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Abstract 

  

Abstract 

Early identification of degenerative processes in the human brain is essential for proper 

care and treatment. This may involve different instrumental diagnostic methods, 

including computer tomography (CT), magnetic resonance imaging (MRI) and positron 

emission tomography (PET) scans. These technologies provide detailed information 

about the shape, size, and function of the human brain. Structural and functional cerebral 

changes can be detected by computational algorithms and used to diagnose dementia 

and its stages (amnestic early mild cognitive impairment - EMCI, Alzheimer’s Disease 

- AD). They can help monitor the progress of the disease. Transformation shifts in the 

degree of asymmetry between the left and right hemispheres illustrate the initialization 

or development of a pathological process in the brain. In this vein, the thesis proposes a 

new digital biomarker for the diagnosis of early dementia based on the detection of 

image asymmetries and cross-sectional comparison of NC (normal cognitively), EMCI 

and AD subjects. Brain asymmetry images and features of brain asymmetries extracted 

from MRI of the ADNI and OASIS databases are used to analyze structural brain 

changes and apply machine learning classification of the pathology. The experimental 

part of the thesis investigates the potential of conventional machine learning algorithms, 

deep transfer learning and specially designed architectures of convolutional neural 

networks for distinguishing between cognitively normal subjects and patients with early 

or progressive dementia. The proposed pipeline offers a low-cost imaging biomarker for 

the classification of dementia. It can be potentially helpful to other brain degenerative 

disorders accompanied by changes in brain asymmetries. 
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Chapter 1: Introduction 

  

Chapter 1:  Introduction 

1.1 Background of the research  

The human brain is examined with the help of advanced modern technology, which 

provides detailed scans of the brain tissues and demonstrates the functional activity of the 

brain regions associated with a specific mental or behavioural task. 

     Brain scanning is divided into two large categories: structural imaging and functional 

imaging. The most common structural neuroimaging methods are X-ray, structural 

Magnetic Resonance Imaging (sMRI), Diffusion Tensor Imaging (DTI), modification of 

MRI, and Computerized Tomography. Well-known functional methods are 

Electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI), and 

Positron Emission Tomography. MRI covers around 50% of imaging data used to 

diagnose brain diseases (Segato et al., 2020). A significant advantage of MRI over 

popular CT and X-ray scans is the absence of ionising radiation during the MRI session. 

The MRI contrasting agent is less allergic than iodine-based substances of CT scans and 

X-rays. Another advantage of MRI is the possibility to provide high contrast resolution 

of soft tissue compared to a CT scan, which is superior at imaging dense anatomical 

structures. All these factors make MRI the method of choice for regular health checks in 

the population older than 60. High-resolution images make a significant impact on the 

computer-aided diagnosis of brain-related disorders.  

     Early dementia, or amnestic Mild Cognitive Impairment (aMCI), belongs to the group 

of neurocognitive disorders and its symptoms include short-term short-time memory loss, 

language difficulties, lack of reasoning and judgment, hardship in coping with daily 

routines. Approximately 10% of the world population aged between 70 and 79, and 25% 

of the population older than 80 are diagnosed with MCI. It is acknowledged that 80% of 

the patients with aMCI develop severe dementia, in the form of Alzheimer’s disease, 

within seven years. The proportion of dementia in the general population is 7.1 %, roughly 

46.8 million people. Figure 1 illustrates the growing number of people with dementia 

worldwide. 
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Figure 1: A number of people with dementia(millions) in low and middle-income countries 

compared to high-income countries (Source: https://www.alzint.org/about/dementia-facts-

figures/dementia-statistics. World Alzheimer Report 2015 by Alzheimer’s Disease 

International)  

     Neurogenerative disorders, such as Alzheimer’s disease, are the most common, 

followed by vascular dementia, Lewy body dementia, Frontotemporal dementia, 

Parkinson’s disease and Huntington’s disease, which severely affect memory and other 

mental tasks. Amnestic MCI often becomes a prodrome of Alzheimer’s disease. From 

this prospect, it is essential to identify this form of dementia in the early stage when proper 

care and treatment can stop or slow down the progression of the disease.  

     The diagnosis of MCI is based on neuropsychological testing, blood testing, and 

neuroimaging (ICD-11 2018; DSM-V 2013). Mini-Mental State Examination (MMSE), 

Montreal Cognitive Assessment (MoCA), and Geriatric Mental State Examination 

(GMS) are the most common cognitive screening assessments. The tests usually include 

questions assessing orientation in place and time, short-time memory, attention, recall, 

and language ability of coherent speaking and understanding. For clinical judgment 

between MCI and AD, certain types of biomarkers, measured in the cerebrospinal fluid 

(CSF), are used. Amyloid-beta 42 (Ab42), total tau (T-tau), and phosphorylated tau (P-

tau) globulins are identified in the early stage of Alzheimer’s disease, whilst Hippocampal 

volume and rate of brain atrophy finalise the diagnosis.  

     Clinically, the progression or severity of dementia is measured according to the 

clinical dementia rating score. The rating scale varies from cognitive tests. Figure 2 

demonstrates the progression of dementia.  

https://www.alzint.org/about/dementia-facts-figures/dementia-statistics
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics
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Figure 2: Clinical stages of dementia (Source: mccare.com/education/mcidementia.html) 

     The research presented in this thesis is focused on the early detection and classification 

of dementia, aMCI using sMRI; when changes in the brain are not apparent to radiologists 

or clinical practitioners, the amyloid-beta deposition may be present or not, and the tau 

globulin is absent. This work involves computational algorithms used for the 

segmentation and evaluation of asymmetries in the brain’s cortex.  

     The anatomical and functional brain asymmetries drew the attention of neuroscientists 

and other medical specialists since 19th century. Structural brain asymmetry is associated 

with the lateralisation of brain functions. The revealed lateralisation originates from 

genetic and epigenetic factors in the evolutionary development of the human brain (Bitar 

and Barry, 2018; Isles, 2018). Exposure to pathological factors during a human life also 

might cause changes in the lateralisation of the brain. 

     The evolutionary expansion of the left-hemispheric area is closely connected to speech 

production, perception, and motor dominance. The earliest observations of brain 

asymmetry were reported by the French physician, anatomist and anthropologist Pierre 

Paul Broca in the 19th century and then, ten years later, by German neurologist Carl 

Wernicke. They found that the patient’s language was severely impaired when a stroke 

or tumour affected the left-brain hemisphere. Broca localised the afflicted area in the 

anterior left hemisphere, including some parts of the inferior frontal gyrus (“Broca’s 

area”). The pathological process in that brain area significantly changed the patients' 

language production and syntactic processing. Changes in language comprehension, such 

as understanding spoken words, were primarily discovered by Wernicke in the posterior 

temporal-parietal region (“Wernicke’s area”). It has been confirmed that differences in 

the brain’s anatomical structure correlate with functional lateralisation. The left 

hemisphere is primarily responsible for language processing and logical thinking. The 

right hemisphere specialises in spatial recognition, attention, musical and artistic abilities. 

Emotions and manifestation are also connected to the right hemisphere (Gainotti 2019 – 

2 articles). 
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     The symmetry of the brain tends to change under the destructive processes 

accompanying a neuro-degenerative disease. These changes are significant in the most 

affected anatomical areas. The regions of the brain that are responsible for memory, 

language process and cognitive tasks show visible signs of tissue reduction. One of the 

first affected areas leading to the development of dementia is the hippocampus, which is 

followed by the amygdala and cortex. The hippocampus is needed for memory retrieval, 

and simultaneously the amygdala supports the emotional response to factual events. The 

anatomical areas of the cortex might be affected in the later stage of dementia in case of 

Alzheimer’s Disease and be initially damaged if the subject belongs to an atypical form 

of Alzheimer’s Disease, frontotemporal dementia, vascular dementia, or Lewi body 

dementia. Clinical symptoms of cortex atrophy vary in the anatomical areas. Changes in 

human language and behaviour depend on the right-left location of the pathological zone. 

The left temporal zone controls the semantic memory and perception of the words’ 

meaning. The right zone affects the ability to recognise faces and objects. Damages in the 

frontal zone will modify the different patterns of human behaviour. Posterior cortical 

atrophy with a locus in the occipital lobes leads to the problem with visual processing 

information and spatial orientation. 

     Changes in brain asymmetry can be investigated through the brain scans such as MRI, 

PET, etc., which have become a popular diagnostic tool for brain-related disorders, 

including MCI and Alzheimer’s Disease. A number of neuroscientists, Kim et al. (2012), 

Yang et al. (2017), Wachinger et al. (2015), and Liu et al. (2018), described the changes 

in the morphology and functionality and emphasized the asymmetrical development of 

the transformations in specific brain areas due to the development of cognitive decline 

and dementia. However, their studies were limited since their works did not discuss the 

possibility of using the changes of cortical and subcortical asymmetries as an additional 

classification biomarker. Machine learning approaches, including modern deep learning 

algorithms for the detection and classification of medical pathology, are widely 

represented in the literature and have practical implications in the diagnosis of AD and 

MCI. Imaging data collected from brain scans and used for ML modelling demonstrate 

promising prediction performance of dementia. Nevertheless, early changes in the brain 

structure due to the development of the degenerative processes often remain silent before 

their clinical or symptomatic manifestation. Hence, introducing diagnostic biomarkers 

that can predict the early onset of dementia has potential to contribute to the effective 

treatment of the disease. 
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1.2 Aim and objectives of the thesis and research questions 

Aim 

The research aims to propose a new brain asymmetry digital biomarker and investigate 

its potential to support automatic and robust detection of early stages of cognitive decline 

and dementia using structural magnetic resonance images and deep learning architectures. 

Research questions and objectives 

To achieve the above aim, the following research questions have to be addressed. 

Q1.  Can changes in structural brain asymmetry be detected by computer vision 

algorithms? 

Q2.  Can statistically engineered features from brain asymmetries distinguish between 

early and progressive stages of dementia?  

Q3. Is it possible to use segmented images of structural brain asymmetry as a diagnostic 

source (biomarker) to predict early dementia (amnestic MCI) and Alzheimer's Disease?  

Q4. What machine learning models are the most successful in the diagnosis of early 

cognitive impairment using images of brain asymmetries? 

To answer these questions the following objectives should be met: 

1. Derive a computer vision approach that helps to detect asymmetry between 

the left and right hemispheres of the human brain and segment them from 

MRIs. 

2. Analyse and compare brain asymmetry imaging biomarkers obtained from 

three groups of subjects, namely Alzheimer’s Disease, Early Mild Cognitive 

Impairment and Healthy Controls, and use the transformation of asymmetry 

as a predictive factor or digital biomarker of the early degenerative processes 

in the human brain.  

3. Investigate the potential of classic and deep machine learning algorithms to 

learn brain asymmetry biomarkers to support a medical diagnosis of 

generative brain disorders.  
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4. Analyse the functionality and effectiveness of classic machine learning 

algorithms in the classification of Alzheimer’s Disease, Early Mild Cognitive 

Impairment and Cognitively Healthy controls. 

5. Analyse the functionality and effectiveness of Convolutional Neural 

Networks (CNN) and transfer learning models based on CNN for classifying 

Alzheimer’s Disease, Early Mild Cognitive Impairment and Cognitively 

Healthy control. 

1.3 Thesis structure and contribution 

The thesis is organised as follows.   

Chapter 2, “Literature Review”, presents the literature related to this study and includes 

an overview of brain asymmetry in diagnosing brain-related disorders and the 

classification of early mild cognitive impairment and Alzheimer's Disease using one of 

the most extensive database MRI repositories, the Alzheimer's Disease Neuroimaging 

Initiative (ADNI), and the Open Affective Standardized Image Set (OASIS). The brain 

asymmetry section includes the description of the evolutionary changes in brain anatomy 

and the impact of these changes on brain functionality. The asymmetries are described 

concerning the person's age, gender and handedness. Recent findings are discussed based 

on the state-of-the-art literature. Computer-aided diagnosis of MCI and AD follows the 

antecedent part of the chapter. It provides an overview of the current state of the problem, 

including the proposed methodologies and the classification performance of the state-of-

the-art methods. The chapter also provides an overview of computer vision and machine 

learning technologies used to analyse and classify medical data. It discusses computer 

vision applications in medical practice, focusing on diagnosing degenerative brain 

diseases, and gives an overview of image processing and segmentation techniques applied 

to imaging data. The machine learning part of this chapter discusses supervised machine 

learning algorithms and deep learning networks. Supervised learning algorithms, such as 

Support Vector Machines-SVM, k-nearest neighbour (KNN) and Linear Discriminant- 

LD, and CNN are described in detail, as they directly relate to the research presented in 

the thesis. This chapter is linked to the first objective of the research and indirectly 

contributes to research question one (Q1), two (Q2), and three (Q3) by providing a 

theoretical background for the work conducted to address these questions. Gaps in the 

literature are discussed and summarized at the end of the chapter. Generally, the chapter 
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helps to understand the contemporary state of the diagnosis of dementia, identifies the 

gap in the diagnosis of MCI and raises questions that require further research. 

Chapter 3, “Computational Framework for Brain Asymmetry Digital Biomarker 

Representation and Classification”, introduces the computational framework of the thesis. 

This includes approaches used for the image retrieval, preprocessing and segmentation. 

First, a computational framework for the entire diagnostic process is described. Then the 

chapter presents the databases used in the research, provides an overview of magnetic 

resonance scan technologies and medical image formats used for saving the imaging data. 

The chapter discusses in detail the proposed methodology and provides the mathematical 

background for the detection object's symmetry. The chapter explains the image 

transformation and segmentation stages towards obtaining the brain asymmetry 

biomarker. This chapter directly contribute to the conducted research and establishes link 

to the first objective of the study and answers the research question one (Q1). 

Chapter 4, “Features of Segmented Brain Asymmetry: Analysis and Classification” 

discusses the feature engineering methods. It explains the approach used for the 

generation of statistical features from MRI asymmetries. Then, it provides an analysis of 

the statistical features of three image classes, AD, EMCI and NC. The comparative 

feature analysis is done for five datasets which vary in size, symmetry axes, and gender. 

The analysis is supported by visual representation of the statistical features for each 

patients’ group. The chapter explains how the collected features are represented among 

the patient groups and demonstrates the differences between early and progressive 

dementia. The chapter contribution is a feature analysis that helps to answer questions 

one (Q1) and two (Q2) and meet the research's first and second objectives.   

Chapter 5, “Learning Brain Asymmetry Biomarkers” describes two classification 

machine learning workflows: conventional supervised machine learning and deep neural 

networks-based methods. The first workflow includes tests with classic machine learning 

algorithms and demonstrates the robustness of the proposed biomarker for classification. 

The chapter also describes deep learning methods in diagnosis of dementia, including 

transfer learning architectures proposed for the classification of early dementia. Transfer 

learning of AlexNet and VGG16 adapted for the MRI data is presented in detail, and the 

proposed CNN architecture, which incorporates different classification layers, is also 

included in this chapter. Later, the chapter provides experiments with machine learning 

classification algorithms and demonstrates the test results. The initial experiments were 
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conducted with conventional supervised machine learning algorithms—the further tests 

were run with pretrained convolutional neural networks, and new CNN architectures 

created from scratch. Training, evaluation, and testing of the pretrained network were 

done using a transfer learning approach by connecting different classification modules to 

the output layer. The test results are combined in tables and supported by the ROC/AUC 

curves and other types of graphical representation. The statistical significance of the 

results was evaluated using Wilcoxon-Mann-Whitney rank-sum test. The chapter 

contributes to the diagnosis of EMCI and AD and demonstrates the robustness of brain 

MRI asymmetries in the early disease prediction by using machine learning models. The 

chapter meets objectives three, four and five and answers third (Q3) and fourth (Q4) 

research questions.  

Chapter 6, “Conclusions and Future Work”, includes detailed answers to research 

questions and outlines the study’s significant findings. The chapter summarizes the 

information about features of brain asymmetry and interprets their changes in relation to 

age, gender, handedness, and brain size. It explains the classification results and suggests 

the ML models, which are more effective in the diagnosis of EMCI and AD using 

asymmetry biomarkers. The section also includes a comparison of the proposed models 

with those described in the literature. In the summary of the study, the chapter restates 

the research hypothesis and reiterates the key points of the work. Next, it explains the 

relevance and significance of the research and highlights its contribution to existing 

knowledge. The chapter discusses the study's limitations and gives an overview of future 

directions in diagnosing medical pathologies using computer vision and machine learning 

techniques. 
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Chapter 2:  Literature Review 

2.1 Introduction 

Anatomy and functional features of the human brain are some of the most studied 

scientific areas, where in recent years, joint projects of medical and non-medical 

specialists have become a regular practice for the development of new strategies for the 

diagnosis and treatment of brain pathologies.  

     The two brain hemispheres have slightly different anatomy and function, and a 

detailed examination of their structure shows a variety of asymmetrical areas. 

Investigating the human brain's anatomical properties and functional ability is an 

intensively developing research area. The human brain has an overall leftward posterior 

and rightward anterior asymmetry (known as “Petalia and Yakovlevian torque”) (Toga 

and Thompson 2003). The right cerebral hemisphere protrudes forward, and the left 

hemisphere protrudes backwards compared to the right one. This type of asymmetry is 

mainly found in right-handed individuals - around 90% of the human population is right-

handed (McManus 2019), while the opposite pattern in some cases is observed in left-

handed individuals. Figure 3 illustrates the anatomical differences between the left and 

the right hemisphere of the brain of a cognitively normal person.  

 

Figure 3: Normal brain lateralization (the Yakovlevian anticlockwise torque). (Source: CDI, 

Oswaldo Cruz German Hospital - Fleury Group / São Paulo 2015) 

     Brain asymmetry is closely related to human handedness. An interesting fact is that 

the foetal orientation during the pregnancy is correlated with the handedness of a newborn 

child. These asymmetries are first observed in the 29-31 weeks of gestational age. Almost 
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90% of the human population is right-handed (McManus, 2019). “Petalia and 

Yakovlevian torque” (Segato et al., 2020) is a term that describes an overall leftward 

posterior and rightward anterior asymmetry usually presented in right-handed individuals. 

Around 95% of right-handed persons have their speech and language zones in the left 

hemisphere, while only 5% show the language zone representation in the right 

hemisphere or bilateral. Compared to right-handed people, left-handed demonstrate a 

higher ratio of hemispheric lateralisation.  A strongly dominant right hemisphere 

lateralisation is presented only in 7% of the left-handers. This proportion can vary from 

age. Up to 85% of left-handed children have language area dominance in the left 

hemisphere (Szaflarski et al., 2012).  

     Some studies highlight the differences in hemispheric lateralisation between males and 

females (Tomasi and Volkow 2012). The distinctions can be noticeable in linguistic 

performance, visuospatial or motor skills. The female brains show more symmetries in 

both cerebral hemispheres. 

     The level of asymmetry also depends on the age of the person. The brain functional 

hemispheric asymmetry in the frontal lobes of young adults is more lateralised than in 

elderly healthy persons. The activity reduction of the frontal cortex leads to age-related 

cognitive decline. It is registered by functional neuroimaging as changes in the domains 

of semantic, episodic, or working memory, perception, and inhibitory control. Elderly 

people demonstrate compensatory processes in the brain that transform brain 

lateralisation. Sometimes it looks like bilateral hemispheric activity (Cabeza 2002, 

Cabeza et al. 2004). 

2.2 Brain asymmetry for the diagnosis of brain-related disorders 

Alzheimer’s Disease and amnestic MCI, which in some cases become a prodrome stage 

of AD, are the most common types of dementia. Detecting dementia in the early stage 

benefits timely treatment and helps to optimize the care and management of patients.  The 

diagnosis of Alzheimer’s Disease using MRI scans gives a clear picture of the grey and 

white matter brain atrophy. At the same time, early mild cognitive impairment does not 

have such obvious signs of brain tissues atrophy. Appendix C presents details about brain 

anatomy and the diagnosis of MCI. Figure 4 displays a comparison of MRI scans of brains 

transformed by neurodegenerative disorders and an intact brain.  



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 2:  Literature Review   

 

24 

 

                                          (a)                     (b)                      (c) 

Figure 4: MRI scans of the brain affected by Alzheimer’s Disease (a), the brain of a person 

with early mild cognitive impairment (b), and the brain of the cognitively healthy person (c). 

     The white matter brain regions show a progressive decrease in the degree of 

asymmetry in patients with Mild Cognitive Impairment and an increase in asymmetry in 

patients with Alzheimer’s disease (Yang et al., 2017). For concept approval, Yang et al. 

used diffusion tensor image tractography to construct the hemispheric brain white matter 

networks. The researchers came to the conclusion that the brain white matter (WM) 

networks show the rightward topological asymmetry when the right cerebral hemisphere 

becomes dominant in AD patients but not in the early phase of the MCI. Left-hemisphere 

regions are affected earlier and more severely. The abnormal hemispheric asymmetries 

of AD and MCI patients significantly correlated with memory performance. The research 

on image tractography left the investigation of the grey matter (GM) of the brain intact. 

The question “Are the cortical parts of the brain affected in the same way as white matter 

tracts?” has remained open. 

     Neuroscientists actively investigate changes in bilateral brain functionality in cases of 

diagnosed dementia. The functional cortical asymmetry progressively decreases in 

patients with MCI (Liu et al., 2018). Liu et al.'s research was based on whole-brain 

imaging. They registered and compared the spontaneous brain activity in patients with 

MCI, AD and NC using functional MRI. They discovered that patients with MCI and AD 

have abnormal rightward laterality in the brain compared to healthy controls with 

observed leftward lateralisation. At the same time, alterations in the brain lateralisation 

between patients with MCI and normal controls were different from alterations between 

patients with AD and normal controls. The rightward lateralisation in the patients with 

MCI and AD may be reflected as a relative increase in brain activation within the right 

hemisphere or a relative decrease in brain activation within the left hemisphere. Patients 
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with MCI showed an increase in the activation of several brain regions in the right 

hemisphere during the processing of word memory tasks. Those areas were compensatory 

activated compared to the activation zones in the left hemisphere of the healthy controls. 

Liu et al. (2018) suppose that the reason for the abnormal right-lateralized pattern in 

patients with AD might be more complex than in patients with MCI. They think that 

structural differences between the groups potentially influence functional results. Still, 

their research did not investigate the relationship between brain structural asymmetry and 

brain functional lateralisation arch. All participants in the study were right-handed. The 

researchers did not determine whether right brain lateralisation occurs in left-handed 

persons. The researchers found a significant difference in brain functionality between 

MCI and AD patients. The patients with MCI had normal leftward lateralisation with 

some elements of abnormal rightward activity. In patients with AD, the typical pattern of 

left lateralisation disappeared, and some abnormal right-lateralized pattern was detected. 

     The degree of asymmetry is not the same in the different parts of the brain (Kim et al., 

2012). Kim et al. tested the hypothesis that individuals with amnestic Mild Cognitive 

Impairment and various stages of AD have reductions in asymmetries in the heteromodal 

neocortex. They found significant changes in the degree of asymmetry in right-handed 

adults' inferior parietal lobe of the brain. The cortical asymmetry was investigated using 

surface-based morphometry (SBM) to measure the cortical thickness. Their results show 

that the neocortical thickness asymmetries of the medial and lateral sides of the right and 

left parts of the brain were different from each other.  The decrease in asymmetry was 

registered in the lateral parts of the frontal and parietal lobes and an increase in the 

temporal lobe. The left Perisylvian areas responsible for language functions, except 

Broca’s speech area, demonstrated leftward asymmetry. Other brain areas, which 

specialised in spatial perception, facial recognition, and memory processing, showed 

rightward asymmetry. Kim et al. assumed that the cortical asymmetry shown in healthy 

controls generally decreases in AD. But their study has some limitations, which the 

investigators highlighted. They did not directly examine the changes in cortical 

asymmetry observed during the AD progression, which gives a clear picture of an 

increase in asymmetry in case of severe AD.  Also, it is unclear whether other 

degenerative diseases can cause similar changes in cortical asymmetry. 

     Wachinger et al. (2016) investigated the neurodegenerative processes in the 

subcortical brain structures of patients with Alzheimer’s disease. They proposed a 
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measure of brain asymmetry based on spectral shape descriptors from the BrainPrint. 

BrainPrint is an ensemble of shape descriptors representing brain morphology and 

captures shape information of cortical and subcortical structures (Wachinger et al., 2015). 

Progressive dementia is associated with a significant increase in the neuroanatomical 

asymmetry in the hippocampus and amygdala. The research findings (see Table 1) prove 

that shape analysis can detect the progression of dementia earlier than volumetric 

measures. Shape asymmetry, based on longitudinal asymmetry measures in the 

hippocampus, amygdala, caudate and cortex, can be a powerful imaging biomarker for 

the early presymptomatic prediction of dementia.  

Table 1: State-of-the-art neuroscientific methods of registration of brain asymmetry 

Reference Method Conclusion 

Yang et al. (2017) Diffusion tensor image (DTI) 

tractography to construct the 

hemispheric brain white 

matter networks 

Decrease of asymmetry in patients with 

MCI and an increase of asymmetry in 

patients with AD 

Liu et al. (2018) Registration of the 

spontaneous brain activity in 

patients with MCI, AD and 

NC using functional MRI 

(fMRI) 

The functional cortical asymmetry 

progressively decreases in patients with 

MCI 

Kim et al. (2012) Surface-based morphometry 

(SBM) to measure cortical 

thickness 

The degree of asymmetry is not the same 

in the different parts of the brain 

Wachinger et al. 

(2016) 

Measurement of brain 

asymmetry based on spectral 

shape descriptors using 

BrainPrint 

Progressive dementia is associated with an 

increase in asymmetry in the hippocampus 

and amygdala; shape analysis can detect 

the progression of dementia earlier than 

volumetric measures 

 

2.2.1 Summary of imaging technologies for dementia progression in 

neuroscience research 

This part of the literature review focuses on the detailed study of the anatomy and 

functionality of the human brain. It uses the idea that the symmetry of the brain structure 

changes during the development of the neurodegenerative disorder. This section gives an 

overview of findings obtained with several medical imaging technologies that 

investigated the differences between the left and right parts of the brain due to the 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 2:  Literature Review   

 

27 

progression of dementia. The research methods of those studies include diffusion tensor 

image tractography, functional MRI, surface-based morphometry, and BrainPrint 

software, which belongs to the shape descriptors of brain morphology.  

     Diffusion tensor image tractography investigated the white matter tracts. The findings 

demonstrated the rightward topological asymmetry of the brain white matter in AD 

patients (Yang et al., 2017). The study confirmed the fact of asymmetrical changes in 

cases with developed dementia. However, the levels of the left-right symmetry shifts were 

not observed and described for the different stages of degenerative processes. Moreover, 

the study does not examine the grey matter property, which is also affected by the 

destructive process. Exploration of the grey matter thickness described by Kim et al. 

(2012). The investigators calculated the degree of asymmetry of the heteromodal 

neocortex in the multiple areas of the brain's frontal, temporal and parietal lobes. The 

measurements were done for the group of individuals with amnestic MCI and AD using 

surface-based morphometry. The obtained results clearly indicated the differences in the 

level of asymmetries in some parts of the neocortex between groups of people. The 

researchers found a partial decrease in cortical asymmetry in AD patients compared to 

the healthy controls. Nevertheless, the progressive changes in the asymmetry were not 

monitored and analyzed, and the pattern of the left to right symmetry conversion remains 

unclear. Wachinger et al. (2015) provided additional information about a structural 

peculiarity of the brain. Brain Print descriptor detected the shape changes of the 

subcortical areas such as the hippocampus and amygdala and indicated increased 

asymmetry in patients with AD. The research did not explore the shape features of MCI 

patients and the transformation of subcortical areas due to the progression of cognitive 

decline. The discovery of the brain functionality added some important information about 

the progression of dementia. Liu et al. (2018) found that patients with MCI and AD have 

abnormal rightward laterality in the brain compared to healthy controls. However, 

patients with MCI demonstrated the rightward activation only in a few brain regions 

responsible for word memory tasks. At the same time, AD patients had a significant 

increase in the entire right hemisphere activity. The researchers have assumed the 

connection between functional and structural brain changes, but they did not provide 

proof for this hypothesis.  

     All the provided findings point to the changes in brain symmetry due to the 

development and progression of dementia, but some questions remain unanswered.  
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    In line with the above literature, the work presented in the thesis uses data collected in 

neuroimaging studies, as it will be discussed in the next section. The first part of the thesis 

describes the implementation of computer vision methods for the detection and 

segmentation of a structural image asymmetry from MRIs of NC, EMCI and AD subjects. 

The proposed computational framework includes methods for the visualisation of the 

shape of asymmetry and the recognition of the pattern of asymmetrical changes in an 

image. To the best of our knowledge, it is the first time this approach is proposed for 

generating digital biomarkers of brain asymmetry. 

    The second part of the thesis is focused on machine learning methods for the diagnosis 

of early dementia using the generated biomarkers of image asymmetries. The critical 

points of this part of the computational framework are to show the robustness of the 

proposed biomarkers in the early diagnosis of hidden dementia using MRI data. 

    The following literature review section describes the classification of AD and MCI. All 

these studies used the same ADNI database, which lies at the base of this thesis. 

2.3 Classification of Alzheimer’s Disease and early mild cognitive 

impairment using the ADNI database 

The Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu) was 

launched in 2003 as a public-private partnership led by Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging, 

positron emission tomography, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment and early Alzheimer’s disease (for up-to-date information, see 

www.adni-info.org). Multiple research studies have benefited from MRI data from the 

ADNI database, the same used in the thesis. Some of them are represented below. These 

studies focused on machine learning approaches for the modelling and classification of 

neurogenerative disease, including stable and progressive forms of mild cognitive 

impairment and Alzheimer’s Disease. However, these studies worked with whole brain 

images but not segmented asymmetries. 

     A large part of research in this field includes machine learning-based diagnostic 

approaches that use features engineering, which has been demonstrated to contribute to 

successful modelling. For instance, Beheshti et al. (2017) implemented feature-ranking 

and a genetic algorithm to analyze structural magnetic resonance imaging data of 458 

subjects. The researchers state that the proposed system can distinguish between stable 

http://www.adni-info.org/
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and progressive MCI and predict the conversion of MCI to Alzheimer's Disease from one 

to three years ahead it is clinically diagnosed. Beheshti et al. (2017) identified atrophic 

grey matter regions using voxel-based morphometry (VBM). The features were extracted 

after applying a 3D mask, and they were ranked according to their t-test scores. Features 

with t-test values higher than 70% were combined into new subsets. A genetic algorithm 

with the Fisher criterion function (Welling 2005) evaluated the separation between the 

two data groups and helped select the most discriminative feature subsets for the 

classification. The classification process was finalized with linear SVM (Evgeniou and 

Pontil 1999). The classification performance was evaluated with a 10-fold cross-

validation procedure. The calculated accuracy shows 93.01% for stable MCI and 75% for 

progressive MCI. The feature selection process raised one of the accuracy from 78.94% 

to 94.73%. 

     Another group of scientists (Moradi et al., 2015) investigated the conversion of MCI 

to AD. Their algorithm identifies AD in a time between one to three years prior to the 

development of clinical symptoms. The proposed algorithm is based on aggregated 

biomarkers and a random forest (RF) classifier (Breiman, 2001). The MRI data were 

preprocessed by removing images with age-related changes in the brain’s anatomical 

structure using a linear regression model. Feature selection was implemented on AD and 

NC images by a regularized logistic regression (RLG) algorithm (Tripepi, 2008). The 

classification stage is performed using a semi-supervised low-density separation (LDS) 

method (the LDS is a two-step algorithm that relies on the graph-distance kernel and the 

Transductive Support Vector Machine-TSVM learning). At the beginning of this stage, 

the classifier is trained with labelled AD and NC data. Then, unlabeled MCI images are 

fed into the classifier. It helps to separate the stable and progressive MCI and get them 

labelled. In the final stage, the output of the LDS classifier, as an input feature, is 

combined with age and cognitive measurements feature vectors into the RF classifier. 

The aggregated biomarker distinguishes between stable and progressive MCI and 

approximates the probability of conversion of MCI to AD. The image sequences of 825 

subjects were evaluated with a 10-fold cross-validation method. The results showed that 

the predictive performance of the aggregated biomarker is higher than the performance 

of single biomarkers. MRI data with a combination of cognitive and age measures 

improves the classification accuracy by 5.5% (from 76.5% to 82%). 

     Another approach (Zhu et al., 2017) proposed an algorithm for the Joint Regression 

and Classification (JRC) problem in the diagnosis of MCI and AD. This regularization-
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based method aims to consider the related similarity of features, samples, and their 

responses. The features are associated with each other if their respective weight 

coefficients are similar. The weight coefficients are linked to the response variables via 

feature vectors and demonstrate the resembling type of relation. The same rule is applied 

to a matching pair of samples and their respective response values. The regularization 

method was assessed with MRI and PET image sequences of 202 subjects (Wong et al., 

2003). The images were separated into 93 regions of interest (ROI) using a volumetric 

measure of the grey matter of the brain. Structural MRI scans were aligned with functional 

PET images using affine registration. The average intensity values were calculated for 

each ROI. Structurally and functionally related, features were extracted from each ROI 

and sent to the feature selection process using the regularization algorithm. Extracted 

features were expected to predict jointly one clinical label and two clinical scores. 

Imaging data for clinical labelling were classified with SVM. Other types of data obtained 

from cognitive tests were used for training two more Support Vector Regression (SVR) 

models for the prediction of clinical scores of AD Assessment Scale-Cognitive Subscale 

(ADAS-Cog) and Mini-Mental State Examination (Nogueira et al. 2018). The results 

were obtained using binary classification methods and 10-fold cross-validation. In the 

initial stage of the experiment, the classification and regression tasks were performed 

without feature selection. The results of this stage were considered as a baseline. In the 

next run, the baseline was compared to single-task results, when the selected features are 

classified independently, and multi-task results, when the features are classified jointly 

for the classification and regression models. The proposed joint approach shows the 

superiority of the single-task approach by 5.6%. Compared to the baseline, the average 

accuracy for a single task increases by 6%, and for multi-task by 8.8%. The proposed 

models were compared with two state-of-the-art methods: High-Order Graph Matching 

(HOGM) (Duchenne et al. 2011) and Multi-Modal Multi-Task (M3T) (Zhang and Shen 

2011). The Joint Regression and Classification model outperforms their competitors by 

improving classification accuracy by 5% (vs HOGM) and 4.7% (vs M3T) for MRI, and 

4.6% (vs HOGM) and 4.2% (vs M3T) for PET. The highest archived accuracy for the 

classification AD vs NC is 95.7%, MCI vs NC is 79.9%.  

     Many studies describe changes in the cortical and subcortical brain areas during the 

development of Alzheimer’s Disease. Special attention requires the transformation in the 

architecture of white matter. The properties of white-matter tracts can be measured using 
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Diffusion Tensor Imaging (Glozman and Le, 2014). Features collected from white-matter 

tracts of 509 subjects and processed with the SVM and Logic Regression classifiers 

showed the volumetric loss in fibres during the progression of the disease. Classification 

performance of DTI data showed 92% accuracy for detecting Alzheimer’s Disease.  

     A novel ensemble-based machine learning algorithm able to predict the conversion of 

Mild Cognitive Impairment to Alzheimer's Disease was proposed in the study by Grassi 

et al. (2019). The information was obtained from socio-demographic characteristics, 

clinical records, and neuropsychological test scores. The study did not use imaging data. 

Data of 550 subjects with MCI and follow-up assessments for at least three years were 

included in the study. Collected features were processed with 13 supervised ML 

algorithms. The final result was obtained by combining a weighted rank average of the 

predictions generated by each individual algorithm. Estimated performance was received 

with a 10-fold cross-validation procedure, repeated ten times. The classifier demonstrated 

an AUROC (Area Under the Receiving Operating Curve) of 0.88, a sensitivity of 77.7%, 

and a specificity of 79.9% on unseen data. 

     Zhou et al. (2018) applied the transfer learning Adaboost (TrAdaboost) algorithm for 

the classification of AD, EMCI and NC. The MRI data for the research was collected 

from 507 subjects in the ADNI database and 36 subjects from the local hospital. The 

images were segmented using the spm-Dartel toolbox (Ashburner et al., 2014) and 

registered with the Automated Anatomical Labeling (AAL) atlas (Rolls et al., 2020) to 

allocate the regions of interest. Grey matter tissue volumes calculated from 90 anatomical 

areas became the main parameters used for classification. The gained information was 

passed to the feature selection process based on the Shannon mathematical theory of 

communication (Shannon, 1948) and the C4.5 decision tree statistical classifier (Arellano 

et al., 2018). As a result, the number of features presented in the three classes was reduced 

to seven. The TrAdaboost algorithm was used to classify AD, MCI, and normal controls 

data. The training and testing data was drawn from different distributions for transfer 

learning. If AD data was used for training, then the MCI data was applied for testing. A 

similar rule was applied to AD vs NC and MCI vs NC groups. Obtained features were 

examined on their impact on the accuracy using iterative optimisation. Finally, the 

training data from the ADNI subjects were used for testing the local hospital data. The 

classifier was trained with the Adaboost algorithm. The highest achieved accuracy was 

85.4% for the ADNI database and 93.7% for the local hospital data. The accuracy of the 
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proposed algorithm was compared with SVM (support vector machine), KNN (K-nearest 

neighbour), ITML (information theory metric learning), and Linear-MSVM (linear 

metric-based support vector machine). The TrAdaboost algorithm significantly 

overperformed all the competitors. 

     Another stream of research has taken advantage of machine learning methods that 

generate features as part of the training process. These methods employ Artificial Neural 

Networks and Deep Learning and have recently attracted a lot of attention in medical 

image analysis and classification. They can process a large amount of data and learn in a 

supervised (labelled) or unsupervised (unlabelled) mode. Particularly, diagnostic 

approaches that use Deep Learning in most cases do not require complicated, time-

consuming image preprocessing and feature engineering techniques and produce state-

of-the-art results. 

     In this context, the Convolutional Neural Network (CNN) is one of the models 

successfully adapted to classify imaging data (Yamashita et al., 2018). Basaia et al. (2019) 

have built and evaluated a CNN algorithm that predicts AD, progressive cognitive mild 

impairment, and stable cognitive impairment. The researchers used T1-waited structural 

MRIs of 1409 subjects from the ADNI database. The image data was split into training, 

validation, and testing sets in the proportion of 90% for the first two and 10% for the last 

one. 10-fold cross-validation was applied. They used transfer learning, which exploits 

pre-trained initial weights, and were able to reduce the training time and increase the 

network performance. High predictive accuracy was achieved in both databases with no 

significant difference. The highest percentage for AD vs HC (healthy control) 

classification accuracy was: 99% for ADNI. For C-MCI vs HC and s-MCI vs HC, 

accuracy was 87% and 76%, respectively, while for AD vs c-MCI and AD vs s-MCI, 

performance was 75% and 86%, and for c-MCI vs s-MCI, 75%. 

     Multi-Layer Perceptron (MLP) and a Convolutional Bidirectional Long Short-Term 

Memory (ConvBLSTM) model were proposed by Stamate et al. for the diagnosis of 

dementia (Stamate et al. 2020). Different clinical sources and protocols of 1851 

participants of the ADNI database were combined. The collected biomarkers consist of 

51 input attributes. They include baselines demographics data, functional activity 

questionnaire, MMSE, CSF biomarkers, neuropsychological tests, and measurements 

received from MRI, PET and genetic data. The ReliefF method (Robnik-Šikonja and 

Kononenko, 2003) and permutation test (Pesarin and Salmaso, 2010), including 500 
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permutations of labels, were combined for feature selection and ranking. The top-10 

ranked features have been sent to classification models. 75 % of the data were used for 

training and the rest for testing. The predictive results were obtained using Monte Carlo 

simulations (Johansen et al., 2010). All models were able to predict dementia and mild 

cognitive impairment accurately. The highest accuracy of 86% was achieved with the 

Multi-Layer Perceptron model. 

     Another study (Lama et al., 2017) proposed an unsupervised deep learning method 

for the classification of AD, MCI, and NC. The algorithm extracts the features with PCA 

(Abdi and Williams 2010) and processes them with a Regularized Extreme Learning 

Machine (RELM) (Ding et al. 2014). RELM is based on a single hidden-layer 

feedforward neural network. The investigators chose high-level features using the 

softmax function (a function that takes a vector of real numbers as input and normalizes 

it into a probability distribution). The results of RELM are compared with multiple 

kernel SVM and import vector machine (IVM) (IVM classifier based on Kernel Logic 

Regression uses a few data points to define the decision hyperplane and has a 

probabilistic output). The researchers have done 100 tests of imaging data collected from 

214 subjects using 10-fold cross-validation and ten trials with the leave-one-out method. 

They separated training and testing images with a ratio of 70/30 for the 10-fold cross-

validation and 90/10 for the leave-one-out validation. The study confirmed that RELM 

improves the classification accuracy of AD and MCI from 75.33% to 80.32% for binary 

classification and 76.61% for multiclass classification. 

     Lu et al. (2018) describes the multiscale neural network-based analysis for early 

diagnosis of Alzheimer’s Disease. Imaging modalities of fluorodeoxyglucose positron 

emission tomography (FDG-PET) of the ADNI database are used and analyzed as the 

main imaging data. FDG-PET is one of the imaging techniques that allows receiving 

quantitative measures of the metabolic activities of the human brain. Regional 

abnormalities of the metabolic brain activities are considered to be emphasizing the 

cognitive and functional decline noticeable in patients with AD. The data of 1051 

subjects were analyzed using a multiscale deep neural network that distinguished 

metabolic patterns of the NC, MCI and AD patients. FDG-PET images were 

preprocessed before the classification task. In this vein, the manually segmented and 

subdivided T1 MRIs into multiple small ROI were co-registered with FDG-PET images. 

This procedure allowed it to extract metabolic measures from ROI and train them with 

a multiscale deep neural network (MDNN). The MDNN is a composition of four deep 
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neural networks. Three of them were trained independently with different scaled 

metabolic features. The joined output of these networks was sent to the input layer of 

the final DNN classifier. Each single DNN was initially pretrained with a stacked-

autoencoder (SAE) (Vincent et al., 2010). SAE represents a type of artificial neural 

network based on stacking layers of autoencoders that denoise corrupted versions of 

unlabelled data in the hidden layers and reconstruct the data in the output. The pretrained 

networks were fine-tuned as MLP using transfer learning architecture by keeping only 

three encoded layers and adding to them a Softmax layer. All the data were divided into 

ten separate subsets with the intention to obtain robust and stable results. Nine subsets 

were used for the training of the classifier and one subset for testing it. The final result 

was obtained as an average of ten repeated runs from ten different multiscale deep neural 

networks. Presymptomatic AD was distinguished from non-progressive to the AD of 

MCI with an accuracy of 82.51 %. 

     3D neural network models have been recently developed for the diagnosis of 

dementia. One of these models was applied to structural MRIs for the detection of 

Alzheimer’s Disease (Yagis et al., 2020). The researchers implemented a 3D VGG 

model for the brain MRI datasets downloaded from the ADNI and OASIS databases. 

VGG stands for the Visual Geometry Group based at Oxford University, UK. The VGG 

model is a variant of convolutional neural net researchers adapted to the 3D images. The 

data was collected from 200 subjects from the ADNI database and 200 subjects from the 

OASIS database that equally represent HC and patients with AD. Data preprocessing 

and normalization atlas-based co-registration with a standardized brain template and 

skull stripping. The proposed 3D VGG16-based model contains four blocks with 

convolutional and pooling layers. The image maps are constructed with an increased 

number of features in each subsequent layer. The dropout layer finalizes all 

convolutional blocks with a selective probability of 0.5 and three fully connected layers 

with Softmax function in the output. The architecture was built using the open-source 

TensorFlow machine learning platform created by Google (Abadi et al., 2016). The 

model is evaluated using a 5-fold cross-validation procedure, and the averaging accuracy 

is obtained after five repeated runs. The testing is done on two different sets based on 

imaging data of 40 subjects. The received accuracy in the diagnosis of AD is 73.4%± 

0.04 for the ADNI dataset and 69.9%± 0.06 for the OASIS dataset. 

     The fusion of deep learning models was proposed by Qiu et al. (2018) for the 

diagnosis of cognitive decline. They investigate the impact of the Logical Memory (LM) 
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test and the Mini-Mental State Examination on enhancing the diagnostic accuracy 

received through MRI data. The data of 368 subjects with normal cognition and MCI 

were acquired from the National Alzheimer Coordinating Center (NACC) database. In 

these datasets, 303 individuals had normal cognition and 83 individuals were diagnosed 

with MCI. Of the MCI patients, 82 had amnestic MCI, and one had the form of non-

amnestic MCI. The imaging data sets consist of 2D slices of structural MRIs in the axial 

plane. At least 20 images were collected from each MRI sequence. The selected slices 

covered the previously reported areas as regions of interest in the diagnosis of AD and 

MCI. Memory and mental score results were included as the numeric data values. Two 

MLP models were trained with the results of the LM and MMSE tests and combined 

with the fused MRI model using the majority voting schema. The training of MRI data 

was done using the CNN VGG-11 architecture adapted to perform the binary 

classification task using the transfer learning strategy. Two fully connected (FC) layers 

were added to the configuration with the dropout layer after the first FC and Softmax 

layer after the second FC. The datasets were split into three parts with 50% images for 

training, 25% for validation, and 25% for testing. Each split had the same proportion of 

MCI and NC subjects. Five iterations were performed to compute the tests' averaging 

value and standard deviation. F1 score was calculated after a single iteration on the 

validation set. The neural network with the highest F1 score was used for further testing. 

For memory testing, MLP models included the combination of linear and nonlinear 

activation functions.  This makes the MLP models capable of exploring complex 

relationships between selected features and the detection of MCI. The MLP model has 

three layers: input, hidden, and output, with 3 or 4 nodes in the first level, 20 nodes in 

the second level and two nodes in the decision level, respectively. Sigmoid Softmax and 

nonlinear Softmax functions were attached to the hidden and output layers. The specific 

weights for MCI and NC classes were assigned for models analyzing MMSE and LM. 

The voting approach and model fusions are performed in the following way. The voting 

approaches, such as majority voting, max voting, and mean voting, were applied to three 

independent transfer learning VGG-11 models. Then, the second level of majority voting 

originated in an MRI-based fusion model. The final level of majority voting combined 

the features collected from the MRI fusion model and two MLP cognitive test result 

models for the prediction of MCI. Averaging results across five runs evaluated the 

performance of the final multimodal model. The researchers concluded that the 

multimodal fusion model that incorporates features from MRI scans, LM data and 
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MMSE tests could predict MCI better than single-based models and models with the 

majority voting approach. The accuracy of the final multimodal fusion model reached 

90.9%.  

