85 research outputs found

    Cognitive deficits in obsessive compulsive disorder in tests which are sensitive to frontal lobe dysfunction

    Get PDF
    Forty patients with obsessive compulsive disorder (OCD) were compared to matched healthy controls on neuropsychological tests which are sensitive to frontal lobe dysfunction. On a computerised version of the Tower of London task of planning, OCD patients were no different to healthy controls in the accuracy of their solutions. There was no difference between the groups in the time spent thinking prior to making the first move or in the time spent thinking after the first move when "perfect move" solutions were considered. However, when the patients made a mistake, they spent more time than the controls generating alternative solutions or checking that the next move would be correct. The results suggest that OCD patients have a selective deficit in planning of generating alternative strategies when they make a mistake. In a separate attentional set-shifting task, OCD patients showed a continuous increase in terms of the number who failed at each stage of the task, including the crucial extra- dimensional set shifting stage. This suggests that OCD patients show deficits in both acquiring and maintaining cognitive sets. A sub-group of OCD patients who fail at or before the extra-dimensional shift stage also performed poorly on the Tower of London task. They are less accurate when solving problems and have a similar pattern of deficits to some neurosurgical patients with frontal lobe excisions. Both studies support the evidence of frontal-striatal dysfunction in OCD and the pattern of results is compared to that found in other known fronto-striatal disorders. The results are discussed in terms of a functional absence of a Supervisory Attentional System (Norman and Shallice, 1980)

    Deep learning of brain asymmetry digital biomarkers to support early diagnosis of cognitive decline and dementia

    Get PDF
    Early identification of degenerative processes in the human brain is essential for proper care and treatment. This may involve different instrumental diagnostic methods, including the most popular computer tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. These technologies provide detailed information about the shape, size, and function of the human brain. Structural and functional cerebral changes can be detected by computational algorithms and used to diagnose dementia and its stages (amnestic early mild cognitive impairment - EMCI, Alzheimer’s Disease - AD). They can help monitor the progress of the disease. Transformation shifts in the degree of asymmetry between the left and right hemispheres illustrate the initialization or development of a pathological process in the brain. In this vein, this study proposes a new digital biomarker for the diagnosis of early dementia based on the detection of image asymmetries and crosssectional comparison of NC (normal cognitively), EMCI and AD subjects. Features of brain asymmetries extracted from MRI of the ADNI and OASIS databases are used to analyze structural brain changes and machine learning classification of the pathology. The experimental part of the study includes results of supervised machine learning algorithms and transfer learning architectures of convolutional neural networks for distinguishing between cognitively normal subjects and patients with early or progressive dementia. The proposed pipeline offers a low-cost imaging biomarker for the classification of dementia. It can be potentially helpful to other brain degenerative disorders accompanied by changes in brain asymmetries

    Pathophysiology of normal pressure hydrocephalus

    Get PDF
    Normal pressure hydrocephalus (NPH), a CSF circulation disorder, is important as a reversible cause of gait and cognitive disturbance in an aging population. The inconsistent response to CSF shunting is usually attributed to difficulties in differential diagnosis or co-morbidity. Improving outcome depends on an increased understanding of the pathophysiology of NPH. Specifically, this thesis examines the contribution of, and inter-relationship between, the brain parenchyma and CSF circulation in the pathophysiology of NPH. Of the four core studies of the thesis, the first quantifies the characteristics of the CSF circulation and parenchyma in NPH using CSF infusion studies to measure the resistance to CSF absorption and brain compliance. The second study assesses cerebral blood flow (CBF) was using O15-labelled positron emission tomography (PET) with MR co-registration. By performing CSF infusion studies in the PET scanner, CBF at baseline CSF pressure and at a higher equilibrium pressure is measured. Regional changes and autoregulatory capacity are assessed. The final study examines the microstructural integrity of the parenchyma using MR diffusion tensor imaging. These studies confirm the importance of the inter-relationship of the brain parenchyma and CSF circulation. NPH symptomatology and its relationship to the observed regional CBF reductions in the basal ganglia and thalamus are discussed. Regional CBF reductions with increased CSF pressure and the implications for autoregulatory capacity in NPH are considered. The reduction in CBF when CSF was increased was most striking in the periventricular regions. In addition, periventricular structures demonstrated increased diffusivity and decreased anisotropy. The relationship between these changes and mechanisms such as transependymal CSF passage are reviewed. The findings of this thesis support a role of both the CSF circulation and the brain parenchyma in the pathophysiology of NPH. The results have implications for the approach to the management of patients with NPH

