use the Ind Cons

and Gen Cons constructors to declare constants in HOL. Also a variable (abstract or

concrete) is identified by its name and sort. In our embedding, an abstract variable

is declared using Abst Var constructor and the Conc Var constructor is used to

declare a concrete variable.

Functions can be either abstract or cross-functions. Cross-functions are those

that have at least one abstract argument. Note that concrete functions are not used

since they can be eliminated by case splitting. If eqz Fun is a cross-function takes

an abstract variable m as an input and produces a concrete output of sort bool,

then, eqz Fun is defined as:

�def m = Abst_Var "m" wordn
�def eqz_Fun = Cross_Function "eqz_Fun" [^m] bool

The type definition of a directed formula can be given as follows:

D_F ::= DF1 of ’alpha DF | TRUE | FALSE

DF ::= DISJ of ’alpha MDG_Conj => DF

| CONJ1 of ’alpha MDG_Conj

MDG_Conj ::= Eqn of ’alpha Eqn

| CONJ of ’alpha Eqn => MDG_Conj

Eqn::=EQUAL1 of ’alpha Conc_Var => ’alpha Ind_Cons

| EQUAL2 of ’alpha Abst_Var => ’alpha Abst_Fun

| EQUAL3 of ’alpha Cross_Fun =>

(’alpha Abst_Var) list => ’alpha Ind_Cons

| EQUAL4 of ’alpha Abst_Var => ’alpha Abst_Var

| EQUAL5 of ’alpha Abst_Var => ’alpha Gen_Cons

where DF1, DISJ, CONJ1, Eqn, CONJ are distinct constructors and the construc-

tors EQUAL1, EQUAL2, EQUAL3, EQUAL4, EQUAL5 are used to define the atomic

equation. The type definition package returns a theorem which characterizes the

type D F and allows reasoning about this type. Abs var, Conc var are defined as

datatype to represent Abstract variables and Concrete variables. Note that the type

is polymorphic in a sense that the variable could be represented by a string or an

integer number or any user defined type. In our case we have used the string type.

In order to keep a DF formulae in its logical format, i.e. disjunctions of con-

junctions, we devised a set of inference rules which decides if a given DF is well

formed or not. The recursive data type package automatically returns the following

theorems which characterize each condition separately. In Table 1, we formalized

these conditions as a set of rules since it is more adequate to DF, and independent

from the logic of theorem prover. We translate these inference rules as theorems in

HOL.

The well-formedness conditions can be summarized as:

• The first condition is satisfied by construction following the DF syntax. The ax-

iom WF E1 represents the equality between a concrete variable and a concrete in-

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2610

Table 1
Well-Formedness (WF) Inference Rules

WF True:
−

WF (T)

WF False:
−

WF (F)

WF E1:
−

WF (V = C)

WF E2 E4 E5:
−

WF (V = A)
; (A ∈ T (F ,X))

WF E3:
−

WF (A = C)
; (A ∈ T (F , V))

WF Conj:
WF (Eq1) WF (Eq2) (LHS(Eq1) �= LHS(Eq2))

WF (Eq1 ∧ Eq2)

WF Disj:

WF (Conj1) WF (Conj2) (Abst V ar(Conj1) = Abst V ar(Conj2))

WF (Conj1 ∨ Conj2)

dividual constant. Axiom WF E2 E4 E5 shows the equality of an abstract variable

and an abstract term (abstract variable, abstract generic constant and abstract

function symbol). Finally, axiom WF E3 expresses the equality of concrete term

and concrete individual constant.

• The second condition requires two well-formed equations and the Left Hand Side

(LHS) of each equation should not be equal. The rule WF Conj states the correct-

ness related to this condition.

• The assumptions needed for the third condition are: two well-formed conjuncts

and the abstract variables of each conjunct should be equal. The WF Disj rule

represents the correctness related to this last condition.

We have implemented a HOL tactic Is Well Formed DF (conversion tactic) to

automatize the checking of well-formedness conditions. This tactic returns whether

a given DF is well-formed or not [1].

5 MDGs Operation Inference Rules

The MDG-HOL platform provides all the necessary infrastructure (data structure

+ algorithms) to define an abstract state exploration in the HOL theorem prover.

For this mean, the DF vocabulary and well-formedness conditions are defined in [1]

based on the directed formulae syntax. Also, we provide formal definitions of the

MDG basic operations as inference rules within HOL. In this Section, we describe

the MDG operations in terms of inference rules. Then, we present the reachability

conversion and provide some experimental results to show the performance of the

MDG operations (mainly PbyS operation) and the MDG-HOL platform.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 11

5.1 The Conjunction Operation

The conjunction operation takes as inputs two DFs Pi, 1 ≤ i ≤ 2, of types Ui → Vi,

and produces a DF R = Conj ({Pi}1≤i≤2) of type (
⋃

1≤i≤2 Ui)\(
⋃

1≤i≤2 Vi) →

(
⋃

1≤i≤2 Vi) such that:

|= R ⇔ (
∧

1≤i≤2

Pi)(1)

The method for computing the conjunction of two DFs is applicable when the

sets of primary variables of the two DFs are disjoint. The resulting DF has pri-

mary variables that are among the primary variables of the conjuncts, including all

abstract variables that have primary occurrences in any of the conjuncts. The ab-

stract variables having secondary occurrences in the result are among those having

secondary occurrences in the conjuncts, excluding those having primary occurrences

in any of the conjuncts.