     Classification differences between dementia with Lewy bodies and Alzheimer’s 

Disease were investigated using a deep neural network (Iizuka et al., 2019). The 480 

brain perfusion single-photon emission computer tomography (SPECT) images were 

obtained from 300 individuals and equally divided between DLB, AD and cognitively 

normal (NL) groups. The additional feature, used for differential diagnosis among the 

pathologies and known as the cingulate island sign (CIS), was collected from the 

posterior cingular cortex of the brain. The pick of this feature exists in the stage of mild 

dementia and gradually disappears in the progression to DLB. CNN was applied for the 

diagnosis of dementia. 80 % of images were used for training and 20 % for testing. CNN 

architecture included four convolutional, four max-pooling layers with ReLU (rectified 

linear activation unit) functions and was finalized with a fully connected and Softmax 

layer for the classification task. The optimal number of the discriminative features was 

obtained after 100 epochs. CNN features from the output layer were processed with the 

Gradient-weighted class activation mapping (GradCAM) to visualize those areas of the 

brain that were emphasized by the classifier. The predictive accuracy was evaluated with 

additional statistical measures such as receiver operating characteristic (ROC) curve and 

area under the curve (AUC). The computed AUC results for the DLB vs NL, DLB vs 

AD, and AD vs NL classes are 0.954, 0.935 and 0.943, respectively. CIS correlations 

between DLB vs AD and DLB vs NL were estimated using Pearson’s correlation 

coefficient (Schober et al., 2018). Correlations between CIS ratios and clinical scores 

for DLB vs AD and DLB vs NL were evaluated using Spearman rank correlation 

coefficients (Schober et al., 2018). The obtained diagnostic accuracy was 93.1%, 89.3% 

and 92.4% between DLB vs NL, DLB vs AD and AD vs NL classes accordingly. 

     Biomarkers of the prefrontal cortex of the brain related to the diagnosis of MCI are 

analyzed (Yang et al., 2019). Three groups of biomarkers, such as mental task 

performance, digital and imaging biomarkers, were investigated by the linear 

discriminant analysis (LDA), statistical analysis and CNN. All data were collected from 

15 MCI patients and nine healthy controls of the same age and similar educational 

backgrounds. Mental task performance was evaluated using functional near-infrared 

spectroscopy (fNIRS) (Bunce et al., 2006). Digital biomarkers included statistical 

measures of the mean value change between the rest and task periods, slopes of the peak 
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time in the hemodynamic response, and skewness and kurtosis of the above values. 

Imaging biomarkers were collected from a correlation map and t-map. Analysis of 

cognitive performance included evaluating working memory, mental reaction to the 

dominant responses, and the multiple words in a given semantic category. T 

(topographic) or activation map was generated after registering hemodynamic cortical 

activities during the mental tasks. The correlation map was built based on the temporal 

functional correlation between connected channels in the prefrontal lobe. For the 

classification task, digital biomarkers were analyzed using the LDA. The imaging 

biomarkers were classified with CNN. Four main layers presented CNN: two 

convolutional and two fully connected. Max-pooling and dropout layers were added to 

the CNN architecture to improve the classification performance. The obtained results 

showed the advantage of CNN over the LDA and statistical analysis. The highest 

classification result of 90.62% accuracy in the detection of MCI was received using 

imaging biomarkers. LDA and statistical analyses demonstrated 76.67% and 60% 

accuracy, respectively. 

     A deep learning approach based on convolutional autoencoders is proposed for the 

detection of AD (Martinez-Murcia et al., 2019). Imaging and non-imaging data were 

used for the study. Imaging data (T1-weighted MRI) consists of 2182 images collected 

from 479 subjects. Non-imaging data includes the age of patients, presence of the 

Apolipoprotein E4 in chromosome 19, the concentration of Tau protein in cerebrospinal 

fluid (Zou et al., 2020), results of MMSE and Alzheimer’s Disease Assessment Scale 

(ADAS) cognitive tests and Clinical Dementia Ratio (CDR) (McDougall et al., 2021). 

Before classification, all images were normalized using integral normalization when the 

spector of image intensities is divided by the average intensity value (Martinez-Murcia 

et al., 2018). Encoder-decoder CNN architecture has been chosen for the classification 

task (Baldi, 2012). This type of CNN is able to minimize reconstruction errors. The 

encoder of the architecture consists of 5 convolutional layers with a global average-

pooling layer at the end. The decoder has an additional five convolutional layers with 

dense and reshaped layers at the beginning of the configuration. The encoder is 

connected to the decoder via Z-layer. Z-layer is a fully-connected layer with Z-neurons 

and low-dimensional representation. It was proposed to use the Mean Squared Error 

(MSE) as a reconstruction error between input and output images. This type of 

convolutional network has position-invariance, can work with volumetric images and 

requires smaller memory than the dense-connected network. In the proposed 
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architecture, most pooling layers were replaced by convolutions with strides that prevent 

the loss of information without losing efficiency. The architecture was trained with 20 

epochs using the RMSprop optimization algorithm (Ruder, 2016), with a 0.001 learning 

rate. 10-fold cross-validation was used to estimate the methodology. Performance 

metrics such as mean, standard deviation, sensitivity, specificity, the total balanced 

accuracy and F1-score were calculated. During the classification tasks, the optimal 

number of Z-manifolds was equal to 20. The Z-manifold demonstrated a high ability to 

predict classes and clinical variables and indicated the atrophic brain regions. Regression 

analysis helped establish the correlation between imaging characteristics and other 

clinical data. Alzheimer’s Disease was diagnosed with an accuracy of 84%. 

     Duc et al. (2020) proposed to join 3D CNN and MMSE features for the diagnosis of 

Alzheimer’s Disease. The researchers created special feature maps for the regression 

and classification tasks using resting-state functional Magnetic Resonance Images (rs-

fMRI) obtained from 331 participants. The fMRIs were co-registered with their 

corresponding structural T1 MRIs. The regression approach for calculating MMSE 

score included tests with linear least square regression (LLSR), tree regression with 

group independent component analysis (gICA) features, bagging-based ensemble 

regression and support vector regression. Some optimization techniques were applied to 

the regression algorithms. They include MVPA (multivariate pattern analysis)-based 

approaches. One of them is Least Absolute Shrinkage and Selection Operator (LASSO), 

and another one is the support vector machine recursive feature eliminator (SVM-RFE) 

(Duc et al., 2020). The SVM-RFE is a feature optimization technique that looks for 

reciprocal relations between multiple features. Both these techniques, LASSO and 

SVM-RFE, take an active part in feature ranking and selection processes. For the 

classification task, it was developed a modified version of the VGG network. The 

changes were done by adding the batch normalization layers to the existing convolution 

layers. Stratified 10-fold cross-validation was performed on a 3D CNN model. 90 % of 

imaging data was used for training and 10 % for testing the model. The classifier’s 

performance was evaluated using statistical measures such as accuracy, sensitivity, 

specificity, and balanced accuracy. The performance of regression models was 

examined with R-squared (R²), and root mean square error. The mean accuracy of 

85.27% was received for the classification of AD versus cognitively normal subjects. 

MMSE results were received with different optimized regression models. The best-

optimized model was the linear least square regression with the combined gICA and 
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RFE features. Its RMSE value is 3.27 ± 0.58 and R² value is 0.63 ± 0.02. 

     The prognosis of MCI and the risk of AD development is one of the main lines of 

research (Li et al., 2019). Longitudinal time-to-event study of clinical and imaging 

changes accompanying the development of MCI involved the observation of 2046 

individuals. The research method was based on the analysis of the structural 

hippocampal MRI using a deep learning framework. The imaging data were obtained 

from the ADNI and the Australian Imaging Biomarkers and Lifestyle Study of Aging 

(AIBL) databases. The images from the first database were used for the model training, 

and the second group of images was used for evaluating the results. Bilateral 

hippocampal regions were received from MRIs using the atlas-based segmentation 

technique. The right and left hippocampal images were processed in separate streams 

using CNN. Deep neural network architecture consists of a convolutional layer, two 

max-pooling layers and three residual blocks finalized with a global averaging pooling 

layer. Two streaming processes were concatenated in the dropout layer and sent to the 

fully-connected layer for another labelling. Each residual block includes two 

convolutional layers with batch normalization function (BN) and rectified linear units 

(ReLUs) (LeCun et al., 2015). The time-to-event prognosis of the progression of MCI 

to AD was conducted using LASSO regularized Cox regression model (Cox, 1972; Du 

and Tibshirani, 2018). This model generates an overall risk score for the disease 

progression. These results were combined with non-imaging data such as age, gender, 

education, and cognitive tests measures. It was evaluated how the hippocampal deep 

imaging features are correlated with clinical measures and how the parts of the 

hippocampus contribute to the prognosis and classification of dementia. The accuracy 

of the results was evaluated using time-dependent ROC curves and concordance index 

(C-index) (Brentnall and Cuzick, 2018). C-index is defined as a ratio of concordant pairs 

to the total number of evaluation pairs and, as a ROC curve, has a range between 0 to 1. 

The deep learning classification accuracy for classes AD vs NC was 0.900 for the ADNI 

and 0.929 for the AIBLwith AUC values equal to 0.956 and 0.958 accordingly. The 

CNN model predicted the progression of MCI to AD with a C-index of 0.762 for the 

ADNI and 0.781 for the AIBL. The model’s performance improved after combining the 

imaging features with the cognitive measure. Obtained C-index is 0.864 and 0.848 for 

both databases, respectively.  

     Another approach that predicts the conversion of MCI to AD was proposed by 

(Spasov et al., 2019). The research exploited the imaging data received from MRI scans, 
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demographic information, neuropsychological cognitive assessment tests results, and 

the details from APOe4 genotyping. All analyzed data were collected from 785 

participants in the ADNI database. Imaging data were preprocessed in two ways 

providing MRI and JD sets used later for the classification. The first way includes an 

image normalization by bias field correction. The second approach involves an image 

brain segmentation procedure using the BET tool of the FSL software package 

(Jenkinson et al., 2012). The data classification was performed using deep neural 

network architecture. The leading architecture includes the convolutional sub-network 

inspired by efficient well-known AlexNet (Krizhevsky et al., 2012) and Xception 

(Chollet, 2017) CNNs.   The main idea was to share the layers with the extracted features 

between two tasks, MCI vs AD and AD vs HC, and find the underlying factors for the 

conversion of MCI to AD. The features of two separated fully-connected layers were 

processed by applying a sigmoid activation function and a binary cross-entropy loss 

function to the output. The output assigned results in the range between 0 to 1. All results 

that are closed to 1 correspond to the progressive MCI or detect AD. The classification 

task started from two lines of two convolutional blocks processing images from MRI 

and JD sets that were concatenated in the next level and sent to a three-layer sub-

network.  Additional convolutional blocks continue to work with collected features 

creating the first processing line. The second processing line was established by adding 

MRI-set features obtained from the first two convolutional blocks. Two more 

convolutional blocks were concatenated again and sent by the fully-connected layer for 

prediction. Additional experiments concatenated features collected from the imaging 

data and those obtained from the clinical data and cognitive tests. It gave the possibility 

to compare the performance of CNN using different feature combinations. The best 

results were obtained by grouping MRI with clinical features. The evaluation metrics 

demonstrated 86% accuracy, 87.5% sensitivity, 84% specificity, and 0.925 AUC.  

     The study (Chitradevi and Prabha, 2020) evaluated several types of image 

segmentation methods and their impact on the diagnosis of Alzheimer’s Disease. The 

segmentation was focused on the brain parts affected by neuronal loss due to AD 

development. GM, WM, Corpus Callosum (CC), and Hippocampus (HC) were 

separated from the surrounding areas using various segmentation optimization 

algorithms, including Genetic Algorithm (GA) (Coley, 1999), Particle Swarm 

Optimization algorithm (PSO) (Sengupta et al., 2019), Grey Wolf Optimization (GWO) 

(Mirjalili et al., 2014), and Cuckoo Search (CS) (Joshi et al., 2017). For the study, 200 
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brain images of patients with Alzheimer’s Disease and cognitively healthy subjects were 

obtained from Chettinad Health City, Chennai. The segmentation quality was validated 

using ground truth images by computing Feature Similarity Index Metrics (FSIM) and 

Structure Similarity Index Metrics (SSIM). The image analysis and classification were 

performed using the AlexNet convolutional neural network. The best results were 

obtained with images processed with the GWO optimization algorithm, cable to segment 

brain sub-region with a validation accuracy of 98%.  The data collected from the 

hippocampus provided accuracy of 95%, sensitivity of 95% and specificity of 94% and 

demonstrated the highest reliability among other segmented sub-regions investigated in 

the study.  

     A combined strategy of Random Forest feature selection with deep neural network 

classification is proposed for the diagnosis of early onset of dementia (Amoroso et al., 

2018). T1-weighted MRIs collected from 240 subjects of the ADNI database were 

divided into four classes AD, MCI, cMCI (c states for “converted” to AD) and healthy 

controls. All imaging categories were balanced and analyzed using FreeSurfer v.5.3.  

Additional non-imaging features such as age, gender, diagnosis, baseline score from 

MMSE were added for each participant. FreeSurfer analysis provided supplementary 

information about cortical and subcortical volumes, cortical thickness, surface area and 

curvature, the volume of hippocampal subfields and several structural measures. The 

overall number of representative features was 431. The number of features was reduced 

to 242 after removing features with zero variances and interdependent features with a 

correlation coefficient over 0.9. The feature selection process was done using the 

Random Forest classifier. One hundred five-fold cross-validation rounds of the classifier 

helped choose the twenty most essential features. Among them were hippocampal 

volume, entorhinal cortex thickness, cerebrospinal fluid volume, lateral ventricle 

volume and baseline MMSE score. The final classification task was done using a 

feedforward DNN. The optimal neural network configuration of 11 layers and 2056 

input units was found after several cross-validation tests. The prediction of the four final 

classes was performed using the Softmax function. The additional classification, based 

on the hippocampal volume, was performed using the fuzzy logic approach when each 

subject has a membership score in each set. The classification score was obtained with 

the RF classifier, and the diagnosis was made using the Bayesian approach. The 

performance of the fuzzy logic model was evaluated after 100 rounds of 10-fold cross-

validation.  The testing set included 160 real and 340 simulated samples. The DNN 
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classifier demonstrated the highest recall for all classes (87.5% for AD, 52.5 % for HC 

and 27.5% for MCI), except cMCI, compared to the fuzzy model. The fuzzy model had 

a recall of 57.5% for the diagnosis of cMCI. At the same time, the DNN was more 

precise concerning MCI and cMCI, unlike the fuzzy model that showed higher precision 

for AD and HC.  

     Deep learning-based prediction of AD using fluorine-18 (18F) fluorodeoxyglucose 

(FDG) PET of the brain was investigated (Ding et al., 2019). For model training, they 

used 2109 images of 1002 individuals from the ADNI database and 40 images of 40 

patients for testing the deep learning model. Preprocessed images were sent to the 

ImageNet Inception V3 CNN model (Szegedy et al., 2016). The model was fine-tuned 

by adding the drop-out layer with the rate of 0.6 before the fully-connected layer of the 

architecture. 90 % of images were used for the training and 10% for testing. The model 

was also tested with 40 images from an independent data set.  

Alzheimer’s Disease was predicted with a specificity of 82% and sensitivity of 100% on 

average of 75.8 months before the final diagnosis. Comparative analysis of diagnostic 

performance was done for the DL model and human radiology reader. DL outperformed 

the reader in terms of sensitivity (100% vs 57% for the AD diagnosis and 43% vs 14% 

for the MCI) and terms of precision (18% vs 11% for the diagnosis of MCI). However, 

in terms of specificity, the reader overcame the DL model by 9% in the prediction of 

AD and by 18% in the detection of MCI. Regarding the precision, the reader also 

demonstrated the advantage in the diagnostic accuracy by 3%. Evaluating all 

diagnostical differences and computing the statistical significance of the results, the 

researcher concluded that the deep learning model generally performs better than human 

experts in the diagnosis of AD and prediction of early onset of dementia.  

     Lastly, Oh et al. (2019) proposed a volumetric convolutional neural network model 

to diagnose neurodegenerative diseases. The study used six hundred ninety-four 

structural MRIs from the ADNI database. Before the classification, the T1 MRI scans 

were normalized for bias-field homogeneities. No segmentation was applied to the 

imaging data. After that, the researchers implemented a convolutional autoencoder 

(CAE) with an inception module from GoogLeNet InceptionV2 for unsupervised 

learning, dimensionality reduction and differentiation between AD and NC. However, 

the autoencoder (AE) is unable to analyze the spatial structure of the imaging data. 

Spatial feature relationships were seen as an essential condition for the reliable 

explanation of classification decisions. A gradient backpropagation-based visualization 
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technique was applied to the model to learn the model and understand the positioning of 

the important biomarkers. Supervised transfer learning architecture was proposed for the 

binary classification of pMCI (p states for “progressive”) and sMCI (s states for 

“stable”). For an approximation of the CNN prediction, a gradient-based visualization 

method was applied to the group of biomarkers specified the progressive MCI and AD. 

During the study, the temporal and parietal lobes of the brain were identified as the main 

regions significantly affecting the classification outcome. The proposed approach 

demonstrated accuracies of 86.60% for the detection of AD and 73.95% for the 

prediction of pMCI.  

     A summary of the characteristics of the proposed above research methods and their 

classification findings are provided in Table 2. 

Table 2: State-of-the-art methods of the diagnosis of Mild Cognitive Impairment and 

Alzheimer’s Disease 

Authors Methods Results 

   

Lama et al. (2017) 

 

PCA Features + Regularized Extreme 

Learning Machine (unsupervised 

classification learning algorithm based on 

single hidden-layer feedforward neural 

networks) of MRI  

(Classification of AD, MCI, NC). 

 

Accuracy is 80.32% (for 

binary classification), 

76.61% (for multiclass.) 

 

Zhou et al. (2018) 

 

Feature selection using C4.5 classifier + 

Transfer Learning Method (includes 

Transfer AdaBoost algorithm) of MRI  

(Classification of AD, MCI, NC.) 

 

Accuracy is 85.4% 

(improved with 

optimised feature 

selection). 

Beheshti et al. 

(2017) 

 

Feature-ranking + genetic algorithm + SVM 

classifier of MRI  

(Classification of AD, MCI). 

 

Accuracy is 93.01% (for 

stable MCI), 75% (for 

progressive MCI); 

without feature selection 

is 78.94%, with feature 

selection is 94.73%. 

 

Moradi et al. 

(2015) 

 

Logic regression + MRI biomarker (based on 

low-density separation) + SVM + 

neuropsychological test results + random 

forest classifier of MRI  

(Classification of AD, MCI, NC). 

 

MRI + cognitive test 

improves the accuracy 

by 5.5% (from 76.5% to 

82%).  

Glozman and Le 

(2014) 

 

Feature ranking of the white matter (WM) + 

SVM (with Linear and RBF Kernels) and 

Logic Regression of DTI 

 (Classification of AD vs NC).  

The average accuracy is 

92%. 
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Grassi et al. 

(2019) 

 

Ensemble algorithm using sociodemographic 

information, clinical characteristics, 

neuropsychological measures; supervised 

ML. 

(Conversion from MCI to AD). 

 

AUROC (area under a 

receiver operating 

characteristic curve) is 

0.88, and sensitivity is 

77.7%, specificity is 

79.9%. 

The range of AUROC 

for proposed models is 

between 0.83 and 0.90. 

 

Basaia et al. 

(2019) 

 

CNNs. Did not use feature engineering. 

(Classification of AD, stable MCI and 

converted MCI) 

 

The accuracy of AD vs 

CN is 98%, stable MCI 

vs converted MCI is 

75%. 

 

Stamate et al. 

(2020) 

 

Deep Learning models: two Multi-Layer 

Perceptron (MLP1 and MLP2) models and a 

Convolutional Bidirectional Long Short-

Term Memory (ConvBLSTM) model.  

The features were collected from clinical and 

genetic data, MRI data, PET data, and 

additional biospecimen. 

(Classification of Dem, MCI, NC). 

 

The best models (MLP1 

and MLP2) show an 

accuracy of 0.86 for 

Dem, MCI and NC 

classes. 

 

Zhu et al. (2017) 

Selection of structural and functional 

features with a regularisation algorithm 

according to the similarity of the features. A 

Joint Regression and Classification (JRC) 

algorithm was applied to imaging (MRI, 

PET) and non-imaging (cognitive tests) data. 

(Classification of AD, MCI, NC)  

 

The highest accuracy for 

the classification of AD 

vs NC is 95.7%, MCI vs 

NC is 79.9%. 

 

Lu et al. (2018) 

FDG-PET image analysed with multiscale 

deep neural network (MDNN). Each DNN 

was pretrained with a stacked-autoencoder 

(SAE); pretrained networks were fine-tuned 

as Multilayer Perceptron (MLP). 

(Classification of AD, stable MCI, 

progressive MCI and normal controls) 

 

The accuracy of stable 

MCI vs progressive MCI 

is 82.51% 

Yagis et al. 

(2020) 

Applied 3D VGG neural network model; 

MRI data is used 

(Classification of AD, NC) 

Accuracy in the 

diagnosis of AD vs NC 

is 73.4%± 0.04 for the 

ADNI dataset and 

69.9%± 0.06 for the 

OASIS dataset 

 

Qiu et al. (2018) 

Combination of deep learning models: two 

multilayer perceptron (MLP) models + 

fusion of CNN VGG-11 networks; 

Investigated MRI + cognitive test scores 

(Classification of MCI, NC)  

The accuracy of the final 

multimodal fusion model 

with MRI and cognitive 

score features is 90.9% 
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Iizuka et al. 

(2019) 

CNN; SPECT images 

(Classification AD, dementia with Lewy 

bodies (DLB) and normal) 

The obtained accuracy is 

93.1%, 89.3% and 

92.4% between DLB vs 

NL, DLB vs AD and AD 

vs NL classes, 

respectively 

 

Yang et al. (2019) 

Three groups of biomarkers are analysed: 

mental task performance, digital (Stat) and 

imaging biomarkers (fNIRS) with the linear 

discriminant analysis (LDA), statistical 

analysis and CNN 

(Classification of MCI, normal) 

The highest accuracy is 

90.62% with imaging 

biomarkers.  

LDA and statistical 

analyses show an 

accuracy of 76.67% and 

60%, respectively 

 

Martinez-Murcia 

et al. (2019) 

DL based on convolutional autoencoders 

with Z-manifold block; 

Used imaging (MRI) and non-imaging (age, 

ApoE4, TAU, cognitive test results) data; 

Regression analysis investigated the 

correlation between imaging and other 

clinical data 

(Classification of AD, normal) 

 

The accuracy of AD vs 

normal is 84%. 

Duc et al. (2020)  Applied 3D CNN VGG for images, linear 

least square regression (LLSR) tree 

regression, bagging-based ensemble 

regression and support vector regression for 

MMSE; used resting-state functional MRI + 

MMSE measures 

(Classification of AD, normal) 

 

The mean accuracy is 

85.27% for AD vs 

normal  

Li et al. (2019) A longitudinal study of clinical and imaging 

changes for the development of MCI; 

Used MRI data from ADNI and AIBL 

databases for the classification with CNN; 

LASSO regularized Cox regression model 

predicted the progression of the disease 

(Classification of AD, MCI, normal) 

 

Accuracy for classes AD 

vs NC is 90% for the 

ADNI and 093% for the 

AIBL. C-index of the 

progression of MCI to 

AD is 0.762 (ADNI) and 

0.781 (AIBL) 

Spasov et al. 

(2019) 

Progression of MCI explored with AlexNet 

and Xception CNNs; concatenated features 

from different data types; used imaging 

(MRI), non-imaging (demographic, 

cognitive tests, and APOe4) data; 

(Classification of AD, MCI, HC) 

 

Best performance from 

grouping imaging and 

clinical data is:  accuracy 

86%, sensitivity 87.5%, 

specificity 84%, AUC 

0.925  

Chitradevi and 

Prabha (2020) 

Investigated the impact of the various 

segmentation techniques on the classification 

performance using the AlexNet CNN; used 

MRI data 

(Classification of AD, normal) 

The highest accuracy is 

98% (whole brain).  The 

data from the 

hippocampus: accuracy 
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95%, sensitivity 95%,  

specificity 94% 

Amoroso et al. 

(2018) 

Used Fuzzy logic model (Random Forest 

(RF) + Bayesian) and feedforward DNN; 

investigated MRI data + age, gender, 

diagnosis, MMSE score 

(Classification of AD, MCI, converted MCI, 

HC) 

The highest recall was 

received with DNN for 

AD (87.5%), for HC 

(52.5 %), for MCI 

(27.5%) and with a fuzzy 

model for cMCI (57.5%) 

  

Ding et al. (2019) Used Inception V3 CNN model with FDG-

PET images 

(Classification of AD, normal) 

AD prediction 75.8 

months before the final 

diagnosis with a 

specificity of 82% and 

sensitivity of 100%  

 

Oh et al. (2019) Used volumetric CNN: convolutional 

autoencoder (CAE) with an inception 

module for unsupervised learning (from 

GoogLeNet inceptionV2), supervised 

transfer learning architecture for the 

classification of progressive MCI vs stable 

MCI; used MRI data 

(Classification of AD, sMCI, pMCI, normal) 

 

Accuracies for the AD is 

86.60% and for pMCI is 

73.95% 

 

2.3.1 Discussion 

Various feature engineering approaches and classification techniques have been applied 

to diagnose degenerative brain disorders. The structure of some of these methods is 

briefly described and summarised in this section. Most of these methods include feature 

detection, extraction and selection stages. Some of them have a high level of complexity 

and are time-consuming.  

     The methodologies described in the literature differ in image dimensionalities, data 

preprocessing stages, feature engineering techniques and classification approaches. Most 

methods rely on the 2D imaging data obtained from MRI slices, but some experiments 

process the 3D image sequences for classification tasks. The data preprocessing stages 

include mostly image normalization. In some approaches, image filtering and resizing 

can be applied. The feature engineering varies in length and complexities. It is essential 

to mention that the method’s performance depends not only on the feature engineering 

technique itself but also on brain areas where features are collected. Atrophic regions of 

the cortex and subcortical zones are considered standard places for feature collection. 

Also, volumetric measures of the grey and white matter areas might assign waits to the 

extracted features. The following paragraphs will give more details about feature 
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extraction and selection techniques. The diagnostic or classification approaches in the 

literature are presented mainly by the traditional machine learning algorithms, ensembled 

groups or deep learning networks. Their peculiarity is highlighted in the incoming text. 

    The feature collection process is one of the essential steps in computer vision 

technologies. In the study about the prediction of conversion of MCI to Alzheimer's 

Disease (Beheshti et al. 2017), the features were collected from atrophic grey matter areas 

of the brain by applying a 3D mask. Then, features passed two levels of the selection 

process, including t-test score and genetic algorithm. The data was classifier using linear 

SVM. According to the article, the accuracy score increased by around 17% due to the 

feature selection process. However, the complexity of the method makes it time-

consuming. In the paper (Moradi et al., 2015), the features were collected from two image 

classes, NC and AD, using the regularized logistic regression algorithm. A high 

complexity semi-supervised low-density separation (LDS) method was proposed for 

feature selection. The classification was performed with labelled data of two classes, AD 

and NC. Unlabelled data of the third class of MCI was added in the next stage, followed 

by the LDS classification process. The output of the LDS classifier was combined with 

additional measurements. The final result was obtained using a random forest classifier. 

In this way, the proposed classification approach integrates many stages, including 

feature integration mechanism and semi-supervised and supervised learning, making the 

algorithm cost consuming. The paper described an attempt to align the structural and 

functional features according to their similarity (Zhu et al., 2017). The feature selection 

process was done with the same, as in the previous study, regularisation algorithms., The 

alignment technique was performed using two types of scans, MRI and PET. The 

extracted features were combined with clinical score measures and selected using a 

regression model. Classification of dementia was performed using an SVM classifier. 

Combined regression and classification models improved the diagnosis by 4-5% but 

demonstrated similar to other papers' prediction scores (see Table 2). 

     Some research techniques prefer to aggregate together with imaging features non-

imaging biomarkers for diagnosing neurodegenerative diseases. For example, Moradi et 

al. (2015) combined imaging data with age and cognitive rating scores. Stamate et al. 

(2020) used demographics, genetic, cognitive, CSF biomarkers, and MRI and PET 

measurements. Zhu et al. (2017) combined MRI and PET data with cognitive test scores. 
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To enhance the diagnostic prediction of the MCI, Qiu et al. (2018) added the Logical 

Memory test score and the Mini-Mental State Examination records to the MRI data. 

     Diagnostic techniques also have multiple varieties. Among classical machine learning 

algorithms, the SVM is found as one of the most popular classifiers with a high level of 

precision. Beheshti et al. (2017) performed a classification task using linear SVM. Zhu et 

al. (2017) applied a joint the SVM and SVR model when the images were classified using 

the SVM, and the features received from two cognitive tests were trained and classified 

using the SVR. However, deep neural networks had more preferences over the other 

machine learning techniques in the last decades. They can deal with imaging and non-

imaging information. In addition, they can perform classification tasks on labelled and 

unlabelled data. Most deep learning networks do not require or have less complex image 

preprocessing and feature engineering stages. The ability to process and analyse tens of 

thousands of patients' records increases their popularity in medical diagnosis, including 

the detection of dementia. 

One of the neural network models that can process a large number of images with high 

precision is a Convolutional Neural Network. For example, Basaia et al. (2019) applied 

this model for MRI data distinguishing between stable and progressive MCI. Iizuka et al. 

(2019) proposed CNN for the detection of AD using SPECT images. Yang et al. (2019) 

applied a convolutional network using mental task performance measurements and digital 

and imaging biomarkers to predict AD. The convolutional autoencoders were proposed 

by Martinez-Murcia et al. (2019) and Baldi (2012).  This type of CNN can minimize the 

reconstruction error between input and output images. This type of network can process 

volumetric images and requires smaller memory than dense-connected ones, but the 

prediction AD is not high enough. It gives 84% accuracy.  

A wide range of other classification models includes, for example, a Multilayer 

Perceptron with transfer learning architecture (Vincent et al., 2010), a Convolutional 

Bidirectional Long Short-Term Memory model (Stamate et al., 2020), a Regularized 

Extreme Learning Machine model in combination with multiple kernel SVM and import 

vector machine (Moradi et al. 2015). Feature selection techniques can also be combined 

with a deep neural network (Amoroso et al., 2018). 

Pretrained and more complex deep learning models were proposed in recent studies for 

the detection of brain pathology. For example, Yagis et al. (2020) examined a 3D VGG 
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model in AD diagnosis and received an accuracy of 74%. The fusion of deep learning 

models that combines two Multilayer Perceptron models and the CNN VGG-11 

architecture (Qiu et al., 2018) performed the binary classification task with the prediction 

of MCI of around 90%. Modifier and optimized 3D CNN VGG network demonstrated 

85% accuracy in Duc et al. (2020) paper. Another deep learning configuration composed 

of the Xception CNNs and convolutional AlexNet-like sub-networks investigated the 

progressive MCI and demonstrated a performance between 84 and 88% (Spasov et al., 

2019). Another transfer learning model is discussed in the paper by Oh et al. (2019). It 

aggregates a convolutional autoencoder with an inception module from GoogLeNet 

InceptionV2. However, the autoencoder was unable to analyze the spatial structure of the 

imaging data, which is vital for understanding the classification decision. Additional 

visualization techniques had to be applied to detect the positioning of the essential 

biomarkers. The temporal and parietal lobes of the brain were identified as the main 

regions affected by the degenerative process. With the proposed methodology, AD was 

detected with an accuracy of 86.60% and the progressive MCI with an accuracy of 

73.95%. Ding et al. (2019) investigated the classification performance ImageNet 

Inception V3 CNN model for diagnosing Alzheimer's Disease using PET scans. The 

archived diagnostic performance of this method demonstrated a specificity of 82% and a 

sensitivity of 100%. 

The combined approach of image segmentation methods and CNNs demonstrated the 

increase in the prediction and diagnosis of brain pathologies. The study (Chitradevi and 

Prabha, 2020) compared several image segmentation methods and their classification 

performance in diagnosing Alzheimer's Disease. Images segmented brain areas such as 

grey matter, white matter, Corpus Callosum, and Hippocampus were tested using the 

AlexNet convolutional neural network. Accuracy above 95% was obtained for some sub-

regions of the brain. 

3 Summary and contribution of the chapter 

This chapter presented an overview of anatomical brain asymmetries related to the 

lateralization of brain functionality. The chapter highlighted factors leading to the 

differences in brain structure that affect the performance of cortical and subcortical brain 

areas.  The main factors influencing morphological changes in the grey and white brain 

matter belong to the group of neurodegenerative disorders.  The most common among 

those is Alzheimer’s Disease. The prevalence of AD is between 60 to 80 % of all dementia 
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cases. Mild cognitive impairment becomes a prodrome of Alzheimer’s disease on 80% of 

occasions. 

    The literature review explained the changes in brain asymmetries that point to the 

development of the degenerative process in the brain.  Modern imaging computerized 

technologies can detect the early transformation of structural and functional symmetry. 

The research methods in this chapter focused on investigating functional changes in 

hemispheric asymmetry in the process of the development of MCI and AD. MRIs of a 

healthy person and persons with MCI and AD visualize the local differences in the 

structural asymmetry between some brain areas in these three groups of individuals. 

Several studies confirm the gradual decrease of the left-sided brain asymmetry in 

cognitively healthy persons in the early stages of mild cognitive decline. These changes 

are developed due to atrophic processes in the brain areas responsible for memory and 

language processing. If the degenerative processes progress further, the asymmetry in the 

cortical and subcortical brain areas becomes noticeably right-shifted.  

Based on magnetic resonance imaging, a computer-aided diagnosis (Yanase and 

Triantaphyllou 2019, Lazli et al. 2020) of anatomical changes in the brain gives an 

accurate result for the early prediction of brain disorders. The research methods analysed 

in the literature review apply multiple feature engineering and classification algorithms 

for the diagnosis of dementia. The performance of the research techniques described 

above demonstrates quite good results. However, a diagnosis of the early stages of 

cognitive decline still requires new, more precise methods.  

Overall, the literature review helped to identify some gaps in this research area that are 

described below. 

Researchers who discovered brain asymmetries were mostly focused on the brain 

functionalities or explored structural differences between subcortical brain areas for 

specific anatomical structures. These investigators did not apply segmentation algorithm 

to extract the asymmetry from entire brain and also, they did not use machine learning 

techniques for the diagnostic purpose. In this way, the development of imaging biomarker 

that outline the asymmetries between right and the left hemisphere of the brain is the main 

contribution of the thesis to this scientific area. The proposed method allows the detection 

of early brain changes during routine MRI scan. 
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Classification of brain pathology, which is represented in the second part of literature 

review, was done using multiple methodological approaches that integrated feature 

engineering and ML methods. The researchers test their models using original MRIs, but 

not asymmetries. They did not run and describe experiments when pretrained network 

incorporate different from Softmax classification modules. Thus, the additional 

contribution of the thesis focuses on the classification of dementia using asymmetry 

biomarker and transfer learning approaches which incorporate modification of 

classification module. Created machine learning models help identify affected parts of 

the brain with high precision and distinguish early and more severe stages of dementia.      

     The next chapter gives detailed representation of computer vision technologies that 

contribute to the processing and analysis of medical imaging data. The reader has to keep 

in mind the stages of preprocessing of MRIs and brain segmentation approaches that help 

to understand the reason behind the choice of the thesis’s computational framework. At 

the same time, the thesis research proposes and describes an additional brain segmentation 

technique that detects asymmetries in brain hemispheres. This new technique is yet to be 

described in the state-of-the-art literature. As an additional imaging biomarker, the 

imaging dataset of brain asymmetries will be tested later in Chapter 5 for its robustness 

in diagnosing of Early Mild Cognitive Impairment and Alzheimer’s Disease, whose data 

is compared with cognitively healthy subjects. The tests will be done with classification 

algorithms, including different kinds of transfer learning approaches. For this reason, 

well-known architectures of pretrained CNNs will be introduced to the reader.
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Chapter 3:  Computational Framework for Brain 
Asymmetry Digital Biomarkers Representation and 
Classification 

3.1 Introduction 

This chapter of the thesis introduces the proposed brain asymmetry computer vision 

methodology and answer the questions raised earlier in Chapter 2 about detecting changes 

in the brain asymmetries during the progression of the disease. The thesis investigates the 

structural property of the brain in the initial stage of cognitive decline and severe changes 

in Alzheimer’s Disease. Common patterns of these changes are visualized after 

processing the MRIs with a number of segmentation algorithms. The information 

obtained from brain asymmetries is checked for robustness and classified with machine 

learning algorithms. The correlation between affected cortical parts is explored using 

MRI sets of subjects with normal cognitive function, mild cognitive impairment and 

Alzheimer’s Disease using deep networks either via a transfer learning approach applied 

to pretrained convolutional neural networks or networks tailored to this task.   

     Computer vision methods lie at the base of the suggested computational framework. 

CV part starts from image retrieval, goes through multiple image transformation stages, 

and ends with the visualization of brain asymmetries. A detailed discussion of the 

proposed methodology is given in Section 3.8. Brain imaging data used in the project are 

obtained from MRI scans, normalised and processed with segmentation algorithms and 

sent to the ML modelling for the prediction of the disease.  

     Multiple machine learning approaches for diagnosing cognitive decline and dementia 

were described in the literature review chapter. The choice of the algorithm depends on 

the image type, size of the dataset, characteristics of the available hardware environment, 

and skills of the researcher or IT specialist.  

     The classification of medical pathologies using Machine Learning and Artificial 

Neural Networks (ANN) has attracted a lot of attention in recent years. In this context, 

the Convolutional Neural Network is one of the models successfully adapted to classify 

imaging data in numerous applications (Yamashita et al., 2018). Hybrid architectures 

based on CNN models were successfully implemented in various medical areas. For 
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example, a combination of the Fast Region-Based Convolutional Neural Networks (R-

CNN) and SVM demonstrated high performance for detecting and categorising brain 

tumors (Khairandish et al., 2020). Singh and Majumder (2020) applied a decision fusion 

approach using CNN for feature extraction and SVM for the final decision-making to 

diagnose electrocardiogram (ECG) abnormalities. Transfer learning methods adapted to 

two CNN models, the VGG16 and the InceptionV3 network, demonstrated performance 

above 90% for pneumonia classification (Yadav and Jadhav, 2019).  

     Compared to the classical machine learning algorithms, deep neural networks can 

provide an end-to-end solution, automating the image preprocessing and feature 

engineering stages by considering those as part of the training process and achieving a 

high prediction rate of brain pathology. Advances in deep learning together with the 

availability of hardware, such as GPUs and cloud computing infrastructures, have 

allowed the training of deep neural networks on large volumes of images.  

     Deep learning can be used as a single classifier or in ensemble architectures for the 

diagnosis of degenerative brain diseases (Nanni et al., 2020). Deep networks can handle 

2D and 3D data in order to distinguish between healthy and dement subjects (Yagis et al., 

2020). At the same time, the advantages of deep learning models can be used for limited 

datasets by applying a layer-wise transfer learning approach (Mehmood et al., 2021) and 

image augmentation techniques (Mikołajczyk and Grochowski, 2018). Deep transfer 

learning models propose an effective way of image segmentation and can automatically 

classify brain scans focusing only on small brain regions (Aderghal et al., 2020). 

     This chapter introduces the classification methods applied to the imaging sets of brain 

asymmetries using different types of machine learning algorithms and transfer learning 

models of deep neural networks. 

This chapter is organized as follows.   

Section 3.2 presents an overview of the proposed computational framework for 

processing and classification of brain asymmetry digital biomarkers. The computational 

framework consists of two stages. The first stage involves computer vision algorithms 

that focus on processing and analysis of imaging data based on segmented brain 

asymmetries. The second stage exploits machine learning algorithms in the diagnosis of 

early cognitive decline using the images of brain asymmetries.  It investigates machine 
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learning algorithms, transfer learning methods of Deep Neural Networks and proposes 

new deep network architectures for classification of brain asymmetry biomarkers.  

Section 3.3 describes the MRI data repositories used in thesis. This section describes two 

imaging sources. It provides qualitative and quantitative characteristics of the imaging 

data supported by demographic information.  

Section 3.4 explains the physical principals of magnetic resonance imaging techniques. 

It discusses medical image formats that were obtained from the databases and converted 

later to .PNG for data modelling. 

Section 3.5 describes the image preprocessing stages of the computational framework. 

Two levels of data preprocessing, including image resizing and normalization, are given 

in this part. Image resizing was applied for the image datasets to reduce the computational 

power. 

Section 3.6 overviews the image segmentation approaches used in neuroscience 

including methods applied to the MRI set for the detection of brain asymmetries. 

Section 3.7 represents the mathematical operations discussed in the literature and used 

for symmetry detection.  

Section 3.8 introduces brain segmentation methods and explains the segmentation of 

hemispheric asymmetries. The brain segmentation approach based on thresholding and a 

region-growing algorithm is included in the first part of the section.  The second part 

proposes a new approach for the detection and segmentation of hemispheric asymmetries 

that become the main data source for the analysis of brain changes due to the development 

of dementia. 

     The chapter ends with a summary of the work presented and contribution to the 

research area.  

3.2 Overview of the Computational Framework for Processing and 

Classification of Brain Asymmetries 

The machine learning workflow for early diagnosis of dementia (see Figure 5) includes 

image preprocessing, segmentation of image asymmetries, extraction of statistical and 

non-statistical features and image analysis (see Chapter 4 for relevant review). Machine 

learning algorithms (see Chapter 5 for relevant review) are implemented in the 
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classification stage of the processed images. Images illustrating differences between the 

right and the left hemispheres of the MRI slices (2D images) of the brain are used for 

features extraction. This simplifies the feature engineering stage because the collected 

features are selected from brain regions affected by degenerative processes. The images 

of segmented asymmetries require less storage than original MRIs. This speed up the 

classification processing of large datasets using images as input. 

     In the last stage of the workflow, different kinds of machine learning algorithms can 

be applied (Herzog and Magoulas, 2021). This can include two potential pathways: one 

that exploits image asymmetry features and another one that uses images of segmented 

asymmetry. Machine learning classifiers, such as Naïve Bayes (NB), Linear Discriminant 

(LD), Support Vector Machines (SVMs) and K-Nearest Neighbour (KNN), typically 

operate on the basis of feature vectors, such as image asymmetry features that can be used 

for training and testing. In contrast, a Deep Network (DN) classifier receives images of 

segmented asymmetry and generates its own features through training. At this stage, 

various Convolutional Neural Network (CNN) models are investigated by applying 

transfer learning to stablished pretrained architectures and distinctive architectural 

configurations of CNNs are proposed (Herzog and Magoulas, 2022).  

     The data processing pipeline, including image processing and machine learning 

classification, has been implemented in Matlab using affordable and easy to obtain 

commodity hardware: Windows 10 Enterprise, processor – Intel (R) Core (TM), i7-7700 

CPU@ 3.60GHz, 16 GB RAM. 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 3: Computation Framework for Brain Asymmetry Digital Biomarkers 

Representation and Classification 

 

56 

 

Figure 5: Computational framework including image transformation stages, asymmetry features 

generation and machine learning classification algorithms 

 

3.3 MRI data repositories 

3.3.1 ADNI  

MRI data used in the thesis were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative database (adni.loni.usc.edu), which was launched in 2003 as a public-private 

partnership led by Michael W. Weiner, MD. The primary goal of ADNI has been to assess 

whether serial magnetic resonance imaging, positron emission tomography, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of Mild Cognitive Impairment and early Alzheimer’s disease.  

More details about the project and up-to-date information are available at www.adni-

info.org. Since 2004 the ADNI has launched three different databases, namely ADNI 1, 

ADNI GO/2, and now ADNI 3. 

     The created datasets include T1-weighted images of structural MRI data of 150 

subjects (100 male, 50 female) from the ADNI-3 database. Among them are 50 patients 

with Mild Cognitive Impairment at the age between 55 and 65 years old, 50 patients with 

Normal Cognition at the age between 55 and 65 years old, and 50 patients with 

Alzheimer’s Disease at the age between 65 and 90 years old. The age range between 55 

http://www.adni-info.org/
http://www.adni-info.org/
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and 65 years for the EMCI and NC groups was chosen to eliminate the ageing effect on 

the MRI data. Magnetization Prepared Rapid Gradient-Echo (MPRAGE) T1-weighted 

MRI images were taken from the same type of 3T scanners (sequence at 1.2 Tesla), 

Siemens Medical Solutions (http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/).  

3.3.2 OASIS 

The second MRI data repository is the Open Access Series of Imaging Studies (see 

www.oasis-brain.org). The OASIS brain project was created by Washington University 

in 2007. The OASIS is an open-access database of neuroimaging and processed medical 

imaging data supported by non-imaging information, including demographic, cognitive, 

and genetic.  The platform is focused on providing information about normal ageing and 

cognitive decline for neuroimaging, cognitive and clinical research. The project was 

released in three phases.  OASIS-1 includes cross-sectional data (Marcus et al., 2007); 

OASIS-2 is a longitudinal study (Marcus et al., 2010) that was created for hypothesis-

driven data analyses, development of segmentation algorithms and design of 

neuroanatomical atlases. OASIS-3 is composed of longitudinal neuroimaging, cognitive, 

clinical, and biomarker datasets for normal ageing and Alzheimer’s Disease. 

     The OASIS-2 longitudinal collection of T1-waited MRIs of 100 (50 male, 50 female) 

very mildly demented (VM-D) and non-demented (non-D) right-handed subjects aged 

between 60 and 80 was used for the experiments. 

3.4 Types of magnetic resonance images  

Magnetic resonance brain images are the primary source of data used in the thesis. 

Initially, they were represented in DICOM and NIFTI formats. This section added to the 

thesis to explain how the original brain images are represented in the ADNI and OASIS 

data directories, and what type of conversion was applied to them to create readable for 

machine learning algorithms datasets for use in the thesis. This section also provides a 

background of magnetic resonance technology and explains the structure of image 

matrices used by computer vision algorithms for image processing. 

     Medical images are represented in standardized file formats (Larobina and Murino, 

2014). The file format represents how the imaging data are organized in terms of pixels 

or voxels inside the image. In most cases, the file formats need to be adapted to the system 

or software requirements for data loading, interpretation, and visualization.  

http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/
http://www.oasis-brain.org/
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     The minimal structuring element representing image intensity values is a pixel. Each 

pixel has a depth, a number of bits used to encode the pixel information. Photometric 

interpretation of the image specifies the image colour. A monochrome image has only 

one sample of pixels and does not contain information about the image colour. A binary 

black-and-white image has pixel information stored in bits equal to zero or one. 

