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Summary 

Normal pressure hydrocephalus (NPH), a CSF circulation disorder, is important as a 

reversible cause of gait and cognitive disturbance in an aging population. The 

inconsistent response to CSF shunting is usually attributed to difficulties in 

differential diagnosis or co-morbidity. Improving outcome depends on an increased 

understanding of the pathophysiology of NPH. Specifically, this thesis examines the 

contribution of, and inter-relationship between, the brain parenchyma and CSF 

circulation in the pathophysiology of NPH.  

 

Of the four core studies of the thesis, the first quantifies the characteristics of the CSF 

circulation and parenchyma in NPH using CSF infusion studies to measure the 

resistance to CSF absorption and brain compliance. The second study assesses 

cerebral blood flow (CBF) was using O15-labelled positron emission tomography 

(PET) with MR co-registration. By performing CSF infusion studies in the PET 

scanner, CBF at baseline CSF pressure and at a higher equilibrium pressure is 

measured. Regional changes and autoregulatory capacity are assessed. The final study 

examines the microstructural integrity of the parenchyma using MR diffusion tensor 

imaging. 

 

These studies confirm the importance of the inter-relationship of the brain 

parenchyma and CSF circulation. NPH symptomatology and its relationship to the 

observed regional CBF reductions in the basal ganglia and thalamus are discussed. 

Regional CBF reductions with increased CSF pressure and the implications for 

autoregulatory capacity in NPH are considered. The reduction in CBF when CSF was 

increased was most striking in the periventricular regions. In addition, periventricular 
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structures demonstrated increased diffusivity and decreased anisotropy. The 

relationship between these changes and mechanisms such as transependymal CSF 

passage are reviewed. 

 

The findings of this thesis support a role of both the CSF circulation and the brain 

parenchyma in the pathophysiology of NPH. The results have implications for the 

approach to the management of patients with NPH. 
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Introduction 

Normal pressure hydrocephalus (NPH), although an established clinical entity for 

about 40 years, remains contentious with respect to mechanism, diagnosis and 

treatment. The original description of NPH (Adams et al., 1965; Hakim and Adams, 

1965) was of hydrocephalus with normal CSF pressure in patients who were 

demented and who also exhibited psychomotor deficits. A clinical triad of dementia, 

gait disturbance and urinary incontinence was proposed as the basis of the clinical 

definition. It soon became apparent however that cases with only one or two 

components of the triad were common and responded to CSF diversion, that is, a CSF 

shunt (Graff-Radford & Godersky, 1986). 

 

The initial enthusiasm for using a CSF shunt to treat patients with dementia, 

hydrocephalus and normal CSF pressure was replaced by scepticism as several 

authors reported poor results – probably due to poor patient selection. As a result 

neurosurgeons became more uncertain about the criteria for selecting patients to 

undergo CSF shunting for NPH. Although there has been some improvement in 

clinical, radiological and physiological assessment of patients (Corkill & Cadoux-

Hudson, 1999) a number of problems exist in the study of NPH. 

 

The definition of NPH remains an issue of contention. It has been applied to describe 

the clinical triad even in the absence of CSF pressure measurements. NPH describes a 

heterogeneous population of patients. By convention, these are divided into idiopathic 

and secondary NPH on the basis of presumed aetiology. These groups are very 

different, especially in respect to age as the idiopathic NPH is considered mainly a 

disease of the elderly. Difficulties of definition and stratification of patient groups 
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often makes it difficult to draw conclusions from studies where these issues have not 

been addressed. 

 

Fundamental issues in NPH, which also represent deficiencies in knowledge, are 

those of pathogenesis and pathophysiology. In general, hydrocephalus, due to 

obstruction presents with ventricular enlargement and raised CSF pressure. However 

the apparent paradox of ventricular enlargement with normal CSF pressure is more 

difficult and a number of mechanisms have been proposed (Hakim, 1971; Hakim et 

al., 1976; Penar et al., 1995; Levine, 2000; Péna et al., 1999 & 2002a; Stephensen et 

al., 2002). Investigators have attempted to address these deficiencies by 

characterizing CSF dynamics, cerebral blood flow and cerebral autoregulation. These 

studies have met with varying degrees of success and reflect the limitations of the 

available technologies. 

 

This aim of this thesis is to investigate the pathophysiology of NPH through the 

application of modern techniques that focus on the role of the brain parenchyma and 

its interaction with CSF dynamics. These techniques include computerised CSF 

infusion studies, high-resolution positron emission tomography and diffusion tensor 

magnetic resonance imaging. The application of such techniques to understanding the 

pathophysiology of NPH may improve patient selection, treatment and outcome. 

 

The aim of this thesis is addressed by a core of four major human studies. Preceding 

these chapters a literature review further defines the condition, its management and 

outstanding problems (Chapter 1). A short clinical study of five patients, diagnosed 

with NPH where CSF shunting provided no response but in whom CSF drainage at 
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very low pressures was successful, illustrates the importance of the relationship 

between CSF dynamics and the brain parenchyma (Chapter 2). The core studies of 

this thesis are summarized below. 

 

(i) A retrospective study reviewing the clinical features, CSF dynamics and 

outcome of patients with NPH is presented (Chapter 3). This study utilizes the 

computerised CSF infusion study technique to examine the interaction 

between CSF dynamics and brain parenchyma in patients with NPH. 

 

(ii) A study of cerebral blood flow at rest in patients with NPH compared to 

normal controls is presented (Chapter 4). This study uses 15O-labelled water 

positron emission tomography (PET) with co-registration of magnetic 

resonance images (MRI) to investigate the role of the cerebral vasculature in 

NPH. 

 

(iii) The techniques of the previous two studies are combined in order to study 

changes in CBF with changes in CSF pressure (Chapter 5). This study 

therefore characterizes the dynamic properties of the cerebral vasculature in 

NPH patient and discusses the role cerebral autoregulation. 

 

(iv) Diffusion tensor MR imaging is used to examine the microstructural changes 

in various regions of brain parenchyma of patients with NPH compared to 

controls. 
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Following presentation of the results of these four studies a model of the pathogenesis 

and pathophysiology of the condition is proposed. Suggestions for further work and 

the implications for the incorporation of these results into clinical studies are 

presented.  
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Chapter One  

1. Literature Review 

 

1.1 Definition 

Normal pressure hydrocephalus (NPH) may be defined as a disturbance of CSF 

circulation characterised by normal CSF pressure (<18 mmHg), ventricular 

enlargement and a clinical triad consisting of a gait disorder with or without dementia 

and/or urinary incontinence.  

 

There are however problems with this definition. The term is often applied to patients 

who present with the clinical triad and ventriculomegaly without measurement of the 

CSF pressure. Likewise, not all elements of the clinical triad may be present. Some 

would also argue that patients who do not respond favourably to CSF shunting, even 

in the presence of the clinical, radiological and physiological features of the condition, 

should not be classified as having NPH.  

 

While for the purposes of research adequate definition of patient groups is important, 

it is also necessary to recognise that patients who do not satisfy the strictest 

definitions of NPH may still respond to CSF shunting. This probably reflects the fact 

that NPH represents a portion of the spectrum of CSF circulation disorders. 
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1.2 Epidemiology 

NPH may be divided into two categories – idiopathic and secondary NPH. Idiopathic 

NPH is primarily a condition of aging and is rare before the age of 60 years (Fisher, 

1982). The true incidence of NPH is unknown but it is probably quite rare. Vanneste 

(1992) estimated the incidence of shunt responsive NPH to be 2.2/million/year and 

that it represented about 0.4% cases of all dementias. However these figures are likely 

to be influenced by factors such as awareness of the condition, referral rates and 

variation of protocols for the investigation of dementia in the elderly. Indeed the 

incidence is likely to be underestimated and should increase given improvement in 

these factors in an ageing population.  

 

Casmiro et al. (1989) found that hypertension, ischemic heart disease, high density 

lipoprotein / cholesterol levels and diabetes were all significant risk factors for the 

development of idiopathic NPH. A history of transient ischemic attacks, obesity, 

alcohol use and smoking were not significant risk factors. Krauss et al. (1996) found 

that hypertension, cardiac disease, diabetes, cerebrovascular diseases as well as 

peripheral vascular diseases were all significantly associated with the development of 

idiopathic NPH. Moreover there was a relationship between the severity of NPH 

symptomatology and hypertension. The authors concluded that hypertension has a 

role in the development and progression of the disease and represents a target for the 

prevention and slowing of the disease. 
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Secondary NPH may be a result of intracranial haemorrhage, head injury, meningitis, 

intracranial tumour, intracranial surgery, aqueduct stenosis and basilar artery ectasia. 

Thus the epidemiology of the condition in secondary cases is a reflection of the 

underlying cause. 

 

1.3 Clinical Features 

In their initial description of the condition, Hakim & Adams (1965) reported their 

most striking cases. These cases were much debilitated with dementia predominating 

their clinical picture. Each had been labelled as exhibiting ‘senile dementia’ or 

‘cerebral arteriosclerosis’. They were incontinent of urine and those able to mobilise 

demonstrated a disturbance of gait. The clinical triad of dementia, gait disturbance 

and urinary incontinence was thus described. These shall each be considered. 

 

1.3.1 Gait Disturbance 

The gait disturbance of NPH is characterised by a broad base and slow shuffling 

steps. There is a reduced foot-floor clearance. Examination generally reveals an 

absence of weakness or inco-ordination with an increase in tone and brisk reflexes. 

The gait is often described as a shuffling or magnetic with difficulty initiating 

movement (Corkill and Cadoux-Hudson, 1999). A recent study by Stolze et al. 

(2001b) compared patients with Parkinson’s disease to those with NPH. As the two 

diseases can present with similar gait patterns with difficulty in initiating movement, a 

broad base and foot shuffling, the differential diagnosis can be difficult on the basis of 

gait alone. However the gait of patients with Parkinson’s disease improves with visual 

and auditory cues whereas patients with NPH do not. Patients with NPH also have a 
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more pronounced disturbance of equilibrium and have compensatory features evident 

in their gait such as an increased step width and external rotation of the foot. A 

common feature of patients with disturbed gait due to NPH is the lack of functional 

deficit when lying down. Depending on the severity of the disease they may move 

their legs freely when supine. Likewise patients may not be able to walk but are able 

to swim using their legs. This finding is typical of a frontal gait apraxia. 

 

Gait disturbance is probably the most important clinical feature of NPH. Shenkin et 

al. (1973) noted that patients with gait disturbance as their presenting symptom 

responded to CSF shunting more frequently than those in which dementia 

predominated. Numerous other studies have confirmed such findings (Greenberg et 

al., 1977; Fisher, 1980, 1982). Casmiro (1989) suggested that the condition be 

renamed as ‘ventricular enlargement with gait apraxia syndrome (VEGAS)’. The 

Dutch NPH Study (Boon et al., 2000) found that gait disturbance must be present and 

that the onset of dementia must occur at the same time or after the onset of gait 

disturbance if patients are to respond to CSF shunting. 

 

Although gait disturbance predominates, there is evidence of more general disorders 

of posture and motor function. Blomsterwall et al. (1995, 2000) demonstrated a 

postural disturbance in patients with NPH and proposed that this postural disturbance 

underlies the gait disturbance. Furthermore, patients with NPH had relatively better 

postural function than controls or patients with Binswanger’s disease when their eyes 

were closed than when open (Blomsterwall et al., 2000). The misinterpretation of 

afferent visual information might be a mechanism for disturbance of posture and gait  

(Wikkelso et al., 2003).  
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1.3.2 Dementia 

The dementia of NPH is frontal in nature. It has been characterised by Iddon et al. 

(1999) using neuropsychological tests. Patients typically showed premotor subcortical 

deficits with spatial recognition and cognitive impairment. Tests of temporal lobe 

function, known to be impaired in conditions such as Alzheimer’s disease, were 

satisfactory. The marked deficiency in spatial abilities such as spatial perception and 

spatial memory has been confirmed by others (Gustafson and Hagberg, 1978). Later 

in the disease process clinical features such as abulia, disorientation and emotional 

lability may become prominent. Perhaps more significantly, patients who were not in 

the demented range using the mini mental state examination, demonstrated deficits of 

executive function, that is, those mental abilities necessary for planning, anticipation, 

goal establishment and error monitoring. These more sensitive investigations of 

mental function assist in the differential diagnosis from some of the more common 

forms of temporal lobe dementia. However similar findings may be seen in the 

dementias of Parkinson’s disease and Huntington’s disease as well as subcortical 

arteriosclerotic disease. 

 

1.3.3 Urinary Incontinence 

The urinary incontinence of NPH varies in nature. Early symptoms consist of urge or 

frequency. At this stage, urge incontinence combined with gait disturbance may 

exacerbate the problem. Dynamic studies have demonstrated strong bladder 

contractions in response to increments in bladder of volume as low as 20mL (Fisher, 

1982). In addition faecal incontinence may occur late in the course of the disease. 
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1.4 Aetiology & Pathology 

The aetiology and pathophysiology of NPH remain enigmatic. A comprehensive 

theory to address this issue must be able to describe what the various elements of the 

disorder are, why they occur and how they interact. In NPH, the elements of the 

condition may be considered under the headings of CSF circulation and brain 

parenchyma. Current knowledge in relation to these two topics shall be reviewed. 

 

1.4.1 CSF Circulation 

NPH is primarily classified as a disorder of CSF circulation. In analysing CSF 

circulation disorders, the composition, volume, distribution and pressure of the CSF 

are considered. The dynamic properties of the CSF circulation require attention as do 

the anatomy and pathology of the ventricular and subarachnoid space through which 

the CSF circulates. 

 

The constituents of the CSF are generally normal although routine biochemical, 

microbiological and cytological analysis may occasionally reveal an unexpected 

diagnosis. Examination of CSF in NPH patients may reflect the underlying 

histopathological changes (Tullberg et al., 1998). Sulfatide, an indicator of 

demyelination, and neurofilament triplet protein, a marker of axonal degeneration, are 

correlated with the degree of white matter MR hyperintensities (Tullberg et al., 2000, 

2002). More recently, the CSF level of TNF alpha, a proinflammatory cytokine, was 

demonstrated to be higher in patients with NPH and correlated with sulfatide levels 



 13

suggesting a possible role for TNF alpha in parenchymal pathology (Tarkowski et al., 

2003). 

 

The volume of CSF is of course increased in NPH as it is a requirement for the 

diagnosis. Apart from some cases of long-standing aqueduct stenosis, NPH is a 

communicating form of hydrocephalus and the distribution of the increased volume of 

CSF does have some importance. The relative increase in ventricular volume should 

be greater than any increase in the subarachnoid space, especially over the 

convexities. This is may be used a tool to differentiate generalised cerebral atrophy 

from NPH (Gado et al., 1976; Vanneste et al., 1993; Boon et al., 2000). 

 

The CSF pressure is within the normal range. However, not infrequently, patients 

with high CSF pressures presenting with identical clinical features to those with 

normal CSF pressure.  Monitoring is performed in patients with NPH in order to 

determine the baseline CSF pressure and to detect abnormal pressure waves. The 

presence of B (or vasogenic) waves is common in NPH and is thought to be indicative 

of a disturbance of CSF dynamics and reduced compliance of the neuroaxis 

(Hartmann and Alberti, 1977). 

 

CSF dynamics can be investigated using a CSF infusion study involving intrathecal 

injection, infusion or perfusion of a solution of mock CSF or normal saline at either a 

constant rate or constant pressure. The flow (ml/min) is then plotted against the ICP. 

The slope of the regression line is the conductance of CSF outflow and the reciprocal 

is the resistance of CSF outflow (Rcsf). Rcsf represents the CSF pressure that must be 

applied to the CSF system to produce an absorption rate of 1ml of CSF per minute at 
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equilibrium. The normal Rcsf is less than 10 mmHg/ml/min (Ekstedt, 1978; Albeck et 

al., 1991) but is usually raised in NPH. The Copenhagen Symposium on NPH (1990) 

concluded that an Rcsf >11 mmHg/ml/min was suggestive of NPH. It has also been 

reported to be an important predictor of shunt-response (Borgesen et al., 1979; 

Borgesen and Gjerris, 1982; Borgesen, 1984; Gjerris et al., 1987; Lundar and Nornes, 

1990; Gjerris and Borgesen, 1992). 

 

Anatomically, the subarachnoid space of the convexities may be scarred. This is well 

known in cases of secondary NPH where subarachnoid or intraventricular 

haemorrhage induces an inflammatory response resulting in scarring of the 

leptomeninges with adherence of the arachnoid membrane to the pia and blockage of 

the arachnoid villi. Infective meningitis may result in similar findings (Penfield & 

Elvidge, 1932; Russell, 1949). In idiopathic NPH, thickening of chronic meningeal 

thickening may be seen at autopsy (DeLand et al., 1972; Akai et al., 1987). In support 

of this, patients with NPH exhibit a convexity block when air, contrast or radiographic 

tracers are injected into the subarachnoid space (Ojemann et al., 1969; LeMay & 

New, 1970; Behrman et al., 1971; Greitz & Grepe, 1971; Bannister, 1972; Forslo et 

al., 1972; Di Chiro, 1973; Shenkin et al., 1973; James et al., 1974a, 1974b; Stein and 

Langfitt, 1974; Adams, 1975; Drayer et al., 1977; Hindmarsh & Greitz, 1977; 

Ostertag & Mundinger, 1978). 

 

Chronic disease and involution of the arachnoid granulations may be seen in NPH 

(Gille Davidson, 1971; Gutierrez et al., 1975; Di Rocco et al., 1977). Akai (1987) 

noted that the numbers of arachnoid villi were decreased in number in the lateral 

lacunae of patients with NPH. In addition remaining villi were often compromised by 
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adhesions. However similar findings are often seen in the brains of patients with no 

disease at autopsy (Tamura, 1985) and the significance of such findings is unclear. 

However, such changes may explain the increased Rcsf seen in some patients. 

 

1.4.2 Pathology of the Parenchyma 

There have been relatively few detailed histopathological studies of the brains of 

patients with NPH. The most commonly described histopathological changes are 

those of the deep white matter. The periventricular white matter is characterised by 

demyelination, oedema and spongiosis (Di Rocco et al., 1977; Akai et al., 1987). 

Axons themselves may be decreased in number with swelling and fragmentation. The 

peripheral arcuate white matter regions are relatively spared as is the cortex (Akai et 

al., 1987). 

 

Histopathological findings, after autopsy (Ball, 1976; Del Bigio et al., 1997) or brain 

biopsy (Stein & Langfitt, 1974; Tedeschi et al., 1995; Del Bigio et al., 1997) 

consistent with Alzheimer’s disease (for example, neurofibrillary tangles and 

plaques), are also common in patients with NPH. Furthermore, the presence of such 

findings does not appear to adversely affect the outcome of NPH patients after CSF 

shunting (Tedeschi et al., 1995; Del Bigio et al., 1997). In addition, the co-existence 

of Parkinson’s disease and NPH is now well documented. It is noteworthy that at least 

two cases of NPH with co-existing CJD have been diagnosed (Galvez et al., 1980; 

Galvez and Cartier, 1984). 
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The histopathological changes of cerebrovascular disease are also frequently found in 

patients with NPH. Akai et al. (1987) found that patients with NPH demonstrated 

marked sclerosis of the small arteries and arterioles of the subependymal region, deep 

white matter, thalamus and basal ganglia. Small lacunes were frequent in these 

regions with focal softening of the tissue. Significant vascular changes have also been 

reported at autopsy in patients with shunt-responsive NPH who have died of other 

causes (Lorenzo et al., 1974; Koto et al., 1977; Newton et al., 1989). However, as 

idiopathic NPH, is primarily a condition of ageing such changes are not surprising.  

 

These histopathological cerebrovascular changes are reflected on MR imaging. MR 

white matter hyperintensities are thought to represent areas of demyelination due to 

microvascular changes and not necessarily infarction. Bradley et al., (1991) found a 

significant association between the presence of deep white matter hyperintensities on 

MR and the presence of NPH. They are also present in Binswanger’s disease and 

conditions where cerebrovascular disease is a feature. 

 

As noted previously, CSF composition may reflect pathology of the brain 

parenchyma. Tullberg et al., (2000, 2002) found that sulfatide was increased 

significantly in those with cerebrovascular disease or deep white matter lesions on 

MR as well as those with NPH. However patients with subcortical arteriosclerotic 

encephalopathy primarily had markedly increased sulfatide compared with NPH. The 

authors suggest that very high sulfatide levels may indicate irreversible 

demyelination. With the exception of TNF alpha (Tarkowski et al., 2003), other 

studies of CSF constituents have not yielded any significant results (Wikkelso & 

Blomstrand, 1982; Wikkelso et al., 1985, 1986, 1991; Poca et al., 2001). 
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Histologically, the ependyma of the frontal and occipital horn becomes disrupted in 

hydrocephalus (Del Bigio and Bruni, 1988; Del Bigio, 1993). This is probably due to 

the fact that this area undergoes maximum strain during ventricular enlargement 

(Péna et al., 1999 & 2002a). Within the parenchyma adjacent to the frontal and 

occipital horns periventricular lucencies (PVLs), which are areas of hypodensity on 

CT scanning, are observed. Their presence was originally thought to represent 

transependymal seepage of CSF and was thus reversible (Yamada et al., 1978). 

However the situation is more complex as they may also represent areas of gliosis. 

 

1.5 Treatment of NPH 

The mainstay of treatment for NPH is CSF shunting in order to reduce the volume 

and/or pressure of fluid within the ventricular system and to reduce the effective 

resistance to CSF absorption. The most common form of CSF shunt used in NPH is a 

ventriculoperitoneal shunt although ventriculoatrial CSF shunting has also been 

popular. 

 

The main problem is that the response to CSF shunting is difficult to predict. 

Vanneste et al. (1992) reviewed the literature and found that the response to CSF 

shunting varied widely between studies (25-80%) with the mean being 50%. In 1,047 

patients from the literature, improvement after CSF shunting is notably better in NPH 

secondary to other conditions (64%) compared to idiopathic NPH (50%). In addition 

marked improvement was noted in 46% of patients with secondary NPH compared to 

33% with idiopathic NPH.  
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The potential for clinical improvement must also be balanced against the potential 

complications of CSF shunting which are well documented (Illingworth et al., 1971; 

Vanneste et al., 1992; Hebb and Cusimano, 2001). The most common complications 

are shunt infection and shunt blockage. Less common complications include subdural 

haematomas, stroke, shunt disconnection, erosion of the distal catheter through the 

skin or internal viscus, thrombosis around atrial catheters and shunt nephritis. Gjerris 

& Borgensson (1992) found that the complication rate in patient with NPH may be 

particularly high (>50% over 5 year follow-up). This would be expected given the age 

of the patients and the reduction in general health that comes with reduced mobility 

and dementia. Others have reported similar findings (Udvarhelyi et al., 1975; 

Steinbok & Thompson, 1976). Vanneste et al. (1992) performed a risk/ benefit study 

of idiopathic NPH using 1, 047 patients obtained from 19 studies from the literature. 

The benefit / harm ratio in patients with idiopathic NPH was 1.7 and increased to 6 if 

high-risk patients with significant co-morbidity were excluded. The potential for 

unduly compromising patients by subjecting them to CSF shunting procedures must 

therefore be emphasised.  

 

Given the problems of predicting outcome after CSF shunting and risks associated 

with such procedures in the elderly, clinicians have sought parameters or 

investigations which are predictive of a clinical improvement after CSF shunting 

response. The more common parameters and investigations for this purpose are: 

i. Ventricular volume. Various methods to measure ventricular size 

including the simple Evans’s ratio to more complex ventricular indices 

have not been able to find a correlation between the size of the ventricles 
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and outcome after CSF shunting. This is true of ventriculograms (Shenkin 

et al., 1975) or more complex MR techniques (Condon et al., 1986). 

 

ii. Ventricular / Sulcal volume ratio. Ventricular enlargement in the absence 

of sulcal enlargement was proposed as a method to differentiate simple 

atrophy from a hydrocephalic process (Gado et al., 1976). Modern CT 

scanners have improved resolution. The application of a variety of CT 

criteria which incorporate measures of ventricular dilation and sulcal 

enlargement by Boon et al. (2000) was found to have a predictive value of 

65% when combined with clinical data compared to 75% reported by 

Vanneste et al. (1993). Holodny and colleagues (1998) have presented five 

cases of focal sulcal enlargement which they consider as particular of 

NPH. 

 

iii. MR white matter intensities. Krauss et al. (1996) studied 41 patients with 

NPH which were well characterised with studies of CSF dynamics. They 

found that the degree of improvement was negatively correlated with 

periventricular and deep white matter disease. However, the authors noted 

that the presence of white matter disease did not preclude improvement but 

influenced its degree. Godersky et al. (1990) found that the degree of 

periventricular hyperintensity did not predict surgical outcome. More 

recently Tullberg et al. (2001) reported that in 34 patients followed for 3 

months post CSF shunting neither the degree nor pattern of deep or 

periventricular white matter disease influenced outcome after CSF 

shunting. They concluded that deep white matter hyperintensities on MR 
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should not be used as a method of predicting shunt response (Tullberg et 

al., 2001, 2002). Finally, the Rotterdam Scan Study (de Leeuw et al., 

2001), reported that deep white matter hyperintensities are frequently 

found in asymptomatic elderly individuals and their incidence increases 

with age. 