As shown below, we formalized the conjunction operation of two DFs as

inference rules. Axioms (R1 to R4) represent the terminal case i.e. when one of

the two DFs is TRUE or FALSE. These rules form a proof system in analogy to

logical rules. The horizontal line reads implies. Thus rules represent logical truths.

It follows that rules with nothing above the line are axioms since they always hold.

Terminal DF Axioms:

(R1)
−

CONJ ALG(TRUE, df) = df
(R2)

−

CONJ ALG(df, TRUE) = df

(R3)
−

CONJ ALG(FALSE,df) = FALSE
(R4)

−

CONJ ALG(df, FALSE) = FALSE

The result of the operation must be a well-formed DF representing the con-

junction of df1 and df2. Thus, it suffices to eliminate RHS of Eq1 by substitution

for the LHS in Eq2 or replacing the secondary occurrences of RHS in Eq2 with

the respective terms (LHS of Eq1). The function SUBST(Eq1,Eq2) represents

the substitution using λ abstraction when it is applicable. Axiom R5 describes

the conjunction between two equations. The CONJ ALG function computes the

conjunction of two well formed DFs [2].

DF Equation Axioms:

(R5)
−

CONJ ALG(Eq1, Eq2) = SUBST (Eq1, Eq2)

where SUBST (Eq1, Eq2) =

8><
>:

(λ(L(Eq2)).Eq1)R(Eq2) if ((R(Eq1) �= L(Eq2))

(λ(L(Eq1)).Eq2)R(Eq1) if ((L(Eq1) �= R(Eq2))

Eq1 ∧ Eq2 otherwise

and L(x = y) = x, R(x = y) = y, Abs(Eq1) = L(Eq1) ∈ Abstract V ariable

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2612

Rules R6 and R7 represent the distribution relation rules and show the

conjunction between an equation Eq and a set of equations conj, respectively. Note

that conj is defined as the conjunction of an equation Eq and a set of equations

conj’. R6 is carried out by computing the conjunction (R1’ : conjunction of

two equations) and (R2’ : conjunction of Eq and conj‘). Rule R8 computes the

conjunction between conj1 and conj2. Similarly, rules R9 and R10 compute the

conjunction between a conj and a df while rule R11 determines the conjunction

over two DFs. Each of these rules calls recursively the previous rules until reach an

axiom.

Conjunct and DF Rules:

(R6)
CONJ ALG(Eq1, Eq) ⇒ R1′ CONJ ALG(Eq1, conj2′) ⇒ R2′

CONJ ALG(Eq1, conj2) ⇒ R1′ ∧ R2′

where

conj1 = Eq ∧ conj1′, conj2 = Eq ∧ conj2′, df1 = conj ∨ df1′, df2 = conj ∨ df2′, and

SUBST (Eq1, conj2) = SUBST (Eq1, Eq) ∧ SUBST (Eq1, conj2′)

(R7)
CONJ ALG(Eq, Eq2) ⇒ R1′ CONJ ALG(conj1′, Eq2) ⇒ R2′

CONJ ALG(conj1,Eq2) ⇒ R1′ ∧ R2′

(R8)
CONJ ALG(Eq1, Eq2) ⇒ R1′ CONJ ALG(conj1′, conj2′) ⇒ R2′

CONJ ALG(conj1, conj2) ⇒ R1′ ∧ R2′

(R9)
CONJ ALG(conj1, conj2) ⇒ R1′ CONJ ALG(conj1, df2′) ⇒ R2′

CONJ ALG(conj1, df2) ⇒ R1′ ∨ R2′

(R10)
CONJ ALG(conj1, conj2) ⇒ R1′ CONJ ALG(df1′, conj2) ⇒ R2′

CONJ ALG(df1, conj2) ⇒ R1′ ∨ R2′

(R11)
CONJ ALG(conj1, df2) ⇒ R1′ CONJ ALG(df1′, df2) ⇒ R2′

CONJ ALG(df1, df2) ⇒ R1′ ∨ R2′

As those rules are proved correct, the strategy of applying them starts from

rule (R11) to find the conjunction of two DFs by recursion over DF (taking the

first disjunct with the second DF and then recursively calling the other rules). The

recursion step terminates when executing one of the axioms based on the equation

type. Note that the depth of the directed formula is reduced each time a rule is

called, and hence the conjunction algorithm terminates.

The correctness proof of the conjunction operation is given in [2]. The result

of the CONJ ALG operation must be well-formed DF representing the conjunction of

two dfs (df1 and df2) as shown in Theorem 1:

Theorem 5.1 Conjunction well-formedness

� ∀df1 df2. ∃L. Is_Well_Formed_DF df1 ∧ Is_Well_Formed_DF df2 ∧
(ORDER_LIST df1 df2 = L) =⇒ Is_Well_Formed_CONJ df1 df2 L

Proof (Sketch) The goal is to prove that the result of the embedded conjunction

operation in HOL is well-formed. The proof is conducted by structural induction

on df1 and df2 and rewriting rules. �

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 13

Similar theorems were proved for the RelP, disjunction and PbyS operations.