Radiological images, like X-ray, MRI and CT, have a greyscale photometric 

interpretation matching 8 or 16 bits. Nuclear images, like PET and SPECT, are 

represented with a colour map with 24 bits per pixel. Images employing the RGB colour 

palette are called “true colour” images.   

     Any file format is associated with information beyond the pixel data. This information 

is called metadata. It includes the matrix dimensions, pixel depth, spatial resolution and 

image photometric interpretation. The most popular formats that are present in the 

publicly available databases are Digital Imaging and Communications in Medicine 

(Dicom), Analyze, Neuroimaging Informatics Technology Initiative (Nifti), and Medical 

Imaging NetCDF (Minc). The metadata can be stored together with other medical 

imaging data at the beginning of a single file. This file format is used by DICOM, NIFTI 

and MINC formats. Another configuration stores the metadata and image data in separate 

files. The Analyze format is an example of it. This file format is preferable for complex 

imaging structures when modifying information is required. Table 3 represents the 

standard medical image formats and their main characteristics. More information on the 

formats can be found in Appendix D. 

Table 3 represents the standard medical image formats and their main characteristics. 

Table 3: File formats characteristics 

Format Extension Header Data type 

   Integer Float Complex 

Analyze .hdr/.img Fixed length, 348 bites, 

binary format 

Unsigned (8 bit), 

signed (16, 32 bit) 

32, 64 bit 64 bit 

NIFTI .nia, .nii, 

.hdr/.img   

Fixed length: 352 bytes 

binary format 

(348 bytes if data stored 

as .img/.hdr) 

Signed and unsigned 

(from 8 to 64 bit) 

From 32 to 

128 bit 

From 64 to 

256 bit 
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MINC .mnc Extensible binary 

format 

Signed and unsigned 

from 8 to 32 bit 

32, 64 bit 32, 64 bit 

DICOM .dcm, 

.dicom 

Variable length binary 

format 

Signed and unsigned 

integer, (8, 16 bit;  

The 32-bit dose is 

allowed for 

radiotherapy only) 

Not 

supported 

Not 

supported 

 

Magnetic resonance images can be defined as a function I(i, j, k) in 3D space where i = 

0,…, M – 1, j = 0,…, N – 1, k = 0,…, D – 1 denote coordinates. The values of I(i, j, k) are 

voxel (pixel in 2D space) values represented by grey intensities {0,…, 255}. Each image 

element is uniquely described by its coordinates (𝑖, 𝑗, 𝑘) and its intensity value for voxels 

((i, j) for pixels), where 𝑖 is the row number, 𝑗 is the column number, and 𝑘 is the slice 

number of volumetric image sequences. Voxel (pixel) values depend on magnetic 

resonance characteristics of the corresponding element in the biological tissue, the 

strength of a magnet, time of acquisition and some other factors.  

     In the thesis, T1-weighted MRI brain sequences have been chosen as a source of 

medical imaging data. 

     MRI brain scans are used more frequently than other scanning technologies because 

of the radiation safety and high detection level of soft tissue structure (Sprawls, 2000). 

Two types of weighted, T1 and T2, images depend on the relaxation time for protons and 

their density in the tissue. T1- and T2-weighted images are differentiated by the 

brightness of cerebrospinal fluid. CSF looks dark on T1-weighted imaging and bright on 

T2-weighted imaging. The white colour component of T1-weighted scans is determined 

by the presence of fatty substances in the tissue, such as white matter. The dark colour 

demonstrates the tissues filled with water, such as CSF. T2-weighted images have the 

opposite colouring pattern. In the case of dementia, the brain’s anatomical structure is 

subject to change. So, both T1- and T2-weighted image sequences can demonstrate these 

transformations.  

     Diffusion tensor imaging was proposed for use in 1994 by Peter Basser (Alexander et 

al., 2007). It is a modification of magnetic resonance imaging technology developed from 

diffusion MRI and based on the nuclear magnetic resonance field. The diffusion tensor 

model is characterised by a rotational invariance of the shape of water diffusion. It makes 
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the DTI method preferable in investigating the complex anatomy of the white matter tracts 

of the human brain. This technology is sensitive to the cellular structure of the tissue and 

works by measuring the diffusion coefficient of water molecules. The diffusion measured 

in tissue is anisotropic or varies with direction. DTI is taking part in the visualization of 

the white matter tracts called tractography. DTI offers some specific measures such as 

diffusion magnitude (e.g., mean diffusivity) and diffusion anisotropy (e.g., fractional 

anisotropy) (O’Donnell and Westin, 2011). 

     The quality and size of image sequences of observed patients might differ from scan 

to scan. It depends on the types and makes of image scanners. Processed, analysed, and 

compared images must have the same type. In other words, they have to be preprocessed. 

3.5 Image preprocessing 

3.5.1 Image normalization 

Image preprocessing starts from image normalization. The normalization process brings 

the pixel intensity values of all imaging data to one standard. Often, this process leads to 

general image enhancement (Image enhancement techniques are described in Chapter 

3.6) if normalization is based on contrast or histogram stretching as in the current 

research. Image normalization method can be divided ruffly into two groups: histogram-

based methods and statistic-based methods. Histogram-based methods has been used in 

the research as image normalization techniques, so they are briefly described next. 

      Each given greyscale image can be represented as a histogram of its grey levels. Grey 

values of a poorly contrasted image are clustered mainly in the center of the histogram 

(see Figure 6). The histogram normalization function spreads the pixel values in a way 

that fills the entire available pixel’s intensity range between 0 and 255. 

 

Figure 6: The histogram of the original image (left) and normalized image (right) 
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The histogram normalization function of the greyscale image between two points with 

coordinates (a, c) and (b, d), and initial (x) and final (y) pixel intensity values is performed 

according to the formula: 

𝑦 = (
𝑥 − 𝑎

𝑏 − 𝑎
)

𝛾
(𝑑 −  𝑐) + 𝑐                                                 (1)              

The gamma value describes the shape of the function and can perform linear and non-

linear normalization.  If gamma is equal to 1(in the default option), the mapping of the 

pixels will be linear. The gamma values which are less or greater than one lead to non-

linear pixel distribution (McAndrew, 2004).  

Examples of histogram normalization techniques used for image preprocessing are given 

in (Štruc and Pavešić, 2017). 

3.5.2 Image resizing 

Image resizing is a routine procedure in image processing. Usually, all images have to be 

resized to one standard fixed size, for example 256-by-256-by-3 pixels (the image size is 

used in the current research and explained later). The purpose of resizing is fitting images 

in a particular space. Very often, the size of big imaging data must be reduced to speed 

up a machine learning process and minimize the storage space on the device.  

     Resized imaging data can be stored in different file formats. The popular medical data 

have four major file formats: Analyze, Nifti, Minc, and Dicom (Larobina and Murino, 

2014). These file formats have a specific structure such as pixel depth, photometric 

interpretation, metadata, and pixel data. Most contemporary computer vision techniques 

are adapted to work with such sort of data (Willemink et al., 2020), but machine learning 

methods can work with conventional (non-medical) file formats only.   

3.5.3 Conversion imaging data    

Conversion of imaging data to other file formats is a common approach (for example, 

Dicom to PNG). These formats might be lossy and lossless. Lossless data are preferable 

for efficient machine learning training. Popular lossless formats are TIFF, PNG, GIF 

(Graphics Interchange Format), PDF (Portable Document Format), EPS (Encapsulated 

PostScript), AI (Adobe Illustrator), RAW (contains the unprocessed data captured by a 

digital camera or scanner’s sensor). EPS and AI are used in photoshop and graphic design. 
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JPEG/JPG format is lossless but widely used online because of the flexibility of 

compression. 

3.5.4 Image preprocessing summary 

For the research, all image sequences were downloaded in 3D NIFTI and DICOM formats 

from ADNI and OASIS databases. From each image sequence, 3-4 central slices were 

converted to 2D images in PNG format using Dicom Converter 

(https://dicomapps.com/dicom-converter/index.html). The created datasets were sent to 

the preprocessing stages that included image normalization and image resizing 

procedures.  

     The image normalization brings the pixel intensity values of all imaging data to one 

standard. Each given greyscale image can be represented as a histogram of its grey levels. 

Grey values of a poorly contrasted image are clustered mainly in the centre of the 

histogram. A histogram normalization method spreads the pixel values in a way that fills 

the entire available pixel’s intensity range between 0 and 255. In the current study, MRI 

brain images are normalized using the histogram stretching technique.  

     Another routine procedure in image processing applied on MRI data is image resizing, 

where all images are resized to one standard fixed size. The purpose of resizing is to fit 

the images into a certain dimensionality space. Very often, the size of big imaging data 

has to be reduced to speed up a machine learning process and minimize local storage 

requirements. In the current research, the images are resized to 256×256 pixels with RGB 

colour channels for further use in the machine learning classification stage. 

3.6 Image segmentation  

Image segmentation methods are at the base of the thesis methodology. Object 

segmentation is the most challenging part of Computer Vision and constantly searches 

for new, more accurate algorithms. One main reason for this difficulty is that human 

biology, including the visual system, is very complicated, and there is no technology that 

can identically reproduce it. A human can recognize objects under all kinds of variations 

in scale, illumination, and positioning. There is no limit to objects that can be memorized 

by the human brain and recognized in the future. Thus, the list of computer vision 

challenges is prominent. The first main challenge is image retrieval. The image should be 

identified and processed under changeability in viewpoint and scale, under impermanence 

https://dicomapps.com/dicom-converter/index.html
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of illumination conditions, presence of background noises, image occlusion and image 

deformation. Variations in image parameters inside the class can also be an issue. The 

second major challenge is the storage and processing of imaging data which require a vast 

amount of space and computational time. Many solutions are already proposed to 

overcome these sorts of problems, but still, there is plenty of space for extended research 

and improvements. 

    Segmentation is the process of image partitioning into sets of pixels (segments) united 

under a particular set of rules. The main goal of the segmentation is to locate objects or 

image boundaries such as corners, curves, lines, etc. The process of estimating the 

difficulties of image segmentation before it starts can help with a choice of the 

segmentation algorithm to be applied for. Liu et al. proposed to use a new feature that 

combines information from the log histogram of the log gradient and the local binary 

pattern histogram to predict the success of the segmentation (Liu et al., 2011). Each 

tracking object needs to be separated from the background. This task is achieved by the 

segmentation algorithms, which have a central part in computer vision. Depending on the 

application or project requirements, the segmentation procedure can be applied to single 

image or image sequences. Local segmentation isolates specific regions in an image. In 

comparison, global segmentation extracts the whole image from the scene of multiple 

objects. Referring to the scene of segmentation, it can be semantic and instance. Semantic 

segmentation is based on understanding and labelling each pixel in the image (pixel-wise 

predictions) (Liu et al., 2020).  The row of pixels with maximum similarity are classified 

as the same group of objects. For example, if there are four dogs in an image, semantic 

segmentation labels all dogs’ pixels the same. The object will be coloured identically. 

The boundaries of each object are outlined. Beyond semantic segmentation, instance 

segmentation takes into account the different instances of classes (Watanabe and Wolf, 

2019). Thus, each sample of the same class is coloured differently from the other. In tests 

with dogs, all of them will be assigned different colours and individual labels. Instance 

segmentation carries out the more complex task of identification of relations, boundaries, 

and differences of the objects. In some cases, the segmentation has complicated sights of 

multiple overlapping objects and backgrounds. Methods used in medical image 

segmentation are discussed in detail in Appendix E. 
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     MRI segmentation can be performed on 2D images separated from an image sequence 

or on 3D series. If 2D images are segmented slice-by-slice, they can be connected to a 3D 

volume or a continuous surface. In brain MRI, there are three main tissue types: grey 

matter, white matter, and cerebrospinal fluid. But typically, the scanned image also 

incorporates the skull and a nonbrain area. Therefore, the standard approach of MRI 

processing involves the extraction of nonbrain tissues before the brain segmentation 

methods can be used. The applied segmentation technique is represented in more detail 

in Section 3.8.  

3.7 Mathematical operations for symmetry detection  

In computer vision, symmetry can be described as a balanced similarity between two parts 

of the object. The imaginary axis along the figure that separates it into equal parts that 

can be mirrored from one to another is called the axis of symmetry. 

     Humans in nature can easily detect the symmetries in surrounding objects. Artificial 

intelligence tries to reproduce the human perception of symmetries, but the technical 

ability of computer vision algorithms is still far from the simulation of sophisticated 

human perception. Image symmetry detection relies on the basic concepts of 2D Euclidian 

space (Liu et al., 2010). Euclidian space has four types of primitive symmetries: 

reflection, translation, rotation, and glide reflection. 3D Euclidian space has an additional 

two types of symmetry, they are roto-reflection and helical symmetry. The mathematical 

expressions for the first four types of symmetries are provided below. 

Reflection (the axis of reflection remains invariant): 

𝑓(𝑥, 𝑦) = 𝑓(−𝑥, 𝑦)                                              (2) 

Rotation (the centre point or axis of rotation remains invariant, and n is an integer 

demonstrating the number of equal parts in the rotation circle): 

𝑓(𝑥, 𝑦) = 𝑓 (𝑟𝑐𝑜𝑠 (
2𝜋

𝑛
) , 𝑟𝑠𝑖𝑛 (

2𝜋

𝑛
)), where 𝑟 = √(𝑥2 + 𝑦2)           (3) 

Translation (there are no invariant points for some ∆𝑥, ∆𝑦 ∈ 𝑅): 

𝑓(𝑥, 𝑦) = 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)                                        (4) 

Glide reflection (demonstrate the translation along the reflection axis; there are no 

invariants point for some ∆𝑥 ∈ 𝑅): 
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𝑓(𝑥, 𝑦) = 𝑓(𝑥 + ∆𝑥, −𝑦)                                           (5) 

There are multiple symmetries and symmetries groups beyond those presented above, but 

they are not considered in the current research. 

     The mirror symmetry has a fixed structure. The fixed structure means that the axis of 

symmetry has a line of fixed points. Every pair of symmetric points is also connected by 

lines which are intersected with this axis. The intersection of all these lines helps to find 

the object's centre. The automatic detection of symmetry in digital images is a constant 

topic in CV. Despite the long computational effort, computer vision technology is still far 

from a robust "symmetry detector". The state-of-the-art detection methods can be 

described as feature-based, correlation-based, energy-based and graphic models. More 

advanced methods include statistical learning models such as spectral-based and MRF-

based models. 

     Numerous approaches have been suggested to detect bidirectional or mirror symmetry 

in digital images. The direct approach is determined when the symmetry, such as rotation 

or reflection, is applied to the transformed image which is later compared to the original 

one. This approach assumes that the reflected object is either perfectly symmetric or not 

symmetric at all. However, this method is sensitive to noise. Another voting approach is 

based on the statement that the axis of symmetry is uniquely identified by the two 

corresponding points and similar to the centre of symmetry by the two corresponding 

pairs of points. The voting schema is applied to determine the best axis of symmetry with 

the highest voting score. This schema is less sensitive to noise than the direct approach 

but has a high level of complexity.  

     The symmetry is divided into global and local. The first type is more efficient but 

sensitive to noise. The determination of local asymmetry can be more accurate but takes 

a lot of time to be processed. The current research focuses on the detection of global 

symmetry, and the local symmetry techniques are not in the scope of the study. In addition 

to the direct and voting approaches, two additional approaches are established on basic 

function and moment-based methods. An example of basic function method is the Walsh 

function (Yodogawa, 1982), which evaluates the bidirectional symmetry. Walsh function 

assesses four subtypes of symmetry in the object, which are horizontal, vertical and 

doubly mirrors and rotational symmetry. Welsh coefficients are calculated from the 
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vectors of values obtained from the corresponding symmetries. The symmetry evaluation 

is done according to the entropy of these four values. The moment-based method was 

developed to differentiate the mirrored images, which are rotationally symmetric. The 

specific and more complicated cases of mirror symmetries are skewed symmetries 

(Tuytelaars et al., 2003). These symmetries are found through the search of affine-

invariant matching points. Hough transform is used to detect these points. 

     The human brain has, on average, bilateral symmetry. One of the methods used for 

evaluating this symmetry is described by Liu et al. (2001) and based on the finding of the 

midsagittal plane (MSP). The authors developed an algorithm which is able to identify a 

3D MSP. The algorithm demonstrated robustness when it was applied to normal brains 

and brains with large areas of the lesion. The method's robustness was tested on MRI and 

CT images with significant gaps between slices. The purpose of MSP extraction was to 

find out where the bilateral symmetry was before the onset of the disease. The algorithm 

was applied to the sets of original, reflected and rotated images to determine the resulting 

3D plane that stands at the minimal distance from all 2D middle lines. The method did 

not show any statistical difference in the determination of MSP between its results and 

the judgments of human experts. The MSP techniques were applied to the AD and 

Schizophrenia diagnoses (Liu et al., 2004; Liu et al., 2007). Similar quantified or 

statistical brain asymmetry methods described in (Teverovskiy et al., 2008) were 

successfully used for age estimation.  

     As mentioned at the beginning of this chapter, there are multiple tangible research 

directions related to image symmetries—for instance, the symmetry-based registration 

and symmetry-based recognition of the biomedical objects. There is a need for the 

development of additional strategies able to deal with real-world complexity, hidden 

patterns in image structures, as well as symmetrical and distorted objects under noisy 

conditions. In contrast to mathematical methods, the proposed approach uses a natural 

anatomical brain fissure as a symmetry line. The choice is based on previous finding 

indicating no differences between mathematical allocated MSP and anatomical fissures 

in patients without brain tumours. 

3.8 Segmentation of brain’s hemispheric asymmetries 

In this stage, normalized and resized images are processed using brain segmentation 

algorithms, which aim to localize an object of interest or the image boundaries. The 
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process concerns the partitioning of the image into sets of pixels, or segments, united 

under a set of rules. In the case of MRI, segmentation can be performed on 2D images 

separated from an image sequence or on 3D series. If 2D images are segmented slice-by-

slice, they can be used to construct a 3D model. Typically, a scanned image incorporates 

the skull and a nonbrain area as well as WM brain tissue, GM brain tissue, and CSF. 

Therefore, a common approach in MRI processing involves the extraction of nonbrain 

tissues before the brain segmentation methods can be used. 

 

Figure 7: Segmented brain from MRIs in coronal and axial planes 

Although there is no single method appropriate for all images because of image diversity, 

presence of noise and artefacts, a segmentation method that has been developed for one 

imaging context can be adapted to another class of images.  

     The segmentation method that is used in the research belongs to the group of intensity-

based methods, which includes thresholding and region-growing or region-based types. 

The three main MRI brain tissue types - WM, GM and CSF - can be easily distinguished 

due to their differences in pixel intensity levels. However, the presence of noise, artefacts, 

overlapped objects, and inhomogeneity of the tissues is an objective factor that can 

require the incorporation of additional tools and the implementation of advanced 

techniques. Figure 7 demonstrates the performance of the segmentation algorithm on an 

MRI slice. 

     Thresholding is a well-known image segmentation method that separates an object 

from its background. The method divides pixels of the image according to their intensity 

levels and can be used to create a binary image. Double or multiple thresholding is based 
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on several threshold values like T0 and T1. Segmentation of the original image 𝐼(𝑖, 𝑗) can 

be defined as:  

𝐼′(𝑖, 𝑗) = {

𝑚, 𝑖𝑓 𝐼(𝑖, 𝑗) > 𝑇1,
𝑛, 𝑖𝑓 𝐼(𝑖, 𝑗) ≤ 𝑇1,
𝑜, 𝑖𝑓 𝐼(𝑖, 𝑗) ≤ 𝑇0,

                                             (6) 

where 𝐼’ (𝑖, 𝑗) is an output image, pixels labelled with the number 1 correspond to the 

segmented object, and pixels labelled with the number 0 correspond to the background. 

     Thresholding methods are fast and computationally efficient, but they are sensitive to 

noise and image textural inhomogeneity. The thresholding has many variations that 

roughly can be divided into global (single), locally adaptive, and multiple thresholding. 

In our framework, a double thresholding method is applied for brain segmentation from 

the skull and other surrounding tissues; that is accompanied by a region growing method.  

     Region-growing, or region-based method, highlights areas of the image according to 

predefined uniformity or homogeneity criteria of pixel intensity values. The region 

merging starts from a “seed point” (a single pixel or group of pixels) that belongs to the 

target object. Either manual or automatic initialization of the seed allows additional 

neighbouring pixels, which satisfy similarity criteria of the tissue, to be added to the 

growing area.  

     Stages of the algorithm include: (a) partitioning the image into seed regions, (b) fitting 

planar or biquadratic models to the seed regions, (c) finding all neighbouring pixels that 

are compatible with those regions, (d) increasing the model’s order if no compatible 

points are found (stop growing the region if the model order reached the maximal number; 

otherwise, continue region growing by returning to the previous step), compare the seeds 

regions by calculation the goodness of fit.  

Compatibility of neighbouring points is defined as:   

𝐶𝑖
(𝑘)

= {((𝑥, 𝑦)|𝑑2(𝑥, 𝑦, 𝑎, 𝑚)) ≤ 𝜖 𝑎𝑛𝑑 (𝑥, 𝑦)𝑖𝑠 𝑎 4 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑜𝑓 𝑅𝑖
(𝑘)

∪ 𝐶𝑖
(𝑘)

}(7) 

where є is the compatibility threshold and (x, y, a, m) are 4-neighbouring points of the 

region R.  

Differences between old and new regions of the model are identified by computing the 

goodness of fit (P): 
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𝑃(𝑘+1) = 𝑥2(𝑀, 𝑎(𝑘+1), 𝑅𝑖
(𝑘+1)

) − 𝑥2(𝑀, 𝑎𝑘, 𝑅𝑖
𝑘)                      (8) 

where M is the Model.   

The region-growing procedure is repeated until no more matching pixels are left. A 

combination of thresholding and region-based methods is applied for each preprocessed 

2D brain image.  

Figure 8 demonstrates the brain segmentation approach that process image through 

binarization thresholding and region detection stages.  

 

(a)                              (b)                              (c)                            (d) 

Figure 8: Brain segmentation stages: original image (a), binary image (b), image after 

application of region detection algorithm, (d) final image of the segmented brain       

     The next level of segmentation helps to detect differences between the right and left 

hemispheres defining a brain asymmetry image. The method is based on the finding that 

there is a loss of the grey and white matter at the initial stage and along with the 

development of the neurodegenerative disorder, which leads to variations in the symmetry 

of the brain’s structure. Initially, the symmetry between the left and right hemispheres of 

the brain increases. However, the progression of the disease increases the degree of 

asymmetry as the left-sided hemispheric lateralization of a healthy individual gradually 

becomes right-sided with the development of severe dementia such as Alzheimer’s 

Disease. For a cognitively normal person, Figure 9 demonstrates the variations in the 

anatomy of the left and right hemispheres. 
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Figure 9: Lateralization of a healthy brain (Source: Toga & Tompson, 2003, Mapping Brain 

Asymmetry, Nature Reviews Neuroscience) 

Differences in the symmetry of the two hemispheres can be detected through 

segmentation.  

     There are many computer vision techniques proposed for the segmentation of specific 

brain areas in accordance with the anatomical atlas (Despotović et al., 2015). The thesis 

presents an algorithm for the segmentation of the hemispheric asymmetries whose key 

point is the detection of the vertical axis of symmetry between the left and right 

hemispheres of the brain. The hypothesis being tested in this part of the work is that there 

is an axis of reflective symmetry running through the centre of the brain (Liu et al., 2001). 

The centre point of the brain is allocated using an image binarization technique and 

calculating the image centroid (Teverovskiy and Li, 2006). In the context of image 

processing and computer vision, the centroid is the weighted average of all the pixels in 

an image. The "weighted" centroid, or centre of mass, is always at the exact centre and 

depends on the grey levels in the image.  

      The binarization algorithm (Michalak and Okarma, 2019) converts a 256-shaded 

greyscale image to a binary (black and white-coloured). The binarization is done 

according to the adjusted level of a threshold. All pixels in the image above the threshold 

level are replaced by the value 1 (white) and other pixels that are below that level by the 

value 0 (black).  

     The brain centre might differ from the centre of the whole image, including the 

background. If such a case occurs, the brain needs to be translated into the centre of the 

image and rotated to the correct angle via the vertical axis. As soon as the brain 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 3: Computation Framework for Brain Asymmetry Digital Biomarkers 

Representation and Classification 

 

71 

centralization, translation, and rotation techniques are performed, the image can be 

flipped or reversed from left to right across the vertical axis (Ruppert et al., 2011). The 

mirroring process is finalized by the segmentation of image asymmetries (Herzog and 

Magoulas, 2021). 

 

Figure 10: The image transformation stages for detection and segmentation of image 

asymmetries 

The last image of this stage (see Figure 10) is obtained as a result of mirroring the left-

brain hemisphere to the right and of the right-brain hemisphere to the left, which is 

followed by subtraction of the hemispheres from each other (the norm representation for 

pseudocode is not require as we assume only positive values): 

D = (L - R) + (R – L)                                                (9) 

where D is an image asymmetry, L is an image matrix of the left hemisphere, R is an 

image matrix of the right hemisphere. 
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Figure 11: An illustrative example of matrix transformation values of a greyscale image of size 

6-by-6: initial matrix (left) and matrix of segmented asymmetry (right), mirrored via the vertical 

axis. The numbers in the cells correspond to the grey level of the pixel values  

The symmetrical image areas (see Figure 11) get a value of 0 due to matrix subtraction. 

They are visualized as black areas in the image. The asymmetrical parts of the image are 

represented as different intensity grey levels from 1 to 255.  

     As a result of matrix operations, asymmetrical regions of the brain, whose pixels have 

different intensity levels according to the level of asymmetry, become segmented from 

the image. The proposed algorithm highlights shape and pattern of asymmetry in the 

image (Herzog and Magoulas, 2021).  

     The algorithm was tested on single slices of the brain, but the same idea can be 

extended and applied to the whole 3D brain image.  

3.9 Summary and contribution of the chapter 

This chapter introduced the computational framework of the thesis. The first part of the 

methodology includes the image preprocessing and segmentation stages. The second part 

is focused on the machine learning tasks (This part is represented in detail in Chapter 5). 

     Medical imaging can be obtained due to a number of imaging techniques that include 

X-rays, computed tomography (CT) scans, Positron Emission tomography (RET) scans 

and Magnetic Resonance Imaging (MRI). MRI technology is the most popular method 

for medical diagnosis. They are frequently used as they are radiation-free and have high 

efficiency. MRI scans are pretty good for visualising the biological tissues and showing 

the different levels of their intensity. This type of scan has been chosen as a source of 

data for the research on the detection of brain pathology. MRI scans can be obtained in 
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certain types and formats. Image types differ by the physical characteristics of the 

biological tissues and can be represented as T1 and T2. The pixel data property and 

metadata specify MRI formats. NIFTI and DICOM are some of the formats used for the 

study. The imaging data often needs to be adduced to one standard for the machine 

diagnosis. It might include converting the medical formats to the traditional digital image 

formats such as ‘.jpg’, ‘.bmp’, or ‘.tif’, image resizing and image normalisation 

procedures. Histogram-based and statistical-based methods can be applied for image 

normalisation. 

     The key role of the diagnostic cycle of the current research play image segmentation. 

Group of intensity-based methods, such as thresholding and region-growing techniques, 

are used in the study for the segmentation of region of interest and the detection of brain 

pathologies. 

   Neuroimaging data used in the research were obtained from the ADNI and OASIS 

databases. Magnetic resonance 3D image sequences were downloaded in NIFTI and 

DICOM formats and converted to PNG format composed of 2D MRIs. The neuroimaging 

data investigated in the research include MRIs of patients with Early Mild Cognitive 

Impairment, Alzheimer's Disease and control images of cognitively healthy subjects.  

     All the obtained images passed through the resizing and normalization stages. Two 

types of segmentation algorithms have been applied at the image processing level. The 

first, the brain segmentation algorithm, separated the brain from the skull and non-brain 

tissues using double thresholding and region-based methods. The second segmentation 

algorithm detected and visualized the brain asymmetries. The last approach was based on 

binarization, translation and reflection techniques. 

     Segmented images of brain asymmetries become a source of features used to analyse 

and classify neuroimaging pathologies, as it will be discussed in the next chapter. For 

example, the feature engineering process was based on transforming image pixels into 

wavelets by applying DWT. It facilitates generating the first and second-order statistical 

features responsible for the distribution and positioning of the grey-level values. Later, 

the Bag-of-Feature approach was also adapted for the neuroimaging data to obtain a 

detailed image signature. The features collected using the Bag-of-Feature algorithm were 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 3: Computation Framework for Brain Asymmetry Digital Biomarkers 

Representation and Classification 

 

74 

added to the statistical ones to improve the classification performance of the 

diagnostically sophisticated medical images (see Chapter 5.2 for details).  

   This chapter’s main contribution to the early diagnosis of cognitive decline is a proposal 

for a new digital biomarker and a computational framework for obtaining the biomarker 

from MRIs of the brain.  

     As mentioned above, the next chapter performs the analysis of statistical features 

extracted from the hemispheric asymmetries of three image classes, EMCI, AD and NC, 

and explains their differences. The obtained features are processed and analysed for each 

class of imaging data. The analytical tests are repeated for multiple datasets of different 

lengths and dimensions. Also, the following chapter demonstrates the robustness of image 

asymmetry features in the diagnoses of brain pathology using a variety of classification 

algorithms.
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Chapter 4:  Features of Segmented Brain Asymmetry: 
Analysis and Classification  

4.1 Introduction 

In this chapter, the robustness of brain asymmetry features as biomarkers for the early 

diagnosis of dementia within a traditional machine learning workflow is examined. In this 

context, statistical analysis plays an important role in understanding the nature of medical 

imaging data. Statistical interpretation of the data gives a possibility to evaluate the brain 

structure from different perspectives. The analytical part of the study is based on the 

assessment of the statistical properties of segmented asymmetries. The purpose of this 

stage of research is to understand the changes in the brain structure leading to the 

progression of the disease.  

     The statistical information is obtained from 5 image sets of segmented asymmetries: 

a 150-image set of male MRIs in the coronal plane, a 150-image set of female MRIs in 

the coronal plane, a 300-image set of male subjects in the coronal plane, a 300-image set 

of males in the axial plane, and a 300-image set of males in the coronal plane after 

processing the statistical data with principal component analysis (PCA) algorithm. The 

statistical interpretation of the asymmetrical brain changes involves ten statistical features 

described in Sections 4.3 – 4.6.  In the first stage of analysis, the average value of results 

is computed from the statistical features collected from each class of images of the dataset. 

After that, the averaging results are normalized. An additional analytical test was 

performed with 13 statistical features after processing them with Principal Component 

Analysis (PCA). 

4.2 Feature engineering overview (feature generating processes) 

Feature detection and description (Salahat and Qasaimeh, 2017) are important steps of 

image evaluation. The concept of feature detection and description refers to the procedure 

of identifying interest points in an image or any object that can be used to describe and 

analyze the image (object) contents.  

    The chosen features should have the following essential qualities (Tuytelaars and 

Mikolajczyk, 2008; Shalev-Shwartz and Ben-David, 2014):  
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1. Repeatability, which refers to the possibility of the algorithm detecting the same 

points independently in the original and transforming them from authentic images; 

2. Invariance to the affine transformation such as translation, rotation, and scale; 

3. Invariance to the presence of noise, blur etc.;  

4. Locality, which characterizes the robustness to occlusion, clutter and illumination 

change;  

5. Distinctiveness, which is means that the structure of the region should be rich in 

variations and intensity patterns;  

6. Quantity represents the sufficient number of points characterising the image;  

7. Time efficiency reflects the shortest time required to identify the features.  

    The first five characteristics should be as high as possible to consider a feature 

detection algorithm successful. At the same time, features’ quantity and time efficiency 

have to be minimized as much as possible without getting a negative impact on image 

representation. 

4.2.1 Feature detection  

Feature detection algorithms can be divided into groups depending on the localization of 

the detected features - points, regions, corners, and edges of the image. These algorithms 

detect the differences in the pixel’s grey levels gradient of the neighbouring pixels. For 

instance, the algorithm localises the edges by changing pixel values in a specific vertical 

or horizontal direction. If the algorithms are constructed to operate simultaneously in both 

directions, they can detect corners and regions.  

     The first kind of feature is key-point features or interest points. They are described by 

the group of neighbouring pixels surrounding the point of interest. One kind of these types 

of features is ‘corners’.  Key-point features can align different images. The advantages of 

key-point features are the ability to match objects, even if they have occlusions, different 

scales or orientation changes. These sorts of features have often been used for object 

instance and object category recognition. There are several famous feature detection 

algorithms. The classic “Harris” detector uses a specific filter for image convolution and 

perfectly detects corners of the image (Harris and Stephens 1988). More modern variants 

of detectors filter the image in horizontal and vertical directions with derivatives of a 

Gaussian function (Schmid, Mohr, and Bauckhage 2000; Triggs 2004). The feature 

description process often accompanies feature detection. Local features or key-point 
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descriptors help identify and describe the unique characteristics of the image. The list of 

those detectors and descriptors can be started from Scale-invariant feature transform 

(SIFT) (Lowe, 2004), histogram of oriented gradients (HOG) (Işık, 2014), and speeded 

up robust features (SURF) (Bay et al., 2008). In general, the algorithms mentioned above 

analyse the pixel information within a local neighbourhood area and indicate the gradient 

of the pixel’s orientation around the point of interest. Thus, each feature receives 

orientation according to the dominant gradient of all pixels in the local area. 

     Another category of features indicating the object boundaries is ‘edges’. They can be 

‘curves’ or ‘straight-line segments’. The information obtained from the edges 

complements both key-point and region-based descriptors. The most popular edge 

detector and descriptors, such as Canny, Sobel, Prewitt, Robert, and LoG are based on 

detecting discontinuities in brightness (Muthukrishnan and Radha, 2011). These and 

alternative descriptors are widely used for image segmentation and analysis.      

     Feature detection is followed by feature extraction (García et al., 2016). Sometimes 

before the extraction step, the features are selected from the initial feature set to simplify 

the training model.  

4.2.2 Feature selection 

Feature selection includes multiple techniques. They help to reduce the complexity of a 

model. This benefits its efficiency, reduces training time, and makes the model easier to 

interpret. Feature selection techniques roughly fall into three categories: filtering, 

embedding and wrapping.  

    Filtering techniques preprocess features and remove those that will be of no use for 

the modelling process. Most of these methods allocate some sort of weight to features and 

delete the ones that fall below the allocated level of a threshold (Sánchez-Marono et al., 

2007; Jović et al., 2015). In other words, the features are ranked, and highly ranked 

features are left for analysis and classification. The filtering techniques are not expensive 

for implementation, but they do not take into account the model being employed.  This 

limitation does not guarantee that the right features will be selected for the model. For 

this reason, conservative prefiltering strategies are recommended to eliminate irreversible 

mistakes of removal of useful features. 

    Wrapper methods allow for the processing of subsets of features and checking their 

efficacy (Shardlow, 2016). Each time, the features between subsets are reshuffled, and 
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the efficacy of the new sets are evaluated. The reshuffling process continues until a 

notable increase in efficacy is reached. It prevents accidental deleting of those features 

that are non-informative by themselves but useful when taken in a combination. This 

method treats the model as a black box that provides a quality score for every proposed 

subset of features. Subsets are refined iteratively while the model is processed. The 

wrapper methods are pretty expensive and time-consuming.  

    Embedded methods incorporate feature selection as part of the model training process 

(Guyon and Elisseeff, 2003). Examples of this method can be mentioned as a decision 

tree algorithm that selects features in every training step or split of the tree (Quinlan, 

1986) and a multinomial logistic regression algorithm that predicts the probabilities of 

the different possible outcomes of a dependant variable (Böhning, 1992). Embedded 

methods select the specific model features and balance between computational expenses 

and quality of results. 

4.2.3 Feature extraction 

Feature extraction is a dimension reduction process when unneeded, irrelevant and 

redundant attributes are removed from the data. This process reduces the complexity of a 

predictive model and contributes to its accuracy. Usually, feature extraction algorithms 

are focused on specific patterns of the image. These patterns can be retrieved from shapes, 

colours, and textures. Feature descriptors identify and extract features from the object. 

     Shape descriptors roughly can be divided into two groups depending on the 

geometrical area of the object: region-based and contour-based (Amanatiadis et al., 2011). 

The region-based descriptor extract features from the whole area of a shape, and the 

contour-based descriptor process features from the contour of a shape only. Some other 

descriptors have a combination and variation of the main two. 

   The representatives of region-based descriptors are Image Moments (IM) and Angular 

Radial Transform (ART) descriptors. IM descriptors use a statistical approach for shape 

recognition and are widely applied in object classification tasks) (Kotoulas, and 

Andreadis, 2005). Image Moments shows an invariant to translation, rotation, and scale. 

ART descriptor is a moment-based method that demonstrates pixel distribution within an 

object region and is able to describe both connected and disconnected shapes (Ricard et 

al., 2004). The important characteristics of this algorithm are the robustness to different 

kinds of rotations and perspective deformations. 
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     Contour-based descriptors calculate values around an object’s outline in either 

clockwise or anti-clockwise directions. Fourier descriptors (FD), Curvature Scale Space 

(CSS) descriptors are examples of this group. The FD is a classical method for shape 

recognition (Dalitz et al., 2013). This method has multiple derivatives and is applied to 

encode various shape signatures. The FD can quickly be normalized to represent shapes 

independently of their orientation, size, and location. A significant advantage of this 

descriptor is the robustness to noise. The CSS method describes shape boundary as a one-

dimensional signal and analyses this signal in scale space (Frejlichowski, 2012). The 

algorithm is invariant to the scale, rotation, location of an object within the image and 

robust to noise.   

     Colour descriptors define the colour property of the image within a particular colour 

space. The colour descriptors consist of several histogram descriptors, a dominant colour 

descriptor, and a colour layout descriptor (CLD) (Manjunath et al., 2001). Examples of 

colour spaces applied across studies are red-green-blue (RGB), hue-saturation-value 

(HSV), hue-max-min-diff (HMMD), hue-saturation-intensity (HSI).  The colour 

descriptors are actively used for image recognition.   

     Texture descriptors characterize the surface of the object. In computer vision, 

textural image analysis is one of the main methods used for object recognition and image 

classification.  Compared to the colour descriptors, which use single-pixel properties, 

texture descriptors evaluate and interpret the group of pixels. Greyscale texture analysis 

can be grouped into four categories: statistical methods, structural methods, model-based 

methods, and transform-based methods.  

     Statistical methods explore the spatial distribution of pixels when a set of local 

statistical features is obtained from the distribution of the grey values at each point of the 

image (Nanni et al., 2016). Statistical methods include first-, second-order statistics and 

run-length matrix (RLM) analysis. First-order features, such as mean, variance, skewness, 

kurtosis, etc., estimate pixels properties eliminating the spatial relations between 

neighbouring pixels.  Second-order statistics named contrast, correlation, energy, 

homogeneity, and entropy, summarize the relationships between the group of pixels 

according to their orientation and distances in the grey level co-occurrence matrix 

(GLCM). The GLCM approach has a high level of matrix dimensionality. RLM refers to 

higher-order statistics. The RLM texture analysis describes a distribution of pixels in 

constant grey level runs and captures coarse textures in a grey-scale image (Bharati et al., 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 4: Features of Segmented Brain Asymmetry: Analysis and Classification 

 

80 

2004). Besides traditional statistical texture analysis, a combination of all these methods 

can be applied.  

     Structural methods represent texture by well-defined texture elements (microtexture) 

and rules describing their features and placement (macrotexture) (Materka and Strzelecki, 

1998). Texture elements can be different shapes (lines, circus, etc.), and the structural 

approach provides a good symbolic description of the image. It can be more beneficial 

for image synthesis than for image analysis. Various proposed approaches are based on 

textual structures. However, these methods appear to be limited since they only describe 

regular textures.  

     Model-based methods generate empirical models of the image texture based on the 

variations of pixel parameters. One of the parameters, for instance, can be defined as a 

weighted average of the pixel intensities in the neighbourhoods. This principle is used in 

the autoregressive (AR) model (Materka and Strzelecki, 1998). The conditional 

probability of the intensity of a particular pixel depending on the values of the 

neighbouring pixels underlies the Markov random fields (MRF) and fractal model 

descriptors (Al-Kadi, 2008).  

     Transform-based or signal processing methods are based on spectral transform. These 

methods convert the image into a new form using the spatial frequency properties of the 

pixel intensity variations. Representatives of transform-based methods are Fourier 

descriptors, Gabor filters (GF), and Wavelet Transform (WT) descriptors. 

Implementation of the Fourier descriptor is limited due to its lack of spatial localisation. 

Gabor filters are more effective in spatial localisation. However, they struggle to localise 

a spatial structure in natural textures (Armi and Fekri-Ershad, 2019). The Wavelet 

Transform descriptors propose a variety of special resolutions that helps to represent a 

texture at a suitable scale, and the range of wavelet functions allows finding the best 

option for texture analysis. GF and WT descriptors are effectively used in texture analysis 

for image segmentation and classification tasks. 

     In image processing, a discrete wavelet transform is a technique to transform image 

pixels into wavelets (Kalaiselvi and Nagaraja 2016; Usman and Rajpoot 2017). It is used 

for time-frequency image analysis, which selects the appropriate frequency bands based 

on the characteristics of the signal. The DWT can be applied for lossless image 

compression and image denoising. The method of signal processing decomposes an 
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image into different subbands (sub-images) with separable low- (L) and high-pass (H) 

filters. The filters are applied in two directions, horizontal and vertical. They divide the 

image into four sub-images with approximated (LL) and detailed (HL, LH, HH) 

components.  The sub-image LL is obtained from the low-pass filtering in both directions, 

horizontal and vertical. The HL sub-image is received from high-pass filtering along the 

horizontal axis and low-pass filtering along the vertical axis. The LH sub-image includes 

filters in the opposite, compared to the HL sub-image, directions. The remaining HH sub-

image is obtained from high-pass filtering in both directions. The third and higher levels 

of decomposition are generated in a similar way. Figure 12 demonstrate how the DWT 

operates at the imaging level. 

 

 
 

Figure 12: The DWT schema of the 1-st and the 2-nd level of the image decomposition after 

applying high- and low-pass filters in the horizontal and vertical directions 

4.3 Feature engineering for brain asymmetry images 

Feature engineering gives knowledge about the most remarkable characteristics of the 

image (Zheng and Casari, 2018). Features detection and description refer to the procedure 

of identifying points of interest in an image (or object) that can be used to describe and 

analyse the image (object) contents providing valuable data for image analysis (García et 

al., 2016). The first machine learning pathway of the computational framework for brain 

asymmetry includes the analytics part that is based on the evaluation of the statistical 

properties of imaging data. The statistical descriptors of the image texture can generate a 

number of relevant and distinguishable features, which is crucial for the interpretation of 

the research findings. 

     Imaging property can be analysed using structural, statistical or hybrid approaches. 

Multivariate statistical analyses help to discriminate between different types of brain 
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tissue that are represented by their own textural parameters. The texture analysis approach 

is also relevant for those tissues and organs that appear to be less detectable.  

4.3.1 Statistical feature engineering 

Approaches that are based on statistical features for representing image properties are 

well-established in image processing (Di Ruberto and Fodde, 2013). The statistical 

descriptors of the image texture, colour or morphological properties generate a limited 

number of relevant and distinguishable features. Often, the first and second-order 

statistics operators significantly impact the texture analysis of the established medical 

domains (Avola et al., 2013). The first-order statistical features provide information about 

the distribution of the grey-level values in the image. However, these types of features do 

not demonstrate the position of relative grey-level values within the image. This 

limitation can be overcome with second-order statistical features. Matrices of relative 

pixels can represent the configuration of grey-level occurrences 𝐼1 and 𝐼2. The matrix 

describes the frequency of grey level 𝐼1 and 𝐼2 pixels that are separated by a distance d 

and have a specific direction θ within the same window. In such a way, the second-order 

statistics provide the information extracted from the co-occurrence matrix about the 

relative distance d and orientation θ of the pair of pixels. The orientation θ has four 

directions: horizontal, vertical, diagonal and anti-diagonal, with angles of 0˚, 45˚, 90˚ and 

135˚ accordingly. The distance d is calculated as an average value of the four directions. 

The feature will not change its value if the image is rotated, i.e., they are rotationally 

invariant.  

All statistical features together have a high possibility to determine the differences 

between two kinds of images.  

     The proposed machine learning workflow uses ten statistical features to represent the 

image asymmetries: MSE (Mean Squared Error), Mean, Std (Standard deviation), 

Entropy, RMS (Root Mean Square), Variance, Smoothness, Kurtosis, Skewness, IDM 

(Inverse difference moment). These features are commonly selected and widely used for 

statistical analysis. Their number was chosen randomly to compare the property of three 

classes of MRIs processed with segmentation algorithms.  The first feature on the list, 

MSE, has been calculated directly from the original image and its mirrored version, while 

the rest of the features are generated using discrete wavelet transform (DWT).  

     As an example, the features vector, extracted from the image asymmetry of a patient’s 

2D MRI, is provided below: 
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[849.477703 10.47024065 90.10031233 0.764676239 51.73779963 7260.005288

 0.999995013 52.78224277 5.661092548 9052.865381] 

A brief description of each statistical feature used in this study is provided below. 

4.3.2 Statistical feature description 

The features calculated from images or image asymmetries give information about the 

likelihood of grey pixel values in a random position in an image, their orientation, and 

interaction with other surrounding pixels. They are defined as follows: 

 

Mean Squared Error (1st order statistics) 

The MSE is defined as the average squared intensity difference in the pixel values 

between the corresponding pixels of two images (Wang et al. 2004). Many applications 

use this measure as an image quality metric (Thung and Raveendran, 2009).  

     General steps to calculate the MSE of a set of X and Y values are: 1) finding the 

regression line; 2) inserting the X values into the linear regression equation to find the 

new Y values (Y'); 3) subtracting the new Y’ value from the original to get the error; 4) 

calculating the square errors; 5) summarizing the errors; 6) finding the mean of the errors. 

 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑖′)2,𝑁

𝑖=1                                            (10) 

 

The regression line describes a relationship between two variables X and Y through an 

equation of a straight line. This line is called “the line of best fit”. The calculation of the 

regression line can be done with a formula: 

 

𝑌 = 𝑎 + 𝑏𝑋 ,                                                      (11)                       

 

 

where                                       𝑏 =  
∑ 𝑋𝑖 𝑌𝑖− 𝑁𝑋′𝑌′𝑁

𝑖=1

∑ 𝑋𝑖
2𝑁

𝑖=1 − 𝑁𝑋′2
,                                               (12) 

 

and                                                        𝑎 = 𝑌′ −  𝑏𝑋′,                                                 (13) 

 

In the thesis, MSE was calculated between the original image and its mirrored version.  