 

iv. CSF drainage test. This test involves removing an amount of CSF is 

removed (30-50mL) usually via a lumbar puncture. The logic of the test is 

that this is akin to CSF shunting. In some cases temporary clinical 

improvement may be evident but is uncommon. While a CSF drainage test 

may be positive, that is, indicate improvement after CSF shunting, it 

should be interpreted with caution as the clinical status of patients with 

NPH does fluctuate. Likewise, as noted by Adams et al. (1966) and Fisher 

(1978), a negative drainage test does not preclude clinical improvement 

after CSF shunting. Reasons for failure of the test include failure to 

remove sufficient fluid and undiagnosed non-communication between the 

subarachnoid space and the ventricles. More importantly it should be 

recognised that even after shunt surgery improvement may take several 

days or weeks for gait and possibly months for cognition. In recognition of 

this problem Chen et al. (1994 ) proposed a system of temporary, 

controlled resistance lumbar drainage which appeared to be useful in 

predicting shunt outcome. 
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v. CSF dynamics.  

a. B waves. Frequent B waves of >9 mmHg amplitude are thought to be 

indicative of a successful response to CSF shunting (Crockard et al., 

1977; Pickard et al., 1980; Borgesen and Gjerris, 1982; Graff-Radford 

et al., 1989; Raftopoulos et al., 1994; Reilly, 2001). However their 

absence does not exclude a diagnosis of NPH or shunt response. 

b. Resistance CSF absorption. Gjerris & Borgensson (Borgesen et al., 

1979; Borgesen and Gjerris, 1982; Borgesen, 1984; Gjerris et al., 

1987; Gjerris and Borgesen, 1992) using the lumbar-ventricular CSF 

infusion method found that of 271 patients shunted for NPH, no patient 

with an Rcsf  < 12 mmHg/ml/min responded to CSF shunting while 

80% with Rcsf >12.5 mmHg/ml/min. Similar findings have been 

reported by Lundar & Normes (1990). The Copenhagen Symposium 

on NPH (1990) concluded that an Rcsf >11 mmHg/ml/min was 

suggestive of NPH. In a recent study (Boon et al., 2000) involving 95 

patients followed for 1 year, it was suggested that the best strategy for 

management of patients thought to have NPH was to shunt only those 

patients with a Rcsf >18 mmHg/ml/min, or if the Rcsf was lower, only 

those with objective clinical evidence and CT evidence of NPH. 

vi. Other Investigations. These include measurement of CBF and 

cerebrovascular autoregulation and combinations of these with the CSF 

drainage test. These have met with limited success and are reviewed in 

Chapters 4 and 5. 
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The overall result is that shunt response rates have improved marginally despite these 

parameters. This may be because in seeking a predictor of shunt response, NPH has 

been mostly treated as a single entity in the absence of a satisfactory understanding of 

either the aetiology or pathophysiology of the condition.  

 

In the event that a patient fails to respond to a functioning shunt, failure is usually 

attributed to a co-existing pathology such as cerebrovascular, Alzheimer’s or other 

disease. However, relatively little attention has been given to the characteristics of the 

type of shunt and valve used. The majority of patients are shunted using a certain 

valve type influenced by the individual preference of the neurosurgeon. The only 

randomised study of shunt valves was that of the Dutch NPH study (Boon et al., 

1998a) in which patients were randomised between low and medium pressure Hakim 

valves. While patients receiving the low pressure valve performed better than those 

who received the medium pressure valve, the result was not statistically significant. 

Larsson et al. (1992) studied 13 patients NPH who were treated with adjustable Sophy 

valve. They found that improvement was independent of the adjust valve pressure. 

 

To improve on current knowledge regarding the aetiology and pathophysiology of the 

condition, this thesis aims to examine the role of the brain parenchyma in NPH and its 

interplay with the CSF dynamics. Further study of this subject should enhance 

approaches to predicting the response to CSF shunting in patients with NPH and the 

design of treatment regimens. 
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Chapter Two 

A Clinical Study of Low Pressure Hydrocephalus 

 

2.1 Introduction 

In judging the success or otherwise of the treatment of hydrocephalus of all types 

greatest reliance is placed on the observed clinical outcome. The degree of change in 

ventricular size is not a reliable yardstick and there is seldom any detailed post-shunt 

evaluation or re-evaluation of CSF dynamics and related parameters such as 

intracranial pressure (ICP).  If the patient does not respond satisfactorily to CSF 

drainage with such systems, and the system is definitely functioning, it is likely to be 

assumed that either irreversible damage has occurred due to the hydrocephalus itself 

or related factors, or that the diagnosis was wrong.  

 

The five cases of this study are patients who were deemed to have normal pressure 

hydrocephalus, were shunted but failed to improve. This group of five patients were 

re-evaluated after failing to improve clinically. There had been no reduction in 

ventricular size. Patients therefore underwent periods of increased CSF drainage at 

low or even negative CSF pressures in order to reduce ventricular size. This reduction 

resulted in clinical improvement in four patients. Illustrated in this clinical study are 

the limitations of current knowledge on the interplay between CSF dynamics and the 

brain parenchyma. Further, it demonstrates the problems of definition and 

nomenclature. 
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2.2 Summary of Cases 

Over a three year period (January 1996 to January 1999), 7 patients with 

hydrocephalus were investigated who remained symptomatic and, in 5 instances, had 

marked neurological disturbance despite a demonstrably functioning internal CSF 

shunt (4 cases) or external ventricular drain (1 case). The 5 cases with neurological 

disturbance are those reported below. In the remaining 2 cases, not reported here, 

there was headache only and this was not clearly postural or activity related. Neither 

of these 2 patients noted any improvement with a trial of low pressure external 

ventricular drainage although, of course, the constraints of drainage made the 

evaluation of a symptom like headache difficult. Both these patients currently have 

ventriculoatrial shunts with programmable valves at the low setting with some 

improvement, but not resolution, of their headache. The details of the 5 patients with 

neurological disturbance are summarised in Table 3.1 and then set out in detail in the 

individual case reports. There were no complications specifically related to the use of 

valveless or low pressure shunts. There was 1 shunt revision (due to a blocked 

ventricular catheter) over an average follow-up period of 2 years in the 4 treated 

patients. 

 

2.3 Individual Case Reports 

Case 1. This 75 year old woman initially presented in 1995 with a para-sellar 

meningioma which was surgically removed. In the early post-operative period she 

developed communicating hydrocephalus probably secondary to operative and post-

operative haemorrhage. A ventriculoperitoneal shunt was inserted using a medium 

pressure Hakim valve which was changed after a short period to a high pressure valve 

due to continuing symptoms attributed to low pressure. Despite this she complained 
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of persistent headache and was intermittently quite obtunded. At this time, 

approximately 8 months after the initial surgery, she was complaining of persistent 

headache, worse on sitting or standing, and was dull and lethargic. In addition to right 

III, V and VIII nerve palsies from her original problem she had a wide-based ataxic 

gait. The investigative findings were rather conflicting. A CT scan showed persistent 

ventriculomegaly with pronounced periventricular oedema yet ICP monitoring, CSF 

infusion studies and radionuclide shunt studies were all entirely normal. On the basis 

of the latter, together with the postural component to her headaches, a very tentative 

diagnosis of low pressure syndrome was made and an anti-siphon device was added to 

her shunt. Following this procedure she was clearly worse clinically although, again, 

all the tests for shunt patency were normal. On MR scan the ventricles remained 

markedly dilated and there was striking peri-ventricular oedema (Figure 2.1a). An 

external ventricular drain was then inserted in addition to her functioning shunt and 

free drainage carried out after a 24 hour period of monitoring had shown normal to 

low pressures. Drainage was carried out first at 5cm above the external acoustic 

meatus (EAM), then at 0cm, then at –5cm for 24 hours at each level. At 5cm she 

remained obtunded with a GCS of 10 and very little CSF drainage whereas at the 

lower levels there was considerable increase in the volume of CSF drained and a 

sustained clinical improvement. In view of this the shunt was revised with removal of 

both the valve and the anti-siphon device. She was thus left with a valveless 

ventriculoperitoneal shunt. Post-operatively her improvement was dramatic and 

sustained. She became fully mobile and free of headache and, after a period of 

rehabilitation, returned to an independent existence. Follow-up CT and MR scans 

showed a marked reduction of ventricular size and complete resolution of her peri-

ventricular oedema. (Figure 2.1b) She remained well for a 3 year follow-up period.  



 26

 

Figure 2.1a.  MR scan showing generalised ventricular dilatation with 

marked peri-ventricular oedema despite functioning 

ventriculoperitoneal shunt and normal ICP. [Patient 1] 
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Case 2. This patient, a 53 year old man, had initially presented to a neurologist in 

1984 with a vague history of visual disturbance. CT scan revealed marked 

communicating hydrocephalus which was thought to be arrested so no treatment was 

initiated. He re-presented 12 years later with the recent onset of gait disturbance and 

was found to be markedly ataxic. An attempt at third ventriculostomy was 

unsuccessful and a right ventriculoperitoneal shunt was inserted using a medium-

pressure Pudenz valve. His symptoms progressed. A diagnosis of Parkinson’s disease 

was made and he was treated with Sinemet without success. He was then referred to 

the Department of Neurosurgery at Royal Prince Alfred Hospital. The salient clinical 

features were slowing of mentation and severe gait ataxia. CT scan showed marked 

ventricular dilatation. Although demonstrably functioning the shunt was revised by 

Figure 2.1.b.  CT scan of patient 1 twelve months after 

placement of a valveless VP shunt. 
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replacing the medium-pressure Pudenz valve with a Sophy valve at the lowest setting 

(40 mmH2O). There was an immediate and sustained improvement in mentation, 

return of gait to normal and resolution of all apparent Parkinsonian symptoms and 

signs. A follow-up CT scan, done 5 weeks after shunt revision, showed a slight 

decrease in lateral ventricular size with a more pronounced decrease in the size of the 

fourth ventricle. As he became increasingly active he developed apparent low 

pressure symptoms with postural headache and neck pain. Six months after the 

revision, the valve setting was changed to medium with amelioration of these 

symptoms. There was no return of his earlier symptoms over a 2 year follow-up 

period. 

 

Case 3. This girl initially presented at the age of 2 months with a short history of 

apparent headache and lethargy. On examination she was relatively inactive and had 

bilateral VI nerve palsies. A CT scan showed moderately severe ventricular dilatation 

and a posterior fossa cyst not communicating with the ventricular system. A shunt 

was inserted with catheters in the right lateral ventricle and the posterior fossa cyst 

connected via a Y-connector to a single distal tube incorporating a low pressure 

paediatric Hakim valve. Despite initial problems with shunt infection, necessitating 

removal of the original shunt and replacement with an identical system on the left 

side, she progressed well until March 1996 when, aged 2 years, she again presented, 

this time with intermittent obtundation, abnormal head posturing and vomiting. She 

was found to have a blocked infected shunt system with marked ventricular 

enlargement on CT scan (Figure 2.2a). The shunt system was removed, external 

ventricular drainage instituted and a course of systemic antibiotics given. After 21 

days of such treatment, the infection having cleared, the shunt system was reinserted 
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now using a separate left ventriculoperitoneal shunt (medium pressure paediatric 

Hakim valve) and a posterior fossa cyst to peritoneal shunt (low pressure paediatric 

Hakim valve). She did not improve, remaining quite obtunded with abnormal 

posturing. Both shunts were examined operatively and found to be patent but there 

was a considerable amount of fluid in the peritoneal cavity. On the assumption that 

there was poor peritoneal absorption a right atrial shunt was inserted with a low 

pressure paediatric Hakim valve to the right lateral ventricular and posterior fossa cyst 

catheters. At this stage she had bilateral lateral ventricular shunts, one atrial and one 

peritoneal, both with low-pressure valves. Still there was no improvement and the 

ventricles remained dilated although smaller than before (Figure 2.2b). There were 

several recordings of low CSF pressure on shunt taps. A period of external ventricular 

drainage was then instituted at varying levels down to negative values. With the latter 

she improved markedly. ICP monitoring at this time was unremarkable with levels 

around 0 to 5 mmHg and no abnormal waves. (Figure 2.3) The left 

ventriculoperitoneal shunt was revised with removal of the valve. Testing during 

operation showed the shunt to be patent. She now had the pre-existing, presumably 

patent, right atrial shunt with a low-pressure valve and the revised left 

ventriculoperitoneal shunt, now valveless. She improved dramatically after removal 

of the valve. Apart from one episode of ventricular catheter obstruction necessitating 

revision in November 1996 she remained well until 1999. CT and MR scans showed 

marked reduction in ventricular size (Figure 2.2c). 
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B 

Figure 2.2a.  CT scan at time of shunt obstruction in patient  

 

Figure 2.2b.  CT scan after shunt revisions with insertion of 

bilateral ventricular shunts using low-pressure valves. 

A 
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Figure 2.2c.  CT scan after further shunt revision and removal of valves. 

Figure 2.3.    Typical section of continuous ICP tracing in 

patient 3 at time of CT scan shown in Fig 2.2b. 
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Case 4. This 61 year old Noumean patient presented with a 3 month history of 

deteriorating consciousness and a progressive left hemiparesis. A diagnosis of 

cryptococcal meningitis was made and treatment with Fluconazole and steroids 

initiated. There was some initial improvement but he remained obtunded. CT scans 

showed increasing ventricular enlargement and he was transferred to Sydney for 

further treatment. On presentation he was obtunded and had a left hemiparesis. CT 

scan showed generalised ventricular enlargement particularly involving the fourth 

ventricle with evidence also of basal meningitis. A frontal ventricular catheter with 

Rickham reservoir was inserted for CSF sampling and ICP monitoring. His problems 

were further complicated by the development of Klebsiella meningitis and a persistent 

chest infection. The Rickham reservoir was removed and replaced with an external 

ventricular drain. ICP was high initially without free drainage but as the meningitis 

cleared with appropriate antibiotic treatment it fell to levels around 5 mmHg without 

drainage. Nevertheless, the patient was clinically unchanged. A period of free CSF 

drainage at 5 cm above the EAM was instituted without improvement. Only small 

volumes of CSF were drained (50 mls / 24 hours). His ICP remained low during 

intermittent periods of monitoring. CT scans continued to show marked ventricular 

enlargement with some peri-ventricular oedema. A period of external ventricular 

drainage at –5cm was then instituted with marked clinical improvement. Following 

this a right ventriculoperitoneal shunt was inserted without a valve. His clinical 

improvement was sustained. One month later, while undergoing rehabilitation, he 

again deteriorated and was found to have an isolated left lateral ventricle. A separate 

left ventriculoperitoneal shunt, also valveless, was inserted with clinical and 

radiological improvement. Unfortunately, he subsequently developed a recurrence of 

his chest infection and succumbed. 
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Case 5. A 70 year old man was referred for continuing management of 

hydrocephalus. Hydrocephalus was first diagnosed in Lebanon in 1969 and a shunt 

was inserted in 1970 with one revision in 1972. There were no details as to the cause 

of the hydrocephalus. In 1994, now living in Australia, he presented to another 

institution with evidence of brain stem compression. CT and MR scans showed a type 

II Chiari malformation and persistent ventriculomegaly. He had a posterior fossa 

decompression and revision of his ventriculoperitoneal shunt using a medium pressure 

valve. Over the next 18 months he had 2 apparent cerebrovascular episodes resulting 

in a mild left sided weakness. He presented to the Royal Prince Alfred Hospital in 

December 1995 with worsening ataxia and bulbar signs. There was moderate 

ventricular dilatation on CT scan. A right frontal ventricular catheter with Rickham 

reservoir was inserted. CSF infusion studies and ICP monitoring were carried out on 

two separate occasions. On both occasions the resistance was low and the ICP normal 

without waves over a 24 hour period of recording. A period of external ventricular 

drainage was initiated on the basis of a possible low pressure state but after 24 hours 

drainage at 0cm and then a further 24 hours at –5cm there was no improvement. No 

further treatment was undertaken.   

 

2.4 Discussion 

The term ‘normal pressure hydrocephalus’ has somewhat clouded the diagnosis and 

management of hydrocephalus by implying two distinct entities, high pressure and 

normal pressure hydrocephalus. The physical properties of the brain parenchyma are 

almost ignored. Studies utilising continuous ICP monitoring have shown that all 

forms of hydrocephalus can be associated with widely differing pressure patterns 
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(Hayden et al., 1970; DiRocco et al., 1975) and that this applies to what would be 

categorised clinically as normal pressure hydrocephalus (Symon et al., 1972). 

Nonetheless, it is clear that hydrocephalus, as the basis of progressive clinical 

disturbance, can be associated with essentially normal ICP.  

 

More recently Pang and Altschuler (1994) have attempted to identify a further 

subgroup which they termed ‘low pressure hydrocephalus’ on the basis of 12 cases, 

previously shunted, who were symptomatic despite functioning shunts and who 

required very low pressure CSF drainage for amelioration. These authors also joined 

the ongoing debate regarding the mechanism of sustained or increasing ventricular 

enlargement despite the absence of increased ICP, initiated by Hakim and others 

(Geschwind, 1968; Hakim et al., 1976). Experimental studies also show sustained 

hydrocephalus despite normal CSF pressures (Hochwald et al., 1972). 

 

The determinants of ventricular dilatation and the causative mechanisms relating 

pressure levels to physical changes in the brain remain poorly understood. Hakim, in 

his original proposal invoking Pascal’s Law applied to the ventricles as containers, 

postulated an initial period of high ICP necessary to establish ventricular dilatation 

followed by a fall in pressure as the volume of the ventricles increased (Hakim et al., 

1976). Pang and Altschuler, and indeed others before them, have taken issue with this 

concept which is, at the very least, an over-simplification. They have postulated 

changes in the viscoelastic properties of the brain especially consequent upon loss of 

brain extracellular fluid as important in maintaining ventricular dilatation in low 

pressure states (Fried and Shapiro, 1986; Pang and Altschuler, 1994). In support of 

this is the finding that the reduction in ventricular size after shunt surgery in patients 
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with NPH is correlated with elastance (Tans and Poorvliet, 1989). More recently, 

increased elastance has been shown to predict a positive clinical outcome and a 

reduction in ventricular size in patients with aqueduct stenosis undergoing endoscopic 

third ventriculostomy (Tisell et al., 2002).  

 

 The importance of the first case described above is that the marked degree of 

periventricular oedema with demonstrated low pressure and a functioning shunt and 

which resolved with very low pressure CSF drainage would seem to indicate 

continued transependymal passage of CSF with attendant increase in brain 

extracellular fluid despite the low pressure. 

 

2.5 Conclusions 

What can be concluded from this series of patients is that in hydrocephalic states, CSF 

dynamics are only one aspect that needs to be considered. The properties of the 

parenchyma are also important. The apparent paradox of normal or low CSF pressure 

in the presence of ventricular dilation can only be solved if there is some alteration in 

the viscoelastic properties of the parenchyma. Thus ventricular dilation can occur 

without an increase in CSF pressure. This is different from cerebral atrophy where 

there is loss of cerebral tissue. In addition, the parenchymal changes, at least in some 

cases, appear to have a dynamic component and may be altered by prolonged CSF 

drainage.
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Chapter Three 

Clinical Features and CSF Infusion Study in Patients with NPH 

 

3.1 Introduction 

A useful tool for characterizing CSF dynamics and is the CSF infusion study (Boon et 

al., 1997, 2000; Gjerris and Bech-Azeddine, 2001). Computerized CSF infusion 

studies (Czosnyka et al., 1996) have been available to patients attending the CSF 

circulation disorders clinic at Addenbrooke’s Hospital, Cambridge during the past six 

years.  Patients referred to the clinic include those cases typical for NPH as well as a 

significant number who are atypical of NPH. Infusion studies were performed in both 

typical and atypical cases as this is what clinicians are often faced with.  

 

Apart from providing information regarding the state of CSF dynamics, CSF infusion 

studies also provide some information regarding the properties of the brain 

parenchyma. However, this aspect of CSF infusion studies has received very little 

attention probably because it has not been a predictor of shunt response. A 

retrospective analysis of the patients’ clinical details and infusion study results was 

undertaken in order to examine the relationship between clinical features, CSF 

dynamics and the properties of the brain parenchyma. 

 

3.2 Methods 

3.2.1 Patients and Clinical Assessment 

Between 1996 and 2000, 365 computerized CSF infusion studies were performed in 

256 patients for a variety of CSF disturbances including hydrocephalus and 
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pseudotumor cerebri. The clinical data of these patients was reviewed through a 

retrospective analysis of the medical records and consultation reports. Where pre-

operative clinical information was either insufficient or not available, the patients 

were excluded from the study. Here the results of CSF infusion studies performed for 

suspected cases of NPH referred by neurologists or geriatricians are reported. The 

criteria for inclusion were a prospective clinical and radiological diagnosis of NPH 

consisting of gait disturbance, with or without cognitive changes or urinary 

incontinence, dilated ventricles on CT and CSF opening pressure less than 20 mmHg. 

Objective radiological data was not able to be consistently obtained retrospectively 

and is thus not reported here. 

 

There were 133 studies performed in 99 patients with idiopathic NPH and 34 with 

NPH secondary to some cause. These cases included NPH secondary to subarachnoid 

haemorrhage (11 cases), long-standing congenital aqueduct stenosis (9 cases), head 

injury (5 cases), meningitis (4 cases), intracerebral haemorrhage (2 cases), intracranial 

tumour (2 cases), and basilar artery ectasia (1 case). 

 

For each patient, information regarding the presence or absence of an aetiological 

factor, the clinical features and the presence or absence of vascular hypertension 

and/or previous cerebrovascular event was obtained. This information was obtained 

on attending the CSF clinic for their initial assessment. In order to provide a simple 

method by which to grade the severity of symptoms, an NPH score modified from 

Larsson (1991) was utilized. This assessed gait, living conditions and urinary 

incontinence with a score out of 10. It also provided a separate gait score out of 5. 

(Table 3.1) 
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0 – normal 

1- insecure 

2 – insecure (cane) 

3 – bimanual support 

4 – aided 

Gait 

5 – wheelchair 

0 – Independent 

1 – at home with assistance

2 – retirement home 

3 – nursing home 

Living condition 

4 – hospital 

0 – nil 
Urinary symptoms 

1 – present 

 

Table 3.1: Basis of clinical NPH score 

 

This resulted in a NPH score out of 10 points as well as a gait score. A separate 

urinary incontinence score was obtained (0 – nil; 1 – frequency; 2 – occasional 

incontinence and 3 - daily incontinence). In addition, as a measure of overall function, 

a modified Stein-Langfitt score was recorded (Table 3.2). 
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Modified Stein-Langfitt Score 

 0 – no neurological deficit and able to work 

1 – minimal deficit and able to function independently at home 

2 – some supervision required at home 

3 – custodial care required despite considerable independent function 

4 – no capacity for independent function 

 

Table 3.2: Modified Stein-Langfitt Score 

 

Of the 133 patients, there was clinical data available for 46 patients who underwent 

CSF diversion; 36 idiopathic and 10 secondary NPH patients. Patients were shunted if 

Rcsf was raised (>13 mmHg/ml/min) and the clinical picture was consistent with NPH. 

Some patients with lower Rcsf were also shunted if the clinical picture was convincing, 

that is, prominent gait disorder and judged fit to undergo surgery. The 46 shunted 

patients reported represent a subset of the shunted patients, that is those with clinical 

notes available and whose treatment was completed at this institution. The majority of 

patients were treated with programmable Codman valves initially set at 140 mmH2O 

or Medtronic Strata valves. After post-operative CT scans excluded the presence of 

asymptomatic subdural collections, the opening pressure of the valve was decreased. 

Outcome was assessed on the basis of a change as well as the amount of change in 

each of the clinical scores. The mean follow-up time for shunted patients was 13.5 

months (range 1-106 months). Shunt function of patients who did not improve was 

checked by a computerised CSF infusion study.  
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3.2.2 Patient groups 

On the basis of clinical features, patients were subdivided into different groups 

(Figure 3.1). First, idiopathic (n=99) and secondary NPH (n=34) patients were 

compared. Next, patients with idiopathic NPH were classified into two groups – 

clinically ‘typical’ and ‘atypical’ idiopathic NPH. ‘Typical’ idiopathic NPH patients 

(n=72) were those who demonstrated no focal neurological signs and reported gait 

disorder as the first manifestation of their NPH. Atypical patients (n=26) had either 

cognitive disturbance as their first symptom of NPH or a focal neurological deficit, 

for example mild hemiparesis. Patients with ‘typical’ idiopathic NPH symptoms were 

further separated into patients with a history of hypertension or cerebrovascular event 

(n=36) and those without (n=28). 

 

 

NPH Analysis

Vascular
Typical Idiopathic NPH

Non Vascular
Typical Idiopathic NPH

Typical
Idiopathic NPH

Atypical
Idiopathic NPH

Idiopathic
NPH

Secondary
NPH

NPH

Figure 3.1
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3.2.3 Computerized Infusion Study Technique  

All patients underwent computerized CSF infusion studies as described by Czosnyka. 

(1990 &1996) The computerised CSF infusion study was designed to examine the 

state of a patient’s CSF circulation and its ability to compensate. It is performed via a 

pre-implanted ventricular access device or the lumbar CSF space. In either case two 

needles are inserted (22g spinal needles for lumbar tests; 25g butterfly needles for 

ventricular studies). One needle is connected to a pressure transducer via a stiff saline-

filled tube and the other to an infusion pump mounted on a purpose-built trolley 

containing a pressure amplifier (Simonsen & Will, Sidcup, U.K.) and an IBM-

compatible Personal Computer running software written in-house (Czosnyka et al., 

1996) (Figure 3.2). Occasionally a single needle is used if access is difficult with a 

three-way tap to periodically switch between CSF infusion and pressure monitoring. 

The routes used for patients in this report were lumbar (2 needles) in 65 patients, 

Ommaya reservoir (2 needles) in 61, lumbar puncture (single needle) in 7 and an 

external ventricular drain in one patients.  
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After 10 minutes of baseline measurement, normal saline was infused at a constant 

rate (0.5 ml/min to 1 ml/min) until a steady state ICP plateau was achieved. If the ICP 

reached 45 mmHg, the infusion was stopped. Following cessation of the infusion, ICP 

was recorded until it decreased to steady baseline levels. All compensatory parameters 

were calculated using computer-supported methods based on physiological models of 

CSF circulation (Ekstedt, 1978; Marmarou et al., 1978; Avezaat and Eijndhoven, 

1984). 