The relational product operation (RelP) is used to compute the sets of states

reachable in one transition from one set of states. It combines conjunction and

existential quantification. The inference rules formalization of the RelP operation

are based on the rules of the conjunction operation and hence will not be repeated

again. This simplifies the formalization and shows the reusability of our work.

5.2 The Disjunction Operation

The disjunction operation takes as inputs two DFs Pi, 1 ≤ i ≤ 2, of types Ui → V ,

and produces a DF R = Disj ({Pi}1≤i≤2) of type (
⋃

1≤i≤2 Ui) → V such that:

|= R ⇔ (
∨

1≤i≤2

Pi)(2)

The operation requires that all the Pi, 1 ≤ i ≤ 2, have the same set of abstract

primary variables. If two DFs P1, P2 do not have the same set of abstract primary

variables, then there is no DF R such that |= R ⇔ (P1 ∨ P2).

The axioms and rules shown in Table 2 express the logical semantics of the

disjunction operation in terms of HOL.

The DISJ ALG function computes the disjunction of two well formed DF [2]

and the D INFR function computes the disjunction of an equation and a conjunct

considering all cases.

5.3 Pruning by Subsumption (PbyS) Operation

The PbyS operation represents the core of the reachability analysis algorithm. It

takes as inputs two DFs P and Q of types U → V1 and U → V2 respectively, where

U contains only abstract variables that do not participate in the symbol ordering,

and produces a DF R = PbyS (P,Q) of type U → V1 derivable from P by pruning

(i.e. by removing some of disjoints) such that:

|= R ∨ (∃E)Q ⇔ P ∨ (∃E)Q(3)

The disjuncts that are removed from P are subsumed by Q, hence the name of the

algorithm.

Since R is derivable from P by pruning, after the formulae represented by R

and P have been converted to DNF , the disjuncts in the DNF of R are a subset of

those in the DNF of P . Hence |= R ⇒ P . And, from (3), it follows tautologically

that |= P ∧ ¬(∃E)Q ⇒ R. Thus we have

|= (P ∧ ¬(∃E)Q ⇒ R) ∧ (R ⇒ P)

We can then view R as approximating the logical difference of P and (∃E)Q.

The inference rules describing the PbyS operation are shown in Table 3. Axioms

R1 to R4 represent terminal DF cases. Axioms R5 to R7 show the PbyS operation

for the case of two equations, equation and conjunct and two conjuncts, respectively.

The function PbyS ALG function computes the pruning by subsumption of two well

formed DF [2] and the Prune Eq function checks if an equation or a conjunct exists

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2614

Table 2
Inference Rules for Disjunction Operation

Terminal DF Axioms:

(R1)
−

DISJ ALG(TRUE, df) = TRUE
(R2)

−

DISJ ALG(df, TRUE) = TRUE

(R3)
−

DISJ ALG(FALSE,df) = df
(R4)

−

DISJ ALG(df, FALSE) = df

DF Equation Axioms:

(R5)
−

DISJ ALG(Eq1, Eq2) = D INFR(Eq1, Eq2)

(R6)
−

DISJ ALG(Eq1, conj2) = D INFR(Eq1, conj2)

where

conj1 = Eq1 ∧ conj1′, conj2 = Eq2 ∧ conj2′, df1 = conj1∨ df1′, df2 = conj2 ∨ df2′,

D INFR(Eq1, conj2) =

8>>>>><
>>>>>:

FALSE if (Abs(Eq1) �= Abs(conj2))

conj2 if (Eq1 = Eq2)

Eq1 ∧ conj2 if (L(Eq1) < L(Eq2))

Eq2 ∧ D INFR(Eq1, conj2′) if (L(Eq1) > L(Eq2))

(Eq1 ∨ Eq2) ∧ conj2′ otherwise

L(x = y) = x, <: order, and Abs(Eq1) = L(Eq1) ∈ Abstract V ariable

Conjunct and DF Rules:

(R7)
DISJ ALG(Eq1, Eq2) ⇒ R1′ DISJ ALG(conj1′, conj2′) ⇒ R2′

DISJ ALG(conj1, conj2) ⇒ R1′ ∧ R2′

(R8)
DISJ ALG(conj1, conj2) ⇒ R1′ DISJ ALG(conj1, df2′) ⇒ R2′

DISJ ALG(conj1, df2) ⇒ R1′ ∨ R2′

(R9)
DISJ ALG(conj1, conj2) ⇒ R1′ DISJ ALG(df1′, conj2) ⇒ R2′

DISJ ALG(df1, conj2) ⇒ R1′ ∨ R2′

(R10)
DISJ ALG(conj1, df2) ⇒ R1′ DISJ ALG(df1′, df2) ⇒ R2′

DISJ ALG(df1, df2) ⇒ R1′ ∨ R2′

in the other equation or conjunct. Similarly, the Prune conj function checks if the

conjunct exists in the other conjunct considering all cases. Rule R8 computes the

PbyS of a conjunct and a Df and rule R9 computes the PbyS of two DFs.