The formula for MSE calculation is provided below: 
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𝑀𝑆𝐸 =
1

𝑀∗𝑁
∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2𝑀−1,𝑁−1

𝑖=0,𝑗=0                          (14) 

 

In the formula, M is the width, and N is the height of the images where I (i, j) is a reflected 

image and K (i, j) is the original image. The i and j are the pixel values in the rows and 

columns of the original (K) and reflected (I) images. The MSE is equal to zero when both 

images are identical.  

 

Mean (1st order statistics)  

The mean in computer vision is the texture feature that measures the average value of the 

intensity pixel values (Kumar and Gupta, 2012). The mean is one of the parameters that 

represent the brightness of the image. The image is bright when the mean is high, and the 

image is dark when the mean is low. In the formula below  𝑁𝑔 is a number of grey level 

pixel values and p(i) is a probability of pixels.  

𝜇 = ∑ 𝑖𝑝(𝑖)
𝑁𝑔−1
𝑖=0                                                      (15) 

 

Standard deviation (1st order statistics) 

The standard deviation (STD) in terms of image processing indicates how much deviation 

or dispersion exists from the mean or average (Esmael et al., 2015). A low standard 

deviation indicates that the data points tend to be very close to the mean, while a high 

standard deviation demonstrates that the data points are spread out over an averaging 

value. The standard deviation indicates the contrast of grey level intensities. The low 

value of the standard deviation shows the low contrast, and the high value presents the 

high contrast of the image. In the formula, Ng indicates the number of the grey pixel 

values, and µ is a mean intensity value: 

𝑆𝑇𝐷 = √
∑ (𝑥𝑖−𝜇)2𝑁𝑔−1

𝑖=0

𝑁𝑔−1
                                                 (16) 

Entropy (2nd order statistics) 

The entropy in computer vision characterizes the image texture and measures the 

randomness of the pixel intensity distribution (Yang et al. 2012). The entropy is the 

highest when all the pixel probabilities 𝑝(𝑖, 𝑗) are unequal. The entropy has smaller values 

when the entries in pixels 𝑝(𝑖, 𝑗) are equal. As a result, the homogeneous image has a 

lower entropy value and heterogeneous regions have a higher entropy value. 
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𝐸𝑁𝑇 =  − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔(𝑝(𝑖, 𝑗))
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0  ,                                 (17) 

 

where 𝑝(𝑖, 𝑗) is a probability of grey levels in a pair of pixels and defined as: 

 

𝑝(𝑖, 𝑗) =  
𝐶(𝑖,𝑗)

∑ ∑ 𝐶(𝑖,𝑗)
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0

,                                             (18) 

 

where 𝐶(𝑖, 𝑗) is a matrix of frequencies of the grey level pairs (𝑖, 𝑗) and 𝑁𝑔 is a number 

of grey level pairs (𝑖, 𝑗). 

 

Root Mean Square (1st order statistics) 

The RMS is a measure of the magnitude of a set of values (Lee et al., 2017). It shows how 

far these values are from the line of best fit. RMS gives a sense of the typical size of the 

values. It works for positive and negative numbers. To calculate the RMS of a set of 

values: 1) square all the values in the set; 2) find the average (arithmetic mean) of the 

squares; 3) take the square root of the result. 

𝑅𝑀𝑆 =  √
∑ 𝑥𝑖

2
𝑖

𝑁
                                                        (19) 

 

where N is the number of measures, and 𝑥𝑖  is each value. 

 

Variance (1st order statistics) 

The variance in a digital image is a measure of image heterogeneity (Yang et al., 2012). 

It refers to the grey level variability of the pixel pairs. The variance is calculated as the 

sum of squared differences between the intensity values of the central pixel and its 

neighbours. It shows how the greyscale values differ from their mean. 

 

𝑉𝐴𝑅 =  ∑ (𝑖 − 𝜇)2𝑝(𝑖)
𝑁𝑔−1
𝑖=0                                           (20) 

 

or for pair of pixels: 

 

𝑉𝐴𝑅 =  ∑ ∑ (𝑖 −  µ𝑥)2 𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=𝑜 𝑝(𝑖, 𝑗) +  ∑ ∑ (𝑗 −  µ𝑦)

2
 𝑝(𝑖, 𝑗)𝑁𝑔−1

𝑗=0
𝑁𝑔−1
𝑖=0 ,            (21) 

 

where pixels value in pairs p(I, j) and Ng is a number of grey level values. 
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Inverse difference moment (2nd order statistics) 

Inverse difference moment (IDM) indicates the local homogeneity of an image (Yang et 

al., 2012). The IDM increases when pixel pairs are close in their greyscale values. So, a 

low IDM value characterizes heterogeneous images, and a relatively high IDM value 

indicates homogeneous images. 

𝐼𝐷𝑀 =  ∑ ∑
1

1 + (𝑖–− 𝑗)2

𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0  𝑝(𝑖, 𝑗),                               (22) 

 

Smoothness (1st order statistics) 

Smoothness is one of the parameters of homogeneity. It measures the relative smoothness 

of intensity in an image (Malik and Baharudin, 2013). It is high for an image region of 

constant intensity and low for regions with large deviations in their intensity values. The 

smoothness is measured by using the standard deviation value. A larger number of STD 

indicates a smooth image texture. 

𝑆𝑀 =  1– − 
1

1 + (𝑆𝑇𝐷)2                                               (23) 

 

Kurtosis (1st order statistics) 

In digital image processing, kurtosis is used to measure the peak of the distribution of the 

intensity values around the mean (Ho and Yu, 2015). A high value of the kurtosis 

indicates that the peak of the distribution is sharp-edged, and the tail is long and heavy. 

A low value of the kurtosis demonstrates that the peak of the distribution is rounded, and 

the tail is short and thin. Kurtosis values are often interpreted in combination with noise 

and resolution of the image. A high kurtosis value is accompanied by low noise and low 

resolution. 

 

𝐾𝑈𝑅𝑇 = 𝜎−4 ∑ ((𝑖 − 𝜇)4𝑝(𝑖)) − 3
𝑁𝑔−1
𝑖=0 ,                               (24) 

 

where σ is a standard deviation, 𝜇 is a mean value, and 𝑖 is a pixel value. 

 

Skewness (1st order statistics) 

In digital imaging, skewness shows the asymmetry of the probability distribution of the 

pixel intensity values about the mean value (Esmael et al., 2015). The skewness can be 

positive or negative. Any symmetric data have skewness near zero. Negative values of 
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skewness indicate data that are skewed left, and positive values indicate data that are 

skewed right. The skewness to the left means that the left data tail is relatively long 

compared to the right one. In image processing, data skewness can give information about 

image surfaces. Darker and glossier surfaces tend to be more positively skewed than 

lighter and matte surfaces.  

𝑆𝐾𝐸𝑊 =  
1

(𝑠𝑡𝑑𝑑𝑒𝑣)3
∑ (𝑥𝑖– − 𝑚𝑒𝑎𝑛)3𝑁

𝑖=1  ,                               (25) 

 

𝑆𝐾𝐸𝑊 = 𝜎−3 ∑ (𝑖 − 𝜇)3𝑁𝑔−1
𝑖=0 𝑝(𝑖)                                     (26) 

 

 

Contrast (2nd order statistics) 

Contrast represents the amount of colour or greyscale differentiation or ratio of pixel 

values between various image features. Images with higher contrast levels display a 

greater degree of colour or greyscale pixels’ variation than images with lower contrast. 

The contrast demonstrates the density of tissues in the image. 

 

𝐶𝑂𝑁 = ∑ 𝑛2𝑁𝑔−1
𝑛=0 {∑ ∑ 𝑝(𝑖, 𝑗)}

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1                                  (27) 

                                                                                    |𝑖 − 𝑗| = 𝑛 

Correlation (2nd order statistics) 

Correlation is a measure of grey level linear dependences of neighbouring pixels. 0 speaks 

about uncorrelated values, 1 shows a high level of correlation. 

𝐶𝑂𝑅 = ∑ ∑ 𝑝(𝑖, 𝑗)
(𝑖−𝜇𝑥)(𝑗−𝜇𝑦)

𝜎𝑥𝜎𝑦

𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0  ,                             (28) 

where 𝜇𝑥, 𝜇𝑦,𝜎𝑥 , 𝑎𝑛𝑑 𝜎𝑦 are the means and standard deviations of p(i, j). 

 

Energy (2nd order statistics) 

Energy or angular second moment (ASM) speaks about uniformity of distribution. Energy 

has a high value when the frequency of repeated pixels in the matrix is high. This is related 

to the homogeneous image. It is calculated by summarizing the squared elements in the 

Grey Level Co-occurrence Matrix: 

 

𝐸 = ∑ ∑ 𝑝(𝑖, 𝑗)2𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0                                            (29) 
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4.4 Statistical feature analysis of 150 images set 

150 images set in the coronal plane (male)    

The first dataset is represented by 150 images of the male subjects in the coronal (frontal) 

plane. All images are equally distributed between three groups of AD, EMCI and NC 

participants. Table 4 presents the averaging feature results based on normalized features 

data extracted from each group's segmented image asymmetry set. The following Figure 

13 provides a visual representation and comparison of the data. 

Table 4: Mean values of 10 statistical features extracted from 150 2D images of male 

participants 

 MSE Mean Std Entropy RMS Variance 

AD 1.610606 1.65855 1.232508 0.835095 0.706434 1.364122 

EMCI 1.185587 1.39993 1.041964 0.844349 0.592445 0.964807 

NC 1.522815 1.650167 1.215422 0.84552 0.68953 1.28672 

 

Smooth Kurtosis Skewness IDM 

0.999997 0.46855 0.539209 1.459882 

0.999996 0.482657 0.548148 1.184178 

0.999997 0.505423 0.561646 1.414765 

 

 

Figure 13: Statistical mean of each statistical image feature for normal cognition (NC), early 

mild cognitive impairment (EMCI), and Alzheimer’s Disease (AD) patients (150 images set in 

the coronal plane for male subjects) 

The comparison of statistical features of AD, EMCI, and NC classes demonstrates 

differences in their statistical characteristics. The features belonging to the EMCI class 
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have the lowest values compared to the features of the NC and AD classes, with the AD 

class demonstrating the highest averaging feature values. The first feature, MSE, which 

calculates the difference between original and inverted image matrices, clearly indicates 

that EMCI data show more symmetry than NC and AD imaging data. The other statistical 

features are also supporting this hypothesis. 

150 images set in the coronal plane (female) 

The next created dataset belongs to the female participants. It consists of the same number 

of images as the previous set of male subjects. Initially, image sets were separated 

according to gender. This condition was applied due to the differences in the brain size 

and write-left lateralisation of the anatomical structures of the two genders. Statistical 

data extracted from the segmented asymmetries were processed and combined in the 

feature Table 5 and illustrated in Figure 14. 

Table 5: Averaging feature values received from 150 2D images of female participants 

 MSE Mean Std Entropy RMS Variance 

AD 1.596137 1.496493 1.21072 0.792835 0.676323 1.3241 

EMCI 1.008233 1.190574 0.936756 0.785103 0.506458 0.820428 

NC 1.077443 1.234181 0.985403 0.791182 0.541784 0.867183 

 

Smooth Kurtosis Skewness IDM 

0.999996 0.56743 0.590364 1.334345 

0.999995 0.58882 0.603903 1.05987 

0.999995 0.539956 0.577644 1.09192 
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From the tables and figures above (see Tables 4, 5 and Figures 13, 14), the statistical 

values highlight the differences between features collected from AD, EMCI and NC 

groups. Features represent EMCI class with lower values than AD and NC classes for 

both genders.  

MSE value analysis of 150 image sets of male and female subjects 

The MSE feature analysis with a Pareto chart has been performed for male and female 

participants. The MSE value for each class has been calculated from the differences 

between the original image and its mirrored version for all images in classes of AD, 

EMCI, and NC representatives and indicates the impact of asymmetry for each class. 

Figure 15 provides an MSE feature analysis with a Pareto chart. The cumulative line on 

the secondary axis shows the contribution of each bar (image class) in the total value as 

a percentage.     
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Figure 14: Statistical mean of each statistical image feature for normal cognition 

(NC), early mild cognitive impairment (EMCI), and Alzheimer’s Disease (AD) 

patients (150 images set in the coronal plane for female subjects) 
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Figure 15: Pareto charts of MSE feature analysis for MRI data of the male (left) and female 

(right) subjects for three classes. The total MSE feature value for both bar charts is placed in the 

coloured bars. The axis on the right indicates the cumulative percentage of the total value for each 

class 

The Pareto bar chart indicates the impact of asymmetry for each class. The highest MSE 

bar is associated with patients of the AD class. The highest MSE bar for this class 

confirms that changes in symmetry in the MRIs of this image group are substantial 

compared to changes in symmetry in the MRIs of the other groups. At the same time, the 

EMCI image group has smaller values and looks more “symmetrical” than others. The 

pattern of changes in male and female subjects does not show significant differences. 

4.5 Statistical feature analysis of 300 image set 

300 images set in the coronal plane (male) 

A new male 300 image set was created from 150 different participants to check the 

influence of the double-size data on the evaluation performance. The feature engineering 

was performed in a similar way for these imaging data. All the data are equally divided 

into three groups of Alzheimer’s Disease-AD, Early Mild Cognitive Impairment-EMCI 

and Normal Cognitively-NC participants. Table 6 and Figure 16 show averaging 

normalized statistical data of each extracted feature collected from 300 images of 150 

subjects with segmented asymmetries.  

Table 6: Normalized mean values of 10 statistical features obtained from 300 images of 

segmented asymmetries of 150 male participants 

 MSE Mean Std Entropy RMS Variance 

AD 1.80849 1.719051 1.288539 0.820447 0.719896 1.49946 

EMCI 1.399871 1.484234 1.12843 0.822393 0.625747 1.119476 

NC 1.594207 1.677185 1.209318 0.876431 0.702067 1.286044 
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Smooth Kurtosis Skewness IDM 

0.999997 0.510943 0.565706 1.577456 

0.999996 0.502798 0.557935 1.347272 

0.999997 0.456303 0.527473 1.420371 

 

 

Figure 16: Statistical mean of each image asymmetry feature for normal cognition (NC), early 

mild cognitive impairment (EMCI), and Alzheimer’s disease (AD) patients calculated from 300 

images of male subjects in the coronal plane 

The evaluation of the results demonstrates, similar to the previous datasets, changes in 

the asymmetries of AD, EMCI and NC subjects. EMCI group looks more symmetrical 

compared to the AD and NC groups. The highest asymmetry shows the group of patients 

with Alzheimer’s Disease.  

300 images set in the axial plane (male) 

An additional experiment was conducted with another 300 images set that was created 

from the image asymmetries, not in the coronal (frontal) but the axial (horizontal) plane. 

The horizontal axis was chosen to investigate the contribution of the topologically 

different features to the classification process. These features are processed similarly to 

the previous ones and provided in Table 7. Figure 17 gives a graphical representation of 

the statistical values. 

Table 7: Normalized mean values of 10 statistical features obtained from 300 images (axial 

plane) of segmented asymmetries of 150 male participants 

 MSE Mean Std Entropy RMS Variance 

AD 0.261327 0.25081 0.157751 0.97021 0.876396 0.1997 

EMCI 0.210589 0.232144 0.139754 0.997116 0.781286 0.153199 
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NC 0.266186 0.266342 0.159873 1.012704 0.918746 0.203346 

       

 

Smooth Kurtosis Skewness IDM 

0.999998 0.34638 0.461496 0.180701 

0.999998 0.320396 0.441634 0.172252 

0.999998 0.327003 0.45007 0.188292 

    

 

 

Figure 17: Statistical mean of each image statistical feature for normal cognition (NC), early 

mild cognitive impairment (EMCI), and Alzheimer’s Disease (AD) patients (300 images set in 

the axial plane for male subjects) 

The EMCI group shows a higher tendency to symmetry than a class of AD and a class of 

NC subjects from the data above.  

300 images set in the coronal plane (male) 

The features sets were extended with three more 2nd order GLCM statistical features, 

named contrast, correlation, and energy. GLCM features are well known for texture 

analysis, but due to the high level of dimensionality, they often require the 

implementation of the dimensionality reduction technique. In this case, PCA (principal 

component analysis) was added to the feature extraction algorithm. Table 8 and Figure 

18 demonstrate the varieties among AD, EMCI and AD classes after applying PCA on 

features extracted with DWT. Eight out of thirteen features such as MSE, 1st order 

statistics (mean, kurtosis, skewness), and 2nd order statistics (IDM, entropy, contrast and 

correlation) show visual differences between image classes. Early stages of dementia, that 

0

0.2

0.4

0.6

0.8

1

1.2

AD EMCI NC



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 4: Features of Segmented Brain Asymmetry: Analysis and Classification 

 

94 

might be related to the amnestic MCI, lead to a decrease in asymmetry between the right 

and the left hemisphere of the brain.  

Table 8: Normalized mean values of 13 statistical features obtained from 300 images (coronal 

plane) of segmented asymmetries of 150 male participants. 

 MSE Mean Std Entropy RMS Variance Smooth 

AD 0.151633 0.397616 0.809645 0.219148 0.8105414 0.6560376 0.9583988 

EMCI 0.119791 0.412472 0.810086 0.224008 0.8111071 0.6567431 0.9587062 

NC 0.150042 0.394934 0.809335 0.22391 0.8102608 0.6554778 0.9582721 

 

Kurtosis Skewness IDM Contrast Correlation Energy  

0.3514284 0.2948674 0.2958834 0.3032587 0.1256219 0.8458561  

0.3230652 0.2721116 0.266333 0.2921182 0.1351724 0.8412450  

0.3406915 0.2841802 0.3112698 0.2974115 0.1301043 0.8460503  

 

 

Figure 18: 13 statistical features (MSE, 1st and 2nd line of statistics) after applying PCA on 150 

image male datas     

4.6 Comparative analysis of feature sets 

Comparison of MSE and other statistical values of the four datasets 

This subsection compares the statistical properties of four datasets with ten statistical 

features for the data analysis. Figure 19 illustrates the changes in MSE values between 

the three image classes, AD, EMCI and NC, in four completely different image sets.  
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Figure 19: Comparison of MSE feature values between the three classes of MRIs. Numbers, 

1,2…4, indicate the investigated datasets: #1 refers to a 150-image set of male MRIs in the 

coronal plane, #2 is a 150-image set of female MRIs in the coronal plane, #3 corresponds to a 

300-image set of male subjects in the coronal plane, and #4 represents a 300-image set of males 

in the axial plane   

Images of the EMCI class obtain the lowest MSE value for all image sets. It indicates 

more symmetry for the EMCI class than for AD and NC classes. The differences between 

AD and NC classes are less noticeable.  

     Further analysis of brain asymmetries was performed using the ratio of statistical 

values of binary classes such as AD vs EMCI, EMCI vs NC and AD vs NC. Interclasses 

ratios are displayed in Table 9. 

Table 9: Ratios of statistical values for binary image groups combined from four different 

datasets (*Var states for Variance, **Kurt for Kurtosis, ***Skew for Skewness) 

Datasets 

 

MSE Mean Std Entropy RMS Var Smooth Kurt Skew IDM 

AD/EMCI 

EMCI/NC 

AD/NC 

 

1.36 

0.78 

1.10 

1.19 

0.85 

1.00 

1.18 

0.86 

1.02 

1.00 

0.99 

0.99 

1.20 

0.84 

1.01 

1.42 

0.74 

1.05 

1.00 

1.00 

1.00 

0.98 

0.94 

0.92 

0.98 

0.98 

0.96 

1.24 

0.84 

1.04 

AD/EMCI 

EMCI/NC 

AD/NC 

 

1.60 

0.99 

1.48 

1.26 

0.97 

1.22 

1.29 

0.95 

1.22 

1.00 

1.00 

1.00 

1.31 

0.95 

1.26 

1.61 

0.94 

1.52 

1.00 

1.00 

1.00 

0.97 

1.09 

1.06 

0.98 

1.03 

1.03 

1.25 

0.97 

1.22 

AD/EMCI 

EMCI/NC 

AD/NC 

 

1.29 

0.88 

1.13 

1.16 

0.88 

1.02 

1.14 

0.93 

1.07 

1.00 

0.93 

0.93 

1.14 

0.90 

1.03 

1.34 

0.87 

1.16 

1.00 

1.00 

1.00 

1.02 

1.09 

1.11 

1.00 

1.08 

1.08 

1.17 

0.95 

1.11 

AD/EMCI 

EMCI/NC 
1.24 

0.77 

1.09 

0.85 

1.14 

0.88 

0.97 

0.99 

1.13 

0.85 

1.33 

0.75 

1.00 

1.00 

1.09 

0.97 

1.05 

0.98 

1.06 

0.89 
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AD/NC 0.96 0.93 1.00 0.96 0.96 1.00 1.00 1.06 1.02 0.95 

 

From the calculations above, we can see that the highest ratio for the features MSE, Mean, 

Std, RMS, Variance, and IDM is received for the AD and EMCI subjects’ group for all 

datasets. AD/EMCI ratio for MSE feature for all datasets is between 1.24 and 1.60, for 

Mean is between 1.09 and 1.26, for Std is between 1.14 and 1.29, for RMS is between 

1.13 and 1.31, for Variance is between 1.33 and 1.61 and for IDM is between 1.06 and 

1.25. It means that the differences in the symmetry between AD and EMCI classes are 

substantial. The same features demonstrate the smallest and most stable ratio for the 

EMCI vs NC groups. EMCI/NC ratio for MSE feature for all datasets is between 0.77 and 

0.99, for Mean is between 0.85 and 0.97, for Std is between 0.86 and 0.95, for RMS is 

between 0.84 and 0.95, for Variance is between 0.74 and 0.94 and for IDM is between 

0.84 and 0.97. This provides evidence for the presence of initial degenerative changes in 

the brain that can be visible by dedicated software and diagnosed. It aligns with previous 

neuroscience study by Liu et al. (2018).  The statistical value ratio for AD and NC classes 

for most of the features in datasets demonstrates the differences in symmetries but on a 

smaller scale than for AD and EMCI classes. AD/NC ratio is provided below, and for the 

MSE feature in the four datasets it is between 0.96 and 1.48; for Mean it is between 0.93 

and 1.22; for Std it is between 1.00 and 1.22; for RMS it is between 0.96 and 1.26; for 

Variance it is between 1.00 and 1.52 and for IDM it is between 0.95 and 1.22. It is possible 

to see that the ratio for this group indicates the different types of symmetry. In some cases, 

images of the AD class are more symmetrical than the NC class, and in other cases, they 

are less symmetrical. The constant changes in symmetry due to the progression of the 

degenerative processes in the brain can explain this fact. If dementia progresses, the left-

right asymmetry also grows. Thus, the level of asymmetry depends on the stage of 

dementia, which was also verified by neuroscience studies such as Yang et al. (2017) and 

Wachinger et al. (2018).  

     Entropy, Kurtosis and Skewness features are not very informative for these types of 

imaging data. Their ratios for binary classes have a small difference that cannot help with 

diagnosis. Also, the smoothness values tend to be unity and are not suitable for the 

predictions. 

     Additional analysis of the statistical values provides the following information about 

the structure of MRI asymmetries. From Tables 6, 7, 8, and 9, the lowest average values 
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(MSE, Mean, Std, RMS, Variance and IDM) compared to AD, and NC data for all 

datasets has EMCI. The MSE provides information about the differences between the 

original and reflected images. The Mean represents the brightness of the image, while the 

Std indicates the contrast of grey level intensities. RMS measures the magnitude of a set 

of values and the Variance measures the image homogeneity, which shows how the 

greyscale values differ from their mean. IDM also indicates the local homogeneity of the 

image (low values are specific for heterogeneous images). In this vein, images of EMCI 

can be characterised as images with small differences between original and reflected ones. 

The images have low contrast and are not homogeneous. The pixel values of the EMCI 

group have a low magnitude. Compared to EMCI and NC classes, AD has the opposite 

picture and the highest average values for the same statistical features. 

     The statistical feature analysis supports the view that image asymmetry decreases in 

the initial stage of the generative process in the brain (Early Mild Cognitive Impairment) 

and grows when the person develops moderate and severe dementia (Alzheimer’s 

disease).  

4.7 Summary and contribution of the chapter 

The feature engineering process is an important part of the diagnostic cycle. It plays 

significant role in understanding the image characteristics and in their analysis. Correctly 

identified and selected features make the diagnostic process relevant and efficient. 

Multiple feature generation algorithms give the opportunity to receive detailed image 

descriptions and highlight an image exclusiveness. This is vital for image analysis and 

classification tasks. The collected features must have several essential characteristics such 

as locality, distinctiveness, repeatability, invariance to affine transformation, and 

presence of noise. Therefore, the chosen correctly feature detection algorithm helps to 

identify the area of interest in the image. Numerous textures, colour, and shape descriptors 

are proposed to find and extract the most important features. 

 

     The statistical information on the image asymmetries was used to understand the 

structural changes in the brain due to the progression of cognitive decline. It contributes 

to the early diagnosis of dementia and helps to predict the development of the 

neurodegenerative process. The study compared and analysed the statistical features of 

five different multiclass MRI sets. Each set represents three image classes of EMCI 
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patients, AD patients and NC subjects. In all tests, the EMCI class demonstrated the 

highest level of symmetry between the left and right brain hemispheres. This fact can be 

used as a diagnostic biomarker of early cognitive decline. The highest asymmetry level 

is detected due to the development of the advanced stages of Alzheimer’s Disease.  

     Thus, the proposed approach contributes to the diagnosis of early dementia by 

introducing segmented asymmetries as an additional imaging biomarker. The exploration 

of the statistical features collected from hemispheric asymmetries and the following 

machine learning tests demonstrate the robustness of the algorithms.  

     The next chapter gives a detailed description of the machine learning experiments with 

classic and deep neural networks and their results in the diagnosis of Mild Cognitive 

Impairment and Alzheimer’s Disease.  The inputted imaging data for the tests is 

represented by MRIs of segmented brain asymmetries.  



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 5: Learning Brain Asymmetry Biomarkers  

 

99 

Chapter 5:  Learning Brain Asymmetry Biomarkers  

5.1 Introduction 

This chapter investigates the potential of brain asymmetry biomarkers to support a 

diagnosis of cognitive decline and early dementia by exploiting classic machine learning 

algorithms and convolutional neural network architectures.  It contains three studies. The 

first study checks the brain asymmetry features for their robustness in the detection of 

brain pathologies. The second study explores the potential of deep transfer learning for 

image asymmetries with fine-tuning of the pretrained CNN, AlexNet, incorporating an 

SVM module. The experiments are conducted using a gradual increase in training epochs. 

The third study is focused on the diagnostic potential of the specialised CNN architectures 

based on the 5CLNN model, and comparisons with the AlexNet and VGG16. The 5CLNN 

model is tested with Softmax, SVM, KNN and LD classification modules.  

5.2 Machine Learning Workflow for Classification of Brain Asymmetry 
Images  

The first part of the computational framework based on computer vision algorithms has 

been described in detail in Chapter 3. The machine learning workflow for early diagnosis 

of dementia (see Figure 20) is presented in this chapter (Herzog and Magoulas, 2021). It 

includes different types of machine learning algorithms that can be applied to the images 

of segmented brain asymmetries. The first pathway, which consists of the classic ML 

algorithms such as SVM, LD, KNN and NB, exploits features collected from asymmetry 

images. The second one, based on the deep neuronal structure, uses asymmetry images 

directly. This research stage investigated various convolutional neural network models 

by applying transfer learning to the established pretrained architectures and newly 

proposed configurations.      
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Figure 20: Computational framework including image transformation stages, asymmetry 

features generation and machine learning classification algorithms  

Before the classification tasks, the MRI data passed through normalization, resizing and 

segmentation stages. The data preparation stages are described in Chapters 4. 

5.2.1 Bag-of-Features approach  

The Bag-of-Features (Rueda et al., 2012; Gabryel, 2018) is an adaptation of the Bag-of-

Words algorithm that is used in natural language processing (NLP) and information 

retrieval for image analysis. In computer vision, the Bag-of-Features can be represented 

as a vector of occurrence or histogram of occurrences of the local image features (see 

Figure 21). The histogram is called the “visual signature” of an image. 

 

Figure 21: Example of the histogram of occurrences of an image 

The BOF algorithm starts from the detection and representation of features in the image 

as numerical vectors. Feature descriptors are involved in these processes. There are 
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several descriptors proposed in recent years. The Speeded Up Robust Features-SURF 

algorithm is used in the thesis.  

     The SURF is a region-based feature detection and extraction algorithm (Bay et al., 

2008; Le and Gonzalez, 2009). SURF algorithm is several times faster than the well-

known Scale Invariant Feature Transform (SIFT) (Karami et al., 2017) and outperforms 

it with respect to robustness, repeatability and distinctiveness. The speed of the SURF 

algorithm is achieved by relying on the Integral image (which represents a summed-area 

table that is performed for calculating the average intensity in the given image) (Ehsan et 

al., 2015) for image convolutions with a box filter (Haar-like filter) (Rezaei et al., 2013). 

The example of this filter is provided in Figure 48. A Hessian matrix-based measure is 

used for feature detection. A Hessian matrix is a squared matrix of second-order partial 

derivatives and has scalar-valued functions as entries (Carrazza et al., 2015). The SURF 

detector finds the localization and scale of interest points as extrema of the determinant 

of the Hessian matrix. Haar wavelet responses in the horizontal and vertical directions are 

applied for the feature description. Haar wavelet responses can indicate the presence or 

absence of specific characteristics in the image, such as edges or textural changes (Porwik 

and Lisowska, 2004). 

 

 

 

Figure 22: Haar-like filters examples  (Source: Bianco et al., 2014) 

For feature description, the SURF algorithm summarizes the pixel information within a 

local neighbourhood area and indicates their gradient orientation around the point of 

interest (see Figure 22). A local feature receives orientation according to the dominant 

gradient direction. A square sub-region with selected orientations (vectors) forms a 

descriptor. 4×4 sub-regions with four marginal statistics give a descriptor with a total of 

64 dimensions (4×4×4). 
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Figure 23: SURF descriptor (Source: Wang et al., 2011) 

Generally, the SURF algorithm is characterized by rotation and scale invariance and 

works well with blurred images. But it is sensitive to viewpoint and illumination changes. 

     In the next stage of the BOF process, all described and extracted features are organized 

in clusters. This is done using the K-means clustering algorithm. The K-means is one of 

the well-known clustering algorithms (Bair, 2013). Clustering algorithms perform the 

grouping of data points (objects) with similar properties or features into clusters (see 

Figure 24). The data points are divided into clusters according to the distances between 

them in the data space. Defining an adequate distance measure is a critical process for 

successful clustering. Data points into clusters can belong completely to the assigned 

clusters (this is called “hard clustering”), or they can be addressed to one of them with 

some probabilities (this is applied to the “soft clustering”). There are more than 100 

clustering algorithms that follow the different rules of defining the similarity among the 

data points. K-means belongs to the sub-class of centroid-based algorithms. 

     Centroid-based algorithms are repetitive algorithms where the concept of similarity is 

obtained by the proximity of a data point to the centroid of the clusters. For the K-means 

algorithm, the number of clusters should be defined in advance. In the first step of K-

means clustering, any random data point is assigned as the initial mean of the cluster. 

Then, the centroid of the cluster is computed. The next computational step is re-assigning 

another data point to the closest cluster centroid. The re-calculations continue until the 

data convergence. The “data convergence” means that there is no further switching of 

data points between the clusters. 
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Figure 24: K-means clustering ( Source: https://i.stack.imgur.com/cIDB3.png) 

In the final stage of the BOF approach, each image is represented by a normalized 

histogram of occurrences of the image features. These features can be processed further 

with machine learning algorithms. 

     The BOF model is simple to understand.  It gives a lot of flexibility for customization 

and can be easily implemented. The significant advantage of the BOF is that the model is 

suitable for both medium and large datasets. Unfortunately, there is a challenge to 

generate a common visual vocabulary that will be able to index any set of images. One of 

its limitations of it is the data sparsity when a lot of weights are equal to 0. It does not 

significantly impact the calculation, but it can lead to increased data space and affect the 

length of the processing time.  

     In the current research, the BOF algorithm was mainly used as an enriching algorithm 

for image classification to improve the precision of the detection of clinical pathology. 

5.3 Model validation and evaluation 

Every created model needs to be checked for its quality. The model evaluation process 

quantifies the quality of the predictions. For this reason, each created model should pass 

through the validation process and be able to make predictions on new independent 

variables or datasets. There are established metrics that are used to evaluate the model’s 

performance. The better its current performance is, the harder to make changes for further 

improvements. At the same time, the very high performance on a training set is way to 

suspect the model overfitting. 

5.3.1 Model validation 

The validation procedure helps create an optimal model that can be applied to unseen 

data. Before validating the model, the data have to be split into the training, validation 

and testing parts. There are a number of ways to perform the validation process. Three 

https://i.stack.imgur.com/cIDB3.png
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classic evaluation approaches include hold-out, K-fold, and K-fold validation with 

shuffling. 

     For the hold-out validation, the fraction of the data is separated from the training part. 

The validation runs on the testing part. This approach has a limitation when the dataset is 

small, and the testing set has only a few samples that cannot represent the data 

statistically. Cross-validation is preferable in this situation (Gonzalez et al., 2016)  

     The K-fold cross-validation approach split the data into k equal parts. For every 

partition n, a model is trained on the remaining partitions k– 1 and evaluated on partition 

n. The final evaluation model’s score is the k scores average. “Leave-one-out” is one of 

the cross-validation cases when the number of folds and instances in the dataset are equal.  

Every run on the algorithm is accompanied by separating one instance from the training 

set. Selected instances are different for every subsequent run.  Iterated cross-validation 

with shaffling is another way of the validation procedure. It is the most precise method 

for small datasets and includes additional every time data shuffling before splitting the 

set (Gonzalez et al., 2016). Thus, cross-validation methods are helpful when the model 

performance demonstrates significant variance based on the data split for the training and 

testing parts. 

5.3.2 Model performance  

The confusion matrix or contingency table helps understand the model’s results and, for 

example, answers the question of why the created system works worse or better than 

expected see Table 10). The confusion matrix of the binary classifier includes details 

about correctly and wrongly classified values. There are four possible outcomes on any 

given instance: True Positives (TP) when the classifier correctly labels positive values as 

positive; True Negatives (TN), when the negative representatives of the class are precisely 

determined;   False Positives (FP) when the classifier mistakenly names a negative value 

as a positive, deriving in a “type one” classification error; and False Negatives (FN) when 

positive values incorrectly are called as negative, producing a “type two” classification 

error. A schematic view of the confusion matrix for the binary classifier is provided 

below. 
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Table 10: Binary confusion matrix 

  Predicted classes 

 yes no 

Actual classes yes True Positive (TP) False Negative (FN) 

no False Positive (FP) True Negative (TN) 

 

Performance statistics  

Performance statistics of the classification model can be computed from the confusion 

matrix discussed above. It is evaluated in terms of accuracy, sensitivity (recall), 

specificity, precision, F-score and area under the curve (Catal, 2012).  

Accuracy shows how close a calculated value gets to the actual (true) value. The accuracy 

score is computed by multiplying calculated fractions by 100. The mathematical 

expression of accuracy is: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
                                                (30) 

where P stands for positive value (event), N for negative, F for false, and T for true value.  

Accuracy is an efficient number that easy can be understood and explained. So, it can be 

easily used in any evaluation environment. The accuracy calculation's limitation can be 

met when the positive class is represented with much fewer numbers than the negative 

class. In this situation, another evaluation metric that can detect the positive class more 

accurately should be applied.  

Precision is a more sensitive metric for detecting the positive class. Precision is a fraction 

of the correctly labelled positive events to all positive events. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (31) 

Sensitivity (recall) is a fraction of true positives among all the correct events. 

Sensitivity (Recall) =
𝑇𝑃

(𝑇𝑃+𝐹𝑁) 
                                                (32)                       

This measure is vitally important in medical diagnosis. The recall is different in cases of 

misdiagnosis or hyper diagnosis of the illness.  
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Specificity shows the opposite recall measure information. It calculates a fraction of 

negative events that are correctly identified. 

Specificity =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                         (33) 

F1-score (F-score, F-measure) balances the precision and recall statistics.  

It is calculated as the harmonic mean or average of them. 

F1-score = 
2(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                                       (34) 

The harmonic mean is constantly equal to or less than the arithmetic mean, and its lower 

value has a large incommensurable impact. The high value of the F1-score can be 

archived only in the situation when both recall and precision measures are high. 

All the described above measures help to evaluate the performance of the classifier. 

However, it is important to remember that classifier works better in the most distinct 

situations when the sample is far from the threshold level. It prevents the sample from the 

assignment to it the alternative label. In this case, it is possible to speak about the 

confidence level that demonstrates how far the sample is from the given threshold. The 

confidence level can be assigned to the classifier with the borderline cases when the 

diagnosis is problematic.  

Receiver Operator Characteristic curves (ROC) 

The Receiver Operator Characteristic curve is a visual, graphical representation of the 

tested data, which illustrates how the number of correctly classified positive values (true 

positive rate) varies with the number of incorrectly classified negative values (false 

positive rate). ROC curve shows the relationship between sensitivity and specificity (see 

Figure 25).  
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Figure 25: ROC curve example 

The Area Under the ROC Curve demonstrate the distribution of positive and negative 

instances and measures the potential of a classifier to differentiate between classes. AUC 

can be used as a summary of the ROC curve. High values of the AUC indicate better 

performance of the classification model. The best possible 100% score equals one and 

looks like a square. The triangle shape of the AUC talks about 50% (or ½) of the 

classifier's efficiency. 

Performance of multiclass systems. 

The performance of multiclass systems is more challengeable than binary classifiers. The 

performance of the classifiers can drop with an increased level of complexity. More 

accurate results are reflected in the diagonal line of the confusion matrix (see Figure 26). 
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Figure 26: Confusion matrix of multiclass classifier example (Source: 

https://www.researchgate.net/publication/315534048_Characterisation_of_mental_health_condi

tions_in_social_media_using_Informed_Deep_Learning) 

The diagonal of the two-dimensional 𝑑 × 𝑑 confusion matrix M [i; j] holds the most 

important items from class i that were correctly classified as class i. The formula below 

expresses the precision (i) of the class i correctly identified. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) = 𝑀[𝑖, 𝑖]/ ∑ 𝑀[𝑗, 𝑖]𝑑
𝑗=1                                   (35) 

Recall (i) demonstrates the fraction of all correctly identified class i members and is 

expressed by the following formula. 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑖) = 𝑀[𝑖, 𝑖]/ ∑ 𝑀[𝑖, 𝑗]𝑑
𝑗=1                                      (36) 

Error distribution 

The created model can be evaluated by calculating the model’s errors. Errors demonstrate 

the differences between the predicted 𝑦′ = 𝑓(𝑥) and actual value y. The types of the error 

function include calculation of absolute error, relative error and squared error. Absolute 

error expresses the differences between predicted and true values as: 

∆ = 𝑦′ − 𝑦                                                       (37) 

Relative or approximation error can be obtained by normalization the error magnitude 

and can be expressed as a fraction or percentage (when it is multiplied by 100%): 

𝜖 =
𝑦−𝑦′

𝑦
                                                         (38) 

Squared error calculation always gives positive results that can be easily interpreted.  

∆2= (𝑦′ − 𝑦)2                                                  (39) 

However, large values contribute disproportionally to the total value. It makes the outliers 

dominate in error statistics for the large ensemble algorithms.  

     The commonly used error statistical measures used for evaluation of the model 

performance are Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). 

MSE formula was used to calculate the pixel errors between the original and mirrored 

versions of segmented image asymmetry. In this chapter, it is used for the calculation of 

the model’s error.  
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     Visualization of the error can be done using a plot of a histogram. It demonstrates the 

absolute error distribution for any predicted values (see Figure 27).  

 

Figure 27: Error histogram example (Source: https://www.researchgate.net/figure/Mean-Error-

Histogram-Here-we-present-how-the-mean-absolute-error-of-predicting-DBP-

SBP_fig2_341148172) 

The ideal distribution should be symmetrically centered around zero and be bell-shaped. 

This shape tells that small errors are more meaningful and common than large ones. 

Extreme outliers of such type of distribution are rare. If any of the conditions are not met, 

the error bias can be corrected using the model optimization algorithms. 

5.4 Classification algorithms used in the thesis 

Classification is relevant to a large group of supervised learning methods designed for 

predictive modelling problems. These methods can be performed using structural and 

unstructured data. They are efficient for binary and multiclassification problems.  

     The binary problem refers to the classification tasks with two class labelled outcomes 

and gives an answer if the current object belongs to one of the observed classes. Often in 

medical diagnosis, one class belongs to the normal state and another to the abnormal. For 

instance, “tumour detected” states the medical tests abnormalities and “tumour not 

detected” confirms a normal medical condition. Multiclass classification problem deals 

with a range of specified classes. It is not based on the principle of “normal” or 

“abnormal” outputs. It predicts only one possible class from the entire range. For instance, 

there are three brain tumours classes: astrocytoma, oligodendroglioma, and glioblastoma. 

While making a prediction, the multiclass classifier will name only one tumour from the 

above list. 
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The classification process workflow for supervised learning is provided in the Figure 28. 

It demonstrates the main stages of the data modelling and predictive labelling. 

 

 

Figure 28: Classification process for the supervised learning workflow 

The standard algorithms used for the classification tasks are described in this section. 

     The Naïve Bayes (NB) algorithm is based on Bayes' theorem. The algorithm is used 

for probabilistic statistical models that estimate the probability of each variable or class 

variables of data. The NB algorithm is suitable for binary and multiclass classification 

problems. A naive Bayes classifier (Schneider, 2005) is a statistical classifier that can 

predict class membership probabilities. The classifier assumes that there is strong 

independence between the features of the class. This type of assumption is called 

“conditional class independence”. The representation of the Naïve Bayes is a list of 

probabilities. They are stored in the Naïve Bayes model. They include the probabilities 

of each class in the training dataset and the conditional probabilities of each input value 

(feature) in the class. It is essential to consider that the Naïve Bayes can learn the 

significance of the individual features but cannot determine their relationship. This type 

of classifier can be applied to both binary and multiclass datasets. The key benefit of the 

Naïve Bayes classifier is that it needs a small amount of training data to make a quick 

prediction. The popular representatives of the NB classifier are Gaussian, Multinomial, 

and Bernoulli. 

     The Linear Discriminant (LD) is a linear decision boundary classifier based on the 

data's Linear Discriminant Analysis (LDA) (Tharwat et al., 2017). This classifier is 

created by calculating data’s class conditional densities following the Bayesian rules. 
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LDA or Fisher’s linear discriminant works through the projection of the dataset to the 

low dimensional space. It leads to the reduction of the data dimensionality. Usually, the 

LDA model associates each dataset class with a Gaussian density. Under this condition, 

all classes share the same covariance matrix. LDA estimates the between-class variance 

(sum of squared differences) and defines a distance between the mean of different classes. 

In the same way, it computes the within-class variance. After calculations of between-

class and within-class variances, there is a possibility to construct the low-dimensional 

space with maximized between-class and minimized within-class variances. LDA has a 

close relationship with the regression analysis. They both express the dependent variables 

as a linear combination of different measurements. 

     The K-Nearest Neighbours (KNN) is a representative of the instance-based or 

memory-based learning algorithms (Aha et al., 1991). These algorithms are focused on 

the representation of the stored instances and measurements of the similarity between the 

instances. The instance-based algorithms look at data points and their characteristics 

around a single point to determine what group this data point belongs to. KNN is a 

straightforward supervised machine learning algorithm used to resolve classification and 

regression problems. It also can be applied to nonlinear data. KNN is considered a “non-

parametric” and “lazy learning” algorithm. “Non-parametric” means that the algorithm 

does not rely on a fixed structure of a set of data parameters. “Lazy learning” indicates 

that the algorithm does not need any training data for a model generation. All training 

data goes straight to the testing stage, making it very slow. The critical factor of the 

accurate classification is the number of Ks (nearest neighbours) in the dataset. Their 

number has to be specified by the observer. A small number of neighbours might be 

significantly affected by a noise that will impact the classification results. A large number 

of neighbours makes the computations slow and expensive.  It is recommended to perform 

KNN classification with a smaller number of features for better performance. The KNN 

algorithm starts by looking for distances between a query and all the data samples in the 

data space. After that, the algorithm selects the number of the nearest neighbours closest 

to the query and votes for the most frequent class or label. Euclidean, Hamming, 

Manhattan and Minkowski distances are often used for distance measures (Hassan et al., 

2014). The algorithm's performance can be lower when the algorithm is applied to non-

standardized and large dimensional data. For better results, it is recommended to 
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normalize data on the same scale (usually between 0 and 1) and reduce the number of 

dimensions. 

     The Support Vector Machine (SVM) algorithms are supervised machine learning 

algorithms used for classification and regression analysis. A support vector machine can 

construct a hyperplane or set of hyperplanes in multi-dimensional space. The optimal 

separation line for two data classes must be at the midpoint of the channel at a half 

distance away from the nearest points of both classes. The greatest distance achieves a 

more substantial separation.  The generalization error of this type of classifier will be 

small. SVM is effective in high-dimensional spaces. Class separation can be performed 

differently using linear and non-linear mathematical functions known as “kernel”. The 

popular non-linear SVM functions are polynomial, radial basis function (RBF) and 

sigmoid (Piccialli and Sciandrone, 2018). Linear SVM classifiers are often compared 

with logistic regression (LR) classifiers. Both LR and SVM create separating lines 

between data points, but the classifiers use different optimization criteria. The 

optimization function of logistic regression is based on minimising the sum of 

misclassification probabilities for each data point. At the same time, SVM looks for the 

maximum margin between data points of two classes. The LR and the SVM often 

demonstrate very close results due to the similarities of their loss functions. The SVM 

performs better than logistic regression when the classes are well separated in space. In 

contrast, logistic regression is preferred when classes are overlapped. SVM is very 

effective in high dimensional space, but it is not suitable for large data sets. 

Characteristics of classification algorithm are given in Table 11. 

Neural network (NN) algorithms included in the table will be discussed later in Sections 

5.6, 5.7 and 5.8. 