 

Set-up of CSF infusion Study Equipment

Figure 3.2: Computerised CSF infusion Study Setup.

 

Ommaya Reservoir 
Transducer / Monitor 

Infusion device 

ICP  AMP 
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During the test both mean ICP and its pulse amplitude increase in time from values 

ICPbeg and AMPbeg to ICPend and AMPend respectively (Figure 3.3). Baseline ICP (ICP 

beg) and the resistance to CSF outflow Rcsf characterise static conditions of CSF 

circulation, whilst the cerebrospinal elasticity coefficient (E1) and pulse amplitude of 

ICP waveform (AMP) express dynamic components of CSF pressure volume 

compensation.  

 

The Rcsf represents the CSF pressure that must be applied to the CSF system to 

produce an absorption rate of 1ml of CSF per minute at equilibrium. Rcsf is therefore 

calculated by the dividing the difference in ICPend and ICPbeg by the infusion rate. It 

assumes a constant CSF production rate and constant superior sagittal sinus venous 

pressure. A particular advantage of the computerized CSF infusion test is that if a 

steady state is not obtained or the infusion rate is changed during the test, the program 

can compute Rcsf based on non-linear ICP regression analysis. 

 

In addition to the Rcsf, information regarding the compliance of the neuroaxis may be 

obtained from the CSF infusion study. The compliance of a distensible elastic 

chamber is given by the ratio of the change in volume to the change in pressure. Due 

to the presence of the skull and the different components of the brain (including 

blood) the pressure-volume relationship for the brain is non-linear. The curve is 

hyperbolic with compliance decreasing as pressure increases. A linear approximation 

of the P-V curve is the volume – log pressure curve. The slope of this curve is the 

pressure volume index (PVI). Thus the PVI may be defined as the amount of CSF that 

needs to be added to the ventricular compartment to raise the pressure by a factor of 

10 (Marmarou et al., 1978). The P-V curve represents all the point of equilibrium 
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where there is no CSF absorption. In order to measure the PVI the rate of volume 

addition needs to be much greater than the rate of CSF absorption. If the PVI is 

considered to be a fundamental property of the CSF system then a single rapid bolus 

injection may be used.  

PVI = ∆V/Log10Pi/P0 

However it may also be theoretically calculated using the computerised infusion study 

method from the Elastance co-efficient (El) (Czosnyka et al., 1996). The relationship 

between El and PVI is given by: 

PVI = 1/(0.43 x El) 

E1 describes the compliance of the CSF compartment according to the formula: 

Compliance of CSF space= Ci = 1/ {E1*(ICP-p0)} where p0 is the unknown reference 

pressure level, representing hydrostatic difference between the site of ICP 

measurement and pressure at different points of cerebrospinal axis (Raabe et al., 

1999). Cerebrospinal compliance is inversely proportional to ICP, therefore 

comparison between different subjects can be made only at the same level of the 

difference: ICP- p0. The elastance coefficient E1 is independent of ICP, thus this 

coefficient is a much more convenient parameter when comparing individual patients. 

A low value of E1 is specific for a compliant system, whilst a high value indicates 

decreased pressure-volume compensatory reserve.  

  

Time-constant Tau is calculated as a product of brain compliance (C) and Rcsf. It 

describes the time needed by the volume of CSF compartment during the test to reach 

new stable value.  
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3.2.4 Statistical Comparisons 

A comparison of parameters measured by CSF infusion study and clinical features of 

patients on presentation was made using the Mann Whitney U test. The clinical 

parameters for comparison included the gait score, urinary incontinence score, NPH 

scale and modified Stein and Langfitt scores. Correlation between these parameters 

was performed using the Spearman Rank Order Correlation test. This series of 

comparisons was utilized for each group of patients analyzed, that is, the group as a 

Figure 3.3: CSF infusion study. The upper graph contains shows a 
time-trend of pulse amplitude of ICP and the lower graphs show the 
mean values of ICP. X-axis: time in minutes counted from the 
beginning of the recording. A constant rate infusion (1.5 ml/min) was 
started 8 minutes after the start of the recording and finished 15 
minutes later. AMPbeg, ICPbeg, AMPend and ICPend demonstrate 
baseline and end-equilibrium values of the recorded parameters. 
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whole, idiopathic and secondary NPH, ‘typical’ and atypical idiopathic NPH, and 

hypertensive and non-hypertensive ‘typical’ idiopathic NPH groups. 

 

3.2.5 Ethical Considerations 

The data in this paper was collected for purely clinical purposes so ethical approval 

was not sought. All data had been anonymised to protect patient confidentiality. 

 

3.3 Results 

3.3.1 All Normal Pressure Hydrocephalus Patients 

Pre-Treatment 

 
The mean Rcsf for the 133 patients was 15.3 ± 6.0 mmHg/ml/min with an opening 

pressure of 9.6 ± 5.0 mmHg. The distribution of the Rcsf among the patients studied is 

shown in Figure 3.4. It demonstrates a large number of patients in the 10-15 

mmHg/ml/min range. In comparing the clinical and CSF compensatory parameters of 

all NPH patients, Rcsf was significantly correlated with all scores (Figure 3.5 a-d). 

However, although the correlation was significant (p<0.05), it was weak (R = 0.174-

0.247). 

 

Post-Treatment 

Of the 46 patients who were shunted, 65% demonstrated improvement in the NPH 

score, 50% in modified Stein-Langfitt score and 64% in gait score. Of the 29 shunted 

patients with pre-operative urinary incontinence, 58% experienced improvement. The 

mean Rcsf of the shunted patients overall was 17.4 ± 6.0 mmHg/ml/min with only 7 
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patients with an Rcsf < 13 mmHg/ml/min reflecting the use of Rcsf to decide whether to 

shunt. Hence, it is not surprising that there was no significant difference between 

shunt responders and non-responders in terms of their CSF infusion study results. 

Likewise, there was no correlation between clinical improvement per se, or the degree 

of clinical improvement, compared to the CSF infusion study results.  

 

Several patients experienced complications related to CSF diversion with a shunt. 

Eight shunt revisions were performed in 7 patients for a combination of blockage and 

infection. Three patients developed small chronic subdural haematomas and one 

developed an acute subdural haematoma requiring treatment. One patient developed a 

left hemiparesis in the perioperative period. There was one peri-operative death due to 

an acute myocardial infarction on day four post-operatively. Despite these 

complications only 5 of the 46 patients were noted to be worse after treatment with 

the majority of shunt non-responders remaining unchanged. 
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Figure 3.4: Histogram of Rcsf of all patients
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Regression
95% confid.

 SLS0 vs. RCSFS

 RCSFS = 12.701 + 1.0577 * SLS0

Pearson's Correlation: r = .19388
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Figure 3.5a: NPH v. Rcsf: (R =0.193; p<0.05)

Figure3.5b: Modified Stein Langfitt Score v. Rcsf (R=0.187, p<0.05) 
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Regression
95% confid.

 UI vs. RCSFS

 RCSFS = 13.581 + 1.1704 * UI

Pearson's Correlation: r = .24406
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Figure 3.5d: Urinary Incontinence Score v. Rcsf (R=0.247, 
p<0.005)

Figure 3.5c Gait Score v. Rcsf (R=0.174, p=0.05)
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3.3.2 Comparison of Idiopathic to Secondary NPH Patients 

Pre-treatment 

There were significant differences in measured CSF parameters between patients with 

idiopathic (n=99) and secondary NPH (n=34). Although baseline CSF pressures were 

almost identical, Rcsf, and associated parameters such as ICPend and AMPend, were 

slightly higher in the patients with idiopathic NPH (Table 3.3). When the idiopathic or 

secondary NPH patients were analyzed as separate groups, the numbers became small 

and the correlation between Rcsf and clinical parameters was lost with the exception of 

that with the urinary incontinence score in patients with secondary NPH (p<0.05; 

R=0.218).  

 

 

Parameter 

 

Idiopathic 

 

Secondary 

 

p 

ICPbeg        mmHg 9.8 9.0 0.623 

ICPend 31.4 27.6 0.026 

AMPbeg 2.2 1.8 0.120 

AMPend 8.8 6.0 0.001 

PVI 14.4 15.9 0.415 

El 0.23 0.22 0.848 

Rcsf        mmHg/ml/min 15.8 13.9 0.049 

 
 
Table 3.3 

 

 

Post-treatment 

Of the 37 patients with idiopathic NPH who were shunted, 24 improved while of the 9 

patients with secondary NPH, 5 demonstrated clinical improvement. There were no 
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significant differences between CSF infusion study parameters for either the 

idiopathic or secondary groups with one exception. In the idiopathic group, AMPbeg 

was significantly (p<0.05) higher in patients whose gait improved after receiving a 

shunt (2.77 mmHg) compared to those in whom it did not (1.89 mmHg). Furthermore, 

the AMPbeg was positively correlated with gait improvement after placement of a 

shunt (p<0.05; R=0.367). There were no other such correlations. 

 

3.3.3 Comparison of ‘Typical’ and ‘Atypical’ Idiopathic NPH Patients 

Pre-treatment 

Patients with clinically ‘typical’ idiopathic NPH had a higher mean Rcsf (p<0.05; 16.5 

vs. 13.7 mmHg/ml/min) compared to atypical patients. Regarding correlations 

between NPH symptoms and CSF infusion study results for that group, the only 

correlations (p<0.05) were that between the NPH score (R=0.269), the modified 

Stein-Langfitt score (R=0.315) and the urinary incontinence score (R=0.299) with tau. 

 

Post-treatment 

Twenty of 30 patients with ‘typical’ idiopathic NPH responded to a CSF shunt. There 

was no significant correlation between Rcsf and clinical outcome. However, 

parameters closely related to Rcsf did demonstrate significant correlations. There was a 

correlation (p<0.05) between improvement in the modified Stein-Langfitt score and 

ICPend (R=0.425) and AMPend (R=0.379). The degree of clinical improvement in the 

NPH score was also positively correlated with the ICPend (p<0.05; R=0.396). 
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Only 4 of the 26 patients with atypical NPH were shunted therefore it is not possible 

to make any statistical comparisons between the two groups and their relation to 

outcome but 2 of the 4 patients did demonstrate clinical improvement. 

3.3.4 Comparison of Hypertensive and Non-Hypertensive ‘Typical’ Idiopathic NPH 

Patients 

Pre-treatment 

There was no statistical significance between the groups for either the CSF infusion 

study results or the degree of pre-operative disability. However, for patients with 

‘typical’ idiopathic NPH without hypertension or a previous cerebrovascular event 

there was a significant correlation between the modified Stein-Langfitt score and Rcsf 

(p<0.05; R = 0.444) as well as between the NPH score and Rcsf (p<0.05; R = 0.407). 

The modified Stein-Langfitt score was also positively correlated with the ICPend value 

(p<0.05; R=-0.377). No such correlations were observed for the patients with 

cerebrovascular disease. 

 

Post-treatment 

There was no significant difference in outcome between the vasculopathic ‘typical’ 

idiopathic NPH group (11 of 14 improved) compared to the non-vasculopathic group 

(8 of 17 improved). Neither group demonstrated a correlation between improvement 

and Rcsf. 

 

3.4 Discussion 

The majority of patients reported in this study represent a group of patients referred to 

the CSF circulation disorder clinic for further assessment. These patients referred to 
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the centre were a very mixed group and symptoms were not always typical of NPH. 

The threshold for referring patients for CSF infusion study was relatively low. The 

preferred route of infusion was the Ommaya reservoir as the lumbar route may yield 

erroneously normal results. This may occur either due to a leak around the lumbar 

spinal needle or an occult CSF pathway obstruction. There was a wide range of Rcsf 

with a mean of 15.3 ± 6.0 mmHg/ml/min. A large number fell into the range between 

10 and 15 mmHg/ml/min; a range where characterization is difficult. In this study, 46 

of the 133 patients had a value for Rcsf of < 13 mmHg/ml/min. 

 

In considering the correlation between the Rcsf and the four clinical parameters, 

inspection of the scatter diagrams (Figure 3.5 a-d) demonstrates the difficulties in 

predicting whether patients will have a high Rcsf or not, based on the severity of their 

clinical scores. For example, even with regard to gait disorder some patients with a 

low gait score had a very high Rcsf while in a number of others the reverse was true. It 

is this result that demonstrates the value of the CSF infusion study and, in particular, 

the Rcsf value in management. The loss of correlation between the clinical and CSF 

infusion study parameters when idiopathic and secondary NPH patients were analyzed 

separately probably reflects the weakness of the correlation and the high number of 

patients needed for statistical significance – a further demonstration of the difficulty 

of predicting CSF dynamics from clinical features alone. 

 

There were distinct differences between the CSF infusion study results in patients 

with idiopathic compared to secondary NPH. Rcsf and associated parameters, ICPend and 

AMPend, were all significantly higher in those with idiopathic NPH. To some extent, the 

results of CSF infusion in such patients reflect the underlying pathology of their 
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conditions. Patients with congenital aqueduct stenosis may have some degree of CSF 

dynamic compensation. In addition, patients with idiopathic NPH tend to be older 

compared to those with secondary NPH due to the epidemiological characteristics of 

their underlying aetiology. Rcsf is known to increase with age (Albeck et al., 1998; 

Czosnyka et al., 2001). 

 

As mentioned previously the idiopathic NPH cohort was very heterogeneous, with 

many patients presenting with atypical features such as prominence of cognitive over 

gait disturbances; hence the decision to categorise the patients as ‘typical’ or atypical 

NPH patients. The Rcsf and ICPend were both significantly higher in the ‘typical’ 

compared to atypical NPH group although there was no correlation between the Rcsf 

and clinical parameters for either of the two groups. As only 4 of the 26 patients with 

atypical idiopathic NPH were shunted it was not possible to make a statistical 

comparison of the results of CSF shunting between the ‘typical’ and atypical groups. 

However, as the mean Rcsf for atypical patients was only marginally above the level 

considered to be predictive of a successful response to CSF shunting, the results are 

consistent with other investigators who have emphasized the importance of gait 

disorder over cognitive disturbances in predicting a successful outcome.  

 

The degree of clinical symptoms in patients with ‘typical’ idiopathic NPH did not 

correlate with the Rcsf or other parameters with the exception of tau. Tau was 

significantly correlated with NPH, Stein-Langfitt and urinary incontinence scores. 

Tau reflects a combination of Rcsf and compliance and thus indicates that, in patients 

with ‘typical’ NPH, the time taken during CSF infusion to reach equilibrium (ICPend) 

in patients with ‘typical’ NPH is longer in patients with more severe symptoms. Given 
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that there was no correlation between Rcsf or El with clinical parameters, a possible 

interpretation of this data is that patients with ‘typical’ idiopathic NPH include a 

heterogeneous group of patients with different combinations of increased Rcsf and 

compliance – that is NPH reflects a combination of CSF circulation disturbance and a 

parenchymal pathology. 

 

Although closely related to AMPend and ICPend, Rcsf was not correlated with 

parameters of clinical improvement after CSF shunting. These results may reflect bias 

in the selection of patients for CSF shunting (Rcsf >13 mmHg/ml/min). It may also 

reflect the association between tau and clinical parameters in these patients. 

Compliance is probably increased by factors such as vascular disease and 

degenerative cerebral processes (Earnest et al., 1974). If the clinical expression of the 

illness is positively correlated with tau but not Rcsf, it may be that symptoms in some 

patients, even with ‘typical’ NPH, are related to other processes apart from a CSF 

circulation disorder. These processes may allow ventricular dilation in the presence of 

a normal CSF pressure. If this is so, response to CSF diversion in such cases will 

depend both on processes that increase compliance and those that increase Rcsf. For 

instance, a patient with clinically severe NPH may have a very raised Rcsf and a 

slightly raised compliance whereas another may have high compliance and a 

moderately raised Rcsf. If an increase in compliance is due to some degenerative 

process, the former patient is more likely to respond to CSF shunting, which lowers 

Rcsf, than is the latter patient in whom the underlying problem is more closely related 

to the parenchyma than to CSF circulation (Figure 3.6). 
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Factors that may be involved in increasing the compliance of the brain (thus 

decreasing the likelihood of a successful outcome after CSF shunting) are those of 

hypertension and cerebrovascular disease (Boon et al., 1999). Both are known risk 

factors for the development of NPH (Casmiro et al., 1989). Therefore, patients with 

‘typical’ idiopathic NPH were divided on the basis of presence or absence of a history 

of hypertension or a cerebrovascular event. There was no difference either in the 

degree of clinical severity or in CSF infusion study parameters. However, the Rcsf was 

correlated with both the NPH and modified Stein-Langfitt scores while there was no 

Relationship between CSF circulation disorders, 
parenchymal disease and response to CSF shunting 

Figure 3.6: Schematic representing the combination of CSF circulation disorder 
and other co-morbid processes in patients with NPH. Improvement after CSF 
shunting will occur if processes affecting the parenchyma have not reached a 
certain point in development. In section I., if Rcsf is sufficiently low, a shunt 
will not improve CSF circulation. In areas II., and III., Rcsf is high and 
improvement is more likely after shunting but will depend on the extent of co-
morbidity. 
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such correlation in the group with hypertension or previous cerebrovascular event. 

This is consistent with the view outlined above, that is, patients with ‘typical’ 

idiopathic NPH, consist of patients whose condition is prominently a reflection of a 

circulation disorder and others in whom the condition is associated with another factor 

which affects the parenchyma. 

 

In terms of differences in response to CSF shunting between these two groups, over 

half of both groups responded positively although there was no statistical difference. 

However, the number of patients under consideration was relatively small and will 

require further assessment 

 

3.5 Conclusions 

The experience from this institution demonstrates that there is an important role for 

CSF infusion studies in the management of patients with suspected NPH. It must be 

stressed that the role of this study was not to validate the use of Rcsf in the 

management of patients with NPH as this has been addressed previously. Indeed, as 

noted, it is not possible to determine the CSF dynamics on the basis of clinical 

examination alone although patients with a typical presentation are more likely to 

have a raised Rcsf. CSF infusion studies are not able to assure the clinician that a 

patient will respond to CSF shunting. They do however allow confirmation of raised 

Rcsf in patients with typical symptoms as well as identification of those patients with 

raised Rcsf who present with atypical features. In short, if Rcsf is normal then a shunt is 

less likely to assist in the management of the patient. 
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Our results also demonstrate that in some patients with NPH, including those with a 

raised Rcsf, it is likely that there may be a separate process affecting the parenchyma 

which plays a role in some patients. Improvement in the ability to determine and 

detect an associated process is likely to be key in developing additional parameters 

that can be applied at the bedside in order to increase the likelihood of a successful 

outcome. 

. 
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Chapter Four 

Normal Pressure Hydrocephalus and Cerebral Blood Flow:  

A PET study of baseline values. 

 

4.1 Introduction 

The previous two chapters of this thesis have demonstrated that alterations in the 

properties of the brain parenchyma are associated with NPH. A key component of the 

parenchyma is the cerebral vasculature. By analogy with experimental hydrocephalus, 

it has been proposed that cerebral blood flow (CBF) in general and periventricular 

white matter CBF in particular may be reduced in NPH; changes which are reversed 

in patients who respond to CSF shunting. The cerebral vasculature has therefore been 

studied by several investigators and these studies, which include some 631 cases, have 

been reviewed (Appendix A) (Owler and Pickard, 2001). Although a variety of 

techniques have been utilized including 131Xenon clearance, stable xenon CT, SPECT 

and PET, very little consensus exists, possibly because the technology had insufficient 

resolution and the patients were poorly characterised clinically. In order to overcome 

these limitations, global and regional CBF was measured in NPH patients using O15-

labelled water PET with anatomical region-of-interest (ROI) definition on co-

registered MR.  

 

4.2 Methods 

4.2.1 Patients 

Seventeen patients (age 69.6 ± 9.8 years; 8 males and 9 females) with NPH who were 

referred to the CSF Clinic at Addenbrooke’s Hospital are reported. Twelve patients 
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presented with idiopathic NPH and 5 with NPH secondary to meningitis following a 

head injury, intracerebral haemorrhage, meningitis, surgery for removal of 

meningioma and basilar artery ectasia. In addition one of the idiopathic NPH patients 

also had Steel-Richardson syndrome.  

 

The criteria for inclusion were gait disturbance, with or without cognitive changes or 

urinary incontinence, dilated ventricles on CT and normal CSF pressure measured via 

an Ommaya reservoir. All patients were assessed clinically using an NPH scale 

modified from Larsson et al., (1991) a gait score and a modified Stein-Langfitt score 

calculated in the same manner as in chapter 3. 

 

The degree of periventricular white matter hyperintensities were determined from T2-

weighted MR images and a score from 0-4 points was assigned to each patient (0 – no 

white matter hyperintensities; 1 – minimal white matter intensities; 2- capping of 

frontal and/or occipital horns of the lateral ventricles; 3 – almost continuous white 

matter hyperintensities from frontal to occipital horns and 4 – continuous white matter 

hyperintensities from frontal to occipital horns). 

 

Patients with a provisional diagnosis of NPH who were suitable for further treatment 

underwent insertion of a frontal Ommaya reservoir. After a post-operative period of at 

least two days, a computerised CSF infusion study (Czosnyka et al., 1996) was 

performed in order to characterise the CSF dynamics including the resistance to CSF 

absorption (Rcsf). Patients with an increased Rcsf who were medically suitable 

underwent CSF ventriculoperitoneal CSF shunting incorporating either a Codman 

Medos programmable valve or Medtronic Strata valve. At the time of analysis, ten 
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patients had been shunted and followed up in the CSF clinic. A clinical score was 

assigned as per pre-operatively. Patients were considered to have responded to CSF 

shunting if the NPH score decreased by 2 or more points.  

4.2.2 Controls 

The control group consisted of 12 volunteers (mean age: 42.8 ±9.8 years) who 

underwent both MRI and PET scanning in the same manner as the patient group. All 

volunteers were healthy with no history of either cardiovascular or neurological 

abnormalities or disease. 

4.2.3 PET and MRI Scanning  

PET scanning was performed on a GE Advance scanner at the Wolfson Brain 

Imaging Centre. A radial arterial line and peripheral venous line were inserted. The 

patient’s Ommaya reservoir was accessed in order to monitor CSF pressure 

throughout the procedure. The patient was positioned supine on the scanner table and 

encouraged to lie quietly in a darkened room. A 10 minute transmission scan was 

performed using two rotating 68Ge/68Ga rod sources (~600MBq in total) in order to 

correct for photon attenuation. An intravenous infusion of 800 MBq of O15-labelled 

water was then delivered to the patient over 20 minutes; after a ten minute build-up 

period to achieve tracer steady state, PET data was acquired in 3D mode in two 

contiguous 5 minute frames. Arterial blood samples were taken at 10, 15 and 20 

minutes into the infusion to monitor blood gases (including PaCO2) and to determine 

the radioactivity concentration in blood during the PET acquisition, as required by the 

CBF kinetic model. The PET images were reconstructed using the 3D PROMIS 

filtered back-projection algorithm (Kinahan and Rodgers, 1989) implemented on the 
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scanner, with corrections applied for randoms, dead time, normalisation, attenuation 

and scatter. 

 

In addition, a volumetric 3 Tesla SPGR MRI scan (voxel size: 1x1x1mm) of the brain 

was obtained on the same day as the PET scan in all of the control subjects and 14 of 

the 17 patients; three patients were unable to tolerate the MR scanner due to 

claustrophobia. The PET and MR images were co-registered using SPM-99 and CBF 

maps (voxel size 2.34 x 2.34 x 4.25 mm) were calculated using standard kinetic 

models (Frackowiak et al., 1981) ( PETAN2001, Dr. Piotr Smielewski, Cambridge). 

The spatial resolution of the CBF maps is approximately 6 mm. 

 

4.2.4 Analysis 

For those subjects who had undertaken an MR scan, global CBF was assessed by 

drawing regions-of-interest (ROIs) on the co-registered MR images. For the cerebrum 

and the cerebellum these regions were outlined with AnalyzeAVW using a 

combination of computer threshold drawing and manual correction. CSF spaces and 

large vessels were excluded from the ROIs. The process was repeated for each slice. 

For each ROI a mean CBF was calculated based on the entire ROI volume. In this 

way a true mean CBF for the ROI was obtained and the overall mean not artificially 

affected by the size of the ROI. For the three patients without an MR scan, global 

ROIs for the cerebrum and cerebellum were drawn using AnalyzeAVW directly on 

the CBF maps (Figure 4.1).  
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The regional CBF results were obtained by manually placing small circular ROIs 

(each 15 voxels in size) bilaterally within anatomical regions on the slices of the MR 

scan where that structure was visible. This was performed for the frontal, occipital, 

temporal and parietal white matter regions, as well as the thalamus, head of caudate 

and the putamen (Figure 4.2). Care was taken to place ROIs away from anatomical 

Figure 4.1: Co-registered MR images, PET CBF maps and global ROIs for the 
cerebrum and cerebellum of a patient with NPH. 

ROIs: Cerebellum 

ROIs: Cerebrum 

Co-registered PET CBF maps 

MRI 
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boundaries so as to minimize partial volume contamination of the ROI by other 

structures with different CBF. A regional CBF analysis could not be accurately 

performed in the three patients for whom there were no MR images. Therefore results 

for the regional CBF analysis are based on 11 patients with idiopathic NPH and three 

patients with secondary NPH. 

 

The mean CBF values for global and anatomical regions were compared between 

patient groups and the control group using the Mann-Whitney U test. The pre-

operative NPH, gait and modified Stein-Langfitt scores were compared to the mean 

for each region using Spearman rank order correlation. 