In fact, the conjunction operation has consumed most of the proof preparation

effort. Most of the definitions and proofs are reused by the other operations such

as RelP and disjunction operations. The embedding of MDG syntax and the veri-

fication of MDG operations sums up to several thousand lines of HOL codes. The

complexity of the proof is related mainly to the MDG structure, and the recursive

definitions of MDG operations.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 15

Table 3
Inference Rules for PbyS Operation

Terminal DF Axioms:

(R1)
−

PbyS ALG(TRUE, df) = FALSE
(R2)

−

PbyS ALG(df, TRUE) = FALSE

(R3)
−

PbyS ALG(FALSE,df) = FALSE
(R4)

−

PbyS ALG(df, FALSE) = df

Equation Axioms:

(R5)
−

PbyS ALG(Eq1, Eq2) = Prune Eq(Eq1, Eq2)

(R6)
−

PbyS ALG(Eq1, conj2) = Prune Eq(Eq1, conj2)

where

conj1 = Eq1 ∧ conj1′, conj2 = Eq2 ∧ conj2′, df1 = conj1 ∨ df1′, df2 = conj2 ∨ df2′,

Prune Eq(Eq1, conj2) =

(
FALSE if (Eq1 ∈ conj2) ∨ (Abs(Eq1) ∈ Abs(conj2))

Eq1 otherwise

L(x = y) = x, <: order, and Abs(Eq1) = L(Eq1) ∈ Abstract V ariable

(R7)
−

PbyS ALG(conj1, conj2) = Prune conj(conj1, conj2)

where

Prune conj(conj1, conj2) =

8><
>:

FALSE if Prune Eq(Eq1, conj2)∨

Prune conj(conj1′, conj2) = FALSE

conj1 otherwise

Conjunct and DF Rules:

(R8)
PbyS ALG(conj1, conj2) ⇒ R1′ PbyS ALG(conj1, df2′) ⇒ R2′

PbyS ALG(conj1, df2) ⇒ R1′ ∧ R2′

(R9)
PbyS ALG(conj1, df2) ⇒ R1′ PbyS ALG(df1′, df2) ⇒ R2′

PbyS ALG(df1, df2) ⇒ R1′ ∨ R2′

5.3.1 The PbyS Performance

In this section, we present the performance of the PbyS operation. The results

are carried out using a Sun server with Solaris 5.7 OS and 6 GB memory. We

analyze the required time for generating a result from PbyS by applying it over two

well-formed DFs. One DF has a size of 182 disjuncts with a 32 equations in each

disjunct. For the results given in Figure 1, in each run we increase the size of the

disjunct and measure the execution time.

As a result, the execution time is increased when the number of disjuncts is

increased. This is due to the increase in the DF size in terms of the number of

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2616

PbyS Performance

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

No. of Disjuncts

Execution Time (sec)

Fig. 1. The PbyS Performance

disjuncts.

Figure 1 shows the results of the execution time vs. number of disjuncts. We

note that the execution time is almost linear which emphasizes the effectiveness and

the powerful of our embedding. The average execution time is 10.0. We consider

this time is normal because of the overhead of the theorem prover. However, a

huge investment in time should be spent in developing the theory and proving the

necessary theorems in theorem provers.

6 The Reachability Analysis

Here, we present a HOL formalization of the MDG reachability analysis. This

formalization is based on our embedding of MDG syntax and operations in HOL.

First, we will review the MDG reachability analysis [9]; followed by its definition

in HOL along with a discussion on the technical challenges. Finally, we will use the

MIN-MAX design as an illustrative example for our reachability analysis embedding.

6.1 Reachability Analysis Algorithm

The presence of uninterpreted symbols in the logic means that we must distinguish

between a state machine M and its abstract description D in the logic. We refer

to state machines whose transition relation, output relation, and the set of initial

states are given by DFs, or equivalently MDGs, as Abstract State Machine (ASMs)

as defined in [9].

Definition 6.1 An abstract description of a state machine M is a tuple D =

(X,Y,Z, Y ′, IS, T r,Or), where:

• X : finite set of input variables,

• Y : finite set of state variables,

• Z : finite set of output variables,

• Y ′: finite set of next-state variables,

• IS : MDG of type U0 → Y , where U0 is a set of disjoint abstract variables, IS is

the abstract description of the set of initial states,

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 17

• Tr : MDG of type X ∪ Y → Y ′. Tr is the abstract description of the transition

relation,

• Or : MDG of type X ∪ Y → Z. Or is the abstract output relation.

Algorithm 1 shows how the analysis of the reachable states of M can be per-

formed based on the abstract description D.

Algorithm 1 MDG Reachability Analysis

1: R := IS;

2: Q := IS;

3: i := 0;

4: while Q �= F do

5: i := i + 1;

6: IN := new inputs(i); – Produce new inputs

7: NS := next states(IN,Q, Tr); – Compute next state

8: Q := frontier(NS,R); – Set difference

9: R := union(R,Q); – -- Merge with set of states reached previously

10: end while

Lines 1-3 initialize the algorithm by constructing the initial MDG structure. In

line 4-10, the set of reachable states is computed within the while loop. The while

loop terminates when the frontier set (Q) becomes empty (F). In line 6, a new

MDG input is produced. In line 7, the function next state computes the next state

using the RelP operation which takes as assignment the MDGs representing the set

of inputs, the current state and the transition relation, respectively. The function

frontier, in line 8, computes the set difference using the PbyS operation. This

operation approximates the set difference between the newly reachable state in the

current iteration from the reachable state in the first iteration. Finally, in line 9,

the set of all reachable states so far is computed.