Table 11: Classification algorithms comparison 

Characteristics NB LD KNN SVM NN 

Speed of training high high high low low 

Tolerance to 

missing values 

 

high 

 

medium 

 

low 

 

medium 

 

high 

Interpretability easy easy hard 

easy for linear; 

hard for other 

kernels  

hard 
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Model flexibility 

low 

(for 

Gaussian 

kernel) 

low, 

creates 

linear 

boundaries 

between 

classes 

medium (for 

10 

neighbours); 

coarse (for 

100 

neighbours) 

low (linear 

kernel); 

medium 

(quadratic, 

cubic, 

medium); 

high (fine 

Gaussian) 

high 

Tolerance to 

noise 
high medium low medium high 

Tolerance to 

overfitting 

medium/ 

high 

medium/ 

high 

medium/ 

high 
medium low 

Normalization no yes yes yes no 

Additional 

characteristics 

works well 

for small 

data 

high 

performance 

for  normally 

distributed 

data 

adaptable to 

the problem; 

easy to 

understand 

tolerate to 

overfitting; 

has linear and 

non-linear 

kernels 

solves the 

complex 

problem; 

process 

large data; 

large 

number of 

parameters 

enhance 

predictabi- 

lity 

Limitations 

 

 

uses 

statistically 

independe

nt 

attributes 

 

 

problem to 

classify 

categorical 

variables;  

 

 

memory 

intensive; 

expensive; 

wrong 

distance 

produces an 

inaccurate 

result 

 

 

 

difficult to 

determine 

optimal 

parameters 

 

 

computation

ally 

expensive; 

considered 

as “black 

box”  

 

5.5 Classification workflow based on classic ML algorithms 

This stage aims to verify the robustness of brain asymmetry images and asymmetry 

features for early diagnosis of cognitive decline and Alzheimer’s Disease.  The different 

classification models were applied to the feature tables created from image sets. Two 

types of features were used in this line: statistical and Bag-of-Features. The feature 

engineering process is described in Sections 4.2 and 4.3.  Statistical features collected 

from image asymmetries were enriched with Bag-of-Features to get the most detailed 

image “signatures” and sent to the classification process. Supervised machine learning 

algorithms such as Naïve Bayes, Linear Discriminant, Support Vector Machine (linear, 

quadratic, cubic, Medium Gaussian kernels), and K-Nearest Neighbour (fine, cosine 
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kernels) were tested at this stage of the research. Binary classification tasks were 

performed without fine-tuning the classification hyperparameters. All models from the 

list were trained using Matlab Classification Learner App except the NB classifier, which 

was trained separately. The 10-fold cross-validation procedure was applied to the models 

before their testing on unseen data. Table 12 presents the model's default hyperparameter 

values used in the experiments. 

Table 12: Hyperparameters of the machine learning algorithms 

Model Hyperparameters 

NB Distribution: normal (Gaussian) 

LD Discriminant type: linear 

L-SVM 

Kernel function: linear 

Box constraint level:1 

Kernel scale mode: auto 

Standardize data: true 

Q-SVM 

Kernel function: quadratic 

Box constraint level:1 

Kernel scale mode: auto 

Standardize data: true 

C-SVM 

Kernel function: cubic 

Box constraint level:1 

Kernel scale mode: auto 

Standardize data: true 

MG-SVM 

Kernel function: medium Gaussian 

Box constraint level:1 

Kernel scale mode: manual 

Kernel scale: 32 

Standardize data: true 

Fine-KNN 

Number of neighbours: 1 

Distance metric: Euclidian 

Distance weight: equal 

Standardize data: true 

Cos-KNN 

Number of neighbours: 10 

Distance metric: cosine 

Distance weight: equal 

Standardize data: true 

 

5.5.1 Machine learning classification of asymmetry features 

In the previous sections we established that brain image asymmetry features provide 

reliable representations of the asymmetry in the brain during dementia progression. In 

this section, the robustness of brain asymmetry features for the early diagnosis of 
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dementia will be verified by running a machine learning workflow. To this end, 

asymmetry features will be used to train different machine learning models to detect 

cognitive decline and early dementia. At this stage, the focus will be on traditional 

supervised machine learning methods like SVM, KNN, LD, NB (SVM and KNN tests 

involved different types of kernels) and a pretrained CNN model was used for 

comparison. The aim is to investigate whether asymmetry features produce consistent 

performance across various classification models without any fine-tuning or model 

optimization performed. 

To this end, a set of binary classification problems are solved using the machine 

learning models mentioned above. The experimental study uses 600 images of brain 

asymmetries generated from T1-weighted MRIs of 150 subjects of the ADNI database. 

Obtained images are equally divided into groups of normal cognitively (NC) subjects, 

subjects with early mild cognitive impairment (EMCI) and subjects with Alzheimer’s 

Disease (AD). All images are combined into three binary datasets: EMCI vs NC, AD vs 

NC and AD vs EMCI. Each dataset is composed of two-dimensional images (planes) 

represented in vertical (frontal) and horizontal (axial) directions.  

     Statistical features collected from segmented image asymmetries were enriched with 

Bag-of-Features to get the most detailed image “signatures”. These were used to feed NB, 

LD, SVM, and KNN classifiers. The performance of trained models was estimated using 

ten simulation runs of a 10-fold cross-validation procedure. In comparison images of 

brain asymmetry were inputted directly into a pretrained CNN, the so called AlexNet, and 

features were generated automatically as a part of the training process of the network. For 

the deep network, images of segmented asymmetry were resized to 227×227×3 and fed 

into the model with 80% used for training, 10% for validation, and 10% for testing. The 

parameters of the CNN were set for 10 epochs, validation data frequency of 50 and mini-

batch size of 128. All the machine learning models were tested on unseen data, i.e. 

unknown images that were not used for training and/or validation.  

The performance of the classification models was evaluated in terms of accuracy, 

sensitivity, specificity, and AUC. Table 13 summarizes the average performance (%) in 

testing the ADNI database's early mild cognitive impairment, normal cognitively, 

Alzheimer’s disease datasets. The highest results for each dataset are shown in bold. 
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Table 13: Average performance (%) of binary classifiers 

Datasets NB LD 
L-

SVM 

Q-

SVM 

C-

SVM 

MG-

SVM 

Fine-

KNN 

Cos-

KNN 
CNN 

EMCI vs 

NC 

Accuracy 

Sensitivity 

Specificity 

 

 

77.0 

78.0 

76.0 

 

 

91.0 

91.0 

91.0 

 

 

89.0 

89.0 

89.0 

 

 

92.5 

92.0 

93.0 

 

 

92.5 

95.0 

90.0 

 

 

88.0 

85.0 

91.0 

 

 

83.0 

99.0 

67.0 

 

 

92.0 

96.0 

88.0 

 

 

 75.0 

90.0 

60.0 

AD vs NC 

Accuracy 

Sensitivity 

Specificity 

 

78.5 

78.0 

79.0 

 

90.0 

88.0 

92.0 

 

92.0 

91.0 

93.0 

 

92.5 

90.0 

95.0 

 

93.0 

93.0 

93.0 

 

90.0 

85.0 

95.0 

 

86.5 

98.0 

75.0 

 

89.5 

90.0 

89.0 

 

 90.0 

89.0 

92.0 

AD vs 

EMCI 

Accuracy 

Sensitivity 

Specificity 

 

 

78.5 

75.0 

81.0 

 

 

83.0 

85.0 

81.0 

 

 

80.5 

84.0 

77.0 

 

 

86.5 

89.0 

84.0 

 

 

86.5 

88.0 

85.0 

 

 

80.5 

84.0 

77.0 

 

 

79.0 

78.0 

80.0 

 

 

80.0 

83.0 

78.0 

 

 

 81.3 

72.5 

90.0 

 

The test results show that features extracted from asymmetries provide consistent 

performance across different classification models without model-specific fine-tuning of 

hyperparameters. The SVM variants and the LD method can become methods of choice. 

They can be easily trained on commodity hardware and demonstrate better accuracy than 

other alternatives in all cases.  SVMs show the best performance amongst the SVM 

variants with the polynomial cubic and quadratic kernel (C-SVM and Q-SVM). C-SVM 

accuracy of EMCI vs NC is 92.5%, sensitivity is 95.0%, specificity is 90.0%; accuracy 

of AD vs NC is 93.0%, sensitivity is 93.0%, specificity is 93.0%; accuracy of AD vs 

EMCI is 86.5%, sensitivity is 88.0% and specificity is 85.0%. Q-SVM accuracy of EMCI 

vs NC is 92.5%, sensitivity is 92.0%, specificity is 93.0%; accuracy of AD vs NC is 

92.5%, sensitivity is 90.0%, specificity is 95.0%; accuracy of AD vs EMCI is 86.5%, 

sensitivity is 89.0% and specificity is 84.0%. The prediction results of the CNN are in the 

same range as those of the other classifiers. 

 An aggregated measure, the area under the ROC Curve (AUC), shows the relationship 

between data sensitivity and specificity across different levels of threshold, giving an 

additional view on the classifier performance. AUC results of the best available models 

from C-SVM and CNN are presented in Table 14. 

Table 14: AUC for cubic-SVM and CNN 

 

Datasets 

 

C-SVM CNN 
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EMCI vs NC 

AD vs NC 

AD vs EMCI 

            0.98 

0.99 

0.94 

0.90 

0.92 

0.88 

 

Figure 29 presents the C-SVM and CNN classifiers' AUC/ROC curves of three binary 

datasets. All the figures were created on Matlab during testing. 

   

                    (a)                                          (b)                                          (c) 

       

                  (d)                                           (e)                                         (f) 

Figure 29: AUC/ROC curves of C-SVM (left) and CNN (right) classifiers: (a) and (b) is EMCI 

vs NC; (c) and (d) is AD vs NC; (e) and (f) is AD vs EMCI 

In general, satisfactory performance was obtained in the classification between EMCI and 

NC, AD and NC, and AD and EMCI. It is worth noting an important difference between 

the CNN classifier and all other methods in this context The CNN is the only model that 

operates directly on images of segmented asymmetry, whilst all other models work on 

images with segmented asymmetry that have been analysed to generate statistical and 

Bag-of-Features. It is expected that fine-tuning and model optimization could potentially 

further improve all classification models' performance but operating directly on images 
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adds value to the deep learning approach in order to produce an end-to-end solution.  The 

potential of deep networks will be further investigated in the next section.  

5.6 Deep learning approaches used in the thesis 

5.6.1 Deep Networks and Learning Algorithms Preliminaries 

Deep neural networks allow the processing of a large amount of data. These networks 

have multiple implications for medical imaging data. 

Tensor and tensor operations   

Tensor in Deep Learning is a way of data structuring used by machine learning 

algorithms. Also, a tensor can be considered to be a container for the data and numbers. 

The tensor might have a different number of dimensions (D). Zero dimensional tensors 

contain only one number. The array of numbers represents a one-dimensional tensor. For 

instance, [13, 15, 4, 25, 8] is a 1D tensor of the five-dimensional vector. Two-dimensional 

tensors are matrices of array vectors with two axes, referred to as rows and columns. 

Three and higher dimensional tensors are matrices with a number of arrays. Tensor’s 

dimensionality can denote the number of entries along a specific axis or the number of 

axes. In the first case, it can be a 5D vector. When the number of axes equals 5, it can 

point to the 5D tensor. It might cause confusion between vectors and tensors. It is correct 

to speak about the tensor’s rank instead of mentioning the tensor dimensions. The tensor 

rank will point to the number of axes in this situation.  There are three main key attributes 

that identify a tensor. They are the number of axes or rank, shape and data type. The shape 

is described by the number of dimensions along the tensor’s axes. For instance, a scalar 

does not have a proper shape, and its shape is denoted as an empty parenthesis (). A vector 

shape contains a single element that can be a number (n). A two-dimensional matrix has 

a shape with rows and columns (m, n). Three elements (m, n, k) represent a 3D tensor. 

The different data dimensionalities can also represent the real-world tensors. Vectors with 

samples and features show a 2D tensor.  Sequence or time-series data is a 3D tensor with 

samples, timesteps and features in the axes. 4D shaped tensors have images with axes of 

samples, channels, height and width. Videos that are 5D tensors include samples, frames, 

channels, height and width details in their shapes. 

      Many operations applied to tensors’ numeric data can describe all deep neural 

network transformations. Mathematically, tensors can be added, subtracted, multiplied 

and etc. The results of these operations are the dot or tensor products. So, the product of 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 5: Learning Brain Asymmetry Biomarkers  

 

119 

two vectors is a scalar, the product of a vector and matrix is a vector, and the product of 

two matrices is a matrix. All tensor operations are supported by geometrical 

interpretation. For example, if there are two vectors a and b with coordinates of point A= 

[0.5, 1] and point B = [1, 0.25], the resultant vector c will represent the sum of two 

previous vectors (Figure 30).  

 

Figure 30: Geometric interpretation of the dot product of two vectors 

Elementary geometric operations such as affine transformations, including translation, 

scaling, reflection, rotation, etc., can be represented by tensor operations. For instance, a 

rotation of a 2D vector by an angle theta can be calculated through a dot product with a 2 

× 2 matrix M = [a, b], where a and b are both vectors of the plane: a = [cos(theta), 

sin(theta)] and b = [-sin(theta), cos(theta)].  

Gradient-based optimization for network training 

The different tensor transformations can be applied to the layers of the deep neural 

networks. Each layer transforms the input data in the following way: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑙𝑎𝑦𝑒𝑟 𝑛𝑎𝑚𝑒(𝑑𝑜𝑡(𝑊, 𝑖𝑛𝑝𝑢𝑡) + 𝑏)                           (40) 

where W and b are tensor weights and trainable parameters accordingly. 

The weights maintain the data details learned by the neural network. Initial weights can 

be random values obtained from the observed matrices. Each following stage gradually 

adjusts the weights according to the feedback signals. This process is called training. 

During the updating process, the values of the weights’ coefficients increase or decrease. 

The coefficients must be updated to decrease the learning error or network loss.  

     All network operations are differentiable, and the gradient of loss can be calculated on 

the base of the network coefficients. Differentiation is a process of computing the 
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function’s derivatives (Treiman, 2014). The derivative of a function y= f(x) can be 

explained geometrically as a slope of the graph of the function f; in other words, the slope 

of the tangent line in the point p. A function’s minimum is a point where the derivative 

equals 0. Finding the combination of the weight values that give the minimal loss function 

is a critical point in the training of the neural network. This process is called Stochastic 

Gradient Descent (SGD). 

     The stages of the optimization learning process are described below. Stage 1 requires 

choosing a batch of training samples x and corresponding target values y. Stage 2 runs the 

network on x values and gets the initial predictions. Stage 3 calculates the loss of the 

network for the batch that demonstrate the mismatch between the targets y and obtained 

predictions. Stage 4 calculates the gradient of the loss concerning the parameters of the 

network. In this stage, a backwards pass approach can be applied. The last Stage 5 reduces 

the loss on the batch by a slight movement of the parameters in the opposite direction 

from the calculated gradient. The mathematical expression of this action is described 

below: 

W -= step * gradient                                               (41) 

Choosing a reasonable value for the step factor or learning rate is essential. If the value is 

too small, the gradient descent will take many iterations down the function’s curve. It 

could force the process to get stuck in the “local minimum” of the curve. If the value of 

the step is too large, the weight updates may end in the random place of that curve. 

Graphical representation of the algorithm is provided in Figure 31. 

 

Figure 31: Example of SGD learn down a loss curve of one learnable parameter 
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Usually, a mini-batch SGD algorithm that processes the data separated into small batches 

is preferable in the learning process.  If the algorithm runs on all available data, it is called 

“batch SGD”. Each algorithm's update demonstrates a higher accuracy than the mini-

batch SGD, but it is more expensive. A reasonable size of mini-batch SGD is an efficient 

way to balance the accuracy and learning cost. 

     In real life, the weight coefficient can be presented in n-dimensional space. The 

number of dimensions can reach tens of thousands and even more. A number of SGD 

variants differ by computing the previous and the following weight updates rather than 

looking for the current gradient values. These algorithms are called “optimizers” or 

“optimization methods.” The representatives of these methods are Momentum, Adagrad, 

RMSProp, Adam (Ruder, 2016). “Momentum”, for example, addresses two SGD 

problems: local minima and speed of convergence.  From the Figure 31 , it is clear that 

the minimal loss function should be in the “global minimum.” The movements to the left 

will increase the loss value, and the change in the direction to the right will decrease it. A 

low SGD learning rate will end the process in the “local minimum” instead of ending it 

in the “global minimum”. “Momentum” optimization is one of the ways to reach the 

global minimum. The development of this technique was inspired by the “moving ball” 

tracking. Each step of weights updating is based not only on the current acceleration or 

slope value but also on the previous acceleration or current velocity results. 

 

 

Backpropagation algorithm  

Any neural network joins together many tensor operations. These operations follow 

specific “chain rules”. One is known as “backpropagation” or “reverse-mode 

differentiation” (Rojas, 1996). The backpropagation usually starts from the loss value of 

the output layer. The loss values are obtained by calculating the differences between the 

expected outputs and forward propagated outputs of the network. The algorithm computes 

the contribution of each network parameter in the loss value. Then, the algorithm 

propagates backwards from the output layer towards the hidden layer by assigning error 

changes and updating weights.  Thus, chain operations with known derivatives compute 

a gradient function for the chain. If there are functions for a single variable y = f(u) and  

u = g(x), and they are differentiable, the chain rule looks as follows: 
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𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
                                                           (42) 

For the function y with multiple variables  𝑢1 , 𝑢2, … , 𝑢𝑚, differentiable function 𝑢𝑖 with 

variables 𝑥1, 𝑥2, … , 𝑥𝑛 and  i = 1, 2,…, n, the chain rules gives the following equation: 

𝑑𝑦

𝑑𝑥𝑖
=

𝑑𝑦

𝑑𝑢1

𝑑𝑢1

𝑑𝑥𝑖
+

𝑑𝑦

𝑑𝑢2

𝑑𝑢2

𝑑𝑥𝑖
+ ⋯ +

𝑑𝑦

𝑑𝑢𝑚

𝑑𝑢𝑚

𝑑𝑥𝑖
                                 (43) 

Modern network frameworks, such as Tensorflow, operate with symbolic differentiation. 

They are able to compute the gradient function and map network parameters to gradient 

values automatically using the backpropagation algorithm. 

5.6.2 Deep Learning Algorithms for Image Classification 

Deep learning has a structure that is inspired by the neuronal network of the human brain. 

Each layer is a fundamental network structure. The deep learning network consists of 

several layers, including input, output, and hidden layers. Input and output layers are 

tensors consisting of layers’ weights. The weights are learned and transformed by 

optimization algorithms. All layers are chained together. They map the input data to make 

predictions. The input layer is the network's first layer that accepts the external data and 

forwards it to the processing stage supported by the hidden layer. Hidden layers can be 

single or multiple.  This type of layer proceeds the main data transformation and analysis. 

The output layer collects the processed information and makes a prediction.  

     The deep learning models might have a different topology. The most common instance 

is composed of a linear stack of layers. But there are many wider varieties of network 

architectures, such as multi-branch networks, graph networks, and inception blocks 

models. 

Activation functions 

The activation function is a crucial part of designing a deep neural network. This function 

concludes what neurons can be activated by calculating the weighted sum and bias. The 

activation function uses differentiable operators to transform input layer signals into 

outputs. There are a number of popular activation functions proposed for deep neural 

networks, such as Rectified linear unit (ReLU), sigmoid, hyperbolic tangent (tanh), and 

Softmax. 
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     ReLU demonstrates a straightforward nonlinear transformation and helps archive the 

neuronal network a good performance (see Figure 32). For a given element x, the function 

can be expressed as the maximum of that element x and 0: 

𝑅𝑒𝐿𝑈(𝑥) = max (𝑥, 0)                                               (44) 

Thus, the ReLU function reserves only positive values and discards all negative ones. All 

negative values are converted to 0.  

 

Figure 32: The graphical representation of the ReLU function 

There are many advanced variants of the ReLU function. For instance, Leaky ReLU 

defines the negative values as a significantly small linear component of x instead of zero 

values. Parameterised ReLU introduces a new parameter as a slope of the negative part 

of the function. Exponential Linear Unit (ELU) modifies the slope of the negative part of 

the function using a log curve for the negative values instead of a straight line. 

     The sigmoid activation function converts input values to output values between 0 and 

1. The sigmoid function is known as a “squashing function”, converting any input values 

of the range minus infinitive to plus infinitive to the value in the field between 0 and 1: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+exp (−𝑥)
                                                (45) 

The visualization of the function is provided below in Figure 33: 

 

Figure 33: The graphical representation of the sigmoid function  
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Sigmoid functions are usually used in the outputs when the outputs have to be interpreted 

as probabilities for binary classification problems. The sigmoid function approaches a 

linear transformation when the inputs are closed to zero values. In many cases, the ReLU 

often replaces the sigmoid in hidden layers due to its simple and easily trainable 

parameters. 

     A combination of multiple sigmoids can represent the softmax function: 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

                                                        (46) 

Where σ is a softmax function, 𝑧 is an input vector, 𝑒𝑧𝑖 is a standard exponential function 

for the input vector, K is a number of classes in the multiclass classifier, 𝑒𝑧𝑗 is a standard 

exponential function for the output vector.  

     Like a sigmoid function that returns values between 0 and 1and is treated as a 

probabilistic function, the softmax function also represents probabilities of the targeted 

classes. The difference is that sigmoid is used for binary classification problems 

compared to the softmax that builds a network for multiclass problems. The output layer 

of the softmax has as many neurons as the number of targeted classes. If the outputs from 

neurons have the values of [1.2, 0.9, 0.75] the softmax function will transform these 

values to the following probabilities: [0.42, 0.31, 0.27]. The sum of all values always has 

to be equal to 1.  

 

Model regularization and discovering the generalization patterns 

The group of factors that impact the generalizability of a model can be divided into a few 

groups. The first group is a number of tunable parameters called “degrees of freedom”. If 

these parameters are large, the model becomes sensible to overfitting. Overfitting is 

referred to the model that maintains more parameters than can be justified by the data. 

The opposite process is called “underfitting” when the model cannot adequately collect 

the underlying data structure. Both overfitting and underfitting processes lead to poor 

predictive model performance on unseen data. The second factor that influences the 

generalizability of the model is the range of values taken by parameters. The wide range 

makes the model more sensitive to overfitting. One more important group affecting the 

prediction is the number of training examples. A small number is correlated with a high 
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probability to overfit the model. If the dataset has millions of samples, it might require 

implementing an extremely flexible model. 

     The over- and underfitting processes can be identified by measuring the validation 

metrics that include the model accuracy and loss. The validation error increases while the 

training error progressively decreases if the model is overfitted. Underfitted process is 

accompanied by a gradual training and validation error decrease. One more error type is 

a generalization error. The generalization error is the expected error of the model and can 

only be estimated. It explores the infinitive stream of imaginary data. 

     The overfitting process can be prevented by the extension of the dataset, data 

augmentation (archived by the extension of the already existing dataset with slightly 

modified copies), and ensembling of the predictions from several trained separately 

models. One more approach to decrease the overfitting is to reduce the model complexity 

that can be reached by reducing the number of neural network parameters. For instance, 

the dropout technique is one of the options to do it.  

Dropout 

Dropout is an efficient way to prevent the neural network from overfitting by applying 

the regularization technique. The proposed approach approximates the model training and 

reduces the network's capacity. The Dropout layer randomly sets some inputs to 0 with 

each update of the training circle. All other inputs are scaled up to 1 such that the sum of 

all inputs remains the same. 

     The dropout technique can be used with most types of neural network layers, such as 

convolutional layers, a long short-term memory layer, recurrent layers, and fully 

connected layers. The dropout can be applied to the input layer in some situations, but it 

is never used with the output layer. The most advanced dropout technique specifies the 

probability at which parameters of the output layer performs the dropout procedure. A 

standard threshold value for the retaining output is a probability of 0.5 for each hidden 

node of the layer. The network retains all values above this level. Dropout probability p 

can be explained with the following formula, where each intermediate activation of the 

hidden node h is replaced by the random variable h’: 

𝐻′ = {
0        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝐻

1−𝑝
               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (47) 
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After the dropout procedure, the network weights will become larger than before. 

Therefore, the weights are usually scaled by the chosen rate before finalizing the network. 

Then, the model can be saved and able to make a prediction. 

Convolutional Neural Network 

Convolutional Neural Network was specially designed for imaging data. A two-

dimensional grid of pixels represents each image. Each pixel value and location might be 

associated with numerical values depending on the black-and-white, greyscale or colour 

images. While processing imaging data, a neural network architecture must follow the 

relevant requirements. The first of these requirements is translational invariance. It means 

that the network layers should respond similarly to the same area regardless of where it 

appears in the image. The second requirement is based on the principle of “locality”, when 

the earliest layer concentrates mainly on the local regions. The local area representations 

can aggregate the knowledge about the whole image.  

Convolution functions 

Image processing with multilayer perceptron requires image conversion to the one-

dimensional vector. This conversion impacts the relationship between the pixel and 

makes the classifier less effective in image processing. In addition, hundreds of thousands 

of pixels have to process billions of parameters. It takes a lot of computer power and 

exceeds the training time. The CNN classifier does not have such a problem. It needs 

fewer parameters than fully-connected networks. Additional advantages of CNN include 

its possibility to work well with one-dimensional audio, text structures, time-series 

sequences and graph-structured data.  

     The main configurational element of CNN is a convolutional layer that operates using 

a convolutional function. The convolutions between two functions measuring overlap 

between f and g can be defined as: 

(𝑓 ∗ 𝑔)(𝑋) = ∫ 𝑓(𝑧)𝑔(𝑋 − 𝑧)𝑑𝑧,                                     (48)    

when one of the functions is flipped and shifted by the distance x. 

For discrete objects such as a set of infinite-dimensional vectors, the formula looks as 

follows: 

(𝑓 ∗ 𝑔)(𝑖) = ∑ 𝑓(𝑎)𝑔(𝑖 − 𝑎)𝑎                                         (49) 
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For a 2D tensor, a corresponding sum with indices (a, b) will look as follows: 

(𝑓 ∗ 𝑔)(𝑖, 𝑗) = ∑ ∑ 𝑓(𝑎, 𝑏)𝑔(𝑖 − 𝑎, 𝑗 − 𝑏)𝑏𝑎                           (50) 

The image consists of three channels, red, green, and blue in real life. It is possible to say 

that image is a two-dimensional object and a third-order tensor simultaneously. This type 

of tensor is characterized by a height, width, and number of channels and has a shape, for 

instance, of 512×512×3 pixels.  

Convolution calculations 

The cross-correlation operations are at the base of convolutions. It means that input and 

output tensors are obtained due to the cross-correlation calculations. An example of a 

two-dimensional process is provided in Figure 34. The tensor's shape is 3 × 3, and the 

size of the kernel (convolution filter) is 2 × 2 in the current example. 

 

Figure 34: Two-dimensional tensor operations (Source: Zhang et al., 2021) 

In the two-dimensional space, the convolution starts at the upper-left corner of the input 

image (tensor) and slide across it from left to the right and from top to the bottom. With 

each slide of the convolution filter, the input subimage (subtensor) of the same window 

size and the filter are multiplied according to the matrix operation rule. The resulting 

calculations give the output image (tensor) at the corresponding location. In the example, 

the obtained 2-by-2 output contains four elements received from the two-dimensional 

cross-correlation operation: 

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19, 

1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25, 

3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37, 

4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43. 
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The output size is calculated as a difference between the input size of ih × iw and the size 

of the filter of fh × fw:  

(ih − fh + 1) × (iw − fw + 1)                                         (51) 

To process the whole image, the filter should be moved across it. The number of pixels 

shifted across the image matrix is called “stride”. So, the stride is equal to 1 if the filter 

moves by one pixel, the stride is equal to 2 if it shifts by two pixels and so on. The final 

output image of the layer received due to the convolutional operation is called the “image 

map”.  

     The output size is usually slightly smaller than the input size along each axis. It can be 

explained by the fact that the kernel's width and height are greater than one, and the cross-

correlation operation for the given location can be done only when the filter entirely fits 

within the image. It leads to some information loss from the image boundaries. An 

additional technique called “image padding” can be applied to solve this problem. The 

extra pixel values are added to the image boundaries. Usually, the values of extra pixels 

are set to zero. In the following Figure 35, the image size increases from 3-by-3 to 5-by-

5 pixels after adding the padding. The output image will have a size of 4-by-4 pixels after 

filtering. 

 

Figure 35: Two-dimensional tensor operations with added padding (Source: Zhang et al., 2021) 

When the input image has multiple channels, each colour channel is treated separately 

with the same cross-correlation rule. The output layer summarizes the results obtained 

from the channels. Figure 36 demonstrates a two-dimensional cross-correlation operation 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 5: Learning Brain Asymmetry Biomarkers  

 

129 

with two channels. The output image is obtained due to the following computations: 

(1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3) = 56. 

 

 

Figure 36: Two-dimensional tensor operations using two channels (Source: Zhang et al., 2021) 

The image map remains large from the convolutional operations, and additional feature 

reduction operations are preferable to be applied. Another technique that gradually 

reduces the spatial resolution is called “pooling”. 

Pooling 

Pooling layers help to save a global image representation by keeping all advantages of 

the convolutional layers and other intermediate layers. At the same time, the pooling 

procedure makes the image size significantly smaller and might reduce the overfitting of 

the entire neural network.  

     The pooling operations are performed using a fixed-shaped “pooling window” that 

moves around the input regions according to the size of the stride. This operation is 

performed the same as a convolution and begins from the upper-left corner sliding across 

the input image from left to right, and top to bottom, then stops in the lower right corner.  

However, unlike the convolutional calculations based on the kernel details, the pooling 

window does not include any parameters except the size of the window. 

     The pooling operators are deterministic and usually compute average or maximum 

values. Respectively, pooling operations are called “averaging pooling” or “max 

pooling”. The pooling operations calculate the average or maximum values at each layer 

location depending on the pooling function employed. Figure 37 gives the example of the 

pooling operation. 
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Figure 37: 2D matrix pooling operations 

The output is calculated as follows: 

max(0, 1, 2, 3)=4, 

max(1, 2, 4, 5)=5, 

max(3, 4, 6, 7)=7, 

max(4, 5, 7, 8)=8. 

In this way, the pooling layer significantly reduces the layer size keeping the most 

significant spatial layer information. 

Pretrained convolutional neural network 

There are a number of popular CNN architectures that became base models for many 

research projects. Many of them are winners in the large-scale ImageNet competition, 

launched in 2010. They demonstrate annual progress in developing news supervised 

learning models in the area of computer vision. The performance of the pretrained models 

varies depending on the architecture and choices of the hyperparameters. Pretrained 

models propose many interesting configurations that can be divided into several groups 

according to the similarity in their architecture. One of the first successful models is the 

large-scale AlexNet network.  Another group is VGG networks, which were created from 

the repeating blocks of structural elements. GoogLeNet blocks differ from the previous 

architectures by concatenation blocks in parallel. Network in networks (NiN) is based on 

small patch-wised convolutions. Residual networks (ResNet) consist of different numbers 

of residual blocks and channels. Densely connected networks (DenseNet) have an 

advanced configuration of the ResNet.  

AlexNet 

AlexNet includes the first name of his author Alex Krizhevsky from the deep learning 

research group, which won the ImageNet competition in 2012 (Krizhevsky et al., 2012). 
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ImageNet competitors trained models on one million images of one thousand object 

categories. Their idea was based on the complex feature structure in which the 

hierarchically joint layers can detect learnable parameters. The lowest layers of such 

architecture are supposed to detect edges, textures and colours resembling the traditional 

image filters. The hidden layers learn a compact representation of the image whose 

property can be easily separated into the different data categories. 

     AlexNet requires the input image size of 224 × 224. The network incorporates the 

image augmentation approach, such as image clipping, flipping, and usage of colour 

channels. It makes the model more robust, with many images that successfully reduce 

overfitting. The AlexNet consists of eight layers, including five convolutional, two fully-

connected hidden, and one fully-connected output layer. The network does not require 

manually-designed features. All the feature detection and extraction procedures are done 

automatically. The first convolution filter (window) has a size of 11 × 11. It gives the 

possibility to capture rather big objects. The second and third convolutional layers have 

reduced filter sizes of 5×5 and 3×3, respectively. 

     Furthermore, the network has maximum pooling layers inserted after the first, second, 

and fifth convolutional layers. All max-pooling layers have a window size of 3×3 and 

slide through the layers with a stride of 2. AlexNet uses a simple and effective ReLU 

activation function. The network is finalized by two fully-connected layers of 4096 output 

parameters (8192 parameters were divided between dual GPUs). The model complexity 

was controlled by adding the dropout function to the fully-connected layer.  

VGG 

The repeated block structure characterises VGG (Simonyan and Zisserman, 2014).  The 

VGG structure can be divided into two parts integrated convolutional blocks and several 

fully-connected layers. Each building block includes a sequence of convolutional layers 

with the kernel of size 3×3 and padding of 1 pixel, a max-pooling layer of size 2×2 and a 

stride of 2 pixels. The original VGG network (VGG-11) has five blocks of convolutions 

and  11 layers overall. The first two blocks of the network have one convolutional layer 

each, and the following three blocks include two convolutional layers each. The number 

of output channels of the first block is 64. This number doubles with each successive 

block and reaches 512 in the final one. Similar to AlexNet, VGG uses the ReLU activation 

function. Output parameters on the fully-connected layer are equal to 4096, 4096 and 100 
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accordingly. Compared to the AlexNet, the VGG-16 is computationally heavier. The 

VGG network has several modifications with exceeded number of convolutional layers, 

VGG-16 and VGG-19.  

5.7 Classification workflow based on CNNs 

Deep learning models demonstrate exemplary performance in image classification tasks. 

The diagnostic deep learning workflow includes two classification approaches. The first 

approach focuses on exploring the potential of transfer learning CNN models such as 

AlexNet and VGG16. The second diagnostic line examines the proposed based CNN 

architecture that investigates its performance by changing the type of classification layer. 

The segmented brain asymmetry images were used in the input for both classification 

approaches. Features were generated as part of the training process for Convolutional 

Neural Networks. 

     In the following Sections, 5.6, 5.7, 5.8 and 5.9, detailed descriptions of DL models 

used in the research are provided. 

5.8 Transfer learning models 

Pretrained CNN architectures, like the AlexNet, the VGG, the ResNet variants and 

architectures based on the Inception models, have been established as a standard 

pretrained model for deep learning applications in image processing and classification. 

Pretrained models often perform better than models trained from scratch, and their use 

significantly reduces training, validation and testing time on new tasks (Tajbakhsh et al., 

2016). Transfer learning enables transferring the pretrained model’s knowledge to a 

newly established task and then creates a new architecture by adding layers to the 

pretrained/base model. Training the extra layers, retraining the base model, or even 

training the whole architecture are some of the strategies used to fine-tune the transfer 

learning architecture using task-related data (Tang, 2013).  

     Two pretrained CNNs, AlexNet and VGG16, have been chosen as the base models of 

the system for diagnosing early dementia in binary and multiclass classification setups. 

They demonstrated a good performance in image classification tasks (see Chapter 2). 

AlexNet and VGG16 were initially configured and trained for 1000 classes using 

ImageNet data. The AlexNet architecture consists of 8 layers, has a size of 227MB and 

includes 61.0 million parameters. The input dimensionality is 224×224×3 (images should 

be 224 wide, 224 high, and has three colour channels). The VGG16 architecture is much 



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 5: Learning Brain Asymmetry Biomarkers  

 

133 

bigger and has a size of 515MB. This network has 16 layers and 138.0 million parameters, 

and the input dimensionality is 224×224×3 either. 

     Pretrained models were adapted to the new classification problem. This was done by 

replacing the last three layers of the pretrained networks with fully connected, Softmax 

and output layers. Figure 38 demonstrates the architecture of transfer learning models 

used in the proposed framework. 

 

Figure 38: Transfer learning of AlexNet and VGG-16 

In addition, transfer learning of AlexNet was used for the building of the two 

classification models. The first model integrates the Softmax layer to compute the output, 

while the second one makes a class prediction based on SVM. The fine-tuning models' 

strategy was based on retraining the whole CNN architecture. The SVM layer was 

assembled as a separate classification module.  

     The classification performance obtained due to transfer learning structure is provided 

in Sections 5.9 and 5.11. 

5.9 Experiments with transfer learning architectures  

This section exploits the AlexNet CNN classifier by fine-tuning the model’s parameters 

and investigated the potential of transfer learning using an AlexNet core architecture in 

two configurations: one with Softmax layer and one with an SVM classifier (Herzog and 

Magoulas, 2022). 
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     A set of five MRI classification problems, four binary and one multiclass, are studied 

using the two transfer learning AlexNet architectures. Binary classification datasets 

include 400 images of segmented asymmetries in the ADNI database and 200 images in 

the OASIS database. The multiclass dataset consists of 600 images from the ADNI 

database. In all experiments, MRI data were balanced across classes: 600 images of brain 

asymmetries with a balanced number of AD, EMCI, and NC subjects were combined into 

the multiclass set and three binary datasets, EMCI vs NC, AD vs NC, and AD vs EMCI. 

Two hundred images of the OASIS database compose the balanced binary set of non-D 

vs VM-D subjects. For each task, five independent simulation runs of each architecture 

were performed, increasing the number of training epochs from 5 to 40 (a total of 300 

independent simulation runs). In the rest of the section, the first transfer learning 

architecture is denoted by M1-Softmax (SoftMax layers), while the second is denoted by 

M2-SVM (SVM layer). The training parameters were set as: n (n = 5, 10, 15, 20, 30, 40) 

is the number of epochs each architecture was trained (five independent runs conducted 

in each case), mini-batch size= 128, validation data frequency= 50, initial learning rate= 

0.0001, and the stochastic gradient descent with momentum (SGDM) was used. The two 

architectures were retrained using segmented asymmetry images, whilst the final SVM 

layer was fine-tuned after the rest of the architecture was trained. The images of 

segmented asymmetry of size 256-by-256-by-3 were resized to 224×224×3 and fed into 

the model with 80% of the images used for training, 10% for validation, and 10% for 

testing. All the test results presented in this section are for unseen MRI data (unknown 

patients). 

5.9.1 Experiment 1: ADNI repository 

Three binary problems (AD vs EMCI, EMCI vs NC, AD vs NC) and one multiclass 

problem were used in this experiment. The best available classification results on unseen 

data for the two architectures are presented in Table 15. 

 

Table 15: The best available accuracy (%) in testing for the two transfer learning architectures 

and the number of epochs each architecture was trained (independent runs) in the classification 

tasks 

Epochs 

trained 

AD vs NC EMCI vs NC AD vs EMCI Multiclass  

(AD, EMCI, NC) 
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M1-

Softmax 

M2-

SVM 

M1-

Softmax 

M2-

SVM 

M1-

Softmax 

M2-SVM M1-

Softmax 

M2-SVM 

5 76.50 91.50 80.25 81.90 79.00 81.25 62.33 73.00 

10 94.00 95.25 81.68 82.75 79.00 81.25 72.22 73.75 

15 94.25 95.90 81.00 85.25 81.25 81.00 72.22 74.22 

20 93.00 93.58 85.50 86.94 81.50 81.25 79.78 79.78 

30 92.75 93.33 90.25 90.25 82.75 83.00 82.33 81.75 

40 92.70 92.25 88.98 88.98 83.00 83.00 84.75 84.50 

 

Table 15 demonstrates that the SVM layer (M2-SVM) architecture is capable of good 

performance within a few training epochs. M1-Softmax appears to take advantage of 

longer training sessions to compensate for its initial shortcomings. The best performance 

for the AD vs NC task is 95.90%, obtained by an M2-SVM that was trained for 15 epochs; 

for the EMCI vs NC task, the best performance is 90.25% with an M1-Softmax and M2-

SVM trained for 30 epochs; for the AD vs EMCI task, 83% is achieved by an M2-SVM 

trained for 30 epochs, an M2-SVM trained for 40 epochs and an M1-Softmax trained for 

40 epochs. The multiclass task’s performance is 84.75%, with an M1-Softmax trained for 

40 epochs. 

     Looking at the average in testing across all tasks, M2-SVM outperforms M1-Softmax 

by 8.10% (on average), when trained for five epochs, by 1.93% (on average) when trained 

for 10 epochs, and by 1.31% (on average) trained for 15 epochs. The differences in 

average test performance per task are analysed in Table 16.  

Table 16: The difference in the average classification accuracy (%) between M2-SVM and M1-

Softmax depending on the length of the training session (epochs) 

Number of 

epochs 

trained 

AD vs NC EMCI vs NC AD vs EMCI Multiclass 

5 10.83 5.81 5.42 10.28 

10 4.17 1.25 1.91 0.28 

15 1.34 1.41 2.50 ~ 0 

 

The two architectures show similar or very close results in testing when they are trained 

for more than 20 epochs. For example, Figure 39 illustrates the average classification 
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performance (mean classification error rate on unseen patients’ MRI data) for the two 

architectures depending on how long they were trained (epochs) to solve the EMCI vs 

NC binary classification task. 

 

Figure 39: Average test error rate (vertical axis) in the EMCI vs NC binary classification 

problem with respect to the number of epochs the two architectures were trained for 

The Area under the ROC Curve across all runs in the ADNI experiments (binary and 

multiclass) is in the range of 0.8338 and 0.9763. The best performance received with both 

transfer learning architectures for diagnosing early dementia (EMCI vs NC) in terms of 

accuracy is 90.25%, with an AUC of 0.9256 when trained for 30 epochs. Progressive 

dementia (Alzheimer’s Disease) – (AD vs NC) is diagnosed with an accuracy of 95.90% 

and an AUC of 0.9763 with M2-SVM trained for 15 epochs. 

5.9.2 Experiment 2: OASIS database 

This database was used as a second source of MRI data to validate the behaviour of two 

transfer learning architectures and the findings of Experiment 1. The OASIS-2 MRI 

collection is not organized like the ADNI database, so there are no EMCI and AD images 

to perform EMCI vs NC or AD vs NC binary classification. The dataset is separated into 

classes of non-Demented (non-D) patients and patients with Very Mild dementia (VM-

D) manually, according to the Clinical Dementia Rating (CDR) score equal to 0.5. The 

best classification results on unknown patient data are in Table 17. 
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Table 17: The best available classification accuracy (%) for the two transfer learning 

architectures in binary classification (non-D vs VM-D) 

Epoch number 5 10 15 20 30 40 

M1-Softmax 61.50 78.25 71.50 76.00 80.00 79.00 

M2-SVM 76.50 80.00 82.50 75.00 80.00 78.50 

 

Table 17 confirms the fast response of the M2-SVM architecture producing better 

classification accuracy within a few training epochs. M2-SVM outperforms M1-Softmax 

by 15% when trained for five epochs, 1.75% for ten epochs, and 11% for fifteen epochs. 

Still, as the training session duration gets longer, the difference diminishes, as happened 

in Experiment 1. Figure 40 exhibits the average classification performance (mean 

classification error rate on unseen patients’ MRI data) of the two transfer learning 

architectures with respect to the number of epochs were trained for. 

 

Figure 40 Average test error rate (vertical axis) in the VM-D vs non-D binary classification 

problem with respect to the number of epochs the two transfer learning architectures were 

trained for 

On average, the best performance is achieved by M2-SVM models trained for 15 epochs: 

an averaging accuracy of 78.21% and an AUC= 0.8525 for VM-D vs non-D. Time 

comparison for three datasets is given in Figure 41. 
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Figure 41: Approximated time (in minutes on average) spent on training, validation and testing 

across the classification tasks 

5.10 Specialized CNN architecture for brain asymmetry 

CNNs allow feature generation and selection through learning. In many cases, this helps 

avoid complicated feature engineering procedures. CNNs have become the method of 

choice in intelligent medical diagnosis when images are involved (Lundervold A.S. and 

A. Lundervold, 2016). The CNN architecture has been used widely for processing and 

classifying MRIs (Yamanakkanavar et al., 2020).  Different configurations of CNN were 

investigated in the literature. Some of them are based on similarities with pretrained 

networks. Others are included in a hybrid configuration with other types of machine 

learning or deep learning algorithms. 

     The current research includes building a CNN architecture, named 5CLNN, for 

processing and classifying the MRI of brain asymmetries. 

     At the base of the newly proposed CNN architecture (see Figure 42), the first five 

convolutional layers play the role of feature detectors, and there is one fully connected 

layer. Additional layers consist of Local Response Normalization (LRN), Batch 

Normalization (BN), average pooling, dropout and Softmax layers. Overall, there are 

103714 learnable parameters. The LRN uses nonlinear functions, known as Rectified 

Nonlinearity Units (ReLUs), which speed up training by normalizing the feature maps 

and removing the negative value. The Batch Normalization layer makes the deep learning 
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process faster and more stable by standardizing the layers’ inputs. Recentering and 

rescaling operations are at the base of this process. Average pooling layers perform 

dimensionality reduction of the images by implementing a down-sampled procedure on 

the input layers. The dropout operation clamps to zero the output signals of hidden 

neurons whose activation probability is 0.5 or lower to reduce overfitting. The first 

convolutional layer requires an input image of size 256×256×3 (256 pixels wide, 256 

pixels high, RGB colour channels used for image augmentation). This layer includes 16 

convolutions of size 5×5×3 and uses stride = 1 (the stride indicates the step size with 

which the filter/convolution moves over the image matrix). The second layer has 32 

convolutions of size 3×3×3 with stride = 2, while the third layer is a copy of the second 

layer but stride =1. The fourth and fifth layers have 64 convolutions of similar sizes of 

3×3×3 with stride = 2 and stride = 1. Each convolution layer is followed by Batch 

Normalization and ReLU layers. Average pooling layers follow the third and the fifth 

layers’ convolutions. A fully connected layer puts together all feature outputs from 

previous layers and sends them to the activation unit (e.g. Softmax). Figure 59 illustrates 

the core CNN architecture proposed for the diagnosis of dementia. In this instantiation of 

the architecture, the Softmax layer normalizes the outputs used as classification 

probabilities by the output layer for the binary diagnostic task. 

 

Figure 42: An instantiation of the core CNN architecture equipped with a standard Softmax 

The new model shares a CNN core module equipped with separate Softmax, SVM, LD 

or KNN classification modules (see Figure 43 below). 
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Figure 43: CNN core equipped with four classification modules 

The diagnostic potential of these modules has been evaluated and compared in the next chapter.  