 

All patients, relatives and control subjects involved in the study gave informed 

consent. The study was performed with the approval of the Cambridge Local Region 

Ethics Committee (LREC # 96/172, 96/209) and the UK Administration of 

Radioactive Substances Committee (ARSAC # 083-2050(14649), 083-2050(10170)). 
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4.3 Results 

4.3.1 Global CBF Values 

There was a significant (p<0.0005) difference between the mean CBF for the 

cerebrum of the NPH group (24.8 ± 4.3ml/100g/min) and that of controls (30.5 ± 5.2 

ml/100g/min) (Table 4.1). When the idiopathic NPH subjects were analyzed 

separately to the secondary NPH group the difference remained with the mean CBF 

being significantly lower (p<0.0001) in the idiopathic NPH group (24.0 ± 

2.9ml/100g/min) compared to the controls. The mean CBF for the cerebrum of the 

secondary NPH group (26.7 ± 6.7 ml/100g/min) was also lower than controls but the 

difference was not significant. 

 

The mean CBF for the cerebellum was 35.4 ± 7.4 ml/100g/min for the NPH group 

compared to 40.6 ± 6.0 ml/100g/min in the control group. This difference was 

significant and remained so when the idiopathic group (35.1 ± 4.0 ml/100g/min; 

p<0.05) was analyzed separately. 

 
 

Region  
of Interest 

 

 
Controls 

 
NPH 
All 

(n = 17) 

 
NPH  

Idiopathic 
(n = 12) 

 
NPH 

Secondary 
(n = 5) 

Cerebrum 30.5 ± 5.2  24.8 ± 4.3, 
p<0.0005 

24.0 ± 2.9 
p<0.0001 

26.7 ± 6.7, 
NS 

Cerebellum 40.6 ± 6.0 35.4 ± 7.4, 
p<0.01 

35.1 ± 4.0 
p<0.05 

35.5 ± 13.3, 
NS 

 
Table 4.1: Analysis of mean CBF (ml/100g/min ± SD) in global regions of interest. 
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The mean arterial PaCO2 values measured during PET data were compared between 

the control and patient groups. The mean PaCO2 of the control group was 42.6 ± 4.3 

mmHg compared to 40.0 ± 2.6 mmHg (p<0.05) for the NPH patients.  The PaCO2 of 

the idiopathic patients (39.2 ± 2.0 mmHg) was also significantly lower compared to 

the control group (p<0.05). However, all of these values were within the physiological 

range. 

 

4.3.2 Regional CBF Values 

In the white matter regions, that is, frontal, temporal, parietal and occipital regions, 

there was no difference between the whole patient group and controls. Furthermore, 

no significant difference became apparent when the idiopathic and secondary NPH 

groups were analyzed separately (Table 4.2) 

 
 

White matter 
ROI 

 
Controls 
(n = 12) 

 
NPH 
All 

(n = 14) 
 

 
NPH  

Idiopathic 
(n = 11) 

 
NPH 

Secondary 
(n = 3) 

 
Frontal 15.2 ± 2.1 16.1 ± 4.2 

NS 
17.2 ±  4.0 
NS 

12.0 ±  2.5 
 

Parietal 
 

15.7 ± 2.7 17.8 ± 4.7 
NS 

17.3 ± 3.4 
NS 

19.7 ± 8.9 
 

Temporal 
 

18.9 ± 2.7 20.4 ± 4.1 
NS 

20.2 ± 2.6 
NS 

21.1 ± 8.5 
 

Occipital 
 

18.1 ± 2.6 18.1 ±6.2 
NS 

16.7 ± 2.3 
NS 

23.4 ± 13.4 
 

 
Table 4.2: Analysis of mean CBF (ml/100g/min±SD) in white matter anatomical 
regions (NS = not significant). 
 

Unlike the regional analysis of CBF in the white matter, marked differences in mean 

CBF between controls and NPH patients were demonstrated in the deep gray matter. 

In the thalamus, the mean CBF of controls was 44.7 ± 5.7 ml/100g/min compared to 

36.0 ± 7.5 ml/100g/min in the NPH patients (p<0.005). The difference remained 
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significant (p<0.005) when the idiopathic NPH patients (35.6 ± 6.5 ml/100g/min) 

were analyzed separately. For mean CBF in the head of the caudate nucleus, the mean 

control CBF was 38.5 ± 7.0 ml/100g/min which was significantly different to the 

NPH group as a whole (24.8 ± 6.5 ml/100g/min; p<0.00005) and the idiopathic NPH 

group (23.6 ± 5.6 ml/100g/min; p<0.00005).  Mean CBF in the putamen of NPH 

patients (35.6 ± 8.3 ml/100g/min) was significantly (p<0.05) lower than for controls 

(42.6 ± 7.1 ml/100g/min). Again, when the idiopathic NPH group (34.9 ± 8.3 

ml/100g/min) was analyzed separately, the difference remained significant (p<0.05) 

 
 

 
Region  

of Interest 
 

 
Controls 
(n = 12) 

 
NPH 
All 

(n = 14) 

 
NPH  

Idiopathic 
(n = 11) 

 
NPH 

Secondary 
(n = 3) 

Thalamus 44.7 ± 5.7 36.0 ± 7.5 
p<0.005 

35.6 ± 6.5 
p<0.005 

37.3 ± 12.2 
 

Head of Caudate 
 

38.5 ± 7.0 24.8 ± 6.5 
p<0.00005 

23.6 ± 5.6 
p<0.00005 

29.0 ± 8.9 
 

Putamen 42.6 ± 7.1 35.6 ± 8.3 
p<0.05 

34.9 ± 7.7 
p<0.05 

38.0 ± 11.9 
 

 
Table 4.3: Analysis of mean CBF (ml/100g/min±SD) in deep gray matter anatomical 
regions. 
 
 

4.3.3 Relationship between Clinical Severity and CBF  

Correlation analysis was used to assess any relationship between mean CBF for the 

various regions and clinical severity of NPH as assessed using the NPH, modified 

Stein-Langfitt and gait scores. As the clinical scoring of patients with secondary NPH 

reflected not only their NPH but also their primary pathology and its consequences 

patients with secondary NPH were excluded from the analysis. No significant 

correlation between the CBF of individual patients and their NPH, gait or modified 

Stein-Langfitt scores could be demonstrated when the all idiopathic NPH patients 
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were analysed. This was true of both the global and anatomical regions examined. 

However, the patient with co-existing Steel-Richardson syndrome had a relatively 

high mean CBF but clinically was in poor condition. When this patient was excluded 

from the analysis to obtain a group with purely idiopathic NPH the following 

correlations became apparent. There was an inverse correlation between mean 

thalamic CBF and NPH score (R = -0.70; p<0.05). In addition, the modified Stein-

Langfitt score was inversely correlated with mean CBF in the putamen (R = -0.72; 

p<0.05). 

 
There were no significant correlations between the severity of periventricular white 

matter hyperintensities and CBF for any ROI, including white matter CBF. 

 

4.3.4 Response to CSF shunting 

Of the 17 patients, 10 underwent CSF shunting. Of these patients, 7 improved as 

defined by a decrease in the NPH score of 2 or more points using the clinical 

assessment outlined above. The follow-up period for these patients ranged from 6-26 

months (mean 11.6 ± 8.8 months). There was one shunt revision required for shunt 

malfunction. One patient had a stroke several months post-shunt insertion. There was 

no other associated morbidity or mortality. Both the shunt-responders and non-

responders consisted of a mixture of patients with idiopathic and secondary NPH.  

 

The relatively small number of patients did not allow for statistical comparison but it 

is noteworthy that the overall pattern of CBF described above was clearly seen in 

those patients who responded to CSF shunting and hence unequivocally had NPH. 

There was a tendency for the white matter CBF to be lower in non-responders. It was 
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not possible to define in this small number of patients whether resting CBF 

distinguished between responders and non-responders. 

 
Parameter 

 
Shunt Responders 

(n = 7) 
Shunt Non-responders 

(n=3) 
Age 
 

69.6 ± 4.5 years 69.3 ± 4.7 

ICPbeg 
 

10.7± 4.2 mmHg 11.4 ± 4.6 

Rcsf 
 

21.5 ± 7.5 mmHg/ml/min 16.6 ± 8.1 

PVI 
 

20.5 ± 10.3  27.1 ± 9.1 

WM Hyperintensities 
 

2.3 ± 1.7  3.0 ± 1.7 

 
Table 4.4: Age and CSF compensatory parameters of patients with NPH and 
relationship to clinical outcome after CSF shunting. 
 
 
 

Region of Interest 
 

Shunt Responders 
(n = 7) 

Shunt Non-responders 
(n=3) 

Cerebrum 
 

24.7 ± 1.7 24.0 ± 5.0 

Cerebellum 
 

35.2 ± 3.5 31.5 ± 6.0 

 
Table 4.5: Mean CBF (ml/100g/min) of global regions of interest in patients with 
NPH prior to CSF shunting and relationship to clinical outcome after CSF shunting. 
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Region of Interest 

 
Shunt Responders 

(n = 5) 
Shunt Non-responders 

(n = 3) 
Frontal White Matter 
 

18.5 ± 1.5 11.3 ± 3.7 

Parietal White Matter 
 

19.0 ± 2.5 13.3 ± 2.3 

Temporal White Matter 
 

20.8 ± 2.5 16.1 ± 3.2 

Occipital White Matter 
 

17.8 ± 2.4 15.1 ± 1.7 

Thalamus 
 

36.2 ± 6.8 34.3 ± 9.0 

Head of Caudate 
 

25.3 ± 4.6 26.7 ± 7.6 

Putamen 
 

33.1 ± 6.8 33.9 ± 8.3 

 
Table 4.6: Mean CBF (ml/100g/min) of anatomical regions of interest in patients 
with NPH prior to CSF shunting and relationship to clinical outcome after CSF 
shunting. 
 
 
 
4.4 Discussion 

The combination of PET scanning with anatomic ROI definition on coregistered MR 

for the study of CBF in patients with NPH has several advantages over other available 

technologies. The partition coefficient of 131Xenon may be affected by pathology, and 

study of its clearance is non-tomographic and hence unable to study deep tissues 

accurately. Xenon CT is limited to measurement of CBF in only a few selected slices, 

and there are problems with quantification. SPECT CBF studies are limited by poor 

spatial resolution and difficulties in obtaining quantitative images. In addition, some 

SPECT tracers are metabolically active, and the results therefore reflect tissue 

metabolism as well as CBF. PET is a more accurate method of measuring CBF as the 

tracer (15O-water) is not metabolized, the spatial resolution is superior, and image 

quantification is more easily achieved. In addition, CBF can be measured for the 

whole brain, not just in a few slices. Finally, coregistration with MR images allows 

measurement of CBF in specific anatomic locations. 
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Despite the advantages of PET, significant methodological problems needed to be 

overcome in this study. One major methodological issue is the definition of the 

regions of interest. One option is to spatially normalise (warp) the PET images to a 

template defined in a standard space, such as Taliarach space, and calculate mean 

CBF values using standard ROIs.  Spatial normalisation programs, such as the one 

embedded in SPM99, are unable to successfully warp hydrocephalic brains, where the 

ventricles are enlarged by definition and other distortions such as sulcal dilation may 

be present, to a ‘normal’ template brain. In addition, an attempt at such a warping 

ignores the underlying pathological morphology of the hydrocephalic brain itself. 

Hence, ROIs were defined on the MR image of each subject, or directly on PET if 

MR was unavailable, using techniques aimed at making the ROIs as consistent as 

possible for all the subjects. 

 

The methods of global and regional analysis used in this study are therefore aimed at 

overcoming these problems. For the global analysis the combination of seeding and 

threshold drawing functions on a slice-by-slice basis allowed reproducible ROIs to be 

drawn. Accuracy was checked and necessary corrections of the ROIs were then made 

to the ROIs of each slice to ensure anatomical integrity. Partial volume contamination, 

particularly bordering the ventricle is a potential source of error. However, the effects 

of such partial volume contamination of the CBF values are probably minimal due to 

the methods used, the relatively high resolution of the PET images and the number of 

voxels involved compared to the total number each slice. The regional analysis is less 

prone to such partial-volume error as ROIs were placed away from tissue boundaries. 
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The major disadvantage of these methods is that they are time consuming and to some 

degree operator dependent. 

 

Significant reductions in mean CBF of both the whole cerebrum and the cerebellum 

were found in NPH patients compared to controls. Furthermore, regional analysis 

revealed that the deep gray matter regions of the thalamus, putamen and head of 

caudate had significantly lower mean CBF compared to controls. There was no 

significant difference in mean CBF of white matter ROIs. When the secondary NPH 

group were excluded from the comparison with controls, the difference in mean CBF 

for the cerebrum, cerebellum, thalamus, putamen and caudate nucleus remained 

significant, whilst the mean CBF for the white matter regions remained similar to the 

controls.  

 

The age of the control group was significantly younger compared to the patient 

groups; specific controls were not recruited for this project as controls from the acute 

head injury program (Coles et al., 2002) were used to minimise radiation exposure. 

The relationship between age and CBF is somewhat controversial although Meltzer et 

al.  (2000) using PET with MR co-registration and partial volume correction found 

that there was no decrease in CBF with healthy ageing. In addition, the regional 

nature of the findings suggests that age is not the major factor influencing these 

results. The mean PaCO2 of both NPH patients as a whole and the subset with 

idiopathic NPH were lower compared to controls. However, this is unlikely to have 

been responsible for the degree of CBF reduction in the patient groups as PaCO2 was 

well within the normal range. In addition, mean CBF was not correlated with PaCO2 

in any ROI for the NPH patients. 
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In a previously published review of CBF studies in NPH patients, there was little 

consistency between investigators except that overall CBF was reduced (Owler and 

Pickard, 2001). Significant differences between NPH patients and controls were found 

in all but one study (Waldemar et al., 1993), although a reduction in cerebellar CBF 

was not reported in any study. In fact, some investigators using SPECT utilised the 

cerebellum as a reference region as it was not thought to be involved in NPH. The 

findings suggest that such an assumption should not be made and that the process 

affecting the parenchyma of the cerebrum may also involve the cerebellum. With 

regards to regional analysis, there was no consensus on which regions of the brain 

were affected. Some authors suggested that the reduction in CBF may predominately 

involve the frontal region (Mathew et al., 1977; Meyer et al., 1985a; Graff-Radford et 

al., 1987; Moretti et al., 1988; Graff-Radford et al., 1989; Granado et al., 1991; 

Larsson et al., 1994; Maeder and de Tribolet, 1995; Kristensen et al., 1996; Nakano et 

al., 1996). There was only one study in which CBF in the thalamus was found to be 

reduced (Meyer et al., 1985b). The basal ganglia have not been previously examined 

as distinct structures. The studies that examine CBF in patients with NPH are 

summarised in Table 4.7. 
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Table 4.7: Studies of CBF in NPH: Methods and Baseline CBF findings 
 

 
Reference 

 
Class Method NPH Aetiology Baseline 

CBF Control Group Other Findings 

Greitz et al., 1969 
 

B 
 

21 
 

Mixed 
4 Idiopathic 

Reduced Cerebral atrophy & 
Age-matched controls 

Greitz et al., 1969 
 

B 

 

133Xe IC 
2-comp 7 Mixed 

1 Idiopathic 
Reduced Normal contols & 

Other various conditions 

In cases without a vascular component, correlation between ventricular dilation 
and ↓CBF 

Salmon & Timperman  
et al., 1971a  

C 133Xe IC 
2-comp 

5 Trauma Reduced Normal controls Unclear in diagnosis whether truly NPH but Gp2 have clinical triad. 
CBFg and CBFw both reduced in the 5 patients of Gp2 

Salmon & Timperman 
 et al., 1971b 

C 133Xe IC 
2-comp 

7 Mixed 
3 Idiopathic 

Reduced Other controls - 

Mathew et al., 1975 
 

B 15 
 

Mixed 
5 Idiopathic 

Reduced 

Mathew et al., 1977 
 

B 

133Xe IC 
2-comp + 
stochastic 4 Not reported Reduced 

 
Cerebral atrophy & 
Age-matched controls 

Not possible to distinguish between atrophy and NPH on basis of CBF. 
No correlation between CBF and ventricular size but dilation of frontal horn 
correlated with decrease in CBF of ACA territory. 
↓CBF mostly in frontal lobe / anterior cerebral artery territory 

Hartmann et al., 1977 
 

C 133Xe IC 
stochastic  

11 Not reported  Acute SAH HC & 
High pressure HC 

- 

Grubb et al., 1977 
 

B H2O15 PET IC 
ISI/1-comp 

11 10 Idiopathic Reduced Cerebral atrophy & 
Age-matched controls 

Not possible to distinguish between atrophy and NPH on basis of CBF. 
No definite pattern of CBF could be identified in NPH patients. 

Lying-Tunnell et al.,  
1977 & 1981 

B AV-Difference 
NO2 

7 Mixed Reduced Age-matched controls & 
SDAT patients 

CBF reduced especially in the most demented patients. 

Tamaki et al., 1984 
 

C 133Xe inhal 
ISI 

24 Not reported NA Nil No correlation between CBF and incidence of B-waves or between CBF and 
pattern seen on CT metrizamide cisternography. 

Hayashi et al., 1984 
 

B 133Xe IC 
ISI/2-comp 

16 All SAH Reduced Normal controls & 
Other HC groups 

↓CBF correlated with ↑ventricular size. 
↓CBF less in acute stage of HC 

Kushner et al., 1984 
 

A 133Xe IC 
2-comp/ISI 

19 Mixed 
11 Idiopathic 

Reduced Other dementias & 
Age-matched controls 

No difference in CBF between NPH and non-NPH dementia patients. 

Meyer et al., 1984 
 

B 133Xe inhal 
2-comp 

11 
 

Mixed 
6 Idiopathic 

Reduced Cases of SDAT &  
Age-matched controls 

- 

Meyer et al., 1985a 
 

B 133Xe inhal 
2-comp & 

Xe contrast CT 

8 Not reported 
?Idiopathic 

Reduced Cases of SDAT &  
Age-matched controls 

Meyer et al., 1985b 
 

B Xe contrast CT 10 Mixed 
6 Idiopathic 

Reduced Nil 

CBF and partition-coefficients decreased 
CBF most reduced in frontal, parietal and temporal cortex, thalamus and fronto-
temporal white matter. 
Partition co-efficients most reduced in frontal white matter 

Brooks et al., 1986 
 

B C15O2 PET 
inhal 

 

3 Idiopathic Reduced Normal controls &  
other types of HC 

- 

Mamo et al., 1987 
 

B 133Xe IV 
2-comp 

25 Mixed 
18 Idiopathic 

Reduced Cases of SDAT or 
presenile dementia 

↓CBF compared to controls 
No correlation between ventricular size and CBF reduction 
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Vorstrup et al., 1987 
 

A 133Xe inhal  
1-comp 
SPECT 

17 Mixed 
14 Idiopathic 

Reduced Atherosclerotic &  
Age-matched controls 

NPH patients had abnormal CBF maps.  
In 14/17 cases there was correlation between ↓CBF and ↑ventricular size. 
No correlation between symptoms and CBF. 

Graff-Radford et al., 87 
& 89 

C 133Xe inhal 2-
comp 

SPECT 

26 
+35 

Mostly 
Idiopathic 

Reduced Cases of SDAT &  
Age-matched controls 

No difference between CBF in SDAT and NPH patients. 
↓CBF more severe in frontal region in NPH patients 

Morretti et al.,  88 
 

A 123BAMP IV 
SPECT 

23 Mixed 
15 Idiopathic 

NA Nil Frontal hypoactivity seen in 19/23 NPH cases 
No correlation between CBF and ventricular size. 

Meixenberger et al., 89  
 

C 133Xe inhal 
2-comp 

31 Not reported Reduced Normal controls No sig difference in CBF between NPH pts with & without ICP abnormalities 
NPH patients with neuro deficits had lower CBF 
NPH patients with neuro deficits and ICP abnormalities had lowest CBF 

Matsada et al., 90 
 

A 133Xe inhal 
ISI 

13 Mixed 
1 Idiopathic 

Reduced Normal controls ↓CBF correlated with ↑ventricular size. 
No inter-regional differences compared to controls. 

Granado et al., 91 
 

B 99m Tc-HMPAO 
SPECT 

14 Idiopathic NA Nil ↓CBF in frontal region correlated with severity of dementia 

Kimura et al., 92 
 

B Xe contrast CT 7 All SAH Reduced Age-matched controls Generally ↓CBF in NPH 

 
Waldemar et al., 92 
 

 
A 

99m Tc-HMPAO 
SPECT & 

133Xe inhal  
2-comp 
SPECT 

 
14 

 
Mixed 
9/14 

Idiopathic 

 
Not reduced 

 
Age-matched controls 

No difference in global CBF using Xe CT or 99m Tc-HMPAO SPECT. 
Slightly lower CBF in central white matter in NPH patients. 
Enlargement of area of low subcortical CBF in 19/14 NPH patients. 
NPH patients had lower frontal/parietal ratio CBF. 
No difference in frontal/temporal CBF ratio. 

Shimoda et al., 94 
 

B Xe contrast CT 22 Mostly SAH 
No Idiopathic 

NA Nil No comments on pre-operative CBF pattern. 

Maeder et al., 95 
 

C Xe contrast CT 4 Mixed 
2/4 Idiopathic 

Reduced Age-matched controls ↓CBF frontal cortex and white matter 

Shih et al., 95 
 

C 99m Tc-HMPAO 
SPECT 

1 Idiopathic Reduced Nil Perfusion deficits noted in posterior temporoparietal and occipital cortices. 

Kristensen et al., 96 
 

B 99m Tc-HMPAO 
SPECT 

31 Idiopathic Reduced Age-matched controls ↓CBF in Inferior frontal and temporal cortex. 
↓CBF in Frontal and parietal white matter . 

Nakano et al., 96 
 

B Xe contrast CT 14 Mixed NA Nil ↓CBF in region of frontal periventricular lucencies. 
Other regions not examined 

Tanaka et al., 97 
 

A Xe contrast CT 21 Mixed 
6 Idiopathic 

Reduced Age-matched controls - 

Klinge et al., 98 
 

B H2O15 bolus 
PET 

21 Not reported 
 

Reduced 
 

Normal controls Generally ↓CBF 

Klinge et al., 99 
 

B H2O15 bolus 
PET 

10 Idiopathic Reduced Normal controls Generally ↓CBF 

Matsuda et al., 99 
 

B Xe contrast CT 16 Not reported NA Nil Combined with NAA/Cr MR Spectroscopy. 
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Abbreviations: CBF: Cerebral blood flow, 1-comp/2-comp: single or bi-compartmental curve analysis, HC: hydrocephalus, IC: intra-carotid, inhal: inhalation, ISI: Initial 
slope index curve analysis, IV: intravenous, NA: not applicable, NPH: Normal pressure hydrocephalus, pt: patient, SDAT: Senile dementia of the Alzheimer’s type, sig: 
statistical significance 
 
 
 
Note to Table 4.7 and 4.8: Several difficulties arise in attempting to apply a strict a definition of levels of evidence to these studies (Ball et al., 1999). When considering 

the utility of CBF measurements as a diagnostic or prognostic tool, there are no reference or gold standard tests by which patients can be assessed. In addition, the patient 

groups were almost always mixed, that is, consisted of heterogeneous groups of patients with idiopathic and secondary NPH analysed together. There were often mixed 

radiological and CSF study results. Few studies could be regarded as providing level II evidence. Rather, most of the literature mostly consists of level III, IV and V 

evidence. The lack of studies with high levels of evidence is not a direct criticism of the studies themselves but is a reflection of the nature of the subject. In order to 

circumvent some of these problems, and assist the comparison of studies an alternate method of classification was formulated. Class A evidence consisted of case-control 

studies in which the full details of the patient and control groups were available. Patients included in these studies needed to satisfy the following definition: all patients 

had to demonstrate: 1) the complete clinical triad or primarily a disorder of gait; 2) ventricular dilatation on CT scan without significant cerebral atrophy; 3) absence of 

focal neurological deficit or focal pathology on CT; 4) normal CSF pressure (<15 mmHg) with either ICP monitoring or CSF infusion study data; and 5) objective, well 

documented follow-up. Class B evidence included case-control studies in which patient details did not necessarily satisfy the strict criteria above but the authors had 

diagnosed the syndrome of NPH. Class C studies included case-series and case reports of patients diagnosed with NPH whether or not the definition of NPH was satisfied. 

Tables replicated from Owler & Pickard (2001) (see appendix one).
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As discussed in chapter 1, NPH is primarily a CSF circulation disorder (Czosnyka et 

al., 1996; Boon et al., 1998b, 2000). However, it is likely that a disorder of CSF 

circulation per se is probably not the only pathological process rather some process 

affecting the viscoelastic properties of the brain parenchyma itself may play a role 

(Pang and Altschuler, 1994; Owler et al., 2001). Such a process may be related to the 

cerebral vasculature (Bradley et al., 1991). An association between hypertension and 

idiopathic NPH has been described by several authors (Haidri and Modi, 1977; Koto 

et al., 1977; Shukla et al., 1980; Casmiro et al., 1989; Krauss et al., 1996). 

Histopathological findings of intimal thickening and hyalinisation of arterial walls in 

the white matter, basal ganglia and thalamus (Akai et al., 1987) have been discussed. 

The vessels most at risk of such changes are the lenticulostriate vessels as these are 

end arteries with a prolonged course through the brain parenchyma. As the 

lenticulostriate vessels and similar vessels are the main arterial supply to the regions 

of the thalamus, caudate and putamen, the reduction of CBF seen in patients with 

idiopathic NPH compared to controls supports the role for cerebrovascular disease in 

the pathophysiology of idiopathic NPH. Although white matter hyperintensities were 

common in NPH patients, there was no significant correlation between the degree of 

white matter hyperintensities and mean CBF for any ROI. Of course, this does not 

exclude the possibility that such white matter changes are small infarcts but simply 

that the CBF of the remaining white matter is not reduced. 