6.2 Formalization of Reachability Analysis

We show here the steps to formalize the set of reachable states of an abstract state

machine in HOL. The important difference is that we are using our embedded DF

operators at a higher level. At this stage, the proof expert reasons directly in terms

of DF, the internal list representation that we have used in the proof of operations

is completely encapsulated.

Since reachability analysis may not terminate in general, it’s impossible to prove

a general theorem which states the existence of a fixpoint for all designs. However,

we defined a conversion which returns a goal to be proven interactively using induc-

tion for a given design (DF). If we succeed to prove the goal, then we can conclude

that the reachability analysis terminates. The general fixpoint goal has the following

format:

∃n0. ∀n. (n>n0) =⇒ (Re_An (SUC n) I Q Tr E Ren L R = Re_An n I Q Tr E Ren L R)

where n0 is the number of iterations needed to reach a fixpoint and the Re An

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2618

function represents the MDG reachability analysis with the following parameters:

the set of input variables I, the set of initial states Q, the transition relation Tr,

the set of variables to be quantified E, the state variables to be renamed Ren, the

order list L and the initial reachable states R.

The function Re An is defined in HOL by calling the recursive function RA n with

the design parameters. The function RA n represents the set of reachable states and

includes the following functions:

• The Next State function: computes the set of next states reached from a set of

given states with respect to the transition relation of the design. The result is

obtained using the DF relational product operator RelP(Q,Tr):

�def (Next_State I I_F Q Q_F Tr Tr_F Tr_A E Ren L =
Rename (EXIST_QUANT (rep_list (TAKE_HD (DF_CONJ
I (rep_list (TAKE_HD (DF_CONJ Q Tr (union Q_F Tr_F) L)))
(union (union I_F Q_F) Tr_F) L))) E) Ren)

• The Frontier Step function: checks if all the states reachable by the machine

are already visited. The is done by using the PbyS(RelP(Q,Tr),R) operator:

�def (Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A =
DF_PbyS (Next_State X X_F Q Q_F Tr Tr_F Tr_A E Ren L) R

(union Tr_F R_F) Tr_A R_A L)

If the result is the empty set, then the reachability analysis terminates. Otherwise,

it returns the new frontier set.

• The Union Step function: merges the output of Frontier Step with the set of

states reached previously using the PbyS and disjunction operators:

�def (Union_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A =
rep_list(DF_PbyS R (Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A)

(union Tr_F R_F) Tr_A R_A L))

Those functions are encapsulated in one function called Reach Step to represent

the first iteration of the MDG reachability analysis algorithm:

�def (Reach_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A =
if (FLAT(Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A)=[]) then

R
else
DF_DISJUNCTION (Union_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A)

(Frontier_Step I I_F Q Q_F Tr Tr_F Tr_A E Ren L R R_F R_A)L)

Then, the Re An terminates if we reach a fixpoint characterized by an empty

frontier set. That for some particular n, say n=n0, eventually:

RA_n (n+1) Design_Parameters = RA_n (n) Design_Parameters

This condition is tested at each stage and raise an exception (fixpoint not yet

reached) or return a success (the set of reachable states).

The proof of the reachability fixpoint depends on the structure of the design

and cannot be considered as a general solution because of the non-termination

problem [9]. Like other reachability analysis algorithms that use abstract types and

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 19

C=1 C=0

r=1,

{n_m=max,

n_M=min}

r=0,

{n_m=if leq_Fun(x,m) then x else m,
n_M=if leq_Fun(x,M) then M else x}

r=1, {n_m=max, n_M=min}

r=0, {n_m=x, n_M=x}

Fig. 2. MIN-MAX State Machine

uninterpreted function symbols, the algorithm may not terminate. Thus, the MDG

reachability computation is theoretically unbounded. Meanwhile, several practi-

cal solutions have been proposed to solve the non-termination problem. The au-

thors in [3] related the problem to the nature of the analyzed design. Furthermore,

they have characterized some mathematical criteria that leads explicitly to non-

termination of particular classes of designs.

The reachability analysis conversion is general and can be applied to any DF

of a design. What will change is only the DF and the set of initial states, if we

consider the order list is given. The conversion shown by Algorithm 2 encapsulates

the following steps:

Algorithm 2 Re An Conversion (I,Q, Tr,E,Ren,L,R)

1: Formalize the design parameters in terms of DF and check for WF:

WF(Tr); WF(Q); WF(R)

2: Compute Reach Step.

3: Generate a fixpoint goal of Re An.

The algorithm takes as an input the design parameters. In line 1, we formalize

those parameters in terms of DF and then check the well-formedness of all DFs

(Tr,Q,R). In line 2, we compute one reachability computational step using the

Reach Step function. Finally, in line 3, we generate a fixpoint goal of Re An. The

advantage of this approach is that we compute the reachable states for only one

iteration and then relying on the induction power in HOL we prove the existence

of a fixpoint. However, this fixpoint may not exist for some particular designs.

Furthermore, the selection of n0 is based on the knowledge and the heuristic of the

design since the induction is not explicitly identified as illustrated by the case of

the MIN-MAX example.

6.3 The MIN-MAX Example

We have chosen a Java implementation of a MIN-MAX design described in [9]. The

MIN-MAX state machine shown in Figure 2 has two input variables X = {r;x}

and three state variables Y = {c;m;M}, where r and c are of the Boolean sort

B, a concrete sort with enumeration {0; 1}, and x, m, and M are of an abstract

sort s. The outputs coincide with the state variables, i.e. all the state variables are

observable and there are no additional output variables.