5.11 Deep transfer learning  

This section investigates further transfer learning models and how they compare against 

CNN diagnostic configurations created from scratch (Herzog and Magoulas, 2022). In 

the first experiment, CNNs from the ImageNet, AlexNet and VGG16 are retrained using 

transfer learning. Their classification performance is compared with the newly 

established classifier, 5CLNN, consisting of the CNN core plus Softmax module. The 

second experiment compares different instances of the CNN core module equipped with 

Softmax, SVM, LD or KNN modules. This classification module is added to the fully 

connected layer to produce the output. Similar to the first study, the dataset includes 600 

images of segmented asymmetries from 150 patients from the ADNI database. The 

experiments were run with balanced datasets, i.e., the number of patients and their 

corresponding MRI images were equally distributed between the three classes. Each 

binary classification task, namely EMCI vs NC, AD vs NC, and AD vs EMCI, used 400 

images, and ten independent simulation runs with each deep learning architecture were 

performed. The number of training epochs, n, was set to 10, while a mini-batch size of 

128 and a validation data frequency equal to 50 were used. Lastly, a small initial learning 

rate equal to 0.0001 was adopted, whilst training followed the SGDM method. Segmented 

asymmetry images had a size of 256×256×3, where three indicates the number of colour 

channels. The data were split into 80% for training, 10% for validation and 10% for 

unknown MRI images were used for testing. 

Experiment 1 
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In this experiment, the two pretrained neural networks, AlexNet and VGG-16, are fine-

tuned by substituting the last three layers of the original architecture with a fully 

connected layer, SoftMax and output layers which are adjusted to the number of classes 

in the task. The layer replacement is the first step of fine-tuning, and the training of the 

whole network follows it. Table 18 provides comparative performance in testing each 

architecture based on ten independent runs for each classification problem. In this table, 

the newly established classifier, CNN core plus SoftMax, is denoted by 5CLNN. 

Table 18: Average performance in testing based on ten independent runs 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

AlexNet 

Acc 

F1-score 

AUC 

 

0.7867 

0.7892 

0.8750 

 

0.8575 

0.8529 

0.8925 

 

0.8817 

0.8800 

0.9381 

VGG16 

Acc 

F1-score 

AUC 

 

0.7075 

0.7060 

0.8263 

 

0.8225 

0.8246 

0.9019 

 

0.8725 

0.8700 

0.9213 

5CLNN 

Acc 

F1-score 

AUC 

 

0.7981 

0.7942 

0.8738 

 

0.8644 

0.8678 

0.9281 

 

0.9012 

0.9020 

0.9413 

 

Performance measures such as Accuracy, F1-score and AUC demonstrate the overall 

improvement in the diagnosis of dementia using 5CLNN. The average accuracy across 

all diagnostic tasks for 5CLNN is higher than the accuracy of AlexNet by 1.27% and 

VGG-16 by 5.39%. F1-score demonstrates similar differences in performance with 

5CLNN better by 1.4% compared to AlexNet, and by 5.45% compared to VGG-16. The 

5CLNN achieves the highest AUC in the diagnosis of AD vs NC. Early changes in the 

brain are diagnosed with an accuracy of 86.44% and an F1 score of 86.78%. The 

diagnostic performance in AD vs EMCI is 79.81% in terms of accuracy and 79.42 % in 

the F1-score using 5CLNN.  

     The performance of AlexNet and 5CLNN was tested further to investigate how 

consistent the differences were. Thirty additional independent runs were conducted for 

each subset of 400 images. The obtained results appear in line with the previous ones (see 

Tables 29-20).  
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Table 19: Average performance in testing based on 30 independent runs for AlexNet and 

5CLNN 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

AlexNet 

Acc 

F1-score 

AUC 

 

0.7710 

0.7813 

0.8800 

 

0.8600 

0.8510 

0.8975 

 

0.8825 

0.8942 

0.9521 

5CLNN 

Acc 

F1-score 

AUC 

 

0.8030 

0.7975 

0.8700 

 

0.8775 

0.8700 

0.9312 

 

0.9105 

0.9110 

0.9475 

 

In terms of accuracy and F1-score, the 5CLNN outperforms the AlexNet by 3.20% and 

1.62% for AD vs EMCI, by 1.75% and 1.90% for EMCI vs NC and by 2.80% and 1.68% 

for AD vs NC sets. 

     The statistical significance of these changes was evaluated using the Wilcoxon-Mann-

Whitney rank-sum test. This pairwise non-parametric test was applied to prove that the 

accuracy of 5CLNN is better than the accuracy of AlexNet architecture for AD vs EMCI, 

EMCI vs NC and AD vs NC datasets (see Table 20). The null hypothesis is based on the 

statement that we cannot easily create a new architecture that will perform at the same 

level or even outperform the CNN models AlexNet and VGG16. If the null hypothesis is 

rejected, this opens the opportunity for new configurations with at least the same 

performance and potential improvement. 

Table 20: Statistical significance of testing based on 30 independent runs for AlexNet and 

5CLNN 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

p 0.01 0.01 0.01 

h 1 1 1 

 

The test returns a p-value equal to 0.01 for each imaging subset and shows a logical value 

of the test decision h = 1, which indicates a rejection of the null hypothesis at the 5% level 

of significance. Thus, the outperformance of 5CLNN is proven by these measures. Also, 

it is worth reporting that the time spent for training, validation and testing is 29 min for 
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5CLNN, 36 min for AlexNet and 546 min for VGG-16. The same commodity hardware 

was used in all cases, as mentioned in previous chapter. 

Experiment 2 

The second experiment focuses on the comparison of the classification performance of 

the different instances of the core 5CLNN, which are equipped with SoftMax, Support 

Vector Machine (SVM), Linear Discriminant (LD), and K-Nearest Neighbour (KNN) 

classification modules, respectively. Table 21 shows the comparative performance 

(average from 10 independent simulation runs) for 5CLNN-SoftMax, 5CLNN-SVM, 

5CLNN-LD and 5CLNN-KNN in the three classification tasks.  

Table 21: Average performance out of 10 runs for the 5CLNN with different classification 

modules (Softmax, SVM, LD and KNN) 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

5CLNN-Softmax 

Acc 

F1-score 

AUC 

 

0.7981 

0.7981 

0.8963 

 

0.8644 

0.8685 

0.9206 

 

0.9012 

0.8983 

0.9758 

5CLNN-SVM 

Acc 

F1-score 

AUC 

 

0.7887 

0.7911 

0.8738 

 

0.8668 

0.8646 

0.9000 

 

0.8794 

0.8832 

0.9400 

5CLNN-LD 

Acc 

F1-score 

AUC 

 

0.8044 

0.8074 

0.9094 

 

0.8731 

0.8685 

0.9688 

 

0.8856 

0.8850 

0.9200 

5CLNN-KNN 

Acc 

F1-score 

AUC 

 

0.7231 

0.7285 

0.8931 

 

0.8325 

0.8286 

0.9050 

 

0.8742 

0.8762 

0.9025 

 

The core CNN achieves the best average performance over all binary problems with the 

LD classification module. Its accuracy is higher than the CNN with Softmax by 0.63% 

for AD vs EMCI and 0.87% for EMCI vs NC. However, 5CLNN-LD architecture shows 

lower performance than 5CLNNSoftmax in the AD vs NC task. The 5CLNN-KNN 

architecture demonstrates lower performance than other models in all diagnostic tasks. 

     A Wilcoxon rank-sum test, as before, was used to check if the performance differences 

of the CNN-LD model, although small, are significant compared to the second-best 

model, CNN-Softmax. The null hypothesis (h) is that the differences in the performance 
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of CNN-LD and CNN-Softmax are not significant. If the null hypothesis is rejected (h=1), 

one says that the differences are significant at the 5% level. The outcome of the Wilcoxon 

test is presented in Table 22. 

Table 22: Statistical significance of the results based on ten runs for the 5CLNN with Softmax 

and LD modules 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

p 0.0145 0.0145 0.0145 

h 1 1 1 

Z 2.4442 2.4442 2.4442 

 

The p-value of 0.0145, h equal to 1 and z-score of 2.4442 confirm the statistical 

significance of the obtained results. 

5.12 Summary and contribution of the chapter 

The potential of both feature learning from segmented brain asymmetry and directly from 

brain asymmetry imaging data was investigated in this chapter.  This chapter also 

described relevant to this work machine learning fundamentals in the processing and 

classifying of neuroimages. The disease classification stages were included in the 

diagnostic cycle of the research. In general, machine learning models supported the 

automatic classification of brain pathologies using both classic machine learning 

algorithms and deep neural networks. The models utilised the labelled imaging data and 

were applied to binary and multiclass diagnostic problems. 

     Classic machine learning algorithm, trained on features extracted from asymmetry 

images, demonstrated robust performance with the highest values of 93% obtained by 

SVMs. Various CNNs, either created from scratch or pretrained, were also used. 

Experiments provided evidence of the diagnostic potential of these models when images 

of brain asymmetries are used without applying prior feature extraction and selection. 

Pretrained CNNs were fine-tuned via a transfer learning strategy. The proposed 5CLNN 

core architecture was combined with SVM, LD and KNN modules and trained 

successfully and tested on images of brain asymmetries that were not used before in the 

state-of-the-art literature. These models performed better than pretrained AlexNet and 

VGG-16 networks in the tests conducted.  
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     The classification performance achieved when using asymmetry features or images is 

comparable with the results obtained by other researchers who used MRI images, 

summarized in Table 2 (Chapter 2) for the ADNI and OASIS databases. In particular, the 

predictive accuracy of 92.5% for EMCI vs CN and 93% for AD vs CN is high, especially 

when considering the complexity of the schemes shown in this table (e.g., a larger number 

of features, a higher number of architectural parameters, and so on). Also, it is worth 

noting that papers in the literature (cf. with Table 2) report best model performance and 

do not provide average results produced from several random initialisations of the 

classifier’s parameters like we do. Also, they do not report how many runs/trials were 

conducted in order to produce the best model. Since we do not have access to the sample-

wise classification results of other classifiers in the literature we cannot perform a 

McNemar test, or some other test, to compare performances. Moreover, no optimisation 

was used for our models, so further performance improvement can be potentially achieved 

with SVM and CNN classifiers by optimization of architectures, as it has been shown in 

many cases in the literature. Experiments using segmented asymmetry images from the 

ADNI and OASIS MRI repositories revealed that the M2-SVM architecture outperforms 

the M1-Softmax architecture in short training cycles (less than 15 epochs). The two 

architectures show no significant differences in models’ efficiency in longer training 

cycles. Also, in the experiments, the M2-SVM architecture showed an ability to perform 

well using relatively small training datasets compared to the M1-Softman architecture. 

     Averaging the diagnostic performance of 5CLNN shows small but stable 

improvement, 1.27% in the accuracy and 1.4% in the F1-score, compared to AlexNet and 

5.39% in the accuracy and 5.45% in the F1-score compared to VGG-16. Combining the 

5CLNN (trained for ten epochs) with different classification modules results in 

performance differences: in the tests, the 5CLNN with the LD module worked better than 

the Softmax module, which is typically used in CNN applications. 

     The next chapter highlight the main contribution of the research, provides a discussion 

of the proposed methods used for early diagnosis of cognitive decline and dementia 

compare them with the state-of-the-art methods, and outlines future perspectives of the 

study. 
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Chapter 6:  Conclusions and Future Work 

This Chapter discusses the principal findings of the research and explains their meanings. 

The thesis investigated the modelling of structural changes in the brain in the early stages 

of cognitive decline. These findings are compared with signs of dementia due to the 

development of Alzheimer's Disease. The centre point of the research is the detection and 

segmentation of the left-rightwards hemispheric asymmetry of the brain from MRI scans 

of the free publicly available ADNI database. The proposed approach investigated and 

visualized the differences in shape and patterns of brain asymmetry in two groups of 

patients with preliminary and severe signs of dementia. The results were compared 

against the images of cognitively healthy participants. The images of the brain 

asymmetries were obtained after preprocessing and segmentation stages, which included 

varieties of thresholding and image transformation techniques.  

     The second key point of the research is the effectiveness of the digital asymmetry 

biomarker in a machine learning workflow for the diagnosis of early dementia through 

the analysis of MRI brain asymmetries. This includes traditional machine learning 

methods as well deep neural networks. Various Convolutional Neural Networks were 

trained to solve binary classification problems. Several pretrained CNN models were fine-

tuned via transfer learning strategy. Their diagnostic potential was compared with the 

performance of the proposed CNN model. 

Thus, the main contributions of the work can be summarised as follows: 

1. Digital Biomarker: The study introduces a digital biomarker for the diagnosis of 

early dementia based on the analysis of structural brain changes using MRI scans. 

This biomarker focuses on identifying asymmetries and cross-sectional 

comparisons between brain hemispheres. 

2. Statistical features of brain asymmetries are extracted from MRI scans, and 

then several conventional machine learning methods, such as SVM, KNN, LD 

and NB, are used to perform binary classification among pairs of the three classes 

of EMCI, AD and NC. 

3. CNN-based methods are performed on the same problem as above, with 

implementation of transfer learning from AlexNet and VGG16, and a simple CNN 

architecture trained from scratch. 
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     Several questions were raised at the beginning of the research. The answers can be 

given now to the restated questions. 

Q1.  Can changes in structural brain asymmetry be detected by computer vision 

algorithms? 

Based on the functional changes during the development of dementia which are described 

in the literature (Yang et al., 2017; Liu et.al., 2018), the current research demonstrates the 

structural differences between the group of people with Early Mild Cognitive Impairment, 

Alzheimer's Disease and the control group of healthy individuals. The morphological or 

structural characteristics of the brain can be discovered by computer vision algorithms. 

In the thesis, the proposed segmentation algorithm detects the structural differences 

between brain hemispheres among mentioned above groups of patients. The segmentation 

methods include several image transformation techniques that extract the asymmetrical 

parts of the brain from initial MRIs.  As we can see from the literature (Kim et al., 2012; 

Wachinger et al., 2016), structural transformation of asymmetry in a single area of the 

brain does not provide general information about how much the shift between the brain's 

left and right hemispheres. At the same time, the asymmetry of the entire brain is affected 

by the regional changes in the cortical and subcortical anatomical structures, which can 

be detected and visualized with the proposed computer vision technique. The developed 

algorithm helps to obtain the asymmetry pattern and find the differences between healthy 

individuals and those with a disease. 

Q2. Can statistically engineered features from brain asymmetries distinguish between 

early and progressive stages of dementia?  

The investigation of statistically engineered features of brain asymmetry between three 

groups of patients confirms that initial and progressive stages of dementia have unequable 

patterns of asymmetries. The experiments were conducted on several image sets and 

demonstrated similar pattern of changes. The statistical features collected from images of 

EMCI patients (early dementia) show more symmetry between brain hemispheres than 

features collected from AD patients (progressive dementia) and healthy controls. The 

features collected from MRIs of AD patients demonstrated the highest asymmetry among 

all examined groups. 

Q3. Is it possible to use segmented images of structural brain asymmetry as a diagnostic 

source to predict early dementia (amnestic MCI) and Alzheimer's Disease? 
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Analysis of statistical features collected from image asymmetries and machine learning 

algorithms applied to the datasets confirm the diagnostic power of the MRIs of segmented 

asymmetries that can be used as an additional biomarker for the robust diagnosis of 

dementia. 

Q4. What machine learning models are the most successful in the diagnosis of early 

cognitive impairment using images of brain asymmetries? 

Among supervised ML algorithms used for the research, SVM demonstrated the best 

performance. Five-layered CNN overperformed more complex pretrained transfer 

learning models such as AlexNet and VGG. Moreover, LD and SVM classification 

modules successfully replaced a popular Softmax function in the network. 

 A more detailed discussion of the research finding is provided below.  

6.1 Features representation of brain asymmetries of three classes of images 

The evolution of digital images brings new perspectives to the development of statistical 

image analysis. Statistical image modelling is recognized as an efficient analytical 

method that generates the covariance matrices and calculates the likelihood values used 

to estimate the statistical significance of model testing and evaluation. Even though image 

processing in computer vision is a well-established area with a collection of techniques, 

statistical aspects of image evaluation are in the process of development. The statistical 

data from images can be obtained differently. It can be collected from the histogram, a 

standard image processing tool. Pixel distribution functions can be used for image 

analysis.  

6.1.1. Statistical features 

Some aspects of statistical image analysis were also used for the evaluation of the brain 

MRI data. The data-analytical approach was applied to MRI scans collected from 150 

individuals equally divided between patients with Early Mild Cognitive Impairment, 

Alzheimer's Disease and a control group of healthy subjects. The feature engineering 

process includes the extraction of statistical data from image properties. The statistical 

information is obtained after transforming the pixel values into wavelets. This process 

was performed by applying the discrete wavelet transformation to the imaging data. DWT 

is known as one of the image and signal processing methods that give accurate 
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information about image properties (Bengueddoudj and Messali, 2018; Khademi et al., 

2011) and can be used to reduce image dimensionality (Fayaz et al., 2021).  

     The study's initial findings are based on the analysis of the 1st and 2nd order of statistical 

features obtained from the segmented brain asymmetry images. The statistical approach 

is particularly valuable for the analysis of imaging microstructures. The 1st order statistics 

computes the likelihood of observed greyscale values in any random position in the image 

matrix. The 2nd order statistics determine the likelihood of a pair of grey-level pixels in 

their random position and orientation in the image (Ruberto and Fodde, 2013).  

     The analysis of absolute statistical values and their ratio among patients' classes gives 

an inside into the problem of early dementia. The most valuable information was obtained 

from MSE, Mean, Std, RMS, Variance, and IDM features. A comparison of statistical 

features collected from image asymmetries highlights the differences among people with 

Early Mild Cognitive Impairment, Alzheimer's Disease and a control group of cognitively 

healthy subjects. The early stages of cognitive decline are characterized by decreased 

asymmetry between the brain's left and right hemispheres. At the same time, the brain 

asymmetries of demented people are pronounced compared with healthy subjects and 

those who have a cognitive impairment. In this vein, analysis of the absolute statistical 

values gives information about the structural symmetries of MRI scans. The lowest mean 

value has EMCI class compared to AD and NC data. AD has the highest average value 

for the same statistical features. The highest ratio has the AD vs EMCI group. The feature 

values (MSE, Mean, Std, RMS, Variance, and IDM) indicate the substantial differences 

in the asymmetry between these classes. The smallest but most stable ratio shows the 

EMCI vs NC group. It confirms the initial degenerative changes in the brain in the early 

stages of cognitive decline detected by the segmentation algorithm. The statistical 

differences for AD vs NC classes are also constant for all datasets (Figures 42-48). Similar 

changes in brain asymmetries were described by Yang et al. (2017). They explored the 

brain white matter networks and came to a conclusion about the rightward topological 

asymmetry in patients with AD and the absence of such changes in patients with MCI.  

     The segmented brain images used in the current study do not give an impression of the 

type of asymmetry, left- or rightward. They highlight the shape and patterns of the pixel 

intensity levels in the anatomical brain areas. It is known from other studies that the 

leftward asymmetry of the healthy brain becomes rightward due to the development of 

dementia (Yang et al., 2017; Liu et al., 2018). In reality, the statistical features that 
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demonstrate very similar numbers in graphs and bar charts of normal and affected by 

Alzheimer's Disease brains (see Figures 38-40) are "negatively correlated". In other 

words, healthy individuals have leftward asymmetry, and individuals with severe 

dementia have rightward asymmetries between the brain hemispheres (Yang et al., 2017). 

The structural difference between early signs of dementia and serious disease 

manifestations can be explained. In the initial stages, the development of dementia leads 

to a gradual decrease in leftward asymmetry, and the brain becomes more symmetrical. 

In more severe stages, the asymmetry increases again, leading to rightward hemispheric 

asymmetry. However, this assumption needs further research. Longitudinal studies of 

each group of individuals can clarify the obtained results. 

          Not so many studies describe the general changes in the pattern of asymmetries 

among individuals with neurogenerative disorders. Most investigators pay attention to the 

atrophic processes in the local cortical or subcortical areas, such as the hippocampus and 

amygdala (Wachinger et al., 2015; Kim et al., 2012). Atrophic changes in the regional 

brain areas might have a different speed of development (Wachinger et al., 2016) that 

also affect brain functionalities (Liu et al., 2018). Liu et al. discovered the abnormal 

rightward functional laterality in the brain of AD patients compared to healthy controls. 

On the other hand, the patients with MCI had a different brain lateralization level than 

patients with AD and the control group. The researchers assumed that structural features 

of the brain influenced functional results.  

     Several other studies describe the structural brain specificities of healthy participants 

(Segato et al., 2020; Tomasi and Volkow, 2012; Cabeza et al., 2004). Some of them 

investigate the effect of gender (Koelkebeck et al., 2014), age (Zhou, D. et al., 2013), 

handedness (Kong et al., 2018), and brain size (Williams et al., 2022) on the hemispheric 

symmetries.  

6.1.2 Gender 

The study explores the gender-related changes in asymmetry during cognitive decline and 

dementia development. MRI scans of 100 male and 50 female individuals were processed 

separately and compared using the statistical property of asymmetries. Biological gender 

dimorphism in the cerebral asymmetry of healthy subjects was presented in numerous 

studies (Koelkebeck et al., 2014; Guadalupe et al., 2015). Their findings confirm the total 

increase in rightward hemispheric volumetric asymmetry in females compared to males. 
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More detailed regional differences are discussed in Kong et al. (2018), where substantial 

distinctions were registered in the medial temporal regions such as the parahippocampal 

gyrus and the entorhinal cortex. The parahippocampal region demonstrated leftward 

asymmetry in males, and the entorhinal cortex was rightward oriented in females.  

     Moreover, these regions are also essential for Alzheimer's Disease, which reflects 

gender differences and has a prevalence in women (Mazure and Swendsen, 2016; Li and 

Singh, 2014). For instance, hippocampal atrophy progresses faster in women than in men 

(Ardekani et al., 2016). Diversity in regional brain atrophy affects the clinical presentation 

of the disease. Men behave more aggressively and have increased comorbidity and higher 

mortality rate than women. Women have more tendency to affective disorders and 

disability, but, at the same time, they survive longer (Sinforiani et al., 2010). It is 

important to note that the current study confirms the biological dimorphism between the 

two genders, such as an increase in rightward asymmetry in females compared to males 

in the control group. The female brain of this group of individuals looks more symmetrical 

than the male brain (see Figure 44). Nevertheless, the increase in symmetry in the EMCI 

group and the decrease in symmetry in the AD group were detected in both genders. That's 

just the degree of asymmetries that looks slightly different. 

6.1.3 Age 

The age of the patients can impact the level of brain symmetry. Some authors point to a 

significant correlation between brain asymmetry and cortical thickness in healthy 

individuals who demonstrate an age-related increase in leftward asymmetry (Kong et al., 

2018; Zhou, D. et al., 2013). The age groups of the examined EMCI and NC subjects 

were narrowed to ages 55 and 65 to minimize the age impact. The age effect on the brain 

of AD patients is not remarkable compared to the influence of the extensive atrophic 

process in the brain tissues due to the development of the disease. Thus, the AD dataset 

consists of the MRIs of 65 years old subjects and 90 years old at the same time. 

6.1.4 Handedness 

The study did not include an investigation of the patient's handedness and its influence 

on brain asymmetries. However, according to the study by Kong et al. (2018), handedness 

is not remarkably associated with cortical asymmetries. Their study is based on MRI data 

from 17,141 healthy subjects from multiple worldwide resources and provides a detailed 

description of the typical brain asymmetries.  
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6.1.5 Brain size 

The human brain varies in size and volume. MRI scans give the possibility to calculate 

brain measures.  The average brain volume in men is around 1260 cm3 and 1130 cm3 in 

women. There are substantial individual variations in brain measures (Schoenemann, 

2006; Im et al., 2008). Some researchers investigated a correlation between cerebral 

asymmetry and brain size and came to different conclusions. Thus, Barrick et al. (2005) 

did not find any evidence supporting this connection. Unlike them, Williams et al. (2022) 

found that large brains have more significant asymmetries for overall surface area and 

mean cortical thickness. They suppose that global brain asymmetry impacts local 

asymmetries and can partially explain them. The current study took into account the 

differences between the men's and women's brains and investigated the asymmetrical 

changes in the brain matter separately for each assigned group. 

6.1.6 Dataset samples  

The statistical information is collected from 5 segmented asymmetry image sets with 

three classes each. The sets differ in length (number of images), gender and plane of 

asymmetry (vertical and horizontal). The variability of those parameters did not reveal 

significant differences in the patterns of changes in brain asymmetries. 

6.2 Machine learning workflow for brain asymmetry images 

Images of brain asymmetry as a source of imaging data for the classification of dementia 

were never described in the literature before. Machine learning workflows were added to 

the imaging source of MRI data to test the segmented asymmetries for their robustness in 

the detection of cognitive decline. The segmented images of asymmetry were tested for 

their ability to complement a row of already existing biomarkers used for the diagnosis 

of dementia. Machine learning models trained on the segmented imaging data became the 

main diagnostic tools for this medical problem.  

6.2.1 Conventional supervised ML algorithms 

One of the lines of diagnostic modelling includes the combination of feature engineering 

processes and classification algorithms. This part of the research focused on testing the 

various ML algorithms using a fusion of statistical features and Bag-of-Features collected 

from segmented image asymmetries. The performance of NB, LD, SVM and KNN 

classifiers was evaluated using a 10-fold cross-validation procedure. The results were 

compared with the performance of the state-of-the-art methods described in the literature. 
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It is important to note that the current study and state-of-the-art research papers used the 

exact source of MRI data obtained from the ADNI database.  

     The best results among the mentioned above classifiers were obtained with the SVM 

algorithm using polynomial quadratic and cubic kernels. The average achieved accuracy 

for the EMCI vs NC classes is 92.5% using two kernels, 86.5% for the AD vs EMCI 

classes using the same kernels, and 92.5% and 93% for the AD vs NC classes using 

quadratic and cubic kernels accordingly. The obtained results are very close to those 

demonstrated in the literature. For instance, Beheshti et al. (2017) diagnosed AD with an 

accuracy of 94.73% using the SVM model. Moradi et al. (2015) detected the MCI with 

an accuracy of 82% with the ensemble of the SVM and Random Forest algorithms. 

Glozman and Le (2014) predicted AD using SVM with a probability of 92%. At the same 

time, the feature generation processes used by researchers are different. In this situation, 

the advantage has that method which has less complexity and requires a shorter time for 

the implementation. Consequently, the approaches proposed by Beheshti et al. (2017) and 

Moradi et al. (2015) look time-consuming. The first of them had to identify the atrophic 

brain region with voxel-based morphometry, extract features by applying a 3D mask, rank 

features according to T-test score, and select them using a specific genetic algorithm. 

Only after those stages the classification algorithm had been used. The second method 

consists of the following steps: feature selection using regularized logistic regression 

algorithm, a semi-supervised low-density feature separation algorithm, a combination of 

the collected features with cognitive measurements, and classification using a Random 

Forest algorithm. These two methods are only examples of the complex feature 

engineering methods described in the literature. The feature extraction procedure used in 

the current study is more straightforward than many other methods. 

     Another essential point is that classic algorithms with MRI asymmetry dataset 

outperformed all CNN models used in the research (their performance will be compared 

with state-of-the-art methods later in the following subsection). Table 23 shows the 

highest classification performance archived with classic and CNN models. 

Table 23 Classification performance of best classic and CNN models 

Classifiers AD vs EMCI EMCI vs NC AD vs NC 

C-SVM 

Acc 

F1-score 

 

0.8650 

0.8600 

 

0.9250 

0.9200 

 

0.9300 

0.9300 
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AUC 0.9400 0.9800 0.9900 

5CLNN 

Acc 

F1-score 

AUC 

 

0.8030 

0.7975 

0.8700 

 

0.8775 

0.8700 

0.9312 

 

0.9105 

0.9110 

0.9475 

 

6.2.2 Deep learning: deep transfer learning and specialised CNN 

architectures 

Another line of the classification is the implementation of Artificial Neural Networks and 

Deep Learning models. These models take some advantages over the other machine 

learning methods discussed above. They generate features during the training stage, learn 

them in a supervised or unsupervised mode, and are able to process a large amount of 

data. Convolutional Neural Network is one of the most adapted for classifying imaging 

data models. The diagnostic potential of this model and its modifications, including 

transfer learning, were used for the detection of neurodegenerative disorders.   

     A set of experiments with deep learning models was conducted. The purpose was to 

investigate the diagnostic performance of the neural networks using created sets of image 

asymmetries. The intermediate stages included tests with fine-tuned convolutional 

models and transfer learning models. Experiments run on commodity hardware to 

maximize the possibility of integrating these models in routine healthcare checks. For the 

same reason, the size of the datasets was kept under 1000 samples. It was taken into 

account that accessible databases containing clinical records and imaging data can be 

limited. 

Significant findings of the study 

CNN models demonstrate a very good classification performance on image asymmetry 

sets. Early changes in the brain (EMCI vs NC) are diagnosed with an accuracy of 87.75 

± 3.10% with the proposed CNN (5CLNN). The model's ability to distinguish between 

AD and EMCI is 80.30 ± 2.30%. The AD prediction score compared to NC samples is 

91.05 ± 3.20%.  

     The successful competitors of created during the research 5CLNN classifier are 

pretrained networks. Two of the transfer learning models, Alexnet and VGG16, show the 

high diagnostic accuracy of early stages of cognitive decline (EMCI vs NC) 

corresponding to 85.80 ± 1.50% and 82.25 ± 2.00%, respectively. However, the proposed 
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CNN model performs better than pretrained AlexNet and VGG-16 networks in the tests 

conducted. The average accuracy across all diagnostic tasks for 5CLNN is higher than 

the accuracy of AlexNet by 1.27% and VGG-16 by 5.39%. Moreover, the training, 

validation and testing time of the 5CLNN model is visibly shorter by 7 min (1.24 times) 

compared to AlexNet and by 517 min (18.83 times) compared to VGG-16.  

     Another substantial finding of the study is that the classifier's performance can be 

improved by connecting the various classification modules to the output layer. For 

instance, the best results for the 5CLNN are obtained when the model works with the LD 

classification layer. It demonstrates, on average, 87.31% of accuracy for the diagnosis of 

EMCI. By contrast, in the same model with Softmax (typically used in CNN 

applications), SVM and KNN classification layers, the accuracy is 86.44%, 86.68%, and 

83.25%, accordingly. Another example of the increased performance due to the 

implementation of the different from the Softmax classification module strategy is a 

combination of AlexNet with the SVM output layer. It demonstrates 95.90% accuracy in 

the diagnosis of Alzheimer's Disease, 90.25% in detecting early Mild Cognitive 

Impairment, and 83% in the separation of early dementia and Alzheimer's Disease.  

     It is important to note that the efficiency of the deep learning model is correlated to 

the number of training epochs. Looking at the average testing score across all the tasks, 

the AlexNet model plus SVM layer outperforms AlexNet plus Softmax layer by 8.10% 

when trained for five epochs, by 1.93% when trained for ten epochs, and by 1.31% when 

trained for fifteen epochs. 

     Lastly, the evaluation of all the classification models highlights the advantage of SVM 

over the CNN models in diagnosing early dementia based on images of segmented brain 

asymmetries. On average, the SVM overperforms the CNN by 5% in the prediction of 

EMCI compared to the control group, by 2% in the discovery of AD and by 6% in the 

distinguishing between EMCI and AD. These results may indicate that the feature 

engineering process plays a significant role in more accurate diagnostic predictions. So, 

it is hard to ignore the fact that the classic machine learning algorithms work pretty well 

on small data sizes. At the same time, neural networks are able to process a more 

significant amount of information with fairly high accuracy and offer end-to-end learning. 

However, the "black box" effect can make it difficult to understand the nature of such 

types of predictions. It might limit the use of deep learning models in medical practice. 
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Comparison with the state-of-the-art 

The classification results obtained during the research work described in the thesis 

provide evidence that the segmented asymmetries approach for predicting dementia is 

valid. Although the diagnostic lines that use images of the segmented parts of the human 

brain for the detection of structural and functional abnormalities of the human brain 

require further development, when compared to the methods already described in the 

literature the proposed approach demonstrates a promising diagnostic potential. For 

instance, in the study of Chitradevi and Prabha (2020) that evaluated the diagnostic 

performance of several image segmentation methods in diagnosing Alzheimer's Disease 

using AlexNet, the highest predictive score of around 90% was achieved with images of 

the segmented hippocampus. Separated during the study, other parts and tissues of the 

brain demonstrated lower prediction values than the method based on the image 

asymmetries.  

     Images of segmented brain asymmetries can be used independently or as an 

additional biomarker for the early diagnosis of MCI. In medical practice, the diagnosis 

of any degenerative brain disease, including Mild Cognitive Impairment and 

Alzheimer's Disease, is usually supported by several biomarkers that perform the 

complex analysis of medical data. The combined biomarkers are discussed in many 

research articles. In this way, Yang et al. (2019) explored the diagnostic potential of 

three groups of biomarkers such as mental task performance and some sort of digital and 

imaging biomarkers. Linear discriminant analysis, statistical analysis and CNN were 

included in the analytical and classification schema. The accuracy obtained with 

complex biomarkers correlates to the current research results using MRIs of 

asymmetries only. 

     Moreover, the highest accuracy of 90.62% in the detection of MCI (Yang et al., 2019) 

was received using CNN with imaging biomarkers. In their study, the approaches using 

LDA, and statistical analyses demonstrated 76.67% and 60% accuracy, respectively. It 

is possible to assume that brain asymmetry images have the potential to increase the 

prediction of dementia if they are added to any other group of biomarkers.  

     Another combination of biomarkers was tested with convolutional neural network 

autoencoders by Martinez-Murcia et al. (2019). They use only non-imaging data, 

including the age of patients, presence of the Apolipoprotein E4 in chromosome 19, the 

concentration of Tau protein in cerebrospinal fluid, results of MMSE and Alzheimer's 
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Disease Assessment Scale cognitive tests, and Clinical Dementia Ratio score. However, 

the prediction power of non-imaging data was lower than in studies using MRIs. 

Alzheimer's Disease was diagnosed with an accuracy of 84% only. These findings 

confirm the advantage of imaging biomarkers in medical diagnosis, including those 

developed in the current study. 

     Images of segmented asymmetries have been checked for their robustness in the 

diagnosis of early and progressive dementia using various machine learning algorithms, 

including deep neural networks. Pretrained CNNs have gained popularity in the last few 

years in clinical diagnostics. Ease of use and good performance attract many researchers. 

A considerable part of the research findings was received from machine learning 

experiments that involved transfer learning of convolutional neural networks. The 

number of these networks and their variants are proliferating. For example, Spasov et 

al. (2019) proposed the combination of the convolutional sub-networks inspired by 

AlexNet and Xception CNN. The experiments were conducted with the concatenated 

features collected from the imaging data and those obtained from the clinical and 

cognitive tests. The combination of MRI and clinical features got the best results of 86% 

accuracy. The accuracy is comparable with the CNN-based experiments used to classify 

brain asymmetries. However, it should be noted that current experiments use single 

imaging biomarkers, which simplify and speed up the machine learning process.  

     It is worth emphasizing one more significant point, the advantage of computerized 

diagnostics over human experts in medical practice. This issue is discussed in many 

publications. A comparative analysis of the diagnostic performance of the Inception-V3 

CNN model and human radiology reader was established by Ding et al. (2019). 

According to their records, DL outperformed the human reader in terms of sensitivity 

by 43% for the AD and 29% for the MCI classification of PET images. Also, in terms 

of precision, the algorithm outperformed the specialists by 7% for the MCI diagnosis. 

At the same time, the medical professional surpassed the DL model in terms of 

specificity by 9% in the prediction of AD and by 18% in the detection of MCI. Even 

though the general performance of the DL model was better than the efficiency of human 

professionals, it tells that more precise machine learning methods are still needed to 

detect the medical pathology accurately. The current study of asymmetrical brain 

structures did not aim to prove the advantage of the computer-aided diagnosis but to 

propose a different approach which helps to understand better the structural changes od 

the brain tissues during the development of dementia and improve its diagnosis.  



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Chapter 6:  Conclusions and Future Work 

 

158 

     The classification performance of the developed method was also compared with the 

results of 3D neural network models. The 3D VGG16 model, applied by Yagis et al. 

(2020) to the imaging data of the ADNI and OASIS datasets, demonstrated an average 

accuracy of 73.4% and 69.9%, respectively, in the AD diagnosis. Another 3D CNN 

model, used by Oh et al. (2019), established accuracy of 86.60% for detecting AD and 

73.95% for predicting a progressive form of MCI. Both three-dimensional models show 

lower performance than transfer learning CNN architectures used in the current study. 

Furthermore, the core of the seconds model was a convolutional autoencoder with a 

GoogLeNet InceptionV2 module specially designed for unsupervised learning, 

dimensionality reduction, and differentiation between AD and NC. However, the 

autoencoder was unable to analyse the spatial structure of the imaging data, which is an 

essential condition for the reliable explanation of classification decisions. In contrast, in 

the current research, the images of segmented asymmetries give an adjuvant inside to 

the specific structural details and shapes of the brain hemispheres that help understand 

the positioning of some useful brain features.  

     From the following papers describing complicated deep learning architectures, it is 

possible to conclude that model complexity does not necessarily lead to better 

classification performance. Several examples of complex neural network models and 

their results are presented below. Lu et al. (2018) proposed the multiscale neural 

network-based analysis for early diagnosis of Alzheimer's Disease using metabolic brain 

activity measures and features collected from multiple MRI regions. The final network 

was created as a composition of four deep neural networks due to initially pretrained 

stacked-autoencoders. An accuracy of 82.51 % was obtained in distinguishing between 

presymptomatic AD and non-progressive MCI. Another example of the complex 

classification approach is given by Duc et al. (2020). The investigators proposed to join 

imaging and non-imaging (MMSE) features using 3D CNN and four regression models, 

including linear least square regression, tree regression, bagging-based ensemble 

regression and support vector regression models. The CNN model was a modified 

version of the VGG network with additional batch normalization layers. The mean 

accuracy for the classification of AD versus cognitively normal subjects was 85.27%. 

Another example of a more successful configuration implemented for the prediction of 

MCI is the joint MRI fusion model and two MLP models proposed by Qiu et al. (2018). 

The MRI fusion model was generated via majority voting from three independently 

trained VGG11 networks. The attained accuracy of the final multimodal model was 
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90.9% which is relatively high. Unfortunately, the article does not provide details about 

the training time for all of these models. From this perspective, supervised machine 

learning models tested with imaging data from brain asymmetries have a significant 

advantage over deep learning models. 

     The classification performance of the pretrained networks and proposed CNN using 

images of brain asymmetries was compared with several non-convolutional networks 

described in the state-of-the-art literature (Stamate et al., 2020; Lama et al., 2017; 

Amoroso et al., 2018). Multi-Layer Perceptron and a Convolutional Bidirectional Long 

Short-Term Memory model proposed by Stamate et al. (2020) demonstrated the highest 

accuracy of 86% in the diagnosis of dementia. Another study (Lama et al., 2017) used 

an unsupervised deep learning method based on a Regularized Extreme Learning 

Machine algorithm for binary classification of AD vs MCI. The archived accuracy was 

80.32%. And lastly, a combined strategy of Random Forest and a feedforward DNN 

described by Amoroso et al. (2018) demonstrated recall of 87.5% for AD, 52.5 % for 

HC, and 27.5% for MCI. The results above confirm that the diagnostic performance of 

non-convolutional neural networks is lower than the convolutional models tested in the 

current study and those presented in the state-of-the-art literature. This rule is mainly 

applied to imaging data.  

     Table 24 summarises the discussion above and shows the validation performance of 

the proposed CNN architecture and state-of-the-art methods. The 5LCNN with MRI, 

segmented asymmetries data, outperformed complex models in the detection of EMCI 

and AD in most cases. 

 

Table 24 The comparison of proposed CNN with state-of-the art methods 

Authors Methods Results 

Herzog and 

Magoulas (2022) 

5LCNN; 

MRI segmented asymmetry imaging 

data 

Accuracy is 91.05%  

(AD vs NC), 80.3% (AD vs 

EMCI), 87.75% (EMCI vs NC) 

Lama et al. (2017) 

 

Unsupervised classification learning; 

MRI data  

Accuracy is 80.32%  

(AD vs MCI) 

Stamate et al. 

(2020) 

 

Deep Learning (complex) models;  

Multiple biomarkers 

Accuracy is 86% 

(AD vs NC) 

Yagis et al. 

(2020) 

3D VGG model; 

MRI data  
Accuracy is 73.4% (AD vs NC) 

Qiu et al. (2018) 

Combination of deep learning 

models:  

MRI + cognitive test scores 

Accuracy is 90.9% (MCI vs NC) 
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Yang et al. (2019) 

Complex model  

Multiple biomarkers 

 

Accuracy is 90.62% with MRI 

using CNN (MCI vs NC) 

Martinez-Murcia 

et al. (2019) 

DL based on convolutional 

autoencoders;  

Multiple biomarkers  

Accuracy is 84% (AD vs NC) 

Duc et al. (2020)  Complex model  

Multiple biomarkers 

Accuracy is 85.27%  

(AD vs NC)  

Li et al. (2019) Complex model 

MRI data 

 

Accuracy is 90%  

(AD vs NC) 

76.2% (pMCI vs AD) 

Spasov et al. 

(2019) 

AlexNet and Xception CNNs;  

Multiple biomarkers 

Accuracy is 86%, (pMCI vs NC)  

Chitradevi and 

Prabha (2020) 

AlexNet CNN;  

MRI data 

(Classification of AD, normal) 

Accuracy is ~90% for the 

different segmented brain parts 

(AD vs NC) 

Amoroso et al. 

(2018) 

Complex non-CNN models;  

Multiple biomarkers 

Recall for AD (87.5%), HC 

(52.5 %), MCI (27.5%) cMCI 

(57.5%) 

Oh et al. (2019) Complex model; 

MRI data 

 

Accuracies for the AD is 

86.60%, and for pMCI is 

73.95% 

 

6.3 Summary of the thesis 

The research on the structural MRIs of individuals with early mild cognitive impairment 

and Alzheimer’s Disease proposed a new diagnostic approach based on the analysis of 

brain asymmetry. It facilitates early detection of initial dementia when clinical symptoms 

are very mild and challenging.  

     A growing number of cases of dementia among the elderly population worldwide has 

become a reason for the active research in this area. Dementia is currently the seventh 

leading cause of death among all diseases and one of the major causes of disability and 

dependency among older people. Early and precise diagnosis of the pathology is crucial. 

Timely and focused therapy help find the appropriate treatment, slowing down the 

development of pathology and extending the time of independent leaving. 

     The diagnosis of dementia is based on several clinical and biological criteria, including 

imaging and non-imaging biomarkers. Computerized diagnostic methods speed up the 

detection of brain pathology and make it more precise. Categorization of early changes 

in the brain helps to evaluate the risk of progression of cognitive decline to dementia. 

Imaging techniques, including MRI scans, allow understanding of the specific 
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degenerative brain processes leading to severe dementia and Alzheimer’s Disease. 

However, an internal destructive mechanism at some points remains unclear.  

6.3.1 Hypothesis restatement and major findings 

The current research was based on the hypothesis that changes in the level of asymmetry 

between the left, and right brain hemispheres might be an additional diagnostic factor 

(biomarker) for the diagnosis of dementia in the early stage of its development. The study 

involved the imaging resources (MRI scans) of the well-known ADNI and OASIS 

medical imaging databases. The experimental study included a cross-sectional 

classification of early mild cognitive impairment, Alzheimer's disease, and cognitively 

normal subjects from the ADNI database and demented and non-demented subjects from 

the OASIS database. The diagnostic pipeline consisted of image processing and 

classification stages. During the image processing stage, 2D images of brain asymmetries 

are obtained from MRI scans. The proposed segmentation algorithm highlighted the 

differences in shape and pattern of asymmetry among patients with cognitive decline, 

Alzheimer’s Disease and a control group of healthy individuals. Furthermore, the 

asymmetries of EMCI, AD and NC individuals are analysed using statistical features and 

classified with machine learning algorithms. The experimental results support the 

hypothesis that changes in the brain asymmetries during the development of dementia 

convey essential information, as they were used to generate valuable features for 

classification. Varieties of applied supervised machine learning algorithms helped 

evaluate the robustness of the proposed segmentation algorithm in the diagnosis of 

dementia.   

     Important to note that in contrast to other methods in the literature (see Chapter 2.3), 

this study is less complex in terms of image processing. For example, the image 

processing time on average was 0.1 min per image (3.6 GHz Intel Core i7, 16 GB RAM), 

compared to the article (Moradi et al., 2015), where it took 8 min (3.4 GHz Intel Core i7, 

8 GB RAM). The images of segmented asymmetries require three times less memory 

space than similar originals. It potentially gives an advantage in terms of computational 

time spent on training a classifier. However, it is impossible to directly compare with 

other literature approaches as hardware specifications differ. Nevertheless, it is worth 

mentioning that the CPU time for an asymmetry features-trained single classifier, 

including 10-fold cross-validation, was approximately 5 sec on our hardware, which 
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appears considerably low compared to other methods that used more complex feature sets 

(Breiman, 2001). 

     If to speak about classification performance, the applied classification models appear 

comparable with more complex methods described in the state-of-the-art literature and 

summarized in Table 2 (literature review) for the ADNI database. In particular, the 

predictive accuracy of 92.5% for EMCI vs CN and 93% for AD vs CN is high, especially 

when considering the complexity of the schemes shown in this table (e.g., a more 

significant number of features, a higher number of architectural parameters, and so on). 

Further performance improvement was achieved with CNN classifiers by optimizing 

architectures, as demonstrated in other works in the literature (Le, N.Q.K. et al., 2020); 

(Grassi et al., 2019). Transfer learning models and the proposed convolutional model in 

combination with SVM, KNN and LD classification modules demonstrated consistent 

and robust performance in the detection of the brain pathology using images of segmented 

asymmetries.  

6.3.2 Limitation of the study 

The study has a limitation in the investigation of the handedness of the patients. The 

images downloaded from the ADNI database were not separated according to 

participants’ handedness. The data from the OASIS database includes only records of 

right-handed individuals. Based on the literature, it is known that around 90% of the 

population is right-handed, and the possible error can be low, especially if taken into 

account that affected by degenerative processes, areas of the brain might not be connected 

to handedness at all. However, investigating the impact of the right- and left-handedness 

on the changes in brain asymmetry during the development of dementia is one of the 

potential directions for further work. 

6.3.3 Future development 

It is worth mentioning that the results obtained in current research are interdisciplinary in 

nature and can contribute to the field of neuroscience, psychology and computer science. 

The suggested computational framework can be potentially valuable to other researchers 

working on the diagnosis of brain-related disorders, or on the processing and 

classification of different medical imaging data, especially in cases with unclear border 

and texture or low-scale structural changes, which are not visible to the human eye. 
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     On a practical level, the use of image asymmetry and asymmetry features has the 

potential to contribute to the design of end-user (e.g., physicians and general medical 

practitioners) applications, which will run on commodity hardware for early diagnosis of 

cognitive decline and investigation of the nature of the structural changes in the brain. 