 

The most important clinical feature of NPH is that of gait disturbance (Shenkin et al., 

1973; Greenberg et al., 1977; Fisher, 1982; Casmiro et al., 1989; Boon et al., 2000) 

although its mechanism is not fully understood. The gait has characteristics such as 

poor balance, hypokinesia and freezing which are consistent with a frontal gait 
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apraxia (Fisher, 1982). Stolze et al. (2000 & 2001a) noted the lack of balance 

regulation and motor programming in the gait of patients with NPH. They suggest that 

the lack of response to external cues in patients with NPH indicates that the role of the 

basal ganglia and supplementary motor cortex is limited. However some of the 

features of the gait disorder may also be related to pathology within the basal ganglia. 

The findings of this study suggest that mean CBF in the white matter, including that 

of the frontal region, of patients with idiopathic NPH is no different to controls. 

However, the mean CBF for the thalamus, putamen and head of caudate were all 

significantly reduced. It was demonstrated that a lower CBF in patients with purely 

idiopathic NPH correlated with an increased NPH score. In addition, CBF in the 

putamen of these patients was correlated with a poorer level of functioning as 

assessed using the modified Stein-Langfitt score. Thus it appears likely that the role of 

the basal ganglia in the gait disorder of NPH may be underestimated at the present 

time. 

 

Whether the reduction in CBF in the basal ganglia and thalamus is a primary 

phenomenon or whether it occurs secondary to de-afferentation in other areas remains 

to be elucidated. In Huntington’s disease, CBF in the caudate nucleus, an area of 

primary pathology, is reduced. The reduction in CBF in the caudate nucleus correlates 

with disease progression (Hasselbalch et al., 1992; Deckel et al., 2000; Reynolds et 

al., 2002). In Parkinson’s disease CBF is decreased throughout the basal ganglia 

(Wolfson et al., 1985) and changes in CBF, presumably secondarily to the primary 

pathology, are seen in distant regions such as the supplementary motor cortex 

(Kikuchi et al., 2001). 
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Moreover, the reduction in CBF in the basal ganglia and thalamus may also contribute 

to the cognitive deficits of NPH. The striatum receives widespread cortical input and, 

via other basal ganglia and the thalamus, projects to frontal cortex. Interruption of 

frontostriatal pathways is a possible explanation for the cognitive deficits of 

Parkinson’s disease (Owen et al., 1998) and may explain the frontal lobe cognitive 

deficits seen in NPH. 

 

The relationship between mean CBF and outcome after CSF shunting is not clear. 

Previous studies (Table 4.8) that have examined this issue have not examined CBF in 

anatomical ROIs. Klinge et al. (1998 & 1999) reported that a lower global CBF 

indicated a favourable outcome after CSF shunting. In contrast, several other authors 

have found that a lower CBF indicates that improvement after CSF shunting is less 

likely (Mathew et al., 1975; Mathew et al., 1977; Hayashi et al., 1984). A relatively 

low frontal CBF (Graff-Radford et al., 1987; Moretti et al., 1988; Larsson et al., 

1994) or a large subcortical low flow region (Waldemar et al., 1993) have also been 

suggested as indicators of a successful shunt procedure. In this study non-responders 

appeared to have a lower mean CBF in the white matter regions, especially in the 

frontal region. There appeared to be no difference in mean CBF in the gray matter 

global ROIs. Although interesting, the results in terms of outcome must be treated as a 

preliminary observation until a larger number of patients are studied. 

 
4.5 Conclusion 

In summary, using 15O-water PET combined with anatomical ROI definition on co-

registered MR, it was demonstrated that mean CBF was decreased in the cerebrum 

and cerebellum of patients with idiopathic NPH compared to normal healthy controls. 
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Most importantly, the regions most likely to be related to this decrease in CBF were 

the deep gray regions of the thalamus, putamen and caudate nucleus. In comparison, 

white matter (including periventricular) mean CBF was not reduced in NPH compared 

to normal controls. This study supports the concept that, apart from being a disorder 

of CSF circulation, there are cerebrovascular factors involved in the pathophysiology 

of NPH and that these factors may be related to the gait disorder of NPH.
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Table 4.8: Studies of CBF in NPH: Results of CSF shunting 
 

Reference Class Response Predictive Value of Baseline CBF FU 
 

Change  in CBF 
 

Greitz et al., 1969 
 

B 6/7 - 3w-
2mo 

↑CBF most marked in those with greatest clinical improvement; ↑CBF variable but relate to outcome. 
In 6/7 patients ↑CBF correlated to decrease in ventricular size. 

Salmon & Timperman  
et al., 1971a 

C 4/5 - 3-
8mo 

- 
 

Salmon & Timperman  
et al., 1971b 

C 6/7 - 2-
4mo 

↑CBFg 62%, the change in CBFw was more variable. 
States that decease in ICP is responsible for increase in CBF. 

Mathew et al., 1975 
 

B 11/17 Higher CBF related to better clinical 
outcome. 

2w- 
6mo 

- 

Mathew et al., 1977 
 

B 3/4 Higher CBF related to better clinical 
outcome. 

- - 

Grubb et al., 1977 
 

B 2/5 No pattern - - 

Lying-Tunnell et al.,  
1977 & 1981 

B 4/7 No pattern 5w & 
5mo 

↑CBF but only temporary in some. 

Hayashi et al., 1984 
 

B 11/16 Shunt only effective if CBF 
<25ml/100g/min 

>3mo  

Kushner et al., 1984 
 

A 12/19 No pattern to identify shunt-responders 10d-
12w 

↑CBF post-op not correlated with degree of clinical improvement 

Meyer et al., 1984 
 

B 7/10 No pattern to identify shunt-responders - Post-operative CBF reported in 3 patients and ↑CBF was reported in each. However only 2/3 patients clinically 
improved. Therefore no conclusions drawn. 

Meyer et al., 1985a 
 

B 7/7 NA 6w & 
6mo 

↑CBF in frontal and temporal cortex and basal ganglia; but mostly ↑ in frontal white matter. 
Partition co-efficients: No change in cortex but significantly ↑ in white matter especially in frontal lobe. 

Meyer et al., 1985b 
 

B 6/8 No pattern Up to 
8mo 

Similar findings to previous study. ↑CBF correlated with improvement in ADLs, gait, incontinence and 
MMSE. No correlation between ↑CBF and ↓ventricular size. 

Brooks et al., 1986 
 

B 0/3 NA 6w & 
6mo 

No ↑CBF post-shunt in NPH patients. 

Mamo et al., 1987 
 

B 22/25 No pattern re: frontal or global CBF 1w-
4mo 

No correlation between ↑CBF and clinical improvement. 
Those with excellent outcome had more sustained ↑CBF compared to patients with good/fair outcome. 

Vorstrup et al., 1987 
 

A 8/17 No pattern 4mo No significant change in CBF in either responders or non-responders. 
Positive correlation between ↑CBF and ↓Evan’s ratio. 

Graff-Radford et al., 
1987  

C 23/30 Pre-op CBF significant predictor of 
outcome, especially Anterior/Posterior 
ratio 

6mo No correlation between post-shunt CBF and clinical improvement. 

Morretti et al., 1988 
 

A 8/12 Degree of frontal hypoactivity not 
predictive of outcome 

- - 
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Graff-Radford et al., 
1989 

C 16/26 Only Anterior/Posterior ratio CBF a 
significant predictor of outcome. 

6mo-
12mo 

- 

Meixensberger et al., 
1989 
 

C - No predictive value - No significant change in post-operative CBF. 
Some patients did have increase in frontal CBF. 

Matsada et al., 1990 
 

A 13/13 NA 4-25d No significant change in CBF. 

Granado et al., 91 
 

B 10/14 Non-DAT pattern CBF predictor of 
improvement and DAT pattern predicts 
non-improvement (see text) 

<7d No significant change in CBF. 

Kimura et al., 92 
 

B 7/7 NA - Restoration of CBF greatest in frontal, temporoparietal white matter and also improved in cortex and thalamus. 
Clinical improvement closely correlated with restoration of CBF in white matter. 

Waldemar et al., 92 
 

A 11/13 Enlargement of subcortical low flow 
region related to good outcome. 

3mo-
6mo 

Post-operative clinical improvement did not parallel CBF changes. 
Some patients had (9/10) had reduction in subcortical low flow region. Also normalised some cortical defects. 

Shimoda et al., 94 B 14/22 No pattern 2-3w In responders there were significant ↑CBF in all ROIs, except in basal ganglia. 
In non-responders, there were no ↑CBF in any ROI. 

Maeder et al., 95 
 

C 2/2 NA <1mo ↑CBF in frontal cortex and white matter. 

Shih et al., 95 
 

C 1/1 NA 5.5mo Improvement in cerebrum/cerebellar ratio from 1.3 to 1.6. 
Improvement in posterior temporoparietal and occipital cortex perfusion defects. 

Nakano et al., 96 
 

B 10/14 - 4-6w Only concerned with CBF frontal peri-ventricular lucencies. 

Tanaka et al., 97 
 

A 9/21 Patients only responded if CBF 
>20ml/100g/min 

2-3w In responders, CBF increased by 65% in white matter and 25% in cortex. 
In non-responders, CBF marginally decreased. No patients with idiopathic NPH responded. 

Klinge et al., 98 
 

B 12/21 Responders had lower pre-op CBF 
compared to non-responders. 

1w-
7mo 

No significant change in post-operative CBF. 

Klinge et al., 99 
 

B 5/10 Responders had lower pre-op CBF 
compared to non-responders. 

1w-
7mo 

No significant change in post-operative CBF. 

Matsuda et al., 99 
 

B 11/16 No pattern 3-4w In responders mean CBF increased while there was no increase non-responders. 

 
Abbreviations: CBF: Cerebral blood flow, mo: month, NA: not applicable, NPH: Normal pressure hydrocephalus, pt: patient, ROI: region of interest, SDAT: Senile 

dementia of the Alzheimer’s type, sig: statistical significance, w: week 
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Chapter Five 

Normal Pressure Hydrocephalus and Cerebral Blood Flow: Changes 

during CSF pressure manipulation 

 

5.1 Introduction 

In the previous chapters, it has been demonstrated that the brain parenchyma is an 

important component in the pathophysiology of NPH. Within the brain parenchyma, 

the cerebral vasculature may also play a role. Global and regional CBF in NPH 

patients was measured and found to be reduced compared to controls, especially in the 

deep gray matter nuclei. However, these baseline CBF measurements provide 

information about the cerebral vasculature at rest. It does not describe the dynamic 

qualities of the circulation and how it might respond to various challenges. In health, 

CBF is protected against moderate fluctuations in arterial blood pressure and CSF 

pressure by cerebrovascular autoregulation.  

 

The aim of this study was  to define the effect of CSF pressure on regional CBF 

(rCBF) in patients with possible NPH particularly in light of the findings in the 

previous chapter that periventricular white matter CBF was not greatly reduced in 

patients with NPH at rest. However global CBF was reduced with regional reductions 

in the thalamus and basal ganglia. These findings were not predicted by experimental 

studies of hydrocephalus. The logistical problems of studying patients during CSF 

infusion studies, performed as part of their clinical work-up, within the PET scanner 

followed by MR co-registration, have been resolved. The topography of the changes 

in CBF with CSF pressure rises during the infusion study were defined. 
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5.2 Methods 

5.2.1 Patients 

This study reports 15 patients (age 69.5 ± 5.2 years; 7 males and 8 females) with NPH 

who were referred to the CSF Clinic at Addenbrooke’s Hospital. Twelve patients 

presented with idiopathic NPH and 3 with NPH secondary to either meningitis (2 

cases, one of which followed a head injury) or an intracerebral haemorrhage. In 

addition, one of the idiopathic NPH patients also had progressive supranuclear palsy. 

This patient initially improved after CSF shunting but then deteriorated.  

 

Full details of the clinical features and assessment including the definition of the NPH 

scale (Larsson et al., 1991) have been described in chapter 3. Patients suspected of 

having NPH and who were suitable for further treatment underwent insertion of a 

frontal Ommaya reservoir. After a post-operative period of at least 2 days, a 

computerized CSF infusion study (Czosnyka et al., 1996) was performed in order to 

characterize the CSF dynamics including Rcsf. The infusion study was performed in 

the PET scanner during acquisition of CBF PET data as described below. Patients 

with an increased Rcsf, and who were medically suitable, underwent CSF 

ventriculoperitoneal CSF shunting incorporating either a Codman Medos 

programmable valve or Medtronic Strata valve. Nine patients were shunted and were 

followed up in the CSF clinic and a score assigned as per pre-operatively. Patients 

were considered to have responded to CSF shunting if the NPH score decreased by 2 

or more points.  

 



 87

5.2.2 PET and MRI Scanning  

The patient was positioned supine on the PET scanner table and encouraged to lie 

quietly. The patient’s Ommaya reservoir was accessed using two 25G-butterfly 

needles. The first needle was connected to a fluid pressure transducer and CSF 

pressure monitor. The second needle was connected to a CSF infusion pump 

containing 60mls of normal saline. The CSF pressure was monitored continuously 

until after all PET scanning had ceased. Mean arterial blood pressure (MAP) was also 

recorded continuously in 10 patients thus allowing continuous monitoring of the CPP. 

PET scanning was performed using the same system as outlined in the previous 

chapter.  

 

A single 10 minute transmission scan was acquired. Two PET scans to measure CBF 

were then performed using the following protocol. The first PET scan was performed 

in order to measure the baseline CBF during which time the patients resting ICP and 

MAP were recorded. At the end of this scan the computerized CSF infusion study was 

commenced. A constant rate (0.5-1.0 ml/min) of normal saline was infused into the 

Ommaya reservoir during which time the ICP and MAP continued to be monitored. 

The ICP was thus elevated until a new higher equilibrium ICP was established. The 

time to equilibrium was generally 5-15 minutes. Once the equilibrium had been 

established for 5 minutes a second PET scan, using the same method as the first, was 

performed in order to measure the CBF at the higher ICP. At the end of the PET 

scanning the ICP was allowed to return the baseline ICP. Arterial CO2 tension (PCO2) 

was measured during baseline and equilibrium PET scans. The details of the 

transmission scan and 15O-water PET data acquisition are described in Chapter 4. The 

experimental setup is illustrated in Figure 5.1. 
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Figure 5.1: Experimental set-up. Patients were positioned in the 
PET scanner with an intravenous line to deliver the O15-labelled 
water and a radial arterial line for arterial blood sampling and 
arterial blood pressure monitoring. The previously implanted 
Ommaya reservoir was accessed and set-up for a CSF infusion 
study and ICP monitoring. 
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A volumetric 3 Tesla SPGR MRI scan (voxel size: 1x1x1mm) of the brain was 

obtained on the same day as the PET scan in 14 of the 15 patients. One patient was 

unable to tolerate the MR scanner due to claustrophobia. The PET and MR images 

were co-registered using SPM-99 and CBF maps (voxel size: 2.34 x 2.34 x 4.25 mm) 

were calculated using standard kinetic models (Frackowiak et al., 1981) 

(PETAN2001, Dr. Piotr Smielewski, Cambridge). The spatial resolution of the PET 

data was approximately 6 mm. 

 

5.2.3 Finite Element Modelling 

Finite element (FE) analysis is a common engineering technique used to study the 

behaviour of a complex medium when various loads are applied and has found some 

utility in neurosurgery (Kyriacou et al., 2002; Miga et al., 2000; Péna et al., 1999 & 

2002b). As an adjunct to this study a FE modelling analysis of the distribution of 

mean stress, shear stress and displacement of the brain during a CSF infusion study 

was performed. There were two purposes of this modelling were: 1) to compare the 

baseline and equilibrium CBF maps for significant enlargement of the ventricular 

system during CSF infusion, and 2) to compare the regional changes in CBF with the 

distribution of physical stress and strain throughout the brain during CSF infusion. 

 

FE simulation was implemented using the software ABAQUS/Standard 6.3 (HKS 

Ltd.,Pawtucket, USA). A FE simulation requires the following input data: the 

geometry of the object to model, a definition for the type of material being deformed, 

and the specification of boundary values. The brain and skull geometry were taken 

from MRI scans. A FE mesh composed of 2318 nodes and 2154 elements was 

constructed using an automatic mesh generator. As, brain tissue is composed of 80% 
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water and 20% solids, where the fluids correspond to the intra and extra-cellular fluids 

and the solids to the neurones, neuroglia and interstitium, it is a valid assumption to 

regard tissue as a porous elastic material, composed of a solid linear elastic matrix 

saturated by interstitial fluid. In this model, the volume occupied by the 'solids' 

corresponds to the neurons and neuroglia, while the 'voids' correspond to the 

extracellular space of the tissue.  A poroelastic material is defined by three material 

parameters: E (Young's elastic modulus), K (hydraulic permeability) and v (Poisson's 

ratio). Values of E=30 kPa, v = 0.3 and K=1e8 m/s were used. The boundary 

conditions specified were: zero displacement at the cortical regions and a fluid 

pressure based on the reading from the infusion study. 

 

For a two-phase material, that is, a mixture of solids and fluids, the stress tensor has 

the form 

solid
ij ij ijuσ σ δ= +  

or 
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Displacement in tissue was characterised in terms of  its magnitude (d). Stress 

concentrations in tissue were characterised in terms of compression (mean stress, p), 

shear (Von Mises shear stress, q) and interstitial fluid pressure (u). In terms of the 

principal stresses,  
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3
p σ σ σ+ +

=  
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and 

  ( ) ( ) ( )2 2 2
1 2 3

3
2

q p p pσ σ σ= − + − + − . 

 

5.2.4 Analysis 

For each individual patient, global CBF was assessed by drawing regions-of-interest 

(ROIs) on the co-registered MR scans. The method for defining global and anatomical 

ROIs has been previously described (Chapter 4). Global regions (cerebrum and 

cerebellum) regions were outlined with AnalyzeAVW using a combination of thresh-

holding and manual inspection. CSF spaces and large vessels were excluded from the 

ROIs. The process was repeated for each slice. A mean CBF for the whole ROI was 

obtained using the method described previously. For the patient in whom co-

registration was not possible due to lack of a suitable MR scan, global ROIs for the 

cerebrum and cerebellum were drawn using AnalyzeAVW directly onto the CBF 

maps.  

 

The regional CBF results were obtained by manually placing small circular ROIs (15 

voxels in size each) bilaterally within anatomical regions on all slices of the MR scan 

where that structure was visible. This was performed for the frontal, occipital, 

temporal and parietal white matter, as well as thalamus, head of caudate and putamen. 

Care was taken to place ROIs away from the boundaries of anatomical regions so as 

to minimize partial volume contamination of the ROI by other structures with 

different CBFs. A regional CBF analysis could not be accurately performed in the 

patient for whom there were no co-registered MR images.  
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A third type of analysis, based on the distance from the lateral ventricles, was 

performed. Three ROIs were described using the co-registered MR images (Figure 

5.2). Only MR slices in which the lateral ventricles were visible and which were 

above the level of the thalamus were included. All cerebral tissue at a maximum 

distance of 15 mm from the wall of the lateral ventricle was included in the first ROI. 

The second ROI contained tissue within 15-30 mm of the walls of the lateral 

ventricle. The remainder of the tissue to the cortical surface made a third ROI. Thus, 

all of these ROIs contained a mixture of gray and white matter. The type of tissue 

contained within these ROIs will vary between patients depending on the size of the 

ventricles and the morphology of the brain. However, the aim was to study change in 

CBF with distance from the lateral ventricle when CSF pressure is increased rather 

than absolute values. 

 



 93

 

 

Figure 5.2: Concentric ROIs based on distance from lateral ventricles. 
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Two measures of static pressure autoregulation were performed. For all patients a 

static autoregulation parameter (sAR) was calculated on the basis of the percentage 

change in mean CBF for the cerebrum divided by the increase in CSF pressure during 

CSF infusion. This measure of static autoregulation is based on CSF pressure only 

and not the CPP. The threshold proposed for impaired sAR is between 0.5 and 3-

4%/mmHg (Panerai, 1998).  

 

In 10 patients, the CPP was continuously measured throughout the study thus 

allowing for simultaneous changes in MAP during changes in CSF pressure. The CPP 

also allowed calculation of the cerebrovascular resistance (CVR = CPP/CBF) and 

therefore the calculation of the static autoregulation index (sARi) using the standard 

formula (sARi = %∆cerebrovascular resistance / %∆cerebral perfusion pressure). 

When pressure autoregulation is intact a change in CPP should be matched by a 

change in CVR and sARi should equal one. With disrupted autoregulation CVR does 

not change in relation to CPP and sARi would be zero. In practice values between 

0.85 and 0.95 would be represent intact pressure autoregulation given that the slope of 

the autoregulatory ‘plateau’ is not zero (Panerai, 1998). 

 

The mean CBF values for global and anatomical regions were compared between 

CBF values at baseline CSF pressure and equilibrium CSF pressure during CSF 

infusion using the Wilcoxon matched pairs test. Changes in CSF pressure, Rcsf, sAR 

and sARi were compared to changes in CBF and examined for correlations using the 

Spearman Rank Order Correlation Test. 
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All patients and control subjects involved in the study gave informed consent. The 

study was performed with the approval of the Cambridge Local Region Ethics 

Committee (96/172) and the Administration of Radioactive Substances Advisory 

Committee (083-2050(14649). 

 
 
5.3 Results 

5.3.1 CSF Compensatory Parameters and Change in Intracranial Pressure 

All patients were studied using the computerised CSF infusion technique. Mean ICP 

during the acquisition of the baseline PET scan was 11.0 ± 3.5 mmHg [mean ± SD]. 

The average increase in ICP during CSF infusion to equilibrium ICP was 22.1 ± 7.8 

mmHg providing a mean equilibrium ICP of 33.1 ± 9.9 mmHg and Rcsf of 20.1± 7.3 

mmHg/ml/min (Table 5.1). In one patient, in whom CSF infusion precipitated large 

plateau waves to 60 mmHg, the infusion was immediately terminated. Calculation of 

Rcsf was estimated to be approximately 24 mmHg/ml/min in this patient given the 

mean ICP of 35 mmHg during the time of data acquisition of the second PET. 

 

 
 

Mean 
 

Min - Max 
 

Std.Dev. 

Age 64.0 years 59 - 76 11.3 
Rcsf 20.1 mmHg/ml/min 10.4 - 31.8 7.3 
Baseline ICP 11.0 mmHg 6.0 - 16.4 3.5 
Equilibrium ICP 33.1 mmHg 18.2 - 48.5 9.9 
Change in ICP 22.1 mmHg 10.7 – 33.0 7.8 
PVI 23.4  7.6 – 49.9 12.6 

 
Table 5.1: Age and CSF compensatory parameters obtained from CSF infusion 
studies. Rcsf and ICP results do not include the patient with large plateau waves. 
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5.3.2 Finite Element Analysis 

The results of the three-dimensional FE modelling of the brain during CSF infusion 

with an increase in CSF pressure of 30 mmHg are illustrated in Figure 5.3a-d. With 

regards to displacement, the results suggest that small changes in the size and shape of 

the lateral ventricles do occur. These changes are <2 mm and are located in the 

regions of the body of the lateral ventricles and around the corpus callosum. The 

magnitude of displacement is well within the abilities of the MR/PET co-registration 

process. 
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Figures 5.3 a-d: Illustrates the results of the finite element analysis 
modelling of changes that occur during CSF infusion. A. The 3-
dimensional finite element mesh. B. Pressure exerted in the brain is 
maximal in the corpus callosum and region of the basal ganglia but 
low or even negative at the region of the frontal horns. C. Shear (von 
Mises) stress is maximal at the frontal and occipital horns. D. 
Interstitial fluid pressure is shown to be maximal in the regions of 
around the lateral ventricles and corpus callosum. 
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Figure 5.3d 

Figure 5.3c 

Figure 5.3b 
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Mean stress was distributed throughout the brain during CSF infusion. The location in 

which the mean stress (p), indicating compression, was maximal was the region of the 

thalamus and corpus callosum (≈ 2.5 kPa) with a smaller increase in the cortical 

regions (≈1 kPa). The smallest increase occurred in the regions of the ventricular 

horns (≈ 0.5kPa). White matter surrounding the ventricular horns was the site of 

maximal Von Mises shear stress ( ≈ 3kPa). The smallest shear stresses were in the 

cortical regions (≈ 0.7 kPa). 

 

5.3.3 Change in Cerebral Perfusion Pressure 

Mean arterial blood pressure was measured in 10 patients throughout scanning. There 

was a small but significant (p=0.005) increase in MAP of 8.2 ± 3.6 mmHg from 

baseline to equilibrium ICP. However, as the increase in ICP was higher than the 

increase in MAP, the CPP was however still significantly decreased during CSF 

infusion by 14.0 ± 8.8 mmHg (Table 5.2).  

 

 
Parameter (mmHg) n Baseline Equilibrium Difference P value 
ICP 15 11.0 ± 3.5 33.1 ± 9.9 + 22.1 ± 7.8 P<0.001 
MAP 10 90.4 ± 19.3 98.6 ± 19.2  + 8.2 ± 3.6 P=0.005 
CPP 10 79.1 ± 18.4 65.1 + 19.4 - 14.0 ± 8.8 P<0.01 
PaCO2 15 39.5 ± 1.9 38.3 ± 3.6 - 1.2 ± 2.3 NS 

 
Table 5.2: Changes in ICP, MAP and CPP, as well as PaCO2 during CSF infusion. 
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There was a strong correlation between change in ICP and change in CPP (R=-0.95; 

p<0.00005) as well as Rcsf and change in CPP (R=-0.83; p<0.01). There was no 

correlation between the change in MAP and the change in CPP. 

 

5.3.4 Changes in PaCO2 

Mean PaCO2 was not significantly different comparing baseline and equilibrium 

values (39.5 ± 1.9 mmHg versus 38.3 ±3.6 mmHg) (Table 5.2). 