The transition labels specify the conditions under which each transition is taken

and an assignment of values to the abstract next state variables n m and n M .

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2620

The machine stores in m and M , respectively, the smallest and the greatest values

presented at the input x since the last reset (r = 1). When the machine is reset, m

is loaded by the maximal possible value max and M by the minimal possible value

min. The min and max symbols are uninterpreted generic constants of sort s. The

smallest and greatest values are computed using an operator leq Fun such that for

any two values a and b of sort s, leq Fun(a, b) = 1 if and only if a is less than or

equal to b. The transition relation can be described by a set of individual transition

relations, one associated with each next state variable.

The code of the MIN-MAX implementation is used as an input file for Bandera

tool. Based on [18] work, we have derived the MDG-HDL model from the BIR

specification. The DFs of the individual transition relations of the MIN-MAX design

for a particular custom symbol order are:

Tr c = [((r = 0) ∧ (n c = 0))
∨

((r = 1) ∧ (n c = 1))]

Tr m = [((r = 0) ∧ (c = 0) ∧ (n m = m) ∧ (leq Fun(x,m) = 0))
∨

((r = 0) ∧ (c = 0) ∧ (n m = x) ∧ (leq Fun(x,m) = 1))
∨

((r = 0) ∧ (c = 1) ∧ (n m = x))
∨

((r = 1) ∧ (n m = max))]

Tr M = [((r = 0) ∧ (c = 0) ∧ (n M = x) ∧ (leq Fun(x,M) = 0))
∨

((r = 0) ∧ (c = 0) ∧ (n M = M) ∧ (leq Fun(x,M) = 1))
∨

((r = 0) ∧ (c = 1) ∧ (n M = x))
∨

((r = 1) ∧ (n M = min))]

The DF of the system transition relation Tr is the conjunction of these individual

transition relations. The MIN-MAX state machine has two input variables: I =

[[[x; r]]], set of initial states:

Q = [((c = 1) ∧ (m = max) ∧ (M = min))]

three state variables to be renamed: Ren = [[c;n c]; [m;n m]; [M ;n M]], set of

variables to be quantified: E = [r; c;m;M], the order list: L = [r; c;n c;m;n m;

M ;n M ;x; leq Fun] and the initial reachable state R = Q.

Then, we applied the reachability analysis conversion steps mentioned in Algo-

rithm 2:

The first step: formalize the MIN-MAX design in terms of DF and check the

well-formedness conditions on (Tr,Q,R). The DF of the system transition relation

Tr is the conjunction of these individual transition relations. We illustrate with this

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 21

example how the directed formula is defined and how the well-formedness conditions

are checked. We just give some of the definitions for concrete and abstract sorts,

constants, variables and abstract function, cross-function, equation and disjuncts.

�def bool = Conc_Sort "bool" ["0";"1"]
�def wordn = Abst_Sort "wordn"
�def oone = Ind_Cons "1" bool
�def r = Conc_Var "r" bool
�def x = Abst_Var "x" wordn
�def m = Abst_Var "m" wordn
�def n_m = Abst_Var "n_m" wordn
�def leq_Fun = Cross_Fun "leq_Fun" ["x";"m"] bool
�def eq2 = EQUAL1 ^r ^oone

�def mdg1 = CONJ ^eq2 (CONJ ^eq4 (CONJ ^eq11 (Eqn ^eq16)))

Then, the directed formula Tr is defined as:

�def Tr = DF1 (DISJ ^mdg1 (DISJ ^mdg2 (DISJ ^mdg3

(DISJ ^mdg4 (DISJ ^mdg5 (CONJ1 ^mdg6))))))

Applying the predicate Is Well Formed DF(conversion tactic) returns the theo-

rem below:

� Is_Well_Formed_DF Tr

Stating that the directed formula Tr is well-formed.

An example of applying (WF) inference rules given in Table 1, is presented in

Table 4. Since the top symbol is a disjunction then WF Disj rule splits the goal

WF(Tr=(eq2∧ eq4∧ eq11∧ eq16)∨ (mdg2∨mdg3∨mdg4∨mdg5∨mdg6)) into two

subgoals WF(Tr1=(eq2 ∧ eq4 ∧ eq11 ∧ eq16)) and WF(Tr2=mdg2 ∨ mdg3 ∨ mdg4 ∨

mdg5∨mdg6)). Tr1 is a conjunct, the WF Conj will be applied until an axiom (final

result) is applied.

Table 4
Well-Formed Tr

.

.

.

.

.

.