    Pathophysiology of normal pressure hydrocephalus

    Get PDF
    Normal pressure hydrocephalus (NPH), a CSF circulation disorder, is important as a reversible cause of gait and cognitive disturbance in an aging population. The inconsistent response to CSF shunting is usually attributed to difficulties in differential diagnosis or co-morbidity. Improving outcome depends on an increased understanding of the pathophysiology of NPH. Specifically, this thesis examines the contribution of, and inter-relationship between, the brain parenchyma and CSF circulation in the pathophysiology of NPH. Of the four core studies of the thesis, the first quantifies the characteristics of the CSF circulation and parenchyma in NPH using CSF infusion studies to measure the resistance to CSF absorption and brain compliance. The second study assesses cerebral blood flow (CBF) was using O15-labelled positron emission tomography (PET) with MR co-registration. By performing CSF infusion studies in the PET scanner, CBF at baseline CSF pressure and at a higher equilibrium pressure is measured. Regional changes and autoregulatory capacity are assessed. The final study examines the microstructural integrity of the parenchyma using MR diffusion tensor imaging. These studies confirm the importance of the inter-relationship of the brain parenchyma and CSF circulation. NPH symptomatology and its relationship to the observed regional CBF reductions in the basal ganglia and thalamus are discussed. Regional CBF reductions with increased CSF pressure and the implications for autoregulatory capacity in NPH are considered. The reduction in CBF when CSF was increased was most striking in the periventricular regions. In addition, periventricular structures demonstrated increased diffusivity and decreased anisotropy. The relationship between these changes and mechanisms such as transependymal CSF passage are reviewed. The findings of this thesis support a role of both the CSF circulation and the brain parenchyma in the pathophysiology of NPH. The results have implications for the approach to the management of patients with NPH

    Magnetic resonance imaging in schizophrenia

    Get PDF

    Neuroimaging - Clinical Applications

    Get PDF
    Modern neuroimaging tools allow unprecedented opportunities for understanding brain neuroanatomy and function in health and disease. Each available technique carries with it a particular balance of strengths and limitations, such that converging evidence based on multiple methods provides the most powerful approach for advancing our knowledge in the fields of clinical and cognitive neuroscience. The scope of this book is not to provide a comprehensive overview of methods and their clinical applications but to provide a "snapshot" of current approaches using well established and newly emerging techniques

    Leveraging Artificial Intelligence to Improve EEG-fNIRS Data Analysis

    Get PDF
    La spectroscopie proche infrarouge fonctionnelle (fNIRS) est apparue comme une technique de neuroimagerie qui permet une surveillance non invasive et à long terme de l'hémodynamique corticale. Les technologies de neuroimagerie multimodale en milieu clinique permettent d'étudier les maladies neurologiques aiguës et chroniques. Dans ce travail, nous nous concentrons sur l'épilepsie - un trouble chronique du système nerveux central affectant près de 50 millions de personnes dans le monde entier prédisposant les individus affectés à des crises récurrentes. Les crises sont des aberrations transitoires de l'activité électrique du cerveau qui conduisent à des symptômes physiques perturbateurs tels que des changements aigus ou chroniques des compétences cognitives, des hallucinations sensorielles ou des convulsions de tout le corps. Environ un tiers des patients épileptiques sont récalcitrants au traitement pharmacologique et ces crises intraitables présentent un risque grave de blessure et diminuent la qualité de vie globale. Dans ce travail, nous étudions 1. l'utilité des informations hémodynamiques dérivées des signaux fNIRS dans une tâche de détection des crises et les avantages qu'elles procurent dans un environnement multimodal par rapport aux signaux électroencéphalographiques (EEG) seuls, et 2. la capacité des signaux neuronaux, dérivé de l'EEG, pour prédire l'hémodynamique dans le cerveau afin de mieux comprendre le cerveau épileptique. Sur la base de données rétrospectives EEG-fNIRS recueillies auprès de 40 patients épileptiques et utilisant de nouveaux modèles d'apprentissage en profondeur, la première étude de cette thèse suggère que les signaux fNIRS offrent une sensibilité et une spécificité accrues pour la détection des crises par rapport à l'EEG seul. La validation du modèle a été effectuée à l'aide de l'ensemble de données CHBMIT open source documenté et bien référencé avant d'utiliser notre ensemble de données EEG-fNIRS multimodal interne. Les résultats de cette étude ont démontré que fNIRS améliore la détection des crises par rapport à l'EEG seul et ont motivé les expériences ultérieures qui ont déterminé la capacité prédictive d'un modèle d'apprentissage approfondi développé en interne pour décoder les signaux d'état de repos hémodynamique à partir du spectre complet et d'une bande de fréquences neuronale codée spécifique signaux d'état de repos (signaux sans crise). Ces résultats suggèrent qu'un autoencodeur multimodal peut apprendre des relations multimodales pour prédire les signaux d'état de repos. Les résultats suggèrent en outre que des gammes de fréquences EEG plus élevées prédisent l'hémodynamique avec une erreur de reconstruction plus faible par rapport aux gammes de fréquences EEG plus basses. De plus, les connexions fonctionnelles montrent des modèles spatiaux similaires entre l'état de repos expérimental et les prédictions fNIRS du modèle. Cela démontre pour la première fois que l'auto-encodage intermodal à partir de signaux neuronaux peut prédire l'hémodynamique cérébrale dans une certaine mesure. Les résultats de cette thèse avancent le potentiel de l'utilisation d'EEG-fNIRS pour des tâches cliniques pratiques (détection des crises, prédiction hémodynamique) ainsi que l'examen des relations fondamentales présentes dans le cerveau à l'aide de modèles d'apprentissage profond. S'il y a une augmentation du nombre d'ensembles de données disponibles à l'avenir, ces modèles pourraient être en mesure de généraliser les prédictions qui pourraient éventuellement conduire à la technologie EEG-fNIRS à être utilisée régulièrement comme un outil clinique viable dans une grande variété de troubles neuropathologiques.----------ABSTRACT Functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that allows for non-invasive and long-term monitoring of cortical hemodynamics. Multimodal neuroimaging technologies in clinical settings allow for the investigation of acute and chronic neurological diseases. In this work, we focus on epilepsy—a chronic disorder of the central nervous system affecting almost 50 million people world-wide predisposing affected individuals to recurrent seizures. Seizures are transient aberrations in the brain's electrical activity that lead to disruptive physical symptoms such as acute or chronic changes in cognitive skills, sensory hallucinations, or whole-body convulsions. Approximately a third of epileptic patients are recalcitrant to pharmacological treatment and these intractable seizures pose a serious risk for injury and decrease overall quality of life. In this work, we study 1) the utility of hemodynamic information derived from fNIRS signals in a seizure detection task and the benefit they provide in a multimodal setting as compared to electroencephalographic (EEG) signals alone, and 2) the ability of neural signals, derived from EEG, to predict hemodynamics in the brain in an effort to better understand the epileptic brain. Based on retrospective EEG-fNIRS data collected from 40 epileptic patients and utilizing novel deep learning models, the first study in this thesis suggests that fNIRS signals offer increased sensitivity and specificity metrics for seizure detection when compared to EEG alone. Model validation was performed using the documented open source and well referenced CHBMIT dataset before using our in-house multimodal EEG-fNIRS dataset. The results from this study demonstrated that fNIRS improves seizure detection as compared to EEG alone and motivated the subsequent experiments which determined the predictive capacity of an in-house developed deep learning model to decode hemodynamic resting state signals from full spectrum and specific frequency band encoded neural resting state signals (seizure free signals). These results suggest that a multimodal autoencoder can learn multimodal relations to predict resting state signals. Findings further suggested that higher EEG frequency ranges predict hemodynamics with lower reconstruction error in comparison to lower EEG frequency ranges. Furthermore, functional connections show similar spatial patterns between experimental resting state and model fNIRS predictions. This demonstrates for the first time that intermodal autoencoding from neural signals can predict cerebral hemodynamics to a certain extent. The results of this thesis advance the potential of using EEG-fNIRS for practical clinical tasks (seizure detection, hemodynamic prediction) as well as examining fundamental relationships present in the brain using deep learning models. If there is an increase in the number of datasets available in the future, these models may be able to generalize predictions which would possibly lead to EEG-fNIRS technology to be routinely used as a viable clinical tool in a wide variety of neuropathological disorders