 

5.3.5 Changes in Global CBF 

Significant changes in global CBF were demonstrated in the cerebrum and the 

cerebellum (Table 5.3). For the cerebrum, 12 of 15 patients showed a decrease in CBF 

of >5%, one patient had no change, whilst 2 patients had a small increase. The 

difference in CBF between baseline and equilibrium ICP was significant (p<0.01) and 

correlated with the measured Rcsf (R=-0.82; p<0.0005) (Figure 5.4).  

 

In the cerebellum, mean CBF was significantly decreased (p<0.05) during CSF 

infusion. However, regarding individual patients, 2 patients changed by <5% and two 

had increases of >5%. The change in CBF correlated with the measured Rcsf (R=-0.64; 

p<0.05). 

 
ROI n Baseline Equilibrium P value 
Cerebrum 15 24.9 ± 4.6 23.1 ± 4.8 P<0.01 
Cerebellum 15 35.8 ± 7.8 33.6 ± 9.2 P<0.05 

 
Table 5.3: Changes in CBF for the cerebrum and cerebellum. 
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While change in ICP was correlated with change in CBF for both global ROIs, the 

change in MAP or CPP was not. However, the percentage change in CPP correlated 

with the percentage change in CBF in both regions (cerebrum: R= 0.65; p<0.05 and 

cerebellum: R=0.71; p<0.05), 

 

The patients who had an increase rather than decrease in CBF during CSF infusion 

were those with high-normal Rcsf.  

 
 
 
 



 102

Figure 5.4: A. Correlation between Rcsf and decrease in CBF of 
the cerebrum. B. Correlation between Rcsf and the decrease in 
CBF of the cerebellum. 
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5.3.6 Cerebral Autoregulation 

The sAR was calculated in 15 patients. It ranged from -0.74 to 1.01 %/mmHg with a 

mean of -0.28 %/mmHg (Figure 5.5). The patients with a positive sAR were those 

with relatively small increases in CSF pressure but without true CPP measurement the 

meaning of the increase in CBF is questionable. The threshold for intact static 

autoregulation is considered to be in the range of  -0.5 – -3.0 %/mmHg. The majority 

of patients were > -0.5 %/mmHg and all were >-0.74 %/mmHg indicating that 

cerebral autoregulation was probably intact. 

 

With the additional information provided by monitoring the MAP, the sARi was 

calculated as described above. In two patients the change in CPP was < 9 mmHg and 

therefore the calculation of sARi was considered invalid. The sARi of the remaining 8 

patients is illustrated in (Figure 5.6). Two patients had very low sARi values (<0.2) 

indicating that CBF passively followed the change in CPP, that is, failure of 

autoregulation. The remaining 6 patients had values of 0.48 – 0.94, four of which 

were above 0.65 indicating that some of these patients had intact cerebral 

autoregulation. 
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Figure 5.5: Cerebral autoregulation as measured using sAR 
versus the increase in CSF pressure during CSF infusion (top) 
and Rcsf (bottom). 
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Figure 5.6: Cerebral autoregulation as measured using sARi 
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5.3.7 Changes in Anatomical Regional CBF 
 

For the white matter anatomical ROIs there were significant decreases in mean CBF 

for all four regions (Table 5.4). These regions all demonstrated significant correlation 

between Rcsf and the decrease in CBF (p<0.05; -0.68>R>-0.56). There was no 

correlation between change in MAP or CPP and CBF. However, the percentage 

change in frontal white matter CBF correlated significantly with the percentage 

change in CPP (R=0.68; p<0.05). There was no correlation between the degree of 

white matter hyperintensities and the change in CBF. 

 
 

ROI n Baseline Equilibrium P value 
Frontal 14 16.1 ± 4.3 15.0 ± 3.6 P<0.05 
Parietal 14 17.8 ± 4.7 16.2 ± 4.7 P<0.001 
Temporal 14 20.4 ± 4.1 18.7 + 4.6 P<0.005 
Occipital 14 18.1 ± 6.2 16.4 ± 6.2 P<0.05 

 
Table 5.4: Changes in CBF for white matter ROIs during CSF infusion. 
 
 
 
Mean CBF in the thalamus and the head of the caudate were both significantly lower 

during CSF infusion. However there was no significant difference in CBF found in 

the putamen (Table 5.5). The falls in CBF for the thalamus were significantly 

correlated with Rcsf (R=-0.59; p<0.05). There were no correlations between changes in 

CBF and change in ICP or CPP. 

 
 

ROI n Baseline Equilibrium P value 
Thalamus 14 36.0 ± 7.5 32.3 ± 7.0 P<0.05 
Caudate 14 24.8 ± 6.5 22.6 ± 6.0 P<0.05 
Putamen 14 35.6 ± 8.3 34.1 + 7.5 NS 

Table 5.5: Changes in CBF for deep gray matter ROIs during CSF infusion. 
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5.3.8 Changes in Concentric ROI CBF 

There were significant decreases in mean CBF for each of the three concentric type 

ROIs during CSF infusion (Table 5.6).  

 
 

ROI n Baseline Equilibrium P value 
Inner 14 15.5 ± 3.1 14.1 ± 3.1 P<0.001 
Middle 14 26.6 ± 5.8 24.7 ± 5.9 P=0.005 
Outer 14 25.8 ± 7.2 24.4 + 7.6 P<0.01 

 
Table 5.6: Changes in CBF of concentric ROIs during CSF infusion 
 

 

These changes correlated with Rcsf and ICPend for all three ROIs. These correlations 

were closest for the inner ROI and decreased towards the outer ROI. Changes in CPP 

and ICP were also correlated with change in CBF for the inner and middle ROIs but 

not the outer. Change in MAP was not correlated with change in CBF for any ROI 

(Table 5.7). 

 
 

Rcsf ICPend ICPdiff CPP ROI 
R P value R P value R P value R P value 

Inner -0.90 <0.00005 -0.73 <0.005 -0.70 <0.01 0.77 <0.01 
Middle -0.87 <0.0005 -0.67 <0.01 -0.68 <0.01 0.69 <0.05 
Outer -0.77 <0.005 -0.54 <0.05 -0.49 0.07 0.59 0.07 
 
Table 5.7: Correlations between changes in CBF of concentric ROIs and Rcsf, ICP 
and CPP during CSF infusion 
 
 
 

5.3.9 Response to CSF shunting 

Nine of the 15 patients were treated using a ventriculoperitoneal shunt. Six patients 

responded to CSF shunting while three did not. The CSF compensatory parameters, 
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changes in MAP and CPP as well as changes in CBF during CSF infusion studies 

were compared between the shunt responders and non-responders. The mean Rcsf was 

higher in patients who responded to CSF shunting (22.7 ± 7.5 versus 16.6 ± 8.1 

mmHg/ml/min) but there were no statistically significant differences between the two 

groups of patients given the small numbers. 

 

5.4 Discussion 

 
This study is unique in its approach to studying the dynamic characteristics of the 

cerebral vasculature in patients with NPH. Most studies aimed at investigating the 

state of the cerebral vasculature of patients with NPH measured CBF at rest. These 

studies have been reviewed (Owler and Pickard, 2001; Appendix A). Baseline CBF 

was measured using 15O-water PET and MR co-registration in Chapter 4.  

 

The combination of the computerised CSF infusion study and measurement of CBF 

using 15O-water PET scan has allowed us to manipulate CSF pressure in order to 

assess the response of the cerebrovascular system to changes in ICP. Cerebral 

pressure autoregulation may be defined as the ability of the cerebrovascular system to 

maintain a constant CBF during changes in CPP. Previous studies of autoregulation in 

a population of patients with ventriculomegaly presenting to a multidisciplinary CSF 

clinic revealed that hemispheric autoregulation, as assessed by transcranial Doppler 

ultrasonography, was more likely to be relatively intact when Rcsf was raised 

(Czosnyka et al., 1999 & 2000). Global autoregulation was more likely to be impaired 

when CSF outflow resistance was not raised, that is, in patients where the 

predominant pathology was ‘cerebrovascular’ rather than a primary disturbance of 
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CSF circulation. Most investigators have not been able to assess pressure 

autoregulation directly but have studied cerebrovascular reactivity, that is, metabolic 

autoregulation. Klinge  et al. (1999) and Chang et al. (2000) have both studied 

cerebrovascular reactivity using the administration of i.v. acetazolamide. Klinge 

utilised PET without MR coregistration while Chang utilised 99mTc-HMPAO SPECT 

before and after administration of acetazolamide and found that the response to 

acetazolamide was decreased in patients with NPH. Lee et al., (1998) using 

transcranial Doppler of the middle and anterior cerebral arteries to measure 

cerebrovascular reactivity after inhalation of 5%CO2, found that cerebrovascular 

reactivity was also decreased in patients with NPH. The previous studies of cerebral 

autoregulation in patients with NPH are summarised in Table 5.8. 
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Table 5.8: Studies of Cerebrovascular Reactivity and Autoregulation in NPH: Predictive Value 
 

 
Reference 

 
Methods Cases Baseline results Comments 

Mathew et al., 75 
 

CSF drainage 
30-40mL / CSFP: ↓50% / T: Nil 

15pts ↑CBF and ↑CBV Appears to be relationship between ↑CBF and response to CSF shunting. 

Mathew et al., 77 
 

CSF drainage 
30-40mL / CSFP: ↓50% / T: Nil 

3pts ↑CBF Appears to be relationship between ↑CBF and response to CSF shunting. 

Grubb et al., 77 
 

CSF drainage 
30-40mL / CSFP: NA / T: Nil 

7pts ↑CBF small but significant. Also small but significant ↑ in patients with cortical atrophy. 

Hartmann et al., 77 
 

CSF drainage 
NAmL / CSFP:14mmHg / T:NA 

11pts Small ↑CBF and ↑CBV: Not significant 
Also an increase in CO2 reactivity. 

- 

Stump et al., 83 
 

CO2 reactivity 
133Xe inhalation 

1pt CVR pre-op 20% ie reduced. 
CVR post-op 47%. 

Improvement in CVR appeared to correlate with clinical improvement. 

Kushner et al., 84 
 

CSF drainage 
25-40mL / CSFP: ↓50% / T: 1hr 

19pts No change in mean CBF. 
↑CBF just as likely as ↓CBF. 

Not useful. 

Meyer et al., 84 
 

CSF drainage 
25-35mL / CSFP: ↓50% / T: Nil 

& 100% O2 response 

7pts ↑CBF post LP in 6/7 (other pt had SDH) 
↑CBF frontal region the greatest. 
 

CVR to 100% O2 restored to normal range after CSF removal. 

Mamo et al., 87 
 

CSF drainage 
20-35mL / CSFP: ↓50% / T: 30min 

25pts No overall ↑CBF, some cases ↓CBF; ↑CBF related 
to ↑ on one side in cases of asymmetry. 

No correlation between ↑CBF and response to CSF shunting. 

Morretti et al., 88 
 

CSF drainage 
10-60mL / CSFP: ↓50% / T: 30min 

23pts ↑CBF 7/10 & ↓CBF 3/10 100% predictive value; all with ↑CBF responded & no cases with ↓CBF 
responded. 

Schmidt et al., 90a 
 

Autoregulation: Vacuum lower 
limbs and CO2 reactivity 

14pts Autoregulation maintained in 13/14 pts. After Captopril autoregulation remained intact and CO2 reactivity unchanged. 

Schmidt et al., 90b 
 

Response to Nimodipine iv 
A-V O2 difference 

8pts - 4/8 pts had ↓CPP of 20mmHg. All of these patients experienced ↓CBF.  
Other pts experienced no change. 

Shimoda et al., 94 
 

CVR: 10% Glycerol iv 
Xe CT 

22pts More widespread increases in CBF post glycerol in 
shunt responders. 

Authors suggest glycerol is a predictor of tissue salvagability. 

Kristensen et al., 96 
 

CSF drainage 
30-40mL/ CSFP: 0/ T: 3-4hr 

31pts No change in CBF overall. 
 

No significant correlations between change in CBF and clinical changes. Gait 
often improved after LP. 

Lee et al., 98 
 

TCD: ACA/MCA 
CO2 Reactivity 

11pts ↓CVR and ↑PI in ACA and MCA. 
Not predictive of outcome. 

CVR↑ post-operatively; ↑CVR in ACA and MCA appeared related to 
improvements in gait and that of MCA related to mental impairment. 

Klinge et al., 99 
 

CVR: Acetazolamide 1g iv 
PET: H2O15 

10pts CVR not different between responders and non-
responders pre-operatively. 

In responders, CVR increased post-operatively. 
In non-responders, CVR decreased and then returned to baseline levels. 

Chang et al., 00 
 

CVR: Acetazolamide 500mg iv 
99mTc-HMPAO 

41pts ↓CVR pre-operatively: Complete triad significantly 
lower CVR compared to incomplete triad. 

Post-operatively ↑CVR in both groups. 
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Abbreviations: CSF: cerebrospinal fluid, CSFP: CSF pressure, CVR: cerebrovascular reactivity, 1-comp/2-comp: single or bi-compartmental curve analysis, HC: 
hydrocephalus, IC: intra-carotid, inhal: inhalation, ISI: initial slope index curve analysis, IV: intravenous, LP: lumbar puncture, NPH: normal pressure hydrocephalus, pt: 
patient, PI: pulsatility index. 
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CBF was measured using 15O-water PET because it provides whole brain coverage, 

allows accurate measurement of CBF in deep as well as superficial structures and the 

measurement is obtained during a steady-state period. In addition, maps of CBF could 

be co-registered to MR images allowing accurate identification of anatomical 

structures and therefore anatomical analysis. The method of defining the ROIs has 

been explained in the previous chapter but certain points unique to this study need to 

be addressed. However, regarding the potential for error due to partial voluming and 

other issues related to the definition of ROIs, these errors are likely to be minimal due 

to the fact that each subject forms his/her own control and the issue in this study is not 

the absolute CBF value but the change. 

 

An obvious concern with this study is whether baseline and infusion CBF maps of 

individual patients are comparable. During the CSF infusion, the increase in CSF 

pressure may change the size and shape of the ventricles. Therefore a three-

dimensional FE analysis was performed and the morphological changes that may 

occur during CSF infusion studied. The results suggest that small changes in the size 

and shape of the lateral ventricles do occur but they are small (<2 mm) and are located 

in the region of the body of the lateral ventricles and around the corpus callosum. 

Changes in the geometry of the brain of this magnitude during CSF infusion are 

accounted for by the co-registration process as the CBF maps are co-registered to the 

same MR volume for each patient. In addition, most ROIs are located well away from 

the ventricular system and therefore not affected. Finally, manual inspection of the 

CBF maps demonstrates that there are no gross differences in the morphology 
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between the images that may account for the measured differences in CBF between 

the baseline and infusion CBF measurements. 

 

Using the CSF infusion study CSF pressure was raised in a controlled fashion and 

maintained CSF pressure at a higher equilibrium pressure. The changes in CSF 

pressure were such that the new equilibrium pressure was significantly different to the 

baseline CSF pressures. In utilising the CSF infusion study to alter ICP, the patients 

with high Rcsf will demonstrate the largest change in ICP and therefore generally CPP. 

This is demonstrated by the correlation between Rcsf and the change in CPP. 

Therefore patients with normal or high-normal Rcsf will exhibit a relatively small 

change in ICP and therefore CPP. Thus autoregulatory capacity of those patients with 

a normal Rcsf is not tested using such a study. This would explain the reason for the 

lack of change in global in the patients with normal Rcsf.  

 

The mean CPP during CSF infusion was 65.1 mmHg which should be within the 

normal range for cerebral autoregulation of the healthy brain. Three of the 10 patients 

in who MAP were monitored had a CPP of 45-50 mmHg during CSF infusion while 

one patient had a CPP of 37 mmHg. Thus these patients may well be below the lower 

limit for cerebral autoregulation. However, there was no correlation between CPP 

during infusion and the change in CBF for the cerebrum. Figure 5.5 demonstrates that 

the patients with low CPP during infusion had intact autoregulation and the patients 

exhibiting failure of autoregulation were well within the range physiological range for 

pressure autoregulation. 
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Small but significant decreases in mean for the cerebrum, cerebellum and all 

anatomical ROIs, with the exception of the putamen, have been demonstrated. This 

would suggest that a disturbance of pressure autoregulation in patients with NPH. 

However, scrutiny of both the sAR parameter and sARi indicate that autoregulation is 

intact in the majority of these patients. This disparity results because the slope of the 

pressure autoregulatory plateau is not zero. With respect to sAR, the threshold for 

normal autoregulation is approximately a decrease in mean CBF of 0.5-3 %/mmHg. 

The majority of the patients in this study demonstrated a decrease in CBF of <0.5 

%/mmHg with the largest decrease being 0.74 %/mmHg which would indicate that 

pressure autoregulation is intact.  

 

The sARi value is a more accurate measure of pressure autoregulation as CPP is 

incorporated in the calculation. This is important as MAP usually increased during a 

CSF infusion thus the change in CPP was usually less than the change in CSF 

pressure. The sARi was calculated for the eight patients in whom CPP could be 

calculated and who demonstrated a change in CPP of >9 mmHg. A value of 1 

indicates perfect autoregulation while 0 indicates passive changes in CBF with 

changes in CPP, that is, no autoregulation. Again, as the slope of the autoregulatory 

plateau is no zero and normally sARi would be expected to be <1. There is no 

standard value to denote intact autoregulation with thresholds of 0.5-0.85 being used 

in different studies. In this study, the majority of patients had values of >0.6. Only 2 

patients had values of <0.2 indicating almost complete failure autoregulation in these 

two patients who also demonstrated the largest decrease in sAR. From the results it 

can be concluded that while pressure autoregulation was deficient in some patients, in 

the majority of patients with NPH, it was intact. 
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These findings are in agreement with the study by Czosnyka et al. (2000) who 

examined the relationship between Rcsf and cerebral autoregulation using a correlation 

between the middle cerebral artery flow velocity on transcranial Doppler and the CPP. 

A finger-cuff was used to monitor ABP during CSF infusion studies and thus enable 

calculation of the CPP. A correlation between flow velocity and CPP (Mx) indicated 

poor autoregulation while a negative correlation was indicative of intact cerebral 

autoregulation. It was reported that patients with a higher Rcsf had better 

autoregulation than those with lower Rcsf. While the relationship was weak and Mx 

was a poor predictor of Rcsf, the results suggest that abnormalities of pressure 

autoregulation are not the predominant factor in the pathophysiology of NPH. 

However, it should be noted that current notions of cerebral autoregulation are in 

some ways probably naïve given the findings of this study. Clearly the brain is not a 

fluid but a semi-solid. Therefore, as demonstrated by the FE analysis stresses and 

strains are distributed to different regions of the brain. The regional nature of these 

forces and changes in CBF demonstrate that global concepts of cerebral 

autoregulation, especially in disease states may not be correct. 

 

The mechanism responsible for the observed reduction in mean CBF during CSF 

infusion was examined. The ‘concentric ROI’ analysis was performed in order to 

assess whether, the reduction in CBF during CSF infusion was related solely to the 

proximity from the lateral ventricle. As these ROIs were drawn above the level of the 

thalamus, the majority of the inner ROI consists of periventricular white matter. The 

middle and outer ROIs contain a mixture of white matter and cerebral cortex. A 

significant decrease in mean CBF was observed for all three ROIs. This correlated 
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with the Rcsf and the ICPend. The strength of the correlation was greatest for the inner 

ROI and decreased to the outer ROI. In addition the change in CPP and ICP was 

correlated to the fall in CBF for the inner and middle ROIs but not for the outer ROI. 

This suggests that there is a relationship between the proximity to the ventricles and 

the fall in CBF. This is consistent with the results of the FE analysis which 

demonstrates that the mean stress as well as shear stress are maximal in regions 

closest to the ventricle and are lowest in the cortical regions. These findings suggest 

that increases in CSF pressure cause a reduction in CBF by direct compression of the 

cerebral tissues. An alternative explanation may be that infusion of mock CSF into the 

ventricular system of patients with NPH may cause an increase in the transependymal 

seepage of CSF into the parenchyma. The ependyma of the lateral ventricles is often 

disrupted in patients with hydrocephalus and transependymal CSF absorption is a 

likely alternative pathway for CSF absorption in patients with NPH. Increased 

intraparenchymal fluid may result in compromise of CBF. This would also be 

consistent with the direct relationship between Rcsf and the reduction in CBF. 

 

The baseline CBF values in NPH patients were compared to normal controls in the 

previous chapter and were shown to be significantly reduced. The relatively small 

reduction in CBF in response to the increase in CSF pressure during CSF infusion 

may be significant. Such increases in CSF pressure during B-wave activity, for 

example, due to an increase in cerebral blood volume. Changes in CBF secondary to 

changes in CSF pressure may result in ischemic stress on tissues in an already 

precarious state. In those patients with disturbed autoregulation this may be even 

more so as CBF changes passively with CPP.  
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With regard to outcome, there are as yet insufficient numbers of patients to answer 

this satisfactorily. The only difference between shunt-responders and non-responders 

was the Rcsf that was higher in the former group. Patients who responded to CSF 

shunting did include one patient with failure of pressure autoregulation as assessed 

using sARi. The non-responder group also included patients with intact 

autoregulation. 

 

5.5 Conclusions 

Cerebral pressure autoregulation has been measured directly in patients with NPH 

using a combination of a computerized CSF infusion study and 15O-water PET 

scanning with anatomical ROI definition on co-registered MR. Although changes in 

mean CBF were demonstrated for both global and anatomical ROIs, most but not all 

patients with NPH in this study had intact pressure autoregulation. In patients in 

whom CBF changed, a relationship between CBF change and proximity to the lateral 

ventricles has been demonstrated. This is consistent with the location of mean and 

shear stress within the brain as shown using FE analysis. The importance of changes 

in CBF with changes in ICP, and the implications for shunt outcome, will be made 

clearer with further studies and correlation with clinical outcomes.  
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Chapter Six 

Diffusion Tensor Imaging of Patients with Normal Pressure 

Hydrocephalus 

 

6.1 Introduction 

Application of diffusion sensitive gradients during MR imaging allows the self-

diffusion of water, a normal biological process, to be quantified. Diffusion in three-

dimensions may be described by the diffusion tensor; a mathematical matrix. In 

biological tissues diffusion is restricted in both quantity and direction by cell 

membranes and other structures. If diffusion is equal in all directions it is termed 

isotropic and the diffusion tensor describes a sphere. If diffusion is greater in a 

particular direction, for example, parallel to white matter tracts, it is termed 

anisotropic and the diffusion tensor usually describes an ellipsoid.  

 

In order to compare the diffusion properties of different materials a number of ‘scalar 

invariants’ are used. Scalar invariants are a single number (as opposed to a matrix) 

that is independent of rotation or translation of the tensor relative to an arbitrary frame 

of reference. The three most commonly used scalar invariants are the trace, relative 

anisotropy (RA) and fractional anisotropy (FA). The ‘trace’ is defined as the sum of 

the eigenvalues. The eigenvalues quantify the amount of diffusion along the principal 

axes of the diffusion ellipsoid, that is, the eigenvectors. The trace therefore represents 

the overall quantity of diffusion. Relative anisotropy (RA) is defined as the ratio of 

anisotropic diffusion to isotropic diffusion. Fractional anisotropy (FA) is defined as 

the ratio of anisotropic diffusion to total diffusion.  
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Diffusion tensor MR imaging is known to be sensitive to microstructural cerebral 

pathology, especially white matter changes. DTI was therefore applied to the study of 

cerebral pathology of NPH patients. The aim of the study was to determine whether 

pathological changes were demonstrable in patients with NPH using DTI and to 

define the characteristics of such changes in terms of the trace, RA and FA. 

 

6.2 Materials and Methodology 

6.2.1 Patients 

Nine patients, 68.9 ± 10.5 years of age [mean ± SD] with a clinical diagnosis of NPH 

underwent diffusion tensor MR imaging as part of their clinical assessment. All 

patients underwent a clinical assessment through the CSF clinic at Addenbrooke’s 

Hospital as well as routine static MR imaging (SPGR, proton density and T2-

weighted imaging). Appropriate patients underwent CSF infusion studies via a 

previously implanted Ommaya reservoir. Five patients underwent placement of a CSF 

shunt. The clinical details of these patients including the outcome of CSF shunting are 

summarised in Table 6.1. 
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Age 

 
Diagnosis 

 
Symptoms 

 
CSF P 

(mmHg) 

 
Rcsf 

(mmHg/
ml/min) 

 
Shunt 

 
Outcome 

1 85 Idiopathic Gait / dementia / UI 10.5 19.0 Yes Slight 
2 64 ICH Gait 15.7 25.9 Yes Nil 
3 75 CVD Gait - - No Spontaneous 
4 70 Idiopathic Gait - - No - 
5 69 Idiopathic Gait / dementia / UI 6.3 14.8 Yes Good 
6 73 Idiopathic Gait - - - - 
7 47 Idiopathic Gait / memory - - - - 
8 63 Idiopathic Gait / UI 6.1 12.1 Yes Good 
9 74 Idiopathic Gait / UI 13.1 26.9 Yes Good 

 
 

Table 6.1: Clinical details of patients. Patient 4 spontaneously improved prior to 
implantation of an Ommaya reservoir for a CSF infusion study. Patient 4 refused 
further investigation or treatment and is being followed conservatively. Patients 6 and 
7 are currently awaiting further investigation. (Abbreviations: ICH = intracerebral 
haemorrhage, CVD = cerebrovascular disease, UI = urinary incontinence) 

 

6.2.2 Control Group 

Six healthy volunteers, 35.5 ± 8.1 years of age, also underwent MR imaging. 

Volunteers were screened to exclude neurological disease, vascular disease or 

hypertension. Imaging of normal volunteers was approved by the Cambridge Local 

Research Ethics Committee.  