−

WF (r = oone)
WF E1 WF (eq4 ∧ eq11 ∧ eq16) Cond2

WF (eq2 ∧ eq4 ∧ eq11 ∧ eq16)

WF Conj WF (mdg2 ∨ . . . ∨ mdg6) Cond3

WF ((eq2 ∧ eq4 ∧ eq11 ∧ eq16) ∨ (mdg2 ∨ mdg3 ∨ mdg4 ∨ mdg5 ∨ mdg6))

WF Disj

where:

eq2 = (r = oone)

Cond2 = (LHS(eq2) �= LHS(eq4) �= LHS(eq11) �= LHS(eq16))

Cond3 = (Abst V ar(eq2 ∧ eq4 ∧ eq11 ∧ eq16) = Abst V ar(mdg2 ∨ mdg3 ∨ mdg4 ∨ mdg5 ∨ mdg6))

The second step: we apply only one Reach Step to compute the next reachable

state as explained in Algorithm 2, the reachable states are:

R1 = [((c = 0) ∧ (m = x1) ∧ (M = x1))
∨

((c = 1) ∧ (m = max) ∧ (M = min))]

The third step: the MDG reachability analysis Re An is performed by calling

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2622

RA n with the MIN-MAX parameters. Re An terminates if we reach a fixpoint char-

acterized by an empty frontier set. That for some particular n, say n=n0, eventually:

RA_n (n+1) MinMax_Parameters = RA_n (n) MinMax_Parameters

We prove how a fixpoint is reached after n0 iterations by instantiating the pa-

rameters of MIN-MAX. We achieve a fixpoint after three Reach Step calls (n0= 2)

as shown by the following theorem:

Fixpoint � ∃n0. ∀n. (n>n0) =⇒
(Re_An (SUC n) ^I ^Q ^Tr ^E ^Ren ^L ^R=Re_An n ^I ^Q ^Tr ^E ^Ren ^L ^R)

where the (̂t) notation is used in HOL to instantiate the value of the term t. The

base step is straightforward and the induction step is carried out by rewriting rules.

Finally, the reachable states at the third iteration are the same as R2:

R2 = [((c = 0) ∧ (m = x1) ∧ (M = x2)) ∧ (leq Fun(x1, x2) = 0)
∨

((c = 0) ∧ (m = x2) ∧ (M = x1)) ∧ (leq Fun(x2, x1) = 1)
∨

((c = 1) ∧ (m = max) ∧ (M = min))]

6.4 The Platform Performance

We support our platform by experimental results executed on different benchmarks.

We consider four cases from the MDG benchmark suites in order to measure the

performance of MDG-HOL. The case studies cover two small benchmarks: MIN-

MAX and Abstract Counter, one intermediate benchmark: Look-Aside Interface

(LA-1) [20], and one large benchmark: Island Tunnel Controller (ITC) [24]. The

performance is measured in terms of full reachability analysis for these models. Ta-

bles 5 and 6 compare the number of nodes, number of functions, the memory usage,

reachability analysis time (RA), and human effort generated by MDG-HOL and For-

malCheck (V2.3) [6] model checking, respectively, run on a Sun enterprize server

with Solaris 5.7 OS and 6.0 GB memory. The time is measured in FormalCheck by

estimating the average time for the set of all properties associated with the design.

Table 5
MDG-HOL Benchmarks

MDG-HOL

No. of No. of MEM RA Human

Example Nodes Funcs (MB) (sec) Effort (H)

MIN-MAX 54 3 0.533 7 120

Abstract 46 3 0.318 7 120

Counter

LA-1 1682 66 0.613 8 216

ITC 118035 27 0.47 9 480

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 23

Table 5 shows that the number of nodes and number of functions of the MDG

are smaller than its corresponding generated by FormalCheck for small benchmarks

(i.e. MIN-MAX and Abstract Counter). This is due to the absence of boolean

encoding, i.e. we don’t encode the values of model variables. On the other hand, the

computation time for the reachability analysis is better in the case of FormalCheck.

This is normal because of the overhead of the theorem prover.

Table 6
FormalCheck Benchmarks

FormalCheck

No. of No. of MEM RA Human

Example Nodes Funcs (MB) (sec) Effort (H)

MIN-MAX 256 6 3.67 6 1

Abstract 128 14 3.43 1 1

Counter

LA-1 4096 19 4.02 12 2

ITC 1.76E+12 179 9.07 29 4

As the size of the benchmark increases, the MDG-HOL gives much better results

since it does not take a lot of time to load the fixpoint theorem and also the memory

usage is negligible as shown in Table 6. However, the number of FormalCheck allo-

cated nodes tends to be greater and hence have a negative impact on computation

reachability analysis time and memory usage. The trade off between MDG-HOL

and FormalCheck is the time and human effort since it took much more to prove

reaching a fixpoint compared to the FormalCheck. This comes from the fact that

theorem provers are interactive while model checkers are automatic.

In fact, the performance of the MDG-HOL is considerable, but it cannot replace

current model checking tools as it fails to obtain fixpoint proof without major human

efforts. However, a huge investment in time should be spent in developing the theory

and proving the necessary theorems in theorem provers.

7 Conclusion

MDGs have been proposed to extend BDDs in the representation of the relations as

well as sets of states, in terms of abstract sorts to denote data values and uninter-

preted function symbols to denote data operations. We have MDGs as formulae in

higher order logic using the Directed Formulae notations. The well-formedness con-

ditions and the operations were implemented as a set of inference rules. The ideas

described here are intended to establish a correct platform for securely programming

new verification algorithms.

Since software and hardware are deployed in many applications, correctness is

becoming an important issue. Therefore, software and hardware verification will be

a big face for both academic and industry world and hence our research is motivated

toward providing the users with a good and a clean logical view based on higher

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2624

order logic that supports MDGs. The presented approach is to develop synergies

between software and hardware verification concepts, i.e. software verification of

MDG tool (data structure + algorithms) which is used for hardware verification in

LCF-style theorem prover.