These applications can exploit the generalization properties of machine learning models 

on unseen MRI data, as demonstrated in this study. 

     The proposed methodology has a perspective to explore the stages of Alzheimer's 

disease further. This research can be based on longitudinal studies of patient data. 

Changes in the asymmetry shape and mapping of these changes to the brain atlas will 

direct those brain areas affected by the pathological process.  

     Another point for investigation is the comparison of asymmetries between the grey 

and white matter of the brain. Some researchers investigated the correlation between the 

degeneration of the white matter tracts and grey matter atrophy in cases of Alzheimer's 

disease (Agosta et al., 2011; Frings et al., 2014). They found out that axons of neurons 

(represent the white matter) can be affected earlier than the neurons themselves (represent 

the grey matter) and can symbolize the early onset of the disease. The white matter in 

patients with MCI is affected significantly less. Thus, in the diagnosis of MCI and the 

transformation of some of its forms to AD, MRI technologies can help computational 

models in the detection of early degenerative brain changes. This can be explained by the 

fact that cognitive decline in the case of MCI might have different morphological grounds 

when the destructive process does not involve white matter only. The nature of MCI is 

more complex and might have another, for instance, the vascular reason for amnestic and 

cognitive decline. Only 30% of MCI progress to AD. Additional computer vision 

segmentation techniques might give a clue to the source of initial tissue deformation, 

which opens a direction for early prediction and disease prevention. 

     One more diagnostic direction applied to the classification of diseases is using deep 

learning models. Transfer learning with a different from Softmax (e.g., SVM, LD, KNN) 

classification layer may be helpful in situations where large clinical datasets are not 

readily available. Several studies reported limited access to clinical data (Strongman et 

al., 2019). Hence, when the imaging datasets are limited in size and the time for testing 

is restricted, the diagnostic model incorporated, for example, with SVM or LD layers, 

might get the advantage. 
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     Some neuropsychiatric disorders, such as dyslexia (Altarelli et al., 2014), attention 

deficit hyperactivity disorder (ADHD) (Shaw et al., 2009), autism (Eyler et al., 2012), 

psychiatric disorders like obsessive-compulsive disorder (OCD) and Schizophrenia 

(Crow, 1990; Yücel et al., 2002; Yücel et al., 2003) and mood disorders like Major 

Depression (Liu, W. et al., 2016; Yucel et al., 2009) may be associated with abnormal 

cortical asymmetries. These pathologies are still not fully explored (Kong et al., 2018; 

Kong et al., 2020). For instance, structural and functional MRI of patients with autistic 

spectrum disorder (ASD) indicates the rightward brain lateralization compared to the 

healthy controls. These changes in asymmetry are mainly related to the language zone 

and areas responsible for the brain cortex's cognitive and emotional processes, which are 

less developed in ASD patients (Lindell and Hudry, 2013). However, some studies have 

reported similar changes in the white matter tracts of this group of people. Another 

example of brain asymmetry changes belongs to the mood disorders group is Major 

Depression. These changes are registered in the frontal and parietal-temporal zones of the 

brain’s grey matter towards leftward lateralization. Nevertheless, the substrate of the 

cortical abnormalities is still under investigation. One more psychiatric disorder which 

demonstrates the atypical structural and functional lateralization is OCD. The changes are 

found in both cortical and subcortical brain areas, and the pattern of asymmetries might 

vary from zone to zone. Significantly, most investigators did not find the associations 

between shifts in brain asymmetry and the length and type of treatment, age in the onset 

and duration of the disease, or the number of symptoms. Brain asymmetries in ADHD 

and schizophrenia are still in the initial stages of exploration and analysis.   
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Appendix A: Matlab code for image processing and 

classification 

MRI brain preprocessing and segmentation 

close all 
clc 
clear 
%Load and read image from a file 
[filename,pathname] = 

uigetfile({'*.*';'*.jpg';'*.bmp';'*.tif';'*.gif';'*.png'},'Pick an 

Image File'); 
[im, map] = imread([pathname,filename]); 

 

%Resize, modify and adjust an image 
I = imresize(im,[256,256]); 
R = I(:,:,1); 
G = I(:,:,2); 
B = I(:,:,3); 
newI = zeros(size(I,1),size(I,2),'uint8'); 
for x=1:size(I,1) 
for y=1:size(I,2) 
newI(x,y)=(R(x,y)*.3)+(G(x,y)*.6)+(B(x,y)*.1); 
end 
end 
returnedI = newI; 
figure, imshow(returnedI);  
img = imadjust(returnedI);%image normalize [0,1] 
figure, imshow(img);  

 
%% Brain partition 
img(195:end, :) = 0; 
figure,imshow(imadjust(img)); 

  
%% Threshold 
lb = 80; 
ub = 270; 
mriAdjust = img; 
mriAdjust(mriAdjust <= lb) = 0; 
mriAdjust(mriAdjust >=ub) = 0; 
mriAdjust(195:end, :) = 0; 
bw = logical(mriAdjust); 
figure,imshow(bw);  

 
%% Find centroid 
L = bwlabeln(bw); 
stats = regionprops(L, 'Area', 'Centroid'); 
LL = L + 1; 
cmap = hsv(length(stats)); cmap = [0 0 0;cmap]; 
sizeI = size(img); 
LL = cmap(LL, :);LL = reshape(LL, [sizeI, 3]); 
figure, imshow(LL);  

 
%% Find the largest blob 
A = [stats.Area]; 
biggest = find(A ==max(A)); 
mriAdjust(L ~= biggest) = 0; 
imA = imadjust(mriAdjust); 
figure, imshow(imA); 
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Segmentation of brain asymmetry and statistical features collection 

%%Process segmented brain images (find centroid of the brain, 
%%translate the brain to the center of the image, rotate the brain, 

find asymmetry between the right and the left parts of the brain) and 
calculate the statistics from the image asymmetry 
close all 
clc 
clear 
%Load and read image from a file 
[filename,pathname] = 

uigetfile({'*.*';'*.jpg';'*.bmp';'*.tif';'*.gif';'*.png'},'Pick an 

Image File'); 
[I, map] = imread([pathname,filename]); 
%%  
% Get the dimensions of the image.   
% numberOfColourChannels should be = 1 for a grey scale image, and 3 

for an RGB colour image 
% Convert the image from 3 to 2 dimensional 
[rows, columns, numberOfColourChannels] = size(I); 
R = I(:,:,1); 
G = I(:,:,2); 
B = I(:,:,3); 
newI = zeros(size(I,1),size(I,2),'uint8'); 
for x=1:size(I,1) 
for y=1:size(I,2) 
newI(x,y)=(R(x,y)*.3)+(G(x,y)*.6)+(B(x,y)*.1); 
end 
end 
bin = newI; 

 
%% Binary image with centroid and axes of symmetry 
binaryImage = logical(bin); 

 
% Label the image 
labeledImage = logical(binaryImage); 

 
% Make the measurements 
stats = regionprops('table',labeledImage,'Centroid',... 
    'MajorAxisLength','MinorAxisLength','Orientation'); 
xCentroid = stats.Centroid(1); 
yCentroid = stats.Centroid(2); 

 
% Find the halfway point of the image 
middlex = columns/2; 
middley = rows/2; 

 
%% Translate the image 
deltax = middlex - xCentroid; 
deltay = middley - yCentroid; 
translatedImage = imtranslate(I,[deltax, deltay],'OutputView','full'); 

 
%% Rotate the image 
angle = -stats.Orientation; 
rotatedImage = imrotate(translatedImage, -0.14, 'crop'); 

 
%% Find asymmetry in the image 
F = fliplr(rotatedImage); 
D = imabsdiff(rotatedImage,F); 
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% Display the image asymmetry 
figure,imshow(D); 

 
%% MSE 
MSE = immse(rotatedImage,F); 
%% Discrete Wavelets transform from image differences: 
signal1 = D(:,:,:); 
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4'); 
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4'); 
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4'); 
DWT_feat = [cA3,cH3,cV3,cD3];%3? level of DWT 
%% 1-st and 2-nd level of statistics:  
Mean = mean2(DWT_feat); 
Standard_Deviation = std2(DWT_feat); 
Entropy = entropy(DWT_feat); 
RMS = mean2(rms(DWT_feat));%Root-mean-square level 
Variance = mean2(var(double(DWT_feat))); 
a = sum(double(DWT_feat(:))); 
Smoothness = 1-(1/(1+a)); 
Kurtosis = kurtosis(double(DWT_feat(:))); 
Skewness = skewness(double(DWT_feat(:))); 
% Inverse Difference Movement: 
m = size(DWT_feat,1); 
n = size(DWT_feat,2); 
in_diff = 0; 
for i = 1:m 
    for j = 1:n 
        temp = DWT_feat(i,j)./(1+(i-j).^2); 
        in_diff = in_diff+temp; 
    end 
end 
IDM = double(in_diff); 

 
%% Vector of statistics values calculated from an image asymmetry 
V = 

[MSE,Mean,Standard_Deviation,Entropy,RMS,Variance,Smoothness,Kurtosis,

Skewness,IDM]; 
%% Plot data 
%load StatTbl.mat; 
%gplotmatrix(V,[],label); 

Extraction and collection the Bag-of-Features 

%Load image sets 
outputFolder = fullfile('\\winfs\home\nitsa\My Documents\MCI\DBO 

Dementia Test'); 
rootFolder = fullfile('\\winfs\home\nitsa\My Documents\MCI\DBO 

Dementia Test'); 
imgSets = [ imageSet(fullfile(rootFolder, 'ADaxial_sym')), ... 
            imageSet(fullfile(rootFolder, 'EMCIaxial_sym')), ... 
            imageSet(fullfile(rootFolder, 'NCaxial_sym')) ]; 
        minSetCount = min([imgSets.Count]); %count the sets nmber 
        imgSets = partition(imgSets, minSetCount, 'randomize'); 

  

%partition sets according sets data 
        [trainingSets, validationSets] = partition(imgSets, 0.3, 

'randomize');%partition sets for the training and validation data 
        bag = bagOfFeatures(trainingSets);%creat the visual vocabulary 

for each image in the datasets (SURF extraction and K-means 

clustering) 
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%img = imread('\\winfs\home\nitsa\My Documents\MCI\DBO Dementia 

Test\AD\ad1.png'); 
%featureVector = encode(bag, img); 

  
% Plot the histogram of visual word occurrences 
%figure 
%bar(featureVector) 
%title('Visual word occurrences') 
%xlabel('Visual word index') 
%ylabel('Frequency of occurrence') 

 

Training Bayesian classifier and creating the confusion matrix 
 
%%Train Bayesian Classifier 
load Bigdata.mat %Load features table 
X = featureData;    % Predictors 
Y = label; % Response 
Mdl = fitcnb(X,Y,... 
    'ClassNames',{'AD','EMCI','NC'});  
%Result prediction, displated for 10 observations 
lbl = resubPredict(Mdl); 
rng(1); % Control random number generation (for reproducibility)  
 

%Confusion matrix 
ConfusionMat = confusionmat(Y,lbl);  
%Plot confusion  
labels = {'AD', 'EMCI', 'NC'}; 
numlabels = size(ConfusionMat,1); 
imagesc(ConfusionMat); 
title(sprintf('Confusion Matrix. Accuracy: %.2f%%', 

100*trace(ConfusionMat)/sum(ConfusionMat(:))));  
ylabel('Target Class'); xlabel(' Output Class');  
%colourmap(flipud(grey); 
colourmap(flipud(parula)); 
textStrings = num2str([ConfusionMat(:),0.01*ConfusionMat(:)], 

'%.1f%%\n%.2f\n'); 
textStrings = strtrim(cellstr(textStrings)); 
[x,y] = meshgrid(1:numlabels); 
hStrings = text(x(:),y(:),textStrings(:), ... 
    'HorizontalAlignment','center'); 
midValue = mean(get(gca,'CLim')); 
textColours = repmat(ConfusionMat(:) > midValue,1,3); 
set(hStrings,{'Colour'},num2cell(textColours,2));  
set(gca,'XTick',1:numlabels,... 
    'XTickLabel',labels,... 
    'YTick',1:numlabels,... 
    'YTickLabel',labels,... 
    'TickLength',[0 0]); 

 

Creating compact Bayesian classifier 
 
load Bigdata.mat 
X = featureData; 
Y = label; 
rng(1); 
n = size(X,1);  
%Partition the data set into two sets: one is the training set, 
%and the other is new unobserved data. Reserve 10 observations for the 

new data set. 
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newInds = randsample(n,10); 
inds = ~ismember(1:n,newInds); 
XNew = X(newInds,:); 
YNew = Y(newInds);  
%Creating standard and compact classifier. 
Mdl = fitcnb(X(inds,:),Y(inds),... 
    'ClassNames',{'AD','EMCI','NC'}); 
CMdl = compact(Mdl); 

  
%whos('Mdl','CMdl')                                                  
%CMdl.ClassNames  
%Estimation posterior probability and misclassification cost 
[lbls,PostProbs,MisClassCost] = predict(CMdl,XNew); 
table(YNew,lbls,PostProbs,'VariableNames',... 
    {'TrueLabels','PredictedLabels',... 
    'PosteriorProbabilities'});  
%MisClassCost  
%Test any image from outside the image sets 
% load FV.mat; 
% lblTest = predict(CMdl,FV); 
%FV is an image feature vector, created by Bag-Of-Features, and 

converted to double. 
%From the beginning the image should be processed: 
%imread, resize, conver to greyscale, adjust and only after that it 

should be sent to the Bad-of-Features. 

 

Cross-validation procedure for Bayesian classifier 

load Bags_Of_Ax_NormPlusSym.mat 
X = T1; 
Y =label; 
rng(1);% For reproducibility  
%Train and cross-validate a naive Bayes classifier using the default 

options and k-fold cross-validation. 
%CVMdl1 is a ClassificationPartitionedModel. 
CVMdl1 = fitcnb(X,Y,... 
    'ClassNames',{'AD','EMCI','NC'},... 
    'CrossVal','on'); 
%Create a default naive Bayes binary classifier template, and train an 

error-correcting, output codes multiclass model. 
t = templateNaiveBayes(); 
CVMdl2 = fitcecoc(X,Y,'CrossVal','on','Learners',t);%CVMdl2 is a 

ClassificationPartitionedECOC model.  
%Compare the out-of-sample k-fold classification error. 
classErr1 = kfoldLoss(CVMdl1,'LossFun','ClassifErr');  
classErr2 = kfoldLoss(CVMdl2,'LossFun','ClassifErr'); 

 

New data labelling 
 
%Load and read image from a file 
[filename,pathname] = 

uigetfile({'*.*';'*.jpg';'*.bmp';'*.tif';'*.gif';'*.png'},'Pick an 

Image File'); 
[im, map] = imread([pathname,filename]); 

  
%Resize, modify and adjust an image 
I = imresize(im,[256,256]);  
R = I(:,:,1); 
G = I(:,:,2); 
B = I(:,:,3);  
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newI = zeros(size(I,1),size(I,2),'uint8');  
for x=1:size(I,1) 
for y=1:size(I,2) 
newI(x,y)=(R(x,y)*.3)+(G(x,y)*.6)+(B(x,y)*.1); 
end 
end  
returnedI = newI;  
img = imadjust(returnedI);%image normalize [0,1]  
load Bag.mat % load Bag-of-Features 

  
featureVector = encode(bag, img);%create feature vector for image 
vector = double(featureVector);  
%First you need to train classifier Mdl and create compact classifier 

CMdl 
load Bigdata.mat 
X = featureData; 
Y = label; 
rng(1); 
n = size(X,1); 
newInds = randsample(n,10); 
inds = ~ismember(1:n,newInds); 
XNew = X(newInds,:); 
YNew = Y(newInds); 
Mdl = fitcnb(X(inds,:),Y(inds),... 
    'ClassNames',{'AD','EMCI','NC'}); 
CMdl = compact(Mdl); 

 
%Label unknown image 
lblTest = predict(CMdl,vector); 

 

CNN tests with AlexNet and VGG16 using transfer learning 

datapath='Images'; 
imds=imageDatastore(datapath, ... 
'IncludeSubfolders',true, ... 
'LabelSource','foldernames'); 
total_split=countEachLabel(imds); 
train_percent=0.80; 
[imdsTrain,imdsTest]=splitEachLabel(imds,train_percent,'randomize'); 
valid_percent=0.1; 
[imdsValid,imdsTrain]=splitEachLabel(imdsTrain,valid_percent,'randomiz

e');  
train_split=countEachLabel(imdsTrain); 
%net=vgg16(); 
net=alexnet; 
%analyzeNetwork(net); 
layersTransfer=net.Layers(1:end-3); 
clear net; 
numClasses=numel(categories(imdsTrain.Labels)); 
layers=[ 
    layersTransfer    

fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',20,

'BiasLearnRateFactor',20) 
    softmaxLayer('Name', 'softmax') 
    classificationLayer('Name', 'classOutput')]; 
lgraph = layerGraph(layers); 
plot(lgraph); 
imdsTrain.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inp

utSize(1), layers(1).InputSize(2)]); 
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imdsValid.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inp

utSize(1), layers(1).InputSize(2)]); 
options=trainingOptions('sgdm', ... 
    'MiniBatchSize',128, ... 
    'MaxEpochs',11, ... 
    'Shuffle','every-epoch', ... 
    'InitialLearnRate',1e-4, ... 
    'ValidationData',imdsValid, ... 
    'ValidationFrequency',50,'ValidationPatience',4, ... 
    'Verbose',false, ... 
    'Plots','training-progress'); 
netTransfer=trainNetwork(imdsTrain,layers,options); 
imdsTest.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inpu

tSize(1), layers(1).InputSize(2)]); 
[predicted_labels,posterior]=classify(netTransfer,imdsTest); 
actual_labels=imdsTest.Labels; 
ConfusionMat = confusionmat(actual_labels,predicted_labels); 
ConfusionMat = 

bsxfun(@rdivide,ConfusionMat,sum(ConfusionMat,2));%Convert into % form 
mean(diag(ConfusionMat));%Display the mean accuracy 
test_labels=double(nominal(imdsTest.Labels)); 
[fp_rate,tp_rate,T,AUC]=perfcurve(test_labels,posterior(:,1),1); 
figure; 
plot(fp_rate,tp_rate,'b-');hold on; 
grid on; 
xlabel('False Positive Rate'); 
ylabel('Detection Rate'); 
 

%train CVM 
%layer = 'fc'; 
%featuresTrain = 

activations(netTransfer,imdsTrain,layer,'OutputAs','rows'); 
%featuresTest = 

activations(netTransfer,imdsTest,layer,'OutputAs','rows'); 
%YTrain = imdsTrain.Labels; 
%YTest = imdsTest.Labels; 
%mdl = fitcsvm(featuresTrain,YTrain); 
%YPred = predict(mdl,featuresTest); 
%accuracy = mean(YPred == YTest); 

  
%mdl = 

fitcsvm(featuresTrain,YTrain,'Standardize',true,'KernelFunction','RBF'

,... 
  %  'KernelScale','auto'); % for binary output 
%mdl = fitcecoc(featuresTrain,YTrain);% for multiclass output 

 

Image preprocessing for CNN tests 

function Iout=preprocess_images(filename,desired_size)  
% This function preprocesses images using colour constancy 
% technique and later reshapes them to an image of desired size 
% Author: Barath Narayanan 

  
% Read the Image 
I=imread(filename);  
% Some images might be greyscale, replicate the image 3 times to 
% create an RGB image.  
if ismatrix(I) 
  I=cat(3,I,I,I); 
end  
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% Conversion to Double for calculation purposes 
I=double(I);  
% Mean Calculation 
Ir=I(:,:,1);mu_red=mean(Ir(:)); 
Ig=I(:,:,2);mu_green=mean(Ig(:)); 
Ib=I(:,:,3);mu_blue=mean(Ib(:)); 
mean_value=(mu_red+mu_green+mu_blue)/3;  
% Scaling the Image for Colour constancy 
Iout(:,:,1)=I(:,:,1)*mean_value/mu_red; 
Iout(:,:,2)=I(:,:,2)*mean_value/mu_green; 
Iout(:,:,3)=I(:,:,3)*mean_value/mu_blue;  
% Converting it back to uint8 
Iout=uint8(Iout); 

  
% Resize the image 
Iout=imresize(Iout,[desired_size(1) desired_size(2)]); 
end 

 

Proposed 5-layers CNN 

datapath='Images'; 
imds=imageDatastore(datapath, ... 
'IncludeSubfolders',true, ... 
'LabelSource','foldernames'); 
total_split=countEachLabel(imds); 
train_percent=0.80; 
[imdsTrain,imdsTest]=splitEachLabel(imds,train_percent,'randomize'); 
valid_percent=0.1; 
[imdsValid,imdsTrain]=splitEachLabel(imdsTrain,valid_percent,'randomiz

e'); 
train_split=countEachLabel(imdsTrain); 
numClasses=numel(categories(imdsTrain.Labels)); 
layers = [ 
    imageInputLayer([256 256 3],'Name','input')   
    convolution2dLayer(5,16,'Padding','same','Name','conv_1') 
    batchNormalizationLayer('Name','BN_1') 
    reluLayer('Name','relu_1')     
    

convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2') 
    batchNormalizationLayer('Name','BN_2') 
    reluLayer('Name','relu_2') 
    convolution2dLayer(3,32,'Padding','same','Name','conv_3') 
    batchNormalizationLayer('Name','BN_3') 
    reluLayer('Name','relu_3') 
    averagePooling2dLayer(2,'Stride',2,'Name','avpool_1')     
    

convolution2dLayer(3,64,'Padding','same','Stride',2,'Name','conv_4') 
    batchNormalizationLayer('Name','BN_4') 
    reluLayer('Name','relu_4') 
    convolution2dLayer(3,64,'Padding','same','Name','conv_5') 
    batchNormalizationLayer('Name','BN_5') 
    reluLayer('Name','relu_5') 
    averagePooling2dLayer(2,'Stride',2,'Name','avpool_2')      
    dropoutLayer('Name','drop') 
    fullyConnectedLayer(2,'Name','fc') 
    softmaxLayer('Name','softmax') 
    classificationLayer('Name','classOutput')]; 
lgraph = layerGraph(layers); 
figure 
plot(lgraph); 
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imdsTrain.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inp

utSize(1), layers(1).InputSize(2)]); 
imdsValid.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inp

utSize(1), layers(1).InputSize(2)]); 
options=trainingOptions('sgdm', ... 
    'MiniBatchSize',128, ... 
    'MaxEpochs',11, ... 
    'Shuffle','every-epoch', ... 
    'InitialLearnRate',1e-4, ... 
    'ValidationData',imdsValid, ... 
    'ValidationFrequency',50,'ValidationPatience',4, ... 
    'Verbose',false, ... 
    'Plots','training-progress'); 
net=trainNetwork(imdsTrain,layers,options); 
imdsTest.ReadFcn=@(filename)preprocess_images(filename,[layers(1).Inpu

tSize(1), layers(1).InputSize(2)]); 
[predicted_labels,posterior]=classify(net,imdsTest); 
actual_labels=imdsTest.Labels; 
ConfusionMat = confusionmat(actual_labels,predicted_labels); 
ConfusionMat = bsxfun(@rdivide,ConfusionMat,sum(ConfusionMat,2)); 
mean(diag(ConfusionMat)); 
test_labels=double(nominal(imdsTest.Labels)); 
[fp_rate,tp_rate,T,AUC]=perfcurve(test_labels,posterior(:,1),1); 
figure; 
plot(fp_rate,tp_rate,'b-');hold on; 
grid on; 
xlabel('False Positive Rate'); 
ylabel('Detection Rate'); 

  
%SVM layer 
%layer = 'fc'; 
%featuresTrain = activations(net,imdsTrain,layer,'OutputAs','rows'); 
%featuresTest = activations(net,imdsTest,layer,'OutputAs','rows'); 
%YTrain = imdsTrain.Labels; 
%YTest = imdsTest.Labels; 

  
%mdl = fitcsvm(featuresTrain,YTrain); 
%YPred = predict(mdl,featuresTest); 
%accuracy = mean(YPred == YTest); 

  
%mdlLinear = fitcdiscr(featuresTrain,YTrain); 
%YPredL = predict(mdlLinear,featuresTest); 
%accuracyL = mean(YPredL == YTest); 

  
%mdlKNN = fitcknn(featuresTrain,YTrain); 
%YPred = predict(mdlKNN,featuresTest); 
%accuracyK = mean(YPred == YTest); 
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Appendix B: List of abbreviations  

AAL - Ambient Assisted Living  

AAL - Automated Anatomical Labelling 

Ab42 - Amyloid-beta 42  

AD - Alzheimer’s Disease  

ADAS Alzheimer’s Disease Assessment Scale  

ADAS-Cog - AD Assessment Scale-Cognitive Subscale 

ADHD - attention deficit hyperactivity disorder  

ADNI - Alzheimer’s Disease Neuroimaging Initiative 

AE - autoencoder  

AI - Adobe Illustrator 

AIBL - Australian Imaging Biomarkers and Lifestyle Study of Aging 

aMCI - amnestic Mild Cognitive Impairment  

ANN - artificial neural network  

AR - autoregressive  

ART - Angular Radial Transform 

ASD - autistic spectrum disorder  

ASM - angular second moment 

AUC - area under the curve  

AUROC - Area Under the Receiving Operating Curve 

BN - batch normalization  

BOF - Bag-of-Features 

BraTS - Brain Tumor Segmentation 
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CART - Classification and Regression Tree  

CC - Corpus Callosum  

CDR - Clinical Dementia Ratio 

CIS - cingulate island sign 

CLD - colour layout descriptor  

CNN - Convolutional Neural Network 

ConvBLSTM - Convolutional Bidirectional Long Short-Term Memory  

CS - Cuckoo Search  

CSF - cerebrospinal fluid  

CSS - Curvature Scale Space  

CT - computer tomography  

CV – Computer Vision 

DenseNet - Densely connected networks  

Dicom - Digital Imaging and Communications in Medicine 

DLB - dementia with Lewy bodies  

DNN deep neural network 

DPM - Deformable Part Model 

DT - Decision Tree 

DTI - Diffusion Tensor Imaging  

DTR - dynamic treatment regimes  

EEG – Electroencephalography 

EMCI - early mild cognitive impairment 

EPS - Encapsulated PostScript 

FC - fully connected  
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FD - Fourier descriptors  

FDA - Food and Drug Administration  

FDG-PET - fluorodeoxyglucose positron emission tomography  

fMRI - functional Magnetic Resonance Imaging  

FN – False Negative 

fNIRS - functional near-infrared spectroscopy 

FR – False Positive 

FSIM - Feature Similarity Index Metrics 

GA - Genetic Algorithm  

GF - Gabor filters 

gICA - group independent component analysis 

GIF - Graphics Interchange Format 

GLCM - grey level co-occurrence matrix 

GM - grey matter 

GMS - Geriatric Mental State Examination  

GradCAM - Gradient-weighted class activation mapping 

GRU - Gated Recurrent Units 

GWO - Grey Wolf Optimization  

HC – healthy controls 

HC - Hippocampus  

HIS - hue-saturation-intensity  

HMMD - hue-max-min-difference 

HOG - histogram of oriented gradients  

HOGM - High-Order Graph Matching 
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HSV - hue-saturation-value 

ICBM - Internet Brain Segmentation Repository 

IDM - Inverse difference moment  

ILSVRC - ImageNet Large Scale Visual Recognition Competition 

IM - Image Moments   

ITML - information theory metric learning 

IVM - import vector machine 

JPEG - Joint Photographic Expert Group 

KNN - K-nearest neighbour  

KNN - K-nearest neighbour 

LASSO - Least Absolute Shrinkage and Selection Operator 

LCSM - laser confocal scanning microscope 

LD - Linear Discriminant  

LDA - linear discriminant analysis  

LDA - Linear Discriminant Analysis  

LDS - low-density separation 

LDS - low-density separation 

Linear-MSVM - linear metric-based support vector machine 

LR – Linear Regression 

LRN - Local Response Normalization  

M3T - Multi-Modal Multi-Task  

MDNN - multiscale deep neural network 

Minc - Medical Imaging NetCDF  

ML – Machine Learning 
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MLP - Multi-Layer Perceptron  

MMSF - Mini-Mental State Examination 

MoCA - Montreal Cognitive Assessment 

MRF - Markov random fields  

MRI - magnetic resonance imaging  

MSE - Mean Squared Error  

MVPA - multivariate pattern analysis 

NACC - National Alzheimer Coordinating Center  

NB - Naïve Bayes 

NC - normal controls 

NetCDF - Network Common Data Format 

Nifti - Neuroimaging Informatics Technology Initiative 

NiN – Network 

NLP - natural language processing  

non-D - non-demented 

OASIS - Open Affective Standardized Image Set  

OCD - obsessive-compulsive disorder  

OCT - optical coherence tomography  

PCA - Principal Component Analysis 

PDF - Portable Document Format 

PET - positron emission tomography  

PNG - Portable Network Graphics  

PSO - Particle Swarm Optimization algorithm 

RAG - region adjacency graph 
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RELM - Regularized Extreme Learning Machine  

ReLUs - rectified linear units 

ResNet - Residual networks 

RF - random forest 

RGB - red-green-blue 

RLG - regularized logistic regression 

RLM - run-length matrix 

RNN - recurrent Neural Network  

ROC - receiver operating characteristic curve  

ROI - regions of interest  

SAE - stacked-autoencoder 

SBM - surface-based morphometry 

SGD - Stochastic Gradient Descent  

SIFT - Scale Invariant Feature Transform  

SIFT - Scale-invariant feature transform  

sMRI - structural Magnetic Resonance Imaging  

SPECT - single-photon emission computer tomography 

SSIM - Structure Similarity Index Metrics 

STD - standard deviation  

SURF - speeded up robust features 

SVM - support vector machine 

SVM-RFE - support vector machine recursive feature eliminator  

SVR - Support Vector Regression 

TIF - Tagged Image File 
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TN – True Negative 

TP - True Positives  

TrAdaboost - transfer learning Adaboost 

T-tau - total tau 

UID - Unique Item Identification 

UNICORT - Unified segmentation-based correction of R1 brain maps for RF transmit 

field inhomogeneities 

VBM - voxel-based morphometry  

VGG - Visual Geometry Group 

VM-D - very mildly demented 

VOC - Visual Object Classes 

WM - white matter  

WT - wavelet transform



Deep Learning of Brain Asymmetry Digital Biomarkers to Support Early Diagnosis 

of Dementia 

Appendices  

 

202 

Appendix C: Brain anatomy and diagnosis of MCI 

Brain micro-anatomy 

The anatomical and functional unit of the brain is a neuron (Di Ieva, 2011). The human 

brain has between eighty to a hundred billion neuronal cells, subdivided into several 

categories depending on the level and area of functionality. Histologically they are 

organized into layers which belong to the cortical, paleo-cortical or subcortical zone. The 

bodies of numerous neurons form the grey matter of the brain. The neurons connect via 

axons and dendrites and create a branchy network called white matter. The axons and 

dendrites propagate the electrical signal and provide communication between neurons. 

Another type of interaction between neurons is established via chemical signals. 

Neurotransmitters transfer the chemical signals between gaps and synapses of neurons. 

The neurotransmitters can be non-specific or be responsible for certain functions. Some 

axons are surrounded by the fibre, composed of glial cells responsible for the signal 

propagation. This type of cell also supports the trophic of neurons and creates a barrier 

between neurons and blood. One type of glial cell called the ependymal cell produces 

cerebrospinal fluid. Scientists disagree on the number of glial cells in the brain.  Some 

claim the ratio between neuron and glial cells is equal to 10:1; others confirm the 1:1 

ratio.  

 

 

 

 

 

 

 

 

 

Figure A.  Neuron, synapses and myelin (glial cells) (Image source:  

http://en.wikipedia.org/wiki/Image:Complete_neuron_cell_diagram_en.svg). 
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Brain macro-anatomy 

The paleocortex and neocortex represent the brain cortex. Paleocortex composes of the 

limbic system and hippocampus. Histologically, the paleocortex has three or four levels 

of neuronal cells. The paleocortex’s limbic system regulates emotions, and the 

extrapyramidal nuclei of the hippocampus are responsible for muscular tone and 

movements. Hippocampus is one of the main brain structures which supports long-term 

memory processing and distribution to specific cortex areas. Several theories explain how 

memory occurs. One of them says that memory is a product of an interaction between 

protein and RNA structures which facilitate DNA methylation. According to another 

theory, the memory process is supported by constant electric signals between the groups 

of neurons that neurotransmitters might enhance. All parts of the paleocortex participate 

in complex interconnected circuits of the brain. The Corpus callosum, which connects 

two cerebral hemispheres, represents the brain's neocortex. It is a part of white matter 

organized into six layers of neurons. The brain's surface has convolutions and furrows 

called gyri and sulci.  

     Figure B. Schematic anatomy of the brain and its functionality (Image source: 

https://dana.org/article/neuroanatomy-the-basics/). 
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Cortex is subdivided into several anatomical macro-regions: frontal, parietal, temporal, 

and occipital lobes. Each region includes a few zones with different functionalities. The 

frontal part is responsible for intellectual processing, the parietal zone synthesises the 

tasks, the occipital area forms the visual perception, and the temporal lobe is associated 

with auditory, memory and emotional processes.  

Brain pathology leading to cognitive decline and dementia 

The anatomical and functional plasticity of the brain plays a protective role in developing 

brain disorders. However, there is a number of conditions which can cause brain disease 

accompanied by dementia. The pathological process might take a few years to develop.  

     The general cause of functional impairments is structural damage to corresponding 

brain areas. The direct damage to the brain tissues might come through trauma, 

haemorrhagic insult, infection, or brain tumour. Medical conditions accompanied by the 

pathological processes in the immunological, humoral, metabolic or endogenous systems 

can also trigger the disease. The indirect impact can be obtained from a damaged blood 

supply system, as in ischemic lesions. Systemic medical disorders may affect all body 

tissues, including the brain if the blood-brain barrier becomes damaged.  

     Brain disorders are categorized according to the presence of several specific criteria. 

World Health Organization (WHO) established the global standards for the diagnosis of 

health conditions which is called the “International Classification of Diseases” (ICD-11), 

where 11 is a current version. The standards for mental disorders are named “The 

Diagnostic and Statistical Manual of Mental Disorders” or DSM-5 and were created by 

American Psychological Association in 2013. They characterise the evidence of cognitive 

decline based on one or more cognitive domains and evaluate the level of cognitive 

deficits, including independence in everyday activities. 

     The main known courses of cognitive decline and dementia are listed as follows: 

• Alzheimer’s disease 

• Pseudobulbar affect 

• Parkinson’s disease 

• Frontotemporal lobar degeneration 
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• Lewy body disease 

• Vascular disease 

• Traumatic brain injury 

• Substance/medication use 

• HIV infection 

• Prion disease 

• Huntington’s disease 

• Another medical condition 

• Multiple aetiologies 

• Unspecified  

     Alzheimer’s disease is one of the main factors of dementia associated with ageing. 

While the main reason for the condition is not entirely apparent, the leading cause is the 

death or apoptosis of neurons and progressive atrophy of the cortical and some subcortical 

areas. Due to some internal genetic factors leading to the production of the pathological 

misfolding proteins, and external immune mechanisms, the number of neurons and 

synapses decreases. It impacts cognitive functions and memory. 

     Pseudobulbar affect (PA) is an affective disorder characterized by uncontrolled 

outbursts of emotions. PA is developed due to damage to the neuron of the prefrontal 

cortex. Multiple factors can cause the damage. 

     Parkinson's disease is a neurological condition which might be accompanied by 

dementia in 20% of cases. Damage to Substantia Nigra located in basal Ganglia leads to 

dopamine deficiency and the manifestation of neurological symptoms. The disease's 

diagnostic criteria are the presence of alpha-synuclein protein, called Lewi bodies, in the 

neuronal cells.  

     Lewy body disease is a group of neurodegenerative conditions accompanied by 

cognitive impairment and neuropsychiatric symptoms. It is caused by mentioned above 
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Lewy bodies that form the deposits of protein in neurons. Another disease from this group 

is Multiple System Atrophy (MSA), known as Shy-Drager Syndrome. MSA can lead to 

dementia in the frontotemporal zone. 

     Frontotemporal lobar degeneration (FTLD) is a group of neurodegenerative 

conditions caused by the development of atypical proteins leading to frontotemporal 

cortical atrophy. There are tau-positive known as Pick disease, FUS-positive and 

ubiquitin-positive variants, which differ by the type of pathological protein. They can 

produce or clear dementia or dementia with progressive aphasia (language/speech 

difficulties). Other pathological conditions caused by misfolding of specific PrP protein 

and leading to multiple dysfunctions of the central nervous system and dementia are 

Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome, kuru, 

Bovine Spongiform Encephalopathy (BSE) and Fatal Familial Insomnia (FFI).  

     Huntington’s disease is a neurodegenerative genetic disorder accompanied by 

neuropsychiatric symptoms, including memory loss and dementia.  

     Alcohol abuse or Alcohol Use Disorder (AUD) may cause encephalopathy, damaging 

the frontal lobe. It is caused by direct neurotoxicity of alcohol and liver dysfunction, 

which leads to vitamin deficiency in group B. This deficiency is associated with dementia. 

The Wernicke-Korsakoff syndrome often develops due to alcohol abuse and secondary 

B1(thiamine) deficiency. B3 (niacin) and B6 (pyridoxine) deficits are also associated with 

other types of dementia. Another alimentary depletion of vitamin D (D2 and D3) may 

exacerbate or cause dementia.  

     Other reasons for dementia can have different aetiology as mentioned above—for 

instance, traumatic, vascular, and infectious (HIV) reasons, substance or medication 

abuse. A side effect of some medications also may cause dementia. For example, these 

were reported cases of cortical dementia developed due to prolonged treatment by 

neuroleptic used for psychotic conditions. 

Brain areas affected in dementia 

Cortical and subcortical brain areas can be affected in MCI and during the development 

of dementia. Frontal, parietal and temporal cortical zones are the most affected areas. 

Subcortical brain areas that can be involved in the degenerative process during disease 
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development are the amygdala and hippocampus. The destruction of neurons 

characterizes the initial stages of Alzheimer’s disease, and their connections in the areas 

involved the memory. These areas are located in the entorhinal cortex and hippocampus. 

The entorhinal cortex (EC) is placed in the medial temporal lobe between the 

hippocampus and neocortex, creating the hub for memory, navigation, and time 

perception. The amygdala is the main target of EC (Witter et al., 2017). Volumes of 

parahippocampal gyri and amygdala decrease in both cases of MCI and AD. Later, during 

AD progression, the brain grey matter responsible for reasoning, language, and social 

behaviour is affected (Ries et al., 2008). 

 

(a)                                                          (b) 

Figure C. The brain areas affected by dementia: (a) subcortical, (b) cortical (Image source: 

https://www.nia.nih.gov/health/what-alzheimers-disease; 

https://myhealth.alberta.ca/Health/pages/conditions.aspx?hwid=tp12408). 

The signs of AD are visible on MRI and PET. On the histological level, the presence of 

the amyloid-beta and tau-protein confirms the diagnosis.  The trigger factors of the 

development the AD are still under investigation by researchers. Among the principal 

reasons are proteostasis and damage to lymphatic circulation, which interrupt the protein 

clearance through the meningeal and cisterns systems. There is a comprehensive 

discussion about the diagnostic value of beta-amyloid in the distribution and progression 

of AD.  

MCI and cognitive tests 

The first step in the diagnosis of MCI is cognitive tests. Mini-Mental State Examination 

(MMSE) and Montreal Cognitive Assessment (MoCA) are the most popular. The MMSE 

https://www.nia.nih.gov/health/what-alzheimers-disease
https://myhealth.alberta.ca/Health/pages/conditions.aspx?hwid=tp12408
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and the MoCA are routine screening tests rated on a 30-point scale. They are short. The 

MMSE takes approximately seven to eight minutes; the MoCA takes about 10 to 12 

minutes to administer. MCI MMSE scores ranged from 23-27 according to a DSM and 

23-28 for ICD (Zaudig, 1992). For MoCA, a score of 26 and higher is considered normal. 

People with MCI have scored an average of 22.1 compared to normal controls with an 

average score of 27.4 (Rosentzweig, 2019). The diagnostic performance of MoCA was 

found to be a bit higher than MMSE for the detection of MCI and dementia in Parkinson’s 

disease (Hoops et al., 2009). Another cognitive measure often used in clinical practice is 

the Clinical Dementia Rating (CDR) score. The CDR is scaled from zero to three: CDR 

= 0 denies dementia, CDR = 0.5 points to questionable dementia, CDR = 1 detects MCI, 

CDR = 2 characterizes moderate cognitive impairment, and CDR = 3 indicates severe 

cognitive impairment (Khan, 2016).  

Clinical diagnosis of MCI 

 

Figure D: Image source: 2014 The Association for the Publication of the Journal of Internal 

Medicine Journal of Internal Medicine, 2014, 275; 214–228. 
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The schema demonstrates the composition of imaging and non-imaging criteria for the 

diagnosis of MCI. MCI criteria proposed at the Key Symposium in 2004 (highlighted in 

blue) include amnestic and non-amnestic forms of memory impairment based on the 

single or multiple domains. Other criteria (highlighted in orange), such as amyloid-beta 

protein, and data from MRI or FDG-PET scans, were taken from a guide created by 

American Psychiatric Association for healthcare professionals, DSM-5. The 

classification of MCI based on DSM-5 includes three stages of the development of 

cognitive impairment: uncertain, intermediate, and high, which can be diagnosed using a 

particular combination of criteria. In the case of the detection of tau-globulin, the MCI is 

categorized as a prodrome of Alzheimer’s Disease. 

Appendix D: Medical image formats 

Analyze 

The commercial software Analyze 7.5 (AnalyzeAVW is a new version) was developed 

by the Biomedical Imaging Resource in the Mayo Clinic, USA, in the late 1980s.  The 

software was designed for multidimensional data. The files can be stored in 3D or 4D 

data with temporary information represented by the fourth dimension. An imaging data 

in Analyze format have two binary files. The first one has an extension “.img” and 

contains the raw voxel data. The second file is a header file with an extension “.hdr”. It 

contains the metadata with the data type, number of pixels in three directions and voxel 

size. The header of Analyse 7.5 includes a header key and image dimension, has a size of 

348 bytes. An optional header feature is a data history. Analyze header can be adapted 

with new data types defined by the user. The structure of Analyse format is written in the 

C programming language. This file format has some limitations. It does not specify the 

pixel orientation in space and time and does not support some basic data types, including 

the unsigned 16 bits pixel depth format. This format is considered an old one, but it is still 

used and supported by many image processing software packages such as FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/fswiki/), SPM (https://www.fil.ion.ucl.ac.uk/spm/), 

Mango (https://ric.uthscsa.edu/mango/) and MRIcro 

(https://people.cas.sc.edu/rorden/mricro/mricro.html). The files in the format of Analyze 

7.5 can be obtained from Positron Emission Tomography. 

NIFTI  

https://surfer.nmr.mgh.harvard.edu/fswiki/
https://www.fil.ion.ucl.ac.uk/spm/
https://ric.uthscsa.edu/mango/
https://people.cas.sc.edu/rorden/mricro/mricro.html
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NIFTI-1 was created as neuroimaging format to solve the weaknesses of the Analyze 

format.  It was developed at the beginning of the 2000s by the National Institutes of 

Health, USA. It supports the data types that are not considered by the Analyze format, 

output stores volumetric information about image orientation that is important in the 

neuroimaging study. NIFTI-1 format allows two ways to store the header and pixel 

imaging data. The first way of storage keeps the header and pixel data in separate “.hdr” 

and “.img” files and has a size of 348 bytes.  The second way merges and saves all the 

image and header data in a single “.nii” file of a size of 352 bytes with additional four 

bytes at the end. Header parameters of the NIFTI-1 format are very similar to Analyze 

7.5. The first three dimensions store spatial data, and the fourth dimension is preserved 

for a specific time. NIFTI-1 has an advantage over Analyze files in storing two files per 

3D scan instead of keeping multiple ones. In addition, the NIFTI-1 file can store key 

acquisition and experimental design parameters.  

     In neuroimaging research, the NIFTI format has quickly replaced the Analyze and 

become the default and widely-used format in some public domain software packages 

like SPM (https://www.fil.ion.ucl.ac.uk/spm/), FSL(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 

) and AFNI (https://afni.nimh.nih.gov/). Many modern image analysis software such as 

ImageJ (https://imagej.nih.gov/ij/), 3D Slicer (https://www.slicer.org/), OsiriX 

(https://www.osirix-viewer.com/), Nibabel (https://nipy.org/nibabel/) and R 

(https://www.r-project.org/) support the NIFTI format. 

     An updated version of the NIFTI-1, the NIFTI-2 format, was released in 2011. It was 

developed to operate with large data sets. This new version encodes an image matrix with 

a 64-bit integer for a single dimension instead of a 16-bit integer per dimension in the 

previous version. 

MINC 

MINC was designed by Montreal Neurological Institute (MNI), Canada, in 1992 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC). The first version, MINC 1.0, 

provides a flexible format to store medical data. This version is based on the standard 

Network Common Data Format (NetCDF) and includes patient data, imaging and 

acquisition information, etc. A new version of MINC, MINC 2.0, was constructed to 

support large hierarchical data of HDF5 format with the possibility of internal data 

compression, 64-bit file size processing and some other features.   Header or metadata of 

https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://afni.nimh.nih.gov/
https://imagej.nih.gov/ij/
https://www.slicer.org/
https://www.osirix-viewer.com/
https://nipy.org/nibabel/
https://www.r-project.org/
http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
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MINC 2.0 can contain any number of entries and construct a hierarchy of datasets. There 

are three data subgroups available in MINC 2.0: image, info and dimension. The image 

subgroup holds actual image data such as minimum and maximum values of image slices 

named image-min and image-max, respectively. The info subgroup includes patient 

identification details, information about experimental settings, type of scans and 

modalities. The properties of the MINC file like space, time, and vector dimensions are 

kept in the dimension subgroup.  

DICOM 

DICOM file format and a network communication protocol were developed by the 

American College of Radiology and the National Electric Manufacturers Association in 

1993. DICOM standards include image retrieval, storage, visualization and analysis, 

image compression and exchange protocols. A secure exchange protocol helps to transfer 

medical images between multiple entities. DICOM network communication protocols 

integrate image acquisition devices, printers, servers, and workstations used by different 

manufacturers. The standards of this format are accepted by numerous imaging 

modalities, including CT, MRI, and ultrasound.  