6.2.3 MR Acquisition 

Imaging was performed on a 3T whole-body system consisting of a Bruker Medspec 

30/100 spectrometer (Bruker Medical, Etlingen, Germany) attached to an Oxford 3 

Tesla 910 mm bore whole body actively shielded magnet (Oxford Magnet 

Technology, Oxford, UK). The whole body gradient coil had an internal diameter of 

63 cm (Bruker BG 630), was actively shielded and had a maximum strength per axis 

of 35 mT/m, using 22.5 µs ramps. The manufacturer supplied DW-EPI sequences 

were modified so that the DW gradient could be applied along any user defined 
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direction, with maximal separation of the two DW gradient pulses (maximising the 

efficiency of the pulse sequence). A single shot Spin Echo (SE) Echo Planar Imaging 

(EPI) with Stejskal-Tanner diffusion sensitising pulses (Stejskal and Tanner, 1965) 

was used with imaging parameters of TR = 5070 ms, TE = 107 ms, α =90°, δ = 21ms 

and ∆ = 66 ms. Images were performed using a 25x25cm field-of-view yielding a 128 

x 128 acquisition matrix. 

 

For each subject, 8-10 inter-leaved transverse 5 mm thick contiguous slices were 

acquired with a phase template in the near axial plane. For each slice images were 

collected from 12 non-collinear gradient directions. For each gradient direction a 

T2(b0) image and five diffusion weighted images were collected at equally spaced b-

values between bmin = 318 s/mm2 to bmax = 1541 s/mm2. In order to remove residual 

Nyquist ghost artefacts, a non-phase-encoded EPI reference (template) scan was 

performed. After Fourier transformation of the image and template data along the read 

direction, a non-linear point-by-point phase correction of the image relative to the 

template data was performed. The images were finally reconstructed by Fourier-

transforming the corrected image data along the phase-encoded direction. The 

reconstructed image was symmetrically zero-padded to a 256x256 matrix. 

 

The diffusion tensor was computed on a voxel by voxel basis with an in-house 

program implemented in MATLAB (The MathWorks Inc., Natick, MA, USA), which 

used a singular value decomposition fitting (Golub and Van Loan, 1996) of the signal 

intensities to the Stejskal-Tanner equation (Stejskal and Tanner, 1965), following the 

method proposed by Basser (1995). From the diagonalised tensor, maps for the trace 

(Tr), fractional anisotropy (FA) and relative anisotropy (RA) were calculated for each 
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subject. Colour maps illustrating directional anisotropy were also constructed for 

patients and controls. 

6.2.4 Analysis of the Diffusion Tensor 

A regional analysis of the scalar invariants was conducted by identifying 25 

anatomical regions of interest (ROIs). In the frontal lobe, ROIs were placed in the 

cortex/subcortex, deep white matter and periventricular white matter, the latter region 

being that where periventricular lucencies are frequently observed in patients with 

NPH. In the occipital lobe, ROIs were placed in the cortex/subcortex, deep white 

matter and periventricular white matter in a similar manner to the placement of ROIs 

in the frontal lobe. In the parietal and temporal lobes, ROIs were placed in the parietal 

cortex, parietal white matter, temporo-parietal cortex, temporal white matter stem, 

temporo-parietal white matter. The insular cortex and parieto-opercular white matter 

were also examined. ROIs were positioned in various regions of the corpus callosum 

including the splenium, genu, fronto-lateral region (forceps minor) and the occipito-

lateral region (forceps major). For the deep gray nuclei, ROIs were positioned in the 

putamen, head of the caudate nucleus and the thalamus. The thalamus was divided 

into three regions, the medial thalamus, lateral thalamus and pulvinar, with ROIs in 

each. ROIs were also placed in various regions corresponding to the CSF of the lateral 

ventricles. 

 

ROIs were 20 voxels each in size on the T2 b(0) of each patient image using Analyze 

AVW. Where an ROI was visible in multiple slices of the scalar invariant maps, the 

relevant ROI was drawn on all appropriate slices and the average value was 

calculated. Care was taken to exclude CSF spaces in order to avoid partial volume 
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contamination by CSF in ROIs close to the ventricles and cortical surface. The scalar 

invariants of each ROI were compared between controls and NPH patients using the 

Mann-Whitney U test. 

 

In order to obtain an indication of the global distribution of each of the scalar 

invariants a single slice at the level of the lateral ventricles just above the basal 

ganglia was chosen for each subject. The region of the brain was carefully outlined 

and the CSF spaces excluded (Analyze AVW). Histograms depicting the distribution 

of each invariant within that slice were constructed. An average histogram for each 

invariant for controls and for NPH patients was then constructed. 

 

6.3 Results 

6.3.1 Regional Analysis 

The results of the regional analysis are depicted in Table 6.2a-c and Figures 6.3a-c.  



 124

 

Figure 6.1a: Maps of fractional anisotropy of an NPH patient 
(top) and a normal volunteer (bottom). 



 125

 

Figure 6.1b: Maps of regional anisotropy of an NPH patient 
(top) and a normal volunteer (bottom). 
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Figure 6.1c: Maps of trace of an NPH patient (top) and a 
normal volunteer (bottom). 
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Figure 6.2a: Colour Maps NPH Patient. 
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Figure 6.2b: Colour Maps 
Control.  
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Of the cerebral peduncle, internal capsule and corona radiata, the trace was 

significantly elevated in the internal capsule and corona radiata in patients with NPH. 

The FA and RA were also significantly higher in the corona radiata of NPH patients 

compared to controls but there were no differences in the other two regions. 

 

There were no significant differences in trace, FA or RA for the frontal or occipital 

cortical/subcortical ROIs between controls and NPH patients. Trace was significantly 

increased and anisotropy (FA and RA) significantly decreased in the frontal deep 

white matter ROIs of NPH patients. Anisotropy was also significantly decreased in 

the occipital deep white matter ROIs of patients with NPH but trace was no different 

to the control group. The most striking differences were those noted in the frontal and 

occipital periventricular regions were the trace was significantly increased for both. 

Interestingly anisotropy was decreased significantly only in the occipital 

periventricular white matter of NPH patients. No significant difference between 

controls and NPH patients could be demonstrated for the frontal periventricular white 

matter anisotropy indices. 

 

No significant difference in either trace or anisotropic indices was demonstrated for 

parietal cortex, temporo-parietal cortex, temporal white matter stem, temporo-parietal 

white matter or parietal white matter ROIs. There was a small but significant 

elevation in trace for the insular cortex but not the parieto-opercular white matter of 

NPH patients. There were no differences in either FA or RA. 
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In all regions of the corpus callosum examined the trace was significantly increased 

and both RA and FA were decreased. These regions exhibited the most striking 

differences of any region of the brain examined. 

 

There were no significant differences in any of the invariants for the putamen. The 

trace was significantly increased in the caudate head but there were no significant 

differences observed for the anisotropic indices. Of the thalamic ROIs, the medial and 

lateral thalamic ROIs demonstrated significantly higher trace values for NPH patients 

compared to controls. No such difference was observed in the pulvinar and no 

significant difference was observed in either FA or RA in any of the thalamic ROIs. 

 

There was no significant difference in the trace for the CSF of the lateral ventricles 

between the two groups. However a significant difference in both RA and FA was 

noted.  
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Trace 
 NPH Control NPH NPH Control Control  
 n n Mean SD Mean SD P 

Cerebral Peduncle 3 6 1.75 0.30 1.86 0.27 0.905 
Internal Capsule 9 6 1.92 0.18 1.74 0.23 0.036 
Corona Radiata 9 6 2.04 0.13 1.81 0.13 0.008 
Frontal periventricular WM 9 6 2.89 0.58 2.08 0.39 0.005 
Frontal WM 9 6 2.12 0.22 1.93 0.07 0.050 
Frontal Cortex 9 6 2.45 0.28 2.33 0.10 0.529 
Occipital periventricular WM 9 6 3.31 0.68 2.30 0.17 0.000 
Occipital WM 9 6 2.09 0.19 1.99 0.06 0.388 
Occipital Cortex 9 6 2.32 0.23 2.15 0.13 0.145 
Temporal WM 4 4 1.94 0.33 1.89 0.20 0.486 
Temporo-parietal WM 9 6 2.10 0.27 1.93 0.20 0.145 
Temporo-parietal Cortex 9 6 2.27 0.39 2.20 0.18 0.689 
Parietal WM 9 6 1.84 0.16 1.86 0.11 0.607 
Parietal Cortex 9 6 2.09 0.14 2.22 0.18 0.145 
Parieto-opercular WM 9 6 2.10 0.16 2.13 0.21 0.955 
Insular Cortex 9 6 2.52 0.21 2.28 0.14 0.036 
Corpus Callosum Genu 9 6 2.81 0.66 2.01 0.16 0.003 
Corpus Callosum Anterolateral 9 6 2.84 0.48 1.94 0.33 0.003 
Corpus Callosum Splenium 9 6 2.69 0.81 2.06 0.13 0.036 
Corpus Callosum Posterolateral 9 6 2.73 0.73 2.03 0.08 0.003 
Thalamus Posterior 8 6 2.48 0.33 2.11 0.22 0.081 
Thalamus Medial 8 6 2.34 0.29 2.03 0.08 0.043 
Thalamus Lateral 9 6 2.60 1.12 1.93 0.08 0.018 
Putamen 8 6 2.49 0.52 2.05 0.11 0.108 
Head of Caudate 9 6 2.51 0.36 2.12 0.14 0.008 
CSF 9 6 8.81 1.10 8.27 1.73 0.529 
        
 
Table 6.2.a: Trace values for NPH patients and controls.  
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FA 
 NPH Control NPH NPH Control Control  
 n n     P 

Cerebral Peduncle 3 6 0.841 0.038 0.836 0.023 0.905 
Internal Capsule 9 6 0.796 0.045 0.795 0.054 0.776 
Corona Radiata 9 6 0.766 0.040 0.714 0.027 0.018 
Frontal periventricular WM 9 6 0.312 0.093 0.370 0.063 0.145 
Frontal WM 9 6 0.457 0.061 0.539 0.048 0.036 
Frontal Cortex 9 6 0.262 0.030 0.260 0.035 0.529 
Occipital periventricular WM 9 6 0.330 0.060 0.546 0.074 0.000 
Occipital WM 9 6 0.508 0.058 0.577 0.047 0.050 
Occipital Cortex 9 6 0.279 0.030 0.281 0.027 0.955 
Temporal WM 4 4 0.495 0.081 0.523 0.075 0.886 
Temporo-parietal WM 9 6 0.617 0.072 0.681 0.027 0.113 
Temporo-parietal Cortex 9 6 0.254 0.041 0.230 0.033 0.328 
Parietal WM 9 6 0.610 0.060 0.641 0.036 0.328 
Parietal Cortex 9 6 0.290 0.045 0.270 0.035 0.388 
Parieto-opercular WM 9 6 0.396 0.064 0.460 0.070 0.145 
Insular Cortex 9 6 0.229 0.050 0.237 0.051 0.776 
Corpus Callosum Genu 9 6 0.635 0.080 0.802 0.078 0.003 
Corpus Callosum Anterolateral 9 6 0.590 0.080 0.824 0.064 0.000 
Corpus Callosum Splenium 9 6 0.622 0.155 0.822 0.034 0.012 
Corpus Callosum Posterolateral 9 6 0.642 0.104 0.803 0.092 0.008 
Thalamus Posterior 8 6 0.343 0.078 0.307 0.020 0.345 
Thalamus Medial 8 6 0.361 0.051 0.307 0.044 0.059 
Thalamus Lateral 9 6 0.352 0.064 0.356 0.040 0.864 
Putamen 8 6 0.242 0.069 0.203 0.033 0.414 
Head of Caudate 9 6 0.218 0.055 0.190 0.031 0.388 
CSF 9 6 0.104 0.016 0.211 0.026 0.000 
        
 
Table 6.2.b: Fractional Anisotropy (FA) values for NPH patients and controls.  
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RA 
 NPH Control NPH NPH Control Control  
 n n Mean SD Mean SD P 

Cerebral Peduncle 3 6 0.471 0.038 0.476 0.028 1.000 
Internal Capsule 9 6 0.441 0.050 0.440 0.063 0.724 
Corona Radiata 9 6 0.412 0.036 0.362 0.022 0.013 
Frontal periventricular WM 9 6 0.136 0.043 0.161 0.029 0.157 
Frontal WM 9 6 0.205 0.033 0.250 0.029 0.034 
Frontal Cortex 9 6 0.111 0.014 0.109 0.016 0.556 
Occipital periventricular WM 9 6 0.144 0.028 0.255 0.043 0.001 
Occipital WM 9 6 0.235 0.033 0.274 0.028 0.045 
Occipital Cortex 9 6 0.115 0.017 0.119 0.012 0.724 
Temporal WM 4 4 0.229 0.047 0.241 0.041 0.773 
Temporo-parietal WM 9 6 0.299 0.047 0.341 0.020 0.068 
Temporo-parietal Cortex 9 6 0.111 0.021 0.097 0.015 0.195 
Parietal WM 9 6 0.299 0.041 0.317 0.024 0.517 
Parietal Cortex 9 6 0.120 0.018 0.114 0.015 0.556 
Parieto-opercular WM 9 6 0.175 0.032 0.208 0.036 0.112 
Insular Cortex 9 6 0.100 0.027 0.100 0.022 0.953 
Corpus Callosum Genu 9 6 0.324 0.057 0.450 0.077 0.005 
Corpus Callosum Anterolateral 9 6 0.285 0.050 0.494 0.080 0.001 
Corpus Callosum Splenium 9 6 0.321 0.128 0.470 0.033 0.013 
Corpus Callosum Posterolateral 9 6 0.328 0.082 0.461 0.056 0.007 
Thalamus Posterior 8 6 0.150 0.036 0.131 0.009 0.195 
Thalamus Medial 8 6 0.156 0.024 0.131 0.020 0.053 
Thalamus Lateral 9 6 0.152 0.030 0.154 0.019 1.000 
Putamen 8 6 0.102 0.032 0.085 0.014 0.439 
Head of Caudate 9 6 0.092 0.025 0.079 0.013 0.377 
CSF 9 6 0.043 0.007 0.088 0.011 0.001 
        

 

Table 6.2.c: Relative Anisotropy (RA) values for NPH patients and controls.  
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Figure 6.3a: Regional trace values for NPH patients (red) and controls (yellow) 
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Figure 6.3b: Regional mean values of FA for NPH patients (red) and controls (yellow) 
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Figure 6.3c: Regional mean values of RA for NPH patients (red) and controls (yellow) 
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6.3.2 Global Analysis 

The measured regional differences in trace and anisotropic indices are reflected in the 

global analysis of the distribution of these invariants. A histogram comparing the 

distribution of trace in NPH and control groups is shown in Figure 6.4 a. The control 

group exhibited a narrow range of distribution for the trace with the trace value of the 

vast majority of voxels falling within a narrow range. By comparison, the NPH 

patient group demonstrated a somewhat different distribution. The trace of the 

majority of voxels still fell within this range although the proportion was lower. The 

histogram of the NPH group had a longer tail at the upper end with a greater 

proportion of voxels falling into this upper end of the trace value range. 

 

The histograms showing the distribution of the proportion of voxels with values of FA 

and RA are shown in Figures 6.4 b & c. The results for FA and RA were similar with 

the NPH group exhibiting an overall loss in the proportion of voxels with high 

anisotropic indices. There was a slightly higher proportion of voxels in the NPH 

group with very low anisotropic indices while the proportion of voxels with higher 

RA and FA was lower in the NPH group. Thus there appeared to be a shift in the 

distribution of voxels from higher to lower values in the NPH group compared to 

controls. 
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Figure 6.4a: Histogram showing the proportional distribution of voxels according to trace values 
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6.4 Discussion 

This study is the first to apply to diffusion tensor MR imaging to the study of NPH. 

Significant changes in anisotropy and trace were recorded. Anisotropic diffusion in 

human white matter was first demonstrated by Chenevert (Chenevert et al., 1990) and 

has been consistently confirmed since (Pierpaoli et al., 1996; Shimony et al., 1999). 

The exact source of anisotropy is still subject to debate however the myelin appears to 

contribute to anisotropy (Vorisek and Sykova, 1997) although it is not necessary 

(Beaulieu, 1994). Most information regarding changes in anisotropic diffusion has 

been generated from the stroke literature. Loss of white matter integrity is associated 

with loss of anisotropy. White matter anisotropy also falls early in cerebral ischaemia 

(Sorensen et al., 1999a; Sorensen et al., 1999b; Zelaya et al., 1999) and persists as the 

lesion evolves. Similar findings have been demonstrated in white matter plaque 

associated with multiple sclerosis (Werring et al., 1999; Bammer et al., 2000). In our 

study there was loss of anisotropy in NPH patients in several white matter regions. 

This was most striking in the corpus callosum but also seen in the occipital and frontal 

white matter. This probably reflects demyelination or axonal loss. In terms of 

anisotropy, only one region demonstrated an increase – the corona radiata. This is 

suggestive of compression of white matter tracts coursing around the ventricles 

secondary to ventricular enlargement.  By contrast the parietal and temporal white 

matter was relatively spared. As expected there were no increases in anisotropy in 

gray matter regions as these regions are normally mostly isotropic. 

 

In health trace is relatively uniform throughout the brain, however increases in trace 

were found in a number of regions of NPH patients. While trace falls with acute 

ischemia (Moseley et al., 1990), it is known to be increased in vasogenic oedema, 
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chronic ischemia and both acute (Werring et al., 1999) and chronic (Bammer et al., 

2000) white matter plaques of multiple sclerosis. Regions that demonstrated an 

increase in trace were the periventricular regions with the most striking increases 

being in the frontal and occipital periventricular white matter. ROIs located more 

distant to the ventricles such as the cortical ROIs and putamen did not demonstrate 

significant increases in trace.  

 

The histograms representing the distribution of the proportion of voxels as a function 

of trace and the anisotropic indices reflect the regional analysis. The increase in the 

proportion of voxels with increased trace is indicative of the increased trace in regions 

such as the frontal and occipital periventricular white matter and the corpus callosum. 

Likewise, the reduction in the proportion of voxels with high RA and FA and the 

corresponding increase in the proportion of voxels with low anisotropic indices, is 

likely to reflect the loss of anisotropy in white matter regions such as the corpus 

callosum, the frontal and occipital white matter.  

 

Overall, the results suggest several pathophysiological processes. The increase in 

trace of the corona radiata is suggestive that there is compression of these white 

matter fibres as they course around the ventricles. There does not appear to be 

significant structural loss in these fibres tracts below the level of the body of the 

lateral ventricles as the internal capsule and cerebral peduncles do not demonstrate a 

decrease in anisotropy. By contrast, loss of anisotropy does appear to occur in the 

white matter regions in the frontal and occipital lobes as well as in the corpus 

callosum. This may represent loss of structure; however, the large increase in trace 

may also contribute to this decrease. The increase in trace in periventricular regions, 
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not only at the frontal and occipital horns, suggests that there is significant 

transependymal passage of CSF. This transependymal egress of CSF may contribute 

to the changes in CBF that have been observed in periventricular deep gray matter 

nuclei in previous chapters.  

 

While there is still some debate on the source of the diffusion signal in diffusion 

tensor MR imaging and the relative contribution of certain structures to the 

anisotropic effects seen in diffusion tensor images, the correspondence between white 

matter integrity and anisotropy is not disputed. With this in consideration, the results 

are consistent with the results of studies of the histopathological findings in patients 

with NPH (Chapter 1). These demonstrate that the cortex is relatively spared in NPH 

and that most of the pathological changes are located in the periventricular and deep 

white matter regions. The most characteristic findings are those of demyelination, 

oedema and spongiosis. Axons may be decreased in number with some swelling and 

fragmentation whilst more peripheral arcuate fibres are often spared. In addition, 

microvascular disease of the deep and periventricular white matter as well as the deep 

gray nuclei is common in NPH.  

 

The results are also consistent with imaging characteristics of NPH. Periventricular 

lucencies (PVLs) are often seen in the periventricular white matter of the frontal and 

occipital horns on CT scanning with corresponding hyperintensities on routine T2 MR 

imaging. These PVLs may be due to a number of processes. The most common is that 

of periventricular oedema and may be due to egress of CSF from the lateral ventricles 

into the parenchyma of these regions. However PVLs may represent areas of gliosis. 

The high trace values of frontal and occipital periventrcular white matter in NPH 
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patients may reflect either oedema or gliosis and do not appear to clarify this issue. A 

very interesting finding was the lack of a statistically significant reduction in either 

FA or RA in the frontal periventricular white matter despite the dramatic increase in 

trace. 

 

There was clearly a significant difference in the age of the control and patient groups. 

The relationship between age and changes in DTI characteristics have been examined 

(Sullivan & Pfefferbaum, 2003). Fractional anisotropy does appear to decrease with 

age in some regions, particularly the genu of the corpus callosum (Sullivan et al., 

2000). Abe et al. (2002) found that FA was reduced only in this region. ADC and 

trace have been shown to increase by 3% per decade after 40 years of age in one study 

(Chen et al. 2002). However, when white matter and grey matter were analysed 

separately this increase was not apparent (Helenius et al. 2002). While the results of 

this study are influenced by factors associated with normal ageing the location and 

degree of the changes observed are distinct from those of ageing alone. Further study 

and comparison with age-matched controls will clarify the issue. 

 

Other studies using diffusion weighted MR imaging of patients with Alzheimer’s 

disease and of patients with vascular dementia have found that mean diffusion is 

increased and anisotropy reduced throughout the white matter (Hanyu et al., 1998, 

1999a &1999b) In addition it appears that the temporal white matter stem was 

preferentially effected in patients with Alzheimer’s disease. The lack of difference 

between controls and patients with NPH in this study suggests that diffusion tensor 

MR imaging may be useful in the differential diagnosis of the conditions, a possibility 

worthy of further study. 
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Finally, a significantly higher value of anisotropy in the CSF of controls compared to 

NPH patients is an interesting finding. CSF obviously has no structure and should 

therefore have no anisotropy. The small anisotropic measurement in the CSF of 

patients with normal sized ventricles may be a reflection of CSF motion. Bulk 

coherent motion should not cause signal attenuation in diffusion tensor MR imaging. 

However incoherent second order motion due to arterial pulsation within the lateral 

ventricles may cause signal attenuation. If this is preferentially in one direction it may 

be reflected in the anisotropic indices and may account for the small amount of 

anisotropy of CSF measured in this study. 

 

6.5 Conclusions 

Diffusion tensor MR imaging is a non invasive method which is sensitive to 

pathological changes particularly those involving white matter. Such changes are 

demonstrable in the white matter of NPH patients using diffusion tensor MR imaging. 

Loss of white matter integrity in the corpus callosum as well as frontal and occipital 

white matter is reflected in by a significant reduction in both FA and RA. In addition 

the trace is increased in the frontal and occipital periventrcular white matter regions 

and is consistent with the oedema of periventricular lucencies. Further study of 

patients with NPH and correlation with shunt outcome is warranted. In addition, 

correlation of clinical changes after CSF shunting and diffusion tensor MR imaging 

post-CSF shunting may assist in clarifying pathological mechanisms of NPH. 
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Chapter Seven 

General Discussion and Conclusions 

 

7.1 Introduction 

The aim of this thesis is to investigate the pathophysiology of NPH through the 

application of modern techniques that focus on the role of the brain parenchyma and 

its interaction with CSF dynamics. By increasing understanding of the 

pathophysiology of NPH, improvements in patient selection, treatment and outcome 

should be made.  

 

In this chapter, the techniques applied in the previous studies and their development 

shall be considered. The results of the studies will then be summarized and a model of 

NPH will be formulated. The implications for patient management of the concepts 

developed will be assessed. Consideration will then be given to future studies. 

 

7.2 Methodological Techniques and Developments 

The techniques that form the core of this thesis are the computerised CSF infusion 

study, 15O-labelled water PET for CBF measurement and diffusion tensor MR 

imaging.  

 

The computerised CSF infusion study is a well-recognised technique for investigating 

CSF dynamics. In this thesis it was extended to gain information regarding some 

viscoelastic properties of the brain parenchyma by measuring the elastance co-

efficient. It was also used to demonstrate the interaction of the brain parenchyma and 
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CSF dynamics through the time-constant tau. This is a novel extension of the 

technique that deserves further development. 

 

CBF was measured in patients with NPH using 15O-labelled water PET. While this in 

itself is not a substantial development, its the combination of accurate MR co-

registration is, and has allowed a more robust assessment of regional CBF in NPH 

than previously.  

 

This technology was combined with the computerised CSF infusion study allowing us 

to manipulate intracranial pressure (ICP) while simultaneously measuring CBF. By 

measuring mean arterial pressure and thus cerebral perfusion pressure, the technique 

allowed us to examine cerebral pressure autoregulation. Such a direct examination of 

pressure autoregulation has not been reported in humans.  

 

Three-dimensional FE analysis simulation of stress distributions and brain 

displacement during CSF infusion, allowed us to validate the technique and correlate 

the results with the observed changes in CBF.  

 

Diffusion tensor imaging (DTI) was used to enable an examination of changes in 

cerebral microstructure that occur in NPH. This technique at Addenbrooke’s Hospital 

underwent substantial development for this project in terms of post-processing. This 

meant the creation of methods to calculate the components of the diffusion tensor and 

display the information which were developed in collaboration with other 

investigators. 
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7.3 Major findings 

A short series of cases with what was termed ‘low-pressure hydrocephalus’ was 

presented. These patients initially failed to respond to CSF shunting but made 

dramatic improvement after a period of low or even sub-zero CSF pressure drainage. 

This study established the issues to be considered in the remainder of the thesis, that 

is, the role of the brain parenchyma and its interaction with CSF disturbances. 

 

The clinical features, CSF infusion study results and outcome after CSF shunting of 

patients with NPH managed at Addenbrooke’s Hospital, Cambridge, UK were 

presented in chapter 3. The study confirmed the importance of Rcsf in the management 

of NPH as this parameter correlated with clinical symptoms. However, the need to 

actually measure the parameters was demonstrated by the result that clinical features 

were not a predictor of Rcsf. Patients with features typical of NPH, that is, prominent 

gait disturbance and absence of focal neurology, had a higher Rcsf than those with 

atypical features. Moreover, those patients without a history of hypertension or 

cerebrovascular accident had a higher Rcsf than those with a positive history for these 

factors. However the presence of these vasculopathies did not preclude response to 

CSF shunting.  