The performance results for the PbyS operation have shown that the execution

time of the PbyS operation is almost linear which emphasizes the effectiveness of our

embedding. The experimental results based on benchmarks, have shown that the

MDG-HOL platform provided a better performance than FormalCheck in terms of

time, memory usage, number of nodes, and number of functions especially when the

design is growing up. On the other hand, the human efforts are huge compared to

FormalCheck. Thus, a complete model checker can be implemented in HOL based

on our infrastructure. Including the definition of each LMDG [22] related algorithm

as a tactic in HOL. The model checker will be a complete theory in HOL, but

indeed more investigation and formalism is needed to this task. In this context, our

reachability conversion can be used to make calls to our defined MDG algorithms,

to check wether an LMDG property is valid. Here, we are not reducing the role of

the proof expert, but we provide him with an automated conversions that reduces

considerably the time he spent. Also, the work can be seen as a formal proof for

the MDG model checking approach; verifying a verification system using another

verification system.

References

[1] S. Abed and O. Ait Mohamed. Embedding of MDG directed formulae in HOL theorem prover. In
Proc. of MCSEAI’06, pages 659–664, Agadir, Morocco, December 2006.

[2] S. Abed, O. Ait Mohamed, and G. Al Sammane. Reachability analysis using multiway decision graphs
in the HOL theorem prover. In Proc. of ACM SAC’08, pages 333–338, Brazil, 2008. ACM Press.

[3] O. Ait-Mohamed, X. Song, and E. Cerny. On the non-termination of MDG-based abstract state
enumeration. Theoretical Computer Science, 300:161–179, 2003.

[4] H. Amjad. Programming a symbolic model checker in a fully expansive theorem prover. In Proceedings
of TPHOLs’03, volume 2758 of LNCS, pages 171–187. Springer-Verlag, 2003.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, 35(8):677–691, August 1986.

[6] Cadence Design Systems. V2.3. FormalCheck Users Guide, August 1999.

[7] W. Clocksin and C. Mellish. Programming in Prolog. Springer Verlag, 1987.

[8] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Păsăreanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source code. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 439–448, New York, NY, USA, 2000. ACM.

[9] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision graphs for automated
hardware verification. In Formal Methods in System Design, volume 10, pages 7–46, February 1997.

[10] J. Filliâtre and C. Marché. The why/krakatoa/caduceus platform for deductive program verification.
In CAV, pages 173–177, 2007.

[11] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes in Computer
Science. Springer, 1979.

[12] M. J. C. Gordon. Reachability programming in HOL98 using BDDs. In International Conference on
Theorem Proving in Higher Order Logics TPHOLs, Lecture Notes in Computer Science, pages 179–196,
2000.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–26 25

[13] M. J. C. Gordon. Programming combinations of deduction and BDD-based symbolic calculation. LMS
Journal of Computation and Mathematics, 5:56–76, August 2002.

[14] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, New York, NY, USA, 1993.

[15] John Harrison. Binary decision diagrams as a HOL derived rule. The Computer Journal, 38:162–170,
1995.

[16] S. Kort, S. Tahar, and P. Curzon. Hierarchal verification using an MDG-HOL hybrid tool. International
Journal on Software Tools for Technology Transfer, 4(3):313–322, May 2003.

[17] T. Kropf. Introduction to Formal Hardware Verification. Springer Verlag, 1999.

[18] M. Krykhtin, Y. Mokhtari, O. Ait Mohamed, and X. Song. Towards software model checking using
MDGs. The 2nd Annual IEEE Northeast Workshop on Circuits and Systems, 2004. NEWCAS 2004.,
pages 345–348, June 2004.

[19] T. Mhamdi and S. Tahar. Providing automated verification in HOL using MDGs. In Automated
Technology for Verification and Analysis, pages 278–293, 2004.

[20] Network Processing Forum. Look-Aside (LA-1) Interface, Implementation Agreement, Revision 1.1.
Kluwer Academic Publishers, April 15, 2004.

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc. of the 15th IEEE
International Conference on Automated Software Engineering, 2000.

[22] Y. Xu, X. Song, E. Cerny, and O. Ait Mohamed. Model checking for a first-order temporal logic using
multiway decision graphs (MDGs). The Computer Journal, 47(1):71–84, 2004.

[23] Z. Zhou and N. Boulerice. MDGs Tools (V1.0) User’s Manual. D’IRO, University of Montreal, June
1996.

[24] Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin. Formal verification of the island
tunnel controller using multiway decision graphs. In Proc. of FMCAD ’96, pages 233–247, London,
UK, 1996. Springer-Verlag.

S. Abed, O. Ait Mohamed / Electronic Notes in Theoretical Computer Science 246 (2009) 3–2626

	Introduction
	Related Work
	Preliminaries
	Multiway Decision Graphs
	The HOL Theorem Prover

	Well-formedness Inference Rules
	MDGs Operation Inference Rules
	The Conjunction Operation
	The Disjunction Operation
	Pruning by Subsumption (PbyS) Operation

	The Reachability Analysis
	Reachability Analysis Algorithm
	Formalization of Reachability Analysis
	The MIN-MAX Example
	The Platform Performance

	Conclusion
	References