    Coronary Angiography

    Get PDF
    In the intervening 10 years tremendous advances in the field of cardiac computed tomography have occurred. We now can legitimately claim that computed tomography angiography (CTA) of the coronary arteries is available. In the evaluation of patients with suspected coronary artery disease (CAD), many guidelines today consider CTA an alternative to stress testing. The use of CTA in primary prevention patients is more controversial in considering diagnostic test interpretation in populations with a low prevalence to disease. However the nuclear technique most frequently used by cardiologists is myocardial perfusion imaging (MPI). The combination of a nuclear camera with CTA allows for the attainment of coronary anatomic, cardiac function and MPI from one piece of equipment. PET/SPECT cameras can now assess perfusion, function, and metabolism. Assessing cardiac viability is now fairly routine with these enhancements to cardiac imaging. This issue is full of important information that every cardiologist needs to now

    Do informal caregivers of people with dementia mirror the cognitive deficits of their demented patients?:A pilot study

    Get PDF
    Recent research suggests that informal caregivers of people with dementia (ICs) experience more cognitive deficits than noncaregivers. The reason for this is not yet clear. Objective: to test the hypothesis that ICs ‘mirror' the cognitive deficits of the demented people they care for. Participants and methods: 105 adult ICs were asked to complete three neuropsychological tests: letter fluency, category fluency, and the logical memory test from the WMS-III. The ICs were grouped according to the diagnosis of their demented patients. One-sample ttests were conducted to investigate if the standardized mean scores (t-scores) of the ICs were different from normative data. A Bonferroni correction was used to correct for multiple comparisons. Results: 82 ICs cared for people with Alzheimer's dementia and 23 ICs cared for people with vascular dementia. Mean letter fluency score of the ICs of people with Alzheimer's dementia was significantly lower than the normative mean letter fluency score, p = .002. The other tests yielded no significant results. Conclusion: our data shows that ICs of Alzheimer patients have cognitive deficits on the letter fluency test. This test primarily measures executive functioning and it has been found to be sensitive to mild cognitive impairment in recent research. Our data tentatively suggests that ICs who care for Alzheimer patients also show signs of cognitive impairment but that it is too early to tell if this is cause for concern or not
    • …
    corecore