     As a generic file format, DICOM consists of header and image data merged into a 

single file represented as ‘.dcm’. DICOM header contains acquisition parameters and 

their modalities, image dimensions and matrix size, operator identification and patient 

information. Patient personal details include name, age, gender, weight, and height. The 

file header has a size of 128 bytes with additional four bytes of DICOM annexe. In the 

DICOM format, the pixel values are stored as integers. This format supports various types 

of data and metadata. However, it cannot store the pixel data in floating points. The files 

in DICOM format can be easily converted into digital image formats such as ‘.jpg’, 

‘.bmp’, ‘.tif’. DICOM supports lossless image compression like JPEG (JPEG-LS, JPEG-

2000, JPEG-XR), MPEG (MPEG2, MPEG4), run-length encoding (RLE), Huffman 

coding (Baraskar and Mankar, 2019). 
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Appendix E: Image segmentation methods 

This section concentrates on contemporary brain segmentation methods (Despotović et 

al., 2015). MRI segmentation can be performed on 2D images separated from an image 

sequence or on 3D series. If 2D images are segmented slice-by-slice, they can be 

connected to a 3D volume or a continuous surface. In brain MRI, there are three main 

tissue types: grey matter, white matter, and cerebrospinal fluid. But typically, the scanned 

image also incorporates the skull and a nonbrain area. Therefore, the standard approach 

of MRI processing involves the extraction of nonbrain tissues before the brain 

segmentation methods can be used.  

     There is no single method that can be suitable for all images because of the image 

diversity, presence of noise and artefacts. However, most of the segmentation methods 

developed for one image class can be easily adapted to another class. 

Segmentation methods with application to brain MRI can be divided into the following 

groups: 

• manual segmentation; 

• intensity-based methods (thresholding, region-growing or region-based, edge-

based, and clustering); 

• morphology-based methods (watershed segmentation); 

• atlas-based methods; 

• deformable model (active contour-based or snake-based methods); 

• classification methods; 

• hybrid segmentation methods. 

Manual segmentation 

Manual segmentation refers to an image segmentation process accomplished by a 

human expert (medical practitioner), which segments and labels the image by hand. 

Segmented images look more accurate compared to the automatic methods, but the 

process is very intensive and time-consuming. The results of the manual methods are 

difficult to reproduce. However, manual segmentation is still actively used for defining 

a correct delineation of an object and the quantitative assessment of automated 

segmentation methods. Furthermore, manual segmentation of different brain structures 
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is a fundamental pace in the development of brain atlases and atlas-based segmentation 

approaches. 

Intensity-based methods 

Intensity-based methods have a very wide variety. Three main MRI brain components, 

WM, GM and CSF can be easily distinguished due to different pixel intensity levels (see 

Figure E). However, the presence of noise, artefacts, overlapped objects, inhomogeneity 

of the tissues is an objective factor that can require the incorporation of additional tools 

and implementation of advanced techniques.  

 

Figure E: MRIs with segmented CSF, GM and WM of the brain 

     There are several commonly used intensity-based techniques. Generally, they build a 

pixel (voxel) intensity histogram, which is based on pixel distribution functions. As a 

result, the probability of pixel intensities can be assigned to a certain type of tissue. The 

incorporation of the additional information received from the neighbouring pixels helps 

to allocate homogeneous regions in the resulting segmentation. Some popular intensity-

based methods are described below. 

Thresholding 

Thresholding is a well-known image segmentation method that separates an object from 

its background (Sezgin and Sankur, 2004). The method divides pixels of the image 

according to their intensity levels, and the output of the thresholding operation is a binary 

image. The thresholding has many variations that roughly can be divided into global 

(single), locally adaptive, and multiple thresholding (Kaur D. and Kaur Y., 2014). In the 

case of global thresholding, a single value of the threshold level T is chosen for the whole 

image. The value of T is constant and separates pixels into two classes. Segmentation of 

an original image 𝐼(𝑖, 𝑗) is defined as:  

𝐼′(𝑖, 𝑗) = {
1, 𝑖𝑓 𝐼(𝑖, 𝑗) > 𝑇,
0, 𝑖𝑓 𝐼(𝑖, 𝑗) ≤ 𝑇,

                                            (1) 
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where 𝐼’(𝑖, 𝑗) is an output image, pixels labelled with the number 1 correspond to the 

segmented object, and pixels labelled with the number 0 correspond to the background. 

 Locally adaptive thresholding computes the threshold value for subregions of the image 

so that each subregion might have a different threshold value. Adaptive thresholding 

depends on some local statistics like range, variance, or surface-fitting parameters of the 

neighbouring pixels. 

Multiple thresholding is based on several threshold values like T0 and T1. Segmentation 

of the image can be defined as: 

𝐼′(𝑖, 𝑗) = {

𝑚, 𝑖𝑓 𝐼(𝑖, 𝑗) > 𝑇1,
𝑛, 𝑖𝑓 𝐼(𝑖, 𝑗) ≤ 𝑇1,
𝑜, 𝑖𝑓 𝐼(𝑖, 𝑗) ≤ 𝑇0,

                                           (2) 

     Thresholding is actively used in image binarization (Rohithkumar et al., 2020) when 

a binary image is obtained by quantization of the grey level values into black and white. 

The binarization technique is usually applied when the object needs to be extracted from 

the background. The main problem in image binarization is to determine the optimal grey 

threshold value that separates the foreground from the background correctly. Due to the 

process of binarization, the pixels above the determined threshold obtain the maximum 

intensity values equal to “one”. The other group of pixels are assigned to a “zero” value. 

A number of binarization algorithms are proposed for image segmentation. Among them 

is Otsu’s thresholding technique (Yousefi, 2011). The algorithm looks for the optimal 

threshold value that can minimize the intraclass variance of the fore- and background. 

The intraclass variance is determined as a weighted sum of these two classes. The Otsu 

method exploits the statistical information obtained from the image, such as variances 

and probabilities.  The best threshold value t is calculated by finding the minimum 

intraclass variance. The mathematical expression for a weighted sum of intraclass 

variances: 

 𝜎𝑤
2 = 𝑤𝑏(𝑡) ∙ 𝜎𝑏

2(𝑡) + 𝑤𝑓(𝑡) ∙ 𝜎𝑓
2(𝑡)                                        (3) 

where w states for weight, σ - for standard deviation, b - for the background and f - for 

the foreground. 

Mathematical formulas for weights (w), mean values (µ) and standard deviation (σ) for 

each class and probability (P) are presented in formula (8). P (i) is a probability of pixel 
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i that should be in the range from i to t, where t is a threshold value. The pixel will be 

excluded from the visualisation if it is not in this range: 

𝑤𝑏(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=1                                                     (4) 

𝑤𝑓(𝑡) = ∑ 𝑃(𝑖)𝑙
𝑖=𝑡+1                                                   (5) 

𝜇𝑏(𝑡) =
∑ 𝑖∙𝑃(𝑖)𝑡

𝑖=1

𝑤𝑏(𝑡)
                                                   (6) 

𝜇𝑓(𝑡) =
∑ 𝑖∙𝑃(𝑖)𝑙

𝑖=𝑡+1

𝑤𝑓(𝑡)
                                                (7) 

𝜎𝑏
2(𝑡) =

∑ (𝑖−𝜇𝑏(𝑡))2𝑡
𝑖=1

𝑤𝑏(𝑡)
∙ 𝑃(𝑖)                                            (8) 

𝜎𝑓
2(𝑡) =

∑ (𝑖−𝜇𝑓(𝑡))2𝑙
𝑖=𝑡+1

𝑤𝑓(𝑡)
∙ 𝑃(𝑖)                                          (9) 

The application of the Otsu binarization technique used for object segmentation is shown 

in Figure F. 

 

Figure F: Binary thresholding for segmentation of brain tumor 

Thresholding methods are fast and computationally efficient, but they are sensitive to 

noise and image textural inhomogeneity. Low-contrast images after thresholding are keen 

to produce disconnected regions and require the application of additional postprocessing 

algorithms that can improve or fully restore connectivity. If the size of the segmented 

object is not proportionate with a scene, it also makes the segmentation process more 

complicated.  

Region-based methods 

Region-based methods highlight areas of the image according to predefined uniformity 

or homogeneity criteria of pixel intensity values (Lu et al., 2003). The region-based 

methods can combine region growing, region merging and region splitting procedures. 

The region merging starts from a “seed point” (a single pixel or group of pixels) that 
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belongs to the object of interest. As soon as the “seed point” is manually or automatically 

initialized, additional neighbouring pixels satisfying the similarity criteria of the tissue 

can be added to the growing area. The region-growing procedure is repeated until no more 

matching pixels are left.  

     In practice, there is several questions that must be solved before starting the procedure. 

These questions are: How to choose the “seed” point? What similarity criteria needs to 

be applied? The choice of a “seed” point depends on the grey-level value of pixels and 

their positioning in the image. It is recommended to compute the image histogram and 

the strongest intensity pics to consider as “seed” points. The similarity criteria can be 

based on any characteristics of the image region, such as average intensity, variance 

intensity, texture, colour, shape and size.  

     One of the popular region-growing approaches is based on simple surface fitting. The 

algorithm is described by Besl and Jain (1988). The idea is to fit an appropriate low-order 

surface that can be planar or biquadratic over the image data of a region. It was suggested 

to use a function that calculates the error in approximating the pixel data.  The error should 

be less than some threshold levels. In the following formulas x, y, a and m state for a 

region coordinates; i and j are pixel values. 

𝑓(𝑥, 𝑦, 𝑎, 𝑚) =  ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗
𝑖+𝑗≤𝑚                                        (10) 

If the errors are small, it might indicate that the pixel values belong to the same region of 

interest. 

𝐸(𝑅, 𝑎, 𝑚) =  ∑ [𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑎, 𝑚)]2
(𝑥,𝑦)∈𝑅                       (11) 

The detailed stages of the region-based methods are described below. 

(a) Partitioning the image into the “seed” regions  𝑅𝑖
(0)

 of the size of n × n where n is 

between 5 and 9. 

(b) Fitting a planar model to each “seed” region. If   𝐸(𝑅𝑖
(0)

, 𝑎, 𝑚)   is small enough, 

accept  𝑅𝑖
(0)

  and its model; otherwise, reject  𝑅𝑖
(0)

 . 

(c) Finding neighbouring points compatible with each “seed” region  

𝐶𝑖
(𝑘)

= [(𝑥, 𝑦): (𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑎, 𝑚))
2

< 𝜀 𝑎𝑛𝑑 (𝑥, 𝑦)𝑖𝑠 𝑎 4 −

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑅𝑖
(𝑘)

                                            (12) 
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(d) In case when no compatible points are found, the m should be extended to m+1.  

If m > M, the region 𝑅𝑖
(𝑘)

  can’t be grown further, otherwise, the previous stage 

must be repeated.  

(e) Forming a new region  𝑅𝑖
(𝑘+1)

=  𝑅𝑖
(𝑘)

∪ 𝐶𝑖
(𝑘)

  , refitting the model to a new region 

𝑅𝑖
(𝑘+1)

  , and computing error  𝐸(𝑅𝑖
(𝑘+1)

, 𝑎, 𝑚)   

(f) Computing the difference in errors  

𝑃(𝑘) = 𝐸(𝑅𝑖
(𝑘+1)

, 𝑎, 𝑚) − 𝐸(𝑅𝑖
(𝑘)

, 𝑎, 𝑚)                           (13) 

(g) If the error difference is less than the level of the threshold  𝑃(𝑘) < 𝑇1  , the region 

can be increased m = m+1; if the m > M, the region cannot grow further. 

(h) Refitting the region at the new model f (x, y, a, m). If the error of fit decreases, a 

new model can be accepted, and the region can be grown until all the neighbouring 

pixels are joined to the region according to the initial condition. 

     This method is successfully used in medical imaging for the segmentation of tissues, 

anatomical structures and organs, lesions in the human body. For instance, advanced 

region-growing approaches are implemented for brain tumor segmentation (Biratu et al., 

2021), analysis and segmentation of new-born brain MRI (Udayakumar et al., 2016), 

automatic classification of MRI data (Yazdani et al., 2016).  

     The region-growing method has some disadvantages that must be counted when the 

method is applied. The first of them is a sensitivity to the initialization of the “seed point”. 

By displacement of the initial point, segmentation results can be significantly different. 

Suppose the “seed point” is chosen incorrectly, or the homogeneity criteria are not 

properly defined. In that case, the growing region can incorporate the areas that do not 

belong to the object of interest. In some cases, the sensitivity of the method to noise makes 

parts of the segmented area partially disconnected, full of holes or, conversely, segmented 

parts can become connected to the regions that do not belong to the area of interest.   

     After initial intensity-based region segmentation, it very often requires additional 

segmentation techniques. Some of those include region splitting and region merging. 

Region splitting and merging operations are a combination of region-based techniques. 

The splitting technique separates an image into regions that have similar characteristics. 

The merging approach contributes to combining similar regions into a smaller number of 

larger regions (Kaganami and Beiji, 2009). Similarity, for instance, can be structural, 
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topological, or semantic. The choice of the algorithm will depend on the image properties. 

There are several approaches to performing region merging. Most of them are based on 

grey-pixel values of regions or the weakness of boundaries between the regions. Two 

main approaches to merging are based on the comparison of mean intensity values of a 

region or probability distribution of the intensity values. The mean intensity approach 

joins the regions with similar mean intensities that do not exceed the predetermined level. 

The probability-based approach considers the statistical characteristics of the adjacent 

regions.  

     The region merging approach is composed of the detection of the initial regions, 

preparation of the region adjacency graph (RAG), checking the RAGs for similarity and 

merging those with close criteria stages. After each merging round, the graph needs to be 

modified. The process is repeated until no more regions can be merged. Figure G 

represents example of RAG. 

 

Figure G: Merging technique using the region adjacency graph 

The regions are merged based on their similarities in pixel intensities. If the intensity 

values are received from a probability distribution, hypothesis testing is applied to judge 

the similarity of adjacent regions. If image regions have constant, statistically 

independent grey-scale values and zero-mean Gaussian noise, they are distributed 

normally. The null hypothesis (Ho) assumes that both regions belong to the same object. 

On this occasion, the pixel intensities are received from a single Gaussian distribution 

with parameters µ0,𝜎0
2 . The null hypothesis is rejected if the pixel intensities of the 

regions are obtained from two separate Gaussian distributions with parameters µ1,𝜎1 
2 and 

µ2,𝜎2
2. Pixel probability distribution in the region is estimated according to the following 

equation, where n pixels in the region have grey levels 𝑔𝑖 with i = 1,2, …n: 
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𝑝(𝑔𝑖)=
1

√2𝜋𝜎
𝑒

−
(𝑔𝑖−µ)2

2𝜎2                                                  (14) 

The Maximum Likelihood estimation is given by  

µ̂ =
1

𝑛
∑ 𝑔𝑖

𝑛
𝑖=1                                                        (15) 

�̂�2 =
1

𝑛
∑ (𝑔𝑖 − µ̂)2𝑛

𝑖=1                                                (16) 

The joint probability density under the Ho hypothesis for all pixels received from single 

distribution 𝑁(µ0, 𝜎0
2)  is described by the following equation: 

𝑝(𝑔1, 𝑔2, … , 𝑔𝑚1+𝑚2
|𝐻0) = ∏ 𝑝(𝑔𝑖

𝑚1+𝑚2
𝑖=1 |𝐻0) = ∏

1

√2𝜋𝜎0

𝑚1+𝑚2
𝑖=1 ℯ

_
(𝑔𝑖−µ0)2

2𝜎0
2 =

1

(√2𝜋𝜎0)𝑚1+𝑚2
ℯ

−
∑ (𝑞𝑖−µ0)2𝑚1+𝑚2

𝑖=1
2𝜎0

2 =
1

(√2𝜋𝜎0)𝑚1+𝑚2
ℯ−

(𝑚1+𝑚2)

2                  (17) 

Under the H1 hypothesis, the joint density function for the pixel m1 of region 1 with 

distribution 𝑁 = (µ1, 𝜎1
2)  and pixel m2 of region 2 with distribution 𝑁 = (µ2, 𝜎2

2) is 

written according to the following equation: 

𝑝(𝑞1,𝑞2,…,𝑞𝑚1,
𝑞𝑚1+1,…,𝑞𝑚1+𝑚2

|𝐻1) =
1

(√2𝜋𝜎1)𝑚1
ℯ

−𝑚1
2  

1

(√2𝜋𝜎2)𝑚2
ℯ

−𝑚2
2        (18) 

From the ratio of probability densities of the two hypotheses is calculated the likelihood 

ratio L:  

𝐿 =
𝑝(𝑔1,𝑔2,…|𝐻1)

𝑝(𝑔1,𝑔2,…|𝐻0)
=

𝜎0
(𝑚1+𝑚2)

𝜎1
𝑚1 ∙𝜎2

𝑚2                                              (19) 

If the likelihood ratio L is below the threshold value, it provides evidence that regions 1 

and 2 can be merged.    

The “region splitting” procedure usually starts with large regions. For each image region, 

the variance of grey values is computed. If the variance is above the threshold level, the 

region is split along the appropriate boundary. To determine the best boundary to divide 

the region is to calculate the edge strength within the region. The easiest technique which 

is used for image splitting is image decomposition, when the image is divided into a fixed 

number of equal-sized subregions. An example of a regular decomposition is a quart tree 

approach. Wavelet decomposition lies at the base of this approach (Shusterman and 
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Feder, 1995).   Splitting and merging techniques can be used together for the segmentation 

of complex scenes.  

Edge-based method 

Edge-based image segmentation is based on rapid changes in pixel intensity values to 

determine the object boundaries. This method, unlike the previous one (region-based 

method), is focused on finding the differences, instead of similarities, between pixels. The 

method is computationally fast and strongly sensitive to the notable variation of the pixel 

grey level values.  

     There are plenty of segmentation techniques developed for edge detection 

(Shrivakshan and Chandrasekar, 2012). The approach based on a comparison of statistical 

probability pixel distributions in two regions (see region merge approaches) can also be 

used for edge detection. The likelihood ratio indicates the boundaries between two regions 

or detects the presence of edges. A comparison of some popular edge detection techniques 

is provided in Table A below. 

Table A: Edge detection technique comparison 

Technique Advantages  Disadvantages 

Classical (Sobel, 

Prewitt, Roberts) 

Provides a simple approximation to 

the gradient magnitude 

Detects edges and their orientations 

Sensitivity to noise leads to a 

decrease in the magnitude of edges 

which lowers the performance 

Zero-Crossing 

(Laplacian) 

Detects edges and their orientations 

Has fixed characteristics in all 

directions 

Sensitivity to the noise 

Edge detection gets diffracted by 

some other edges in the presence 

of noise 

Gaussian (Gabor 

Filter) 

Performs well in specific spatial 

locations for different types of texture 

representation 

Can be designed for multiple image 

dilations and rotations 

Can be time-consuming (a filter 

bank of Gabor filters is created to 

overcome the problem)   

Marr-Hildreth 

(Laplacian of 

Gaussian (LoG)) 

Can be tested and processed in the 

wide area around the pixels 

Detection of edge orientation is 

reduced in places of corner and 

curves malfunctioning due to the 

variability of the grey level 

intensity function 
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Gaussian (Canny) Uses “smoothing” concept (finds 

errors by using the probability 

distribution) 

Improves the signal-to-noise ratio 

Well detects edges in a noisy image 

using thresholding methods 

Complex computation of the angle 

gradient in the image 

Time-consuming 

 

Figure H shows examples of the most popular image segmentation algorithms. 

 

(a)                              (b)                            (c) 

Figure H: Examples of the edge segmentation algorithm: (a) Sobel operator, (b) Laplacian 

operator, (c) Canny operator 

     The edge-based method has some limitations. One of them is that the resulting 

segmented edges are not connected at some points. It might happen in the presence of 

noise or with a smooth or low-contrasted image.  Usually, such sorts of problems are 

resolved by performing the additional postprocessing steps focused on linking 

corresponding to single boundary edges into the chains. These techniques improve the 

representation of edges in the image.   

Clustering 

Clustering is an image segmentation method that partitions images into clusters of pixels 

or voxels with similar characteristics. There are two clustering approaches, hierarchical 

and partitional. The hierarchical approach uses the concept of tree-like clustering, which 

split the data using a divisive or agglomerative way. The partitional approach groups the 

data into clusters according to the objective similarity functions of data elements. Thus, 

the data elements of one cluster are more similar to the data elements of another cluster. 

These types of clustering might use hard and soft approaches to the division of data 

elements inside the image. In the case of hard clustering, the image is partitioned into a 
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set of clusters such that each pixel can only belong to one cluster. In soft clustering, the 

division of the pixels is not so strict. The pixels inside the clusters have partial 

membership when one pixel can belong to many clusters based on the degree of 

membership values. The hard partitional clustering methods can be divided into K-means 

based methods, histogram-based thresholding and metaheuristic-based clustering. The 

diagram of various clustering methods is provided below in Figure I. 

 

Figure I: Clustering methods 

Hierarchical clustering is applied in two directions: top-down for divisive and bottom-

up for agglomerative. For divisive clustering, all the data points belong initially to a single 

cluster which further splits into smaller sub-clusters. This process continues until each 

data point forms its own cluster or termination criteria will be satisfied. Agglomerative 

clustering merges data hierarchically. Initialisation usually starts from single data points, 

which are aggregated into bigger clusters until a single cluster is formed or termination 

criteria are met. Divisive clustering is efficient and usually more accurate than 

agglomerative one. At the same time, the divisive way takes more time to process the data 

and often needs a time-optimization algorithm to be applied. Both types of clustering 

require the initialization of the number of clusters. They are time-consuming and 

computationally expensive for large high-dimensional datasets. The hierarchical methods 

employ a greedy approach and do not reconsider the data if it is already clustered. It can 

increase the level of misclassification errors. Both of these methods have lack robustness 

and poorly perform in the presence of noise, outliers, and on occasions when clusters are 

overlapping. 
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Partitional clustering methods are efficient methods of data clustering. They overcome 

some problems of hierarchical clustering and are widely used for large datasets. Objective 

functions such as similarity measurements are applied for data clustering. Computing the 

Euclidian distances between the observed data points is one of the popular approaches 

used for data clustering. Like in hierarchical clustering, the number of clusters needs to 

be defined before the start of the clustering process.   

     During soft clustering, each data point is assigned to one or a few clusters according 

to the degree of membership. The degree of membership is a continuous or discrete value 

in the interval [0, 1]. One of the popular soft clustering methods is fuzzy c-means (FCM) 

clustering (Mittal et al., 2020). The algorithm starts from the initialization of the number 

of clusters. The cluster centroids are initialized randomly. The algorithm returns a set of 

clusters by minimising the objective function. This function is defined in the following 

equation: 

∑ ∑ 𝜇𝑖𝑘
𝑚𝐾

𝑘=1
𝑁
𝑖=1 ||𝑥𝑖 − 𝑣𝑘||², 𝑚 ≥ 1                                    (20) 

Where 𝜇𝑖𝑘 ϵ [0 1] and demonstrates the membership degree of any i pixel with any k 

cluster, and x states for the positioning of the pixel. 

If the clustering conditions are not satisfactory or the centroids do not change optimization 

technique is used. 

Equation 20 is optimized by updating 𝜇𝑖𝑘 that is used to compute the fuzzy partition 

matrix:  

𝜇𝑖𝑘 =
1

∑ (
||𝑥𝑖−𝑣𝑘||

||𝑥𝑖−𝑣𝑗||
)

2
𝑚−1𝐾

𝑗=1

                                                (21) 

Cluster centroid  𝑣𝑘 is updated with each iteration: 

𝑣𝑘 =
∑ 𝜇𝑖𝑘

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝜇𝑖𝑘
𝑚𝑁

𝑖=1

                                                     (22) 

FCM clustering is fast and accurate in handling incomplete or heterogeneous data and 

generating approximate solutions. However, it has low scalability, is very sensitive to 

noise and outliers, and requires initial knowledge about the number of clusters which can 

be challenging.  
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     Hard clustering methods can be roughly divided into K-means based, histogram-

based and metaheuristic-based (Mittal et al., 2021).  

     K-means is a low complexity clustering method when a randomly chosen centroid is 

updated each time with new entries. Iterations continue until no data points are left outside 

the cluster or some clustering conditions are met. The quality of this method depends on 

the initialization parameters that include the number of chosen clusters and the 

positioning of the centroid. The presence of noise and outliers reduce the clustering 

performance. Usually, data partitioning is performed using similarity criteria which is a 

sum of squared error. Criterion function J is minimised with each iteration: 

𝐽 = ∑ 𝑠𝑢𝑚𝑥𝑗∈𝑋

𝑘
𝑖=1 ||𝑥𝑗 − 𝑚𝑖||²                                        (23) 

where K is the number of clusters for a set of data points 𝑥 = {𝑥𝑖, … , 𝑥𝑛}. 𝑚𝑖   is a cluster 

centroid for data points 𝑀 = {𝑚𝑖, … , 𝑚𝑘} which is updated with data points  

𝐶 = {𝑐𝑖, … , 𝑐𝑘} to form a new centroid. This is defined by the following equations: 

𝑥𝑖 ∈ 𝑐𝑙, 𝑖𝑓 1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙=1
𝑘 ||𝑥𝑗 − 𝑚𝑖||²                               (51) 

𝑚𝑖 =
∑ 𝑥𝑖𝑥𝑖∈𝑐𝑙

|𝑐𝑙|
                                                       (52) 

for 1 ≤ i ≤ N and 1 ≤ l ≤ k  

The time complexity of the algorithm depends on the number of data points, number of 

clusters and maximum iteration needed to form these clusters.   

     Histogram-based methods belong to the group of thresholding methods that is 

generally described above in this section.  The clustering is performed by constructing 

the histogram with respect to the frequency of pixel intensity values and their derivatives, 

average pixel intensity and pixel gradient. The clustering is achieved by grouping the 

pixels with similar intensity values. Usually, all histogram’s peaks, valleys, and 

curvatures are analyzed to perform the segmentation. The mathematical expression of 

histogram-based clustering starts from the calculation of the probability distribution of 

pixel intensity values in an image: 

𝑝𝑖 =
𝑛𝑖

𝑁
, 0 ≤ 𝑖 ≤ 𝐿 − 1                                                (24) 
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where N corresponds to the number of pixels with intensities {0, 1, 2, …, L-1}, 

𝑛𝑖  corresponds to the number of pixels for 𝑖𝑡ℎ intensity level.  

From the formula above, the mean intensity value is defined as: 

𝜇 = ∑ 𝑖𝑝𝑖
𝐿
𝑖=1                                                         (25) 

After that, the pixels of the image are grouped into clusters n {C1, C2, …, Cn} using n-1 

threshold level {𝑡1, 𝑡2, … , 𝑡𝑛−1}: 

                         (26) 

Where v corresponds to pixel intensity at x and y location in the image M x N. The  Cj 

cluster (1<j<n)is partitioned to pixels with intensity more than  𝑡𝑗−1 and less than or equal 

𝑡𝑗.  

The frequency of the cluster Cj is defined as: 

𝑤𝑗 = ∑ 𝑝𝑖
𝑡𝑗

𝑖=𝑡𝑗−1+1
                                                   (27) 

The mean for Cj is computed as: 

𝜇𝑗 = ∑ 𝑖𝑝𝑖
𝑡𝑗

𝑖=𝑡𝑗−1+1
/𝑤𝑗                                             (28) 

 

The inter-class variance for Cj is calculated as: 

𝜎2 = ∑ 𝑤𝑗
𝑛
𝑗=1 (𝜇𝑗 − 𝜇)²                                           (29) 

The maximization of inter-class variance helps to form the clusters. The objective 

function which maximizes the fitness function is defined as follows: 

∅ = 𝑚𝑎𝑥1<𝑡𝑙<𝑡𝑛−1<𝐿{𝜎2(𝑡)}                                      (30) 
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Histogram-based clustering methods are efficient. But, as in previous methods, they 

require prior knowledge about the number of clusters.  They are highly sensitive to noise, 

especially if the overlapping regions of the histogram are presented, or peaks and valleys 

are hardly identified.  

     Metaheuristic clustering is a hybrid method used for the optimization of real-world 

problems. The algorithm might start from random centroid initialization. Optimal clusters 

are obtained by updating the data according to the mathematical formulation of the 

objective function and optimality criteria. The searching behaviour of the algorithm is 

based on probabilistic theories and leads to the approximate solution of complex real-

world problems. The objective function of the optimization algorithm (f (x)) performs 

either maximization or minimization procedures with a given set of constraints. The 

mathematical expression of the maximization optimization problem is given below: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝑥∈ℝ𝑑}𝑓(𝑥)                                                      (31) 

                                              such that: 𝑎𝑖(𝑥) ≥ 0, 

𝑏𝑗(𝑥) = 0, 

𝑐𝑘(𝑥) ≤ 0 

 where 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑)𝑇  is a set of decision variables, ℝ𝑑  is a search space of the 

problem in d dimensions, 𝑎𝑖(𝑥), 𝑏𝑗(𝑥), 𝑎𝑛𝑑𝑐𝑘(𝑥) is a set of constraints that belong to the 

optimization problem.  

There is no single algorithm able to solve every heuristic problem (Wolpert and 

Macready, 1997). These methods are complex and often present a combination of genetic 

and K-means algorithms. More than sixty solutions have been proposed for physical, 

biological, and evolutionary tasks in the last decades. These approaches help to explore 

the research space and intensify the local solutions to achieve the global goal. 

Morphology-based methods (watershed segmentation) 

Watershed segmentation in medical imaging is an image partitioning method based on 

morphological differences in the biological tissues. The greyscale image is represented 

as a topological water-filled relief, where watersheds distinguish the areas of the different 

basins (Kornilov and Safonov, 2018). The main task of this method is to determine the 

position of all morphological basins and watershed lines. Each water basin responds to a 
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separate segment of the image. There are two principal watershed segmentation 

approaches: watershed by flooding and watershed by rain falling (Bieniek and Moga, 

2000).  

     “Watershed by the flooding” is based on the principle of the gradual feeling of the 

water basin, which starts from the minimum level of water. The process ends when the 

water reaches the maximum peak of the relief, and as a result, every catchment basin gets 

covered by the watershed lines. 

Watershed by flooding 

The watershed by flooding algorithm operates in the following order. At the beginning of 

the process, the local minima in the image are found. Then, the segmentation process goes 

according to the priority queues, which are based on image element (pixel/voxel) values. 

The sequence of queues is scanned from smaller values to larger ones. The selection 

process starts from the first non-empty element of the queue. The algorithm terminates 

when all queues from the priority queue are empty. After that, the selected element is 

removed from the queue, and the algorithm looks for the next neighbouring element to be 

marked and processed. All the marked neighbours are placed in the priority queues again. 

The process is repeated until all elements of the image are selected. The described above 

algorithm segments the image into basins. In the case of watershed segmentation with 

lines, each image element needs to be marked additionally. So, each element has a unique 

marker and an additional marker.  

Watershed by rain falling 

Watershed by rain falling approach creates a model that simulates the rain falling process, 

which is based on the connectivity components.  Each drop of water that is falling on the 

surface goes down along the slope to the appropriate valley. Usually, the water drop 

chooses the steepest path that connects the initial point of fall and the valley. All 

connected to the same valley elements establish one catchment basin. The levels of 

catchment basins can be different. It involves the additional steps to process the 

segmentation. This type of algorithm uses a simpler structure compared to the watershed 

by flooding model. The runtime of the watershed by rain falling model is short because it 

does not depend on the range of the pixel/voxel values of the image.  
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     The main problems of the watershed methods are under- and over-segmentation.  It is 

proposed to apply additional preprocessing and postprocessing techniques for 

overcoming these limitations. The preprocessing technique is usually based on the 

morphological image transformation before the segmentation process. The 

postprocessing technique helps to connect each unmarked image region with the nearest 

marked one using distance measure algorithms.  

     The watershed segmentation might be applied to any kind of imaging data including 

MRIs. The example of it is shown in Figure J. 

 

Figure J: Example of the watershed segmentation algorithm applied to the MRI of the brain 

Atlas-based methods 

Atlas-based segmentation methods (Cabezas et al., 2011) are built using prior knowledge 

about brain anatomy. The dominance of these methods is the chance to segment any part 

of the brain known by atlas. There are two types of atlas-based segmentation methods: 

topological (other names “single-subject”, “deterministic”) and probabilistic (also cited 

as “statistical”, “population-based”). Nowadays, most deterministic atlases are created 

from single-subject image acquisition and used as imaging templates for different types 

of pathology.  Probabilistic atlases were constructed to represent the anatomical 

variability in the human population. Population-based atlases can be divided into sub-

groups according to gender, age, handedness, etc. Additional attention is received by the 

disease-based atlases. The construction of them has increased in the last decade (for 

example, Alzheimer’s disease template is provided by the ICBM (Internet Brain 

Segmentation Repository), http://www.cma.mgh.harvard.edu/ibsr/). Disease-related 

http://www.cma.mgh.harvard.edu/ibsr/
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atlases allow qualitative and quantitative examination of the evolutionary changes due to 

disease progression. They also allow the evaluation of the quality of clinical treatment.   

     At the beginning of a segmentation procedure, each image needs to be aligned or 

registered with the existing averaging anatomical atlas. So, the quality of image 

segmentation strongly depends on the registration method. An example of an atlas-based 

segmentation method applied to the human brain is given in Figure 31. The well-known 

aligning image method is affine registration. However, affine alignment can be 

insufficient if the brain anatomy significantly differs from the standard anatomical atlas. 

To avoid these problems, the researchers proposed to use segmentation, bias correction, 

and nonrigid registration of the probabilistic atlas simultaneously (Ashburner and Friston, 

2005). Some approaches suggest selecting only those subset of pixel/voxel samples that 

have a high probability per class (De Boer et al., 2009). The unified segmentation 

approach that was based on the correction of the brain maps even without the need for 

mapping was presented by Weiskopf et al. (2011) in their work “Unified segmentation-

based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT)”. 

     For probabilistic atlas-based segmentation, the probabilities of pixel/voxel values are 

integrated as a part of a statistical framework. For example, the Bayesian framework can 

be defined as: 

𝑆(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼(𝑥)|𝑐 ∙ 𝑝(𝑐),                                         (32)                                                              

where p(I(x) | c) represents the conditional probability of the pixel intensity values, and 

p(c) are the priors of the class.  

Probabilistic atlases can be used with different types of parametric and non-parametric 

frameworks that can be expressed by the following equation: 

𝑆(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐸𝑑 + 𝜆 ∙ 𝐸𝑠),                                        (33) 

where Ed is the energy of data, Es is the energy of smoothness, and lambda is a user-

defined measure. 
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Figure K: An example of atlas-based segmentation (left) and mapping of some atlas-based 

elements on the original image (right). The mapping is done on Matlab using SPM software 

package (IBASPM (Individual Brain Atlases using Statistical Parametric Mapping) toolbox) 

developed by Wellcome Department of Cognitive Neurology, London, UK, 

https://www.fil.ion.ucl.ac.uk/spm/ext/ 

Anatomical variability requires the further development of new strategies and algorithms. 

For instance, segmentation of deep anatomical structures of the brain and tissue 

segmentation of fetus and newborn is a subject of main research interest (Oishi et al., 

2019; Dolz et al., 2018). The segmentation of the neonatal brain from the MRI and other 

imaging methods is more complicated than in adults. This problem occurs due to high 

anatomical variability between infants and their fast and active growth. The imaging 

quality is also frequently insufficient. Consequently, the development of a dynamic, 

probabilistic atlas is vital for separate stages of the evolution of the neonatal brain. 

Deformable model 

Deformable models belong to surface-based methods, which includes a variety of 

segmentation algorithms such as active contour or snake-based model (Pierre et al., 

2021). These models were introduced in 1988 (Kass et al., 1988). Deformable models 

outline the object boundaries by closed parametric curves (for 2D objects) or surfaces (for 

3D objects). The surface regularity is controlled by external and internal image forces. 

These forces are represented by the fusion of geometry and physics that cooperate 

according to the rules of approximation theory. Geometry describes the shape of objects. 

Physics defines the boundaries of changes in shape which may vary over space and time. 

Internal forces that hold the curve together are called “elasticity forces”. Other internal 

forces that keep the curve from extremal bending are called “bending forces”. Internal 

image forces, in traditional models, rely on the edge-located intensities information and 

are designed to retain the model smooth during the deformation. However, it makes the 

https://www.fil.ion.ucl.ac.uk/spm/ext/
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model sensitive to noise and dependent on the primary estimate. More advanced 

algorithms use the global region information integrated into the deformable model 

(Zhang, 1993). External forces are designed to attract the curve towards the boundary of 

the object of interest within the image. There are several types of external forces: 

multiscale Gaussian potential force, pressure force, distance potential force, dynamic 

distance force, interactive force.  

     Multiscale Gaussian potential force. While operating, the Gaussian potential force 

uses different ranges of standard deviation. The principal idea is to start with a large value 

of sigma and to create a potential energy function that helps to allocate the boundaries 

around the object broadly. The large-scale force attracts the deformable contour towards 

the desired boundaries from a large distance. Then, the value of sigma is gradually 

reduced to allow tracking of the boundary with higher precision.   

     Pressure force. “Balloons” is another name for deformable models that use pressure 

forces. They are often used together with Gaussian potential forces. When they operate 

together, the pressure force should be slightly smaller than the Gaussian potential force 

applied to the same edges. At the same time, the pressure forces have to be large enough 

to pass through those edges, which can be labelled as weak or false. During the model 

deformation, it can be inflated or deflated by the pressure force until the last one is stopped 

by the Gaussian potential force. 

     Distance potential force. Distance potential force is used as an additional approach for 

extending the distance range. It can be done by defining the potential energy function. 

For this reason, a pixel distance map needs to be created.  The pixel values in the map are 

obtained by calculating the distances between each pixel and the closest point of the 

boundary. Examples of calculated distances are Euclidean distance, Manhattan distance 

(Ranjitkar and Karki., 2016), Chamfer distance (Stencel and Janacek, 2006). 

     The potential energy function constructed on the distance map helps to compute a 

potential force field with a large range of distances. Distance potential forces have the 

gradient vector flow (GVF) field that works horizontally in opposite directions. This 

prevents the converging of the contour into the boundary concavity.  

     Dynamic distance force.  Dynamic distance force is similar to distance potential force, 

but it operates in a dynamic environment when distances are recalculated each time 

following the model deformation. Desired points in the boundary can be found using 
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several criteria. One of them is to use those edge points that have the highest gradient 

magnitude of pixel intensity values. A threshold needs to be applied to specify the 

maximum search distance. This approach eliminates the outliers and minimizes the 

computation time of the algorithm. 

     Interactive force. In some cases, the deformable model operates better if an operator 

is able to interact with it. This applies to clinical situations when the interaction is vital 

for high-quality segmentation or automated forces fail to adjust the model to the desired 

result.  

     At the beginning of segmentation, the closed surface/curve S is positioned near the 

desired object boundary in an image. During the iterative relaxation process, the external 

and internal forces deform this curve/surface. The mathematical expression of the energy 

forces is provided below: 

𝐹(𝒮) = 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡                                                 (34) 

where 𝐹𝑖𝑛𝑡 states for internal forces and  𝐹𝑒𝑥𝑡  for external. 

Figure L shows an example of the visual representation of the deformable model in image 

segmentation. 

 

Figure L: Brain tumor segmentation using active countour deformable model 

Parametric deformable and geometric deformable models 

Conditionally deformable models are divided into parametric deformable models and 

geometric deformable models (Xu et al., 2000). The parametric deformable model 

represents curves and surfaces using changeable parametric forms during deformation. It 

allows fast interaction with the model in a real-time environment. However, this model 

has limitations in splitting and merging curves. The geometrical deformable model 

represents surfaces and curves as a set of higher-dimensional scalar functions. The model 

parameters are calculated after completed deformation. Because of this ability, these 

types of models are topological highly adaptable. 
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Multiphase Active Contour model 

The advanced level of the development of deformable models is a Multiphase Active 

Contour model. This type of models was developed for imaging data with non-

overlapping different intensities or other characteristics regions. Those algorithms include 

the multiple level set functions. They are robust to variation of images, have topological 

flexibility. They are adaptive to functional energies and able to detect the object 

boundaries with high precision. Many recent works were focused on the development of 

new multiphase active contours for more challenging problems (Bae et al., 2011). Some 

investigations were dedicated to the problems of computational complexity reduction of 

the multiphase active contour models (Moreno et al., 2014). 

     The interactive deformable models are actively used in medical diagnosis, surgical 

treatment and medical training with haptic devices (McInerney and Terzopoulos, 1996; 

Zhang et al., 2017; Romo et al., 2017). 

Classification methods 

Classification methods are used as automated segmentation methods that operate in the 

image feature spaces. They can use supervised or unsupervised learning. Supervised 

machine learning segmentation used manually segmented images as references. After 

that, new images are segmented automatically with ML algorithms. Supervised 

segmentation methods have some limitations. They do not consider the physiological and 

anatomical variability between different groups of subjects. Also, the manual 

segmentation step can be time-consuming. 

K-nearest neighbour 

One of the simplest classifiers that take part in the segmentation process is the K-nearest 

neighbour (KNN) (Harini and Chandrasekar, 2012). This is a non-parametric classifier 

which does not consider the statistical structure of the data. According to the KNN 

classification rules, the pixel/voxel classification is based on similarity measures and the 

majority vote of the closest neighbouring data. In medical imaging, the KNN 

segmentation procedure requires a large number of training samples collected from each 

tissue class.  This algorithm works well with a large amount of data and variabilities in 

the anatomical data structure. However, it shows some sort of errors when dealing with 

intensity variation naturally presented within each class of tissues. 
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Bayesian classifier 

Another popular classifier is the Bayesian classifier (Pohl et al., 2006). Unlike the 

previous one, this is a parametric classifier. For the image segmentation process, the 

Bayesian algorithm calculates the probabilistic relationships between class variables and 

the set of attributes. Then, the classifier estimates the class probability of any unknown 

variable. All pixel/voxel intensities are considered to be strongly independent. All 

intensities represent a mixture of Gaussian probability distributions. The Bayesian 

framework consists of four main components: the prior independent probability 𝑃(y), the 

evidence of independent probability 𝑃(x), the likelihood of conditional probability P(x | 

y) and the posterior conditional probability 𝑃(y | x): 

𝑃(𝑦|𝑥) =
𝑠(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)
                                               (35) 

After calculating the posterior probability, it is possible to select the hypothesis with the 

highest probability. The highest posterior probability is called the maximum a posterior 

(MAP): 

𝑌{𝑚𝑎𝑝} = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑌}(𝑃(𝑋|𝑌))                                      (36) 

The P(X) is a constant, and it can be used for data normalization. It is possible to drop it 

in a formula for the MAP calculation. The formula gets the following view: 

𝑀𝐴𝑃(𝑌) = max (𝑃(𝑋|𝑌)𝑃(𝑌))                                     (37) 

Often, the probability distribution has an exponential function. The probability can be 

calculated by using a logarithmic transform: 

𝑌{𝑚𝑎𝑝} = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑙𝑜𝑔𝑃(𝑋|𝑌) + 𝑙𝑜𝑔𝑃(𝑌))                          (38) 

Training the Bayesian classifier is a fast process because only the probability of each class 

and the probability of different input (x) values in the class need to be calculated. The 

class probabilities are calculated as the frequency of samples that belong to each class 

divided by the total number of samples. For the simple binary classification, each class 

will have the probability of 0.5 or 50% if there is the same number of samples in each 

class. 
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ANN-based segmentation 

ANN-based segmentation became the most popular segmentation method because of its 

ability to learn from historical data and generate new rules automatically. The pixel 

intensities and texture features from images are collected automatically in the input layer, 

and then they are processed through a series of hidden layers. A set of mathematical 

operations are performed within each layer.  The output layer provides a final result of 

segmentation. The best neural network used for image segmentation is the convolutional 

neural network. This network was designed to work especially with imaging data. CNN 

can reduce the number of features without significant loss of the quality of segmentation 

(Dolz et al., 2018). 

Hybrid segmentation methods 

The choice of the appropriate segmentation technique for a given task can be difficult. In 

this case, the combination of methods can bring a solution.  Hybrid segmentation methods 

are continuously explored. Multiple hybrid combinations are introduced for complex 

segmentation problems (Nyma et al., 2012; Ortiz et al., 2014). These methods received 

popularity in neonatal medicine. The methods combining thresholding, Fuzzy C-means 

clustering, active contours, and morphology-driven automatic methods were applied for 

the segmentation of the various anatomical regions of the neonatal brain (Makropoulos et 

al., 2018; Gui et al., 2012). The main disadvantage of the hybrid method in comparison 

to each single segmentation approach integrated into it is the increased complexity. Lower 

processing time and a higher number of computation parameters make the hybrid method 

limited in use for a vast range of applications. On the other hand, a wisely and carefully 

designed method can give a valuable solution to a complex problem or problem that 

require a high segmentation precision. 

Table B below illustrates the comparison of the segmentation method described in this 

chapter.  

Table B: Comparison of segmentation methods 

Segmentation 

method 
Advantages Disadvantages 

Manual   Accurate Time-consuming 
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All the described above segmentation methods can be adapted and used for MRI 

segmentation of the brain tissue. 

 

Thresholding  
Fast; 

Efficient 

Depends on pick values; 

Sensitive to noise and texture 

inhomogeneity 

Region-based  

Low sensitivity to noise; 

Works well when similarity 

criteria are defined 

Time-consuming; 

Required a lot of computer memory; 

Sensitive to initialization “seed” 

point 

Edge-based  

Fast; 

Segment well if the objects 

have significant contrast 

between the each other 

Sensitive to the significant variation 

in pixel/voxel intensity values; 

Does not suitable for objects with 

weak, false or multiple edges 

Clustering  

More useful for real problems 

when having partial 

membership (Fuzzy clustering) 

It depends on initialization 

parameters: the number of clusters 

and positioning of the “centroid”; 

Membership determination is not 

always accurate 

Morphology-based  
Detected boundaries are 

continuous and stable 

Complex calculations of the intensity 

gradients; 

Over- or under-segmentation 

Atlas-based  

Easy to apply if the part of the 

body is known by atlas 

initially 

Not accurate for deformable objects 

Deformable model 

(active contour-

based)  

High quality of segmentation; 

Able to segment multiple 

objects at the same time 

Needs initial contour parameters and 

balanced external and internal forces; 

Takes long runtime 

Classification-

based 

Does  not require complex 

programming; 

Operates with a large amount 

of data and variabilities in 

anatomy 

Model training is time-consuming 

Hybrid 

 
High precision 

High computational complexity; 

Time-consuming 