 

CBF was found to be reduced for the whole cerebrum as well as in the cerebellum 

when compared to normal healthy volunteers. Regionally, CBF was not significantly 

reduced in the frontal, occipital, temporal or parietal white matter. In contrast, CBF 

was significantly reduced in the thalamus, head of caudate and putamen. In patients 

with only idiopathic NPH, low thalamic CBF correlated with a poor NPH score and a 
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low CBF in the putamen correlated with a poor level of function indicated by the 

Stein-Langfitt score. 

 

With increases in CSF pressure most patients demonstrated reductions in both global 

and regional CBF. Those with high-normal Rcsf had less pronounced changes in the 

CSF pressure and some of these patients exhibited no change in CBF or even a small 

increase. Overall, with increased CSF pressure, CBF was reduced significantly in the 

cerebrum, cerebellum, white matter regions as well as deep grey matter regions with 

the exception of the putamen. These results indicate that cerebral pressure 

autoregulation might be disturbed in patients with NPH. However, measurement of 

the MAP allowed CPP to be calculated. With this information, indices of static 

pressure autoregulation were examined. In most patients, but not all, pressure 

autoregulation at appeared intact, although the range in values was large. In terms of 

outcome after shunting, no statistical conclusions were reached. However, patients 

with both intact and disordered autoregulation, according to these parameters, 

responded to CSF shunting. 

 

With DTI, it was demonstrated that NPH patients had a lower proportion of voxels 

with high FA and RA values. This indicates a reduction in the proportion of 

anisotropic regions. In contrast, the proportion of voxels with higher trace values was 

greater in patients with NPH.  

 

Regionally, the most striking changes were seen in the corpus callosum where 

significant reductions in anisotropy were measured. In the frontal region, anisotropy 

was reduced in the white matter but not in the periventricular region. Anisotropy was 
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reduced in both of occipital white matter regions. No such changes were observed in 

the parietal or temporal white matter. In contrast, in corona radiata, there was an 

increase in the anisotropic indices.  

 

Trace was increased in a number of regions. It was most markedly increased in the 

periventricular white matter surrounding the frontal and occipital horns. Other 

periventricular regions demonstrating an increase in trace were the corpus callosum.  

It was increased in deep gray matter nuclei adjacent to the ventricles such as the 

thalamus and head of caudate but not the putamen. Increased trace was also observed 

in the corona radiata and internal capsule. With the exception of the insular cortex, 

other cortical regions as well as the parietal and temporal regions showed no 

significant changes in trace.  

 

Features predictive of a positive response to CSF shunting were not identified in the 

studies of this thesis. To some extent this is due to the fact that in several studies, the 

number of patients who actually underwent CSF shunting and who were available for 

follow-up was relatively small and did not allow for statistical comparisons to be 

made. 

 

7.4 Synthesis of Results 

In terms of CSF circulation, the extent to which it is disordered can be characterised 

by the measurement of Rcsf. However as noted in chapter 3, the Rcsf of an individual 

cannot be predicted by the clinical features. The corollary of this is that patients with 

very similar clinical features may have very different CSF circulation parameters. 

Furthermore, while Rcsf, is predictive of shunt outcome, a lower value does not 
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necessarily preclude shunt response. These findings suggest that NPH cannot be 

considered as a CSF circulation disorder alone.  

 

As noted in Chapter 2, some patients with CSF pressures below the normal range may 

demonstrate ventricular dilation. The finding that drainage of CSF at sub-zero 

pressures may result in normalization of ventricular size is suggestive that alterations 

in the viscoelastic properties of the brain parenchyma may initiate or, at least, 

maintain the hydrocephalic state.  

 

The time-constant tau, which reflects the product of Rcsf and cerebral compliance, was 

positively correlated with clinical parameters in ‘typical’ idiopathic NPH patients 

although Rcsf  and compliance alone were not. This illustrates the interaction between 

pathologies of brain parenchyma and CSF circulation. It is likely that patients with 

clinically typical idiopathic NPH consist of a spectrum of hydrocephalic patients in 

which patients have various combinations of CSF circulation disorders and 

parenchymal pathology. This would be consistent with the finding that patients with 

‘typical’ idiopathic NPH without prominent vasculopathies have a higher mean Rcsf 

than those that do have such vascular disease. The latter group may well consist of 

patients in which the parenchyma is the predominant factor in maintaining their 

hydrocephalus. 

 

Alteration of the viscoelastic properties of the brain parenchyma may be caused by 

cerebrovascular disease. The finding that CBF was globally reduced in patients with 

NPH supports this hypothesis. The issue of cause or effect is commonly debated. The 

association with risk factors for cerebrovascular disease such as hypertension and 
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diabetes does suggest that cerebrovascular disease may be a primary phenomenon in 

NPH. This process may result in a softening of the parenchyma. However, there may 

be a vicious circle as ventricular dilation may actually increase the physical distortion 

of vessels in the periventricular region. Interestingly, the periventricular structures 

along the body the ventricle, that is, the head of caudate and thalamus, are the 

structures under most compressive stress during ventricular enlargement. It was these 

structures that demonstrated the most prominent reduction of regional CBF. 

 

The finding that the thalamus and basal ganglia demonstrated particular reductions in 

CBF and that the reduction in thalamic CBF correlated with the clinical features 

suggests that these structures may have a role in the pathophysiology of the gait 

disorder of NPH. This is in contrast to current consensus that the gait is primarily 

frontal in origin. However, the role of the thalamus and basal ganglia in maintaining 

gait is well known. More importantly, the afferent and efferent connections of the 

basal ganglia or thalamus with the frontal cortex via frontostriatal projections may 

underlie the frontal nature of the deficits seen in patients with NPH. 

 

Pressure autoregulation of CBF is important for protecting the brain against 

fluctuations in CPP. Although changes in CBF with changes in CSF pressure were 

observed in patients with NPH on a global and regional basis, analysis of static 

autoregulation using accepted indices demonstrated a wide range of autoregulatory 

capacity. While the majority were autoregulating according to these parameters, those 

patients who demonstrated poor pressure autoregulation might be more prone to 

develop parenchymal damage. In these patients, NPH might be more parenchymal in 

aetiology. However concepts of cerebral autoregulation are probably naïve as 
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demonstrated using a three-dimensional FE analysis model of stress distribution 

during changes in CSF pressure.  

 

While the change from normal ventricular geometry to ventriculomegaly was not 

modelled in this thesis, previous studies of such changes have confirmed that these 

regions are those that undergo maximum pressure during ventricular dilation. (Péna et 

al., 1999 & 2002a) It may be postulated that the clinical changes observed in NPH are 

a consequence of ventricular dilation and the effects of such changes on the basal 

ganglia and thalamus. Alternatively, vascular changes in these regions, supplied by 

lenticulostriate vessels, being particularly prone to hypertensive vascular changes, 

may institute an alteration in the viscoelastic properties of the brain with a subsequent 

reduction in its ability to resist the prevailing pressure of the CSF. 

 

Finally, DTI  revealed that globally there is a relative decrease in anisotropic regions 

within the brain. This probably reflects loss of microstructural integrity secondary to 

demyelination and axonal loss. However, the distribution of anisotropic changes is 

heterogeneous. While the corpus callosum and frontal and occipital white matter 

regions demonstrate loss of anisotropy, there was an increase in anisotropy in white 

matter regions lateral to the ventricles such as the corona radiata. This supports the 

role of compression in the regions lateral to the bodies of the lateral ventricles; a 

possible mechanism of gait disturbance (Yakovlev, 1947). Furthermore, the trace was 

increased in periventricular regions. This included the periventricular white matter 

surrounding the frontal and occipital horns as well as the deep gray matter nuclei; the 

thalamus and head of caudate. These results suggest that there is a significant 

transependymal seepage of CSF in patients with NPH. This may be aetiologically 
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related to the reduction in CBF observed in these structures in the CBF studies. 

Alternatively, the increase in trace may be due to microstructural changes as a result 

of cerebrovascular disease 

 

7.5 Implications for Management of NPH 

The implications of these results is that there may well be a population of idiopathic 

NPH patients with mild CSF circulation disturbance and a more pronounced alteration 

in the viscoelastic properties of the parenchyma. Between the two extremes may exist 

a spectrum of patients with varying components of parenchymal and CSF circulation 

pathology. Indeed, the only way in which the paradox of ventricular enlargement with 

normal CSF pressure, in the adult, can be resolved if is both the parenchyma and the 

CSF circulation are considered together. 

 

Generally, the aim of CSF shunting in patients with NPH is to reduce the Rcsf to a 

normal value. However, even a normal CSF pressure and Rcsf may be too high for a 

brain in which the viscoelastic properties have been altered to render it more 

compliant than normal. In view of the results, hydrodynamically, the aim of CSF 

shunting should be to reduce CSF pressure and Rcsf to values that are appropriate for 

the viscoelastic properties of the brain of that particular patient. Achievement of this 

aim should be reflected in the reduction of ventricular size and, hopefully, clinical 

improvement. This means that the valve characteristics of shunts should be tailored to 

the individual patient. Patients in whom Rcsf is very high may benefit from a valve 

with a relatively normal resistance value. However, a patient with a marginally 

elevated Rcsf but a significant parenchymal pathology may need a valve that will allow 

CSF pressure to reach very low levels.  
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Although elastance, compliance and pressure-volume indices of the brain may be 

estimated using the computerised CSF infusion studies and similar methods, further 

methods to examine the viscoelastic properties of the brain need to be established. It 

must be appreciated that NPH consists of a collection of patients with heterogeneous 

pathologies but a common characteristic clinical syndrome. In view of this, perhaps 

the quest for a predictive test in NPH is a naïve and characterization of all components 

of the disorder in an individual patient requires consideration. 

 

7.6 Future Studies 

The studies presented in this thesis have given origin to a number of further projects. 

CSF infusion studies are a routine part of clinical practice at both Addenbrooke’s 

Hospital and Royal Prince Alfred Hospital. Further analysis of this data continues. 

Studies of changes in CBF with changes in CSF pressure on a voxel-by-voxel basis 

have begun. This is being combined with FE analysis in order to correlate the changes 

in CBF with various values of physical stress within these voxels. In order to perform 

this accurately a number of technical limitations have to be overcome. Solutions are 

currently being sought. Further development of the MR tractography using the DTI 

data is in progress. 

 

In terms of outcome, the key in predicting the results of CSF shunting is in being able 

to define the brain parenchymal properties and in being able to differentiate between 

different pathologies. Studies aimed at answering issue need large numbers of well-

defined patients. Development of DTI with increased numbers of patients will also be 

helpful, especially in relation to degrees of compression of structures such as the 
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corona radiata, as shown in this thesis. Further possibilities for examining the role of 

the parenchyma are being investigated and include the use of MR elastography.  

 

Current approaches to predicting of CSF shunt response involve single parameters or 

‘tests’. More sophisticated approaches aimed at developing a better understanding of 

the pathophysiology of the condition overall and in individual patients are likely to be 

more successful. In addition, studies must give more emphasis to the valve type used 

in different patients when shunt response is being assessed. 

 

7.7 Conclusions 

In regard to pathophysiology, NPH is a clinical condition which consists of two inter-

related components. It is a CSF circulation disorder but it is also a disorder of brain 

parenchyma. The properties of the brain parenchyma are altered in terms of its 

physical or viscoelastic properties. There is loss of microstructural integrity in some 

white matter regions and there is probably transependymal passage of CSF in 

periventricular regions. Ventricular enlargement compromises the corticospinal tracts.  

The brain parenchyma is also altered functionally as demonstrated by changes in CBF 

and, in some patients, loss of autoregulatory capacity. The ability of the brain to resist 

both physical stress and physiological stress are reduced. Refinement of the diagnosis 

and treatment of NPH depends on consideration of the pathophysiology of the CSF 

circulation and brain parenchyma as well as their interaction. 

 

NPH remains important as a potentially reversible cause of dementia and gait 

disturbance, especially in the elderly. With an ageing population and increased 

recognition of the condition, it is likely to form an increasing proportion of 
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neurosurgical practice. The clinician’s ability to manage patients with this condition is 

aided by the ability to investigate CSF dynamics using techniques such as CSF 

infusion studies. Improvements, knowledge of the condition and in the quality of care 

are most likely to come from the further investigation of the contribution of the 

parenchyma to the pathogenesis of NPH. Continued application and refinement of the 

techniques presented here, along with the development of new techniques is currently 

in progress in order address the issues raised in this thesis. 
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Appendix B 

Basis of Diffusion Tensor MR Imaging and Analysis 

 

Diffusion and its Measurement using NMR 

Diffusion is a normal physical process exhibited in biological systems. The ability to 

measure diffusion in vivo has been provided by relatively new MR imaging 

techniques that do not interfere with the process itself, that is, diffusion weighted 

(DWI) and diffusion tensor imaging (DTI). Images generated using these techniques 

allow information regarding both microstructure and physiology to be elucidated.  

 

Diffusion may be defined as the random motion of a molecule in a fluid due to its 

intrinsic kinetic energy. Diffusion may occur along a concentration gradient (bulk 

diffusion) but also occurs in the absence of such a gradient. In the case of water this is 

known as the ‘self-diffusion’ of water. The thermal energy of water molecules is 

transferred to kinetic energy such that water molecules are in constant random 

(Brownian) motion. Collisions and other interactions between molecules mean that 

each molecule is constantly being deflected and rotated so that the position and 

orientation of each molecule changes in a random way. After a series of random 

movements, the distance r from the starting point will vary with time t and the 

diffusion coefficient D. The diffusion coefficient can be incorporated into a 

conditional probability relationship. The probability may be denoted by P(r2, r1, t) is 

the conditional Gaussian probability of finding a particular molecule at a distance r1 

between positions r2 and r2 + dr2 after a time t. For three-dimensional free diffusion 

the distribution is given by: 
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The quantification of the diffusion coefficient using NMR is dependent on Gaussian 

nature of this distribution. 

 

When the RF pulse is applied to a voxel of water molecules, the hydrogen nuclei (or 

spins) are tipped from the state of longitudinal magnetization to the transverse state. 

The spins precess with a frequency proportional to the local field strength. Each spin 

precesses around its local field with a given phase and creates a small signal. In the 

case of a spin moving through a non-uniform magnetic field the magnetization after a 

time t depends on the history of magnetic fields felt by the spin. The field at the spin 

could vary for two reasons: 1) as the water molecule tumbles, the orientation of the 

spin relative to another nearby magnetic moment changes, creating a change in the 

magnetic field, or 2) the spin diffuses into another region where the field is different. 

The first effect is the basis for T2 relaxation, and the second is more directly related to 

displacements caused by diffusion.  

 

If an individual spin is considered, the variation with time of the magnetic field at the 

spin may be approximated by imagining that the molecular motions (tumbling and 

displacement) take place in small jumps. The spin may be pictured as “sitting” in a 

constant field B, for a short time ∆t and then jumping to a new field B2 and remaining 

in that field for the same time ∆t. In each instant ∆t the spin precesses at a rate set by 

the current value of B and acquires a phase increment tGγφ =∆  where γ is the 

gyromagnetic ratio for the proton. The final phase value after a time t is the sum of 
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these phase increments. But because each phase increment is proportional to the 

current value of B, the final phase φ is the same as it would have been if the spin felt 

only the average field Bav for the total time t. 

 ∫ ==
t

avtBdtB
0

. γγφ  

 

In diffusion NMR imaging, a gradient pulse is applied that encodes the spins in each 

voxel with a spatially varying resonant frequency. For static spins there would be 

characteristic phase dispersion which could be easily re-phased. However, if the spins 

are diffusing within that voxel, the phase dispersion become more complicated and 

incoherent with time as the spins randomly translate with varying velocities along the 

direction of the applied gradient. At the end of the elapsed time t there is a 

distribution of phase values for the signals from different spins because each spin has 

experienced a different Bav. The standard deviation φσ  of the final phase values is 

thus age field felt by a nucleus:  

( ) 222
Bt σγσ φ ==  

The standard deviation φσ  of the phase distribution p(φ) can be thought of as a 

measure of the width of the distribution. Thus the effect of diffusion is to increase the 

variance of the intra-voxel phase dispersion although the average phase remains zero. 

The result of this increase in phase dispersion is signal attenuation. This is due to 

destructive interference from the phase dispersed spins within that voxel. Thus when 

φσ  is large, the net signal is strongly attenuated when the individual signals are 

added.  
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A basic diffusion sensitive sequence is that of the Stejskal & Tanner (1965) 

experiment which is that of a simple bipolar pulsed gradient. An initial 90 degree 

radio-frequency (RF) pulse creates coherent transverse magnetisation. Application of 

a gradient G along induces a phase shift in spins which is dependent on the position of 

those spins along the direction of the gradient. The phase shifts are reversed by the 

180 degree RF pulse. If spins do not diffuse during this time then this RF pulse would 

re-phase the spins after the second gradient pulse resulting in an echo at TE. However, 

due to diffusion since the time of the first RF pulse, the 180 RF pulse does not result 

in re-phasing of all spins. Instead there is phase dispersion and the subsequent echo is 

weaker, that is, the signal is attenuated. 

 

For an ensemble of spins, the signal attenuation is a function of phase dispersion and 

the conditional probability expression ( )trrP ,, 12  (Le Bihan, 1995) Signal attenuation 

is thus related to the diffusion coefficient. It is important to appreciate also that this is 

quite different from bulk coherent motion in which the overall phase signal will shift 

but the NMR signal will not be attenuated. The Stejskal-Tanner equation (Stejskal and 

Tanner, 1965) describes the relationship between these factors assuming the Gaussian 

form of the probability term. 
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where ( )δ,, ∆GS  and ( )0S  are the signals of the diffusion and non-diffusion sensitive 

gradients. The gradient amplitude G, time interval between gradients ∆  and  the 

gradient duration δ  can be expressed as a b-value (time/length2). The equation 

becomes: 

 ( ) ( ) ( )bDSbS −= exp0  
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The validity of this expression is limited to homogenous materials with isotropic 

diffusion properties which is not the case in biological materials. It also neglects the 

effects of the imaging gradients.  

 

To obtain a map of the diffusion coefficient, images may be acquired using a range of 

b-values and fitting a curve based on the above equation on a pixel-by-pixel basis. In 

the simplest case, measurement of D requires measurement of attenuation for two 

different b values. However, it is often desirable to have more data points to increase 

the precision and allow investigation of more complex systems in which the signal 

decay may not be a single exponential. In chapter 6 the measurement of D for each 

direction was obtained using 5 different b-values equally spaced between bmin  = 318 

s/mm2 to bmax = 1541s/mm2 as well as b(0) thus yielding 6 points to which the 

attenuation curve could be fitted. 

 

Diffusion in Biological Tissue 

In biological tissues diffusion is more complex. Structures such as cell membranes, 

myelin sheaths and even large proteins restrict the diffusion of water. The complexity 

of diffusion in a biological system can only be approximated using diffusion theory 

and NMR imaging. A consequence of restricted diffusion in biological systems is that 

the alteration in attenuation as a result of diffusion in different regions can be used to 

gain information regarding the microstructures and physiology of various regions. The 

alteration in NMR signal due to restricted diffusion is less than that in free diffusion. 

This is because the average field felt by the restricted molecule is less varied than that 

felt by the free molecule. 
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Water in biological tissues is compartmentalised, for example, between intra- and 

extracellular compartments. In addition, within the intracellular compartment, water is 

further compartmentalised between cytoplasm and organelles. Water is continuously 

being exchanged between the various compartments. If the exchange between the 

compartments is fast then the diffusion attenuation curve will approximate a single 

exponential. If the exchange is slow, the signal attenuation curve will be that of a 

multi-exponential. The reality is likely to be intermediate between the two situations. 

In addition it must be realised that the molecular environment within various 

compartments is likely to differ such that intracellular T2 is expected to be 

significantly smaller than in the intracellular compartment. Generally the multi-

exponential behaviour is not observed and a single exponential is usually fitted. To 

acknowledge these differences between theoretical and observed measurements of 

diffusion a volume average apparent diffusion coefficient (ADC) is normally 

measured. 

 

When the possibility of diffusion is equal in all directions this may be termed 

isotropic diffusion. This is the case in a freely diffusible medium. However when 

diffusion is restricted, it is usually more restricted in one direction than another. The 

possibility of diffusion not being equal in all directions is termed anisotropic 

diffusion. Such anisotropic diffusion is classically seen in several tissues such as the 

cerebral white matter where diffusion is greater parallel to, rather than perpendicular 

to, white matter fibres. There are many implications of such anisotropy. Most 

importantly it allows us to acquire information about the microstructural integrity of 

various tissues. However in order to do this properly, measurement of diffusion in 
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multiple directions is required, that is, diffusion must be considered as a tensor rather 

than scalar (vide infra). 

 

Diffusion Weighted Imaging (DWI) 

Diffusion weighted imaging relies on the addition of diffusion sensitive gradients as 

described above. In DWI these gradients are generally applied in one, two or three 

directions. An ADC value is provided for each of the directions imaged. In tissues 

with anisotropic diffusion, if diffusion is measured in one direction only then the 

resulting ADC will be almost totally dependent on the orientation of the axis along 

which diffusion is measured in relation to the orientation of the tissue (or fibres) 

(Chenevert et al., 1990). Measuring diffusion in three orthogonal directions does not 

completely overcome this problem. The measurements only apply to the laboratory 

frame of reference and are therefore dependent on 1) the number and directions of 

diffusion measurements, and 2) the orientation of the tissue with respect to the magnet 

and diffusion gradients.  

 

Diffusion Tensor Imaging (DTI) 

Full characterisation of diffusion to avoid the problems outlined above depends on 

acquiring the components of the diffusion tensor. This is possible through echo-planar 

imaging (EPI) which is very suited to diffusion imaging with very short acquisition 

times.  

 

The diffusion tensor D  is a Cartesian tensor with nine components and can be written 

in the form of a matrix ijD .  
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The mathematical formalism of the diffusion tensor can also be applied to signal 

attenuation in NMR.  
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where bij (b-matrix) represents the matrix of b-values and their applied directions. It 

also incorporates the effects of interactions between the imaging and diffusion 

sensitising gradients which must be taken into account when calculating the tensor 

from the diffusion values. 

 

Thus the general description of three-dimensional diffusion depends on the diffusion 

tensor D . An important property of the tensor is that it is symmetric (i.e., Dij =Dji,), so 

that there are only six different components. This theoretically reduces the 

experimental time necessary to determine the tensor D . The components of D  can be 

estimated experimentally using seven measurements: six for each of the unique 

components of Dij and one for b(0). In order to increase the accuracy of diffusion 

tensor calculation diffusion gradients may be applied in more directions. In chapter 6 

diffusion gradients were applied in 12 directions for each b-value.   

 

The shape of the acquired tensor will vary with diffusion. For isotropic materials the 

tensor will describe a sphere. Any anisotropy contained in the tensor will describe an 

ellipsoid. Thus the diffusion tensor can be visualised as a diffusion ellipsoid (Figure 

A.C.1). The surface of this three-dimensional structure corresponds to a constant 
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translational displacement probability for a given diffusion time. The diffusion 

ellipsoid has been used a method visualising the tensor for each voxel in DTI analysis 

but is often impractical. There are also the difficulties of visualising a three 

dimensional object in two dimensions. These problems and the methods used to 

overcome them are described below and in the subsequent chapters.  

 

 

 

The principal axes ( )321 ,, εεε  of the ellipsoid are those of the mean effective diffusive 

displacements along the principal axes of the tensor. These principal axes will not 

normally correspond to the arbitrary coordinate system (x,y,z) used to measure the 

Diffusion Tensor MR Imaging
Trace & Anisotropy

Isotropic Anisotropic

Low Trace

High Trace

White matter tractsGray matter & CSF

Figure A.C.1: Illustration of the concept of the diffusion 
ellipsoid. If diffusion is isotropic it defines a sphere, the size of 
which is determined by the amount of diffusion (trace). If 
diffusion is anisotropic then an ellipsoid is defined, the size of 
which is also determined by the amount of diffusion (trace).  
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diffusion tensor. However, the principal axes and diffusivities can be calculated by 

diagonalising the tensor and computing the eigenvectors and eigenvalues. For the 

diagonalised tensor 

Λ== EEDD av  where ( )321 ,, εεεE  and 
⎥
⎥
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The eigenvalues themselves are valuable in that they estimate the size and shape of 

the tensor. If the three eigenvalues are equal, the diffusion tensor is spherical and 

diffusion is isotropic. Unequal eigenvalues indicate anisotropy and their relative 

values may correspond to certain paradigms of anisotropy. For instance, if 

321 λλλ =>>  then the tensor is ‘cigar’ shaped. Alternatively, if 321 λλλ =<< , then 

the diffusion ellipsoid will be ‘disc’ shaped. 

 

From the diagonalised tensor, scalar invariant measures may be derived. The value of 

these invariants is that they are unchanged with rotation or translation of the tensor 

relative to an arbitrary frame of reference. Thus they are particularly useful to 

describe apparent diffusion characteristics in MR imaging (vide infra). 

 

Scalar Invariants of the Diffusion Tensor 

Through algebraic transformation of the tensor matrix scalar invariant measures of 

diffusion may be derived. These scalar measurements do not vary with rotation or 

translation of the tensor. They describe both the size and the shape of the tensor and 

hence the amount of diffusion and any apparent direction-dependent restriction of 

diffusion. Invariants that have found application in the field of DTI analysis are the 

trace, the fractional anisotropy and the relative anisotropy. 
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The derivation of the trace is straight forward. It is simply the sum of the principal 

eigenvalues. 

 ( ) sDTrace λλλ ++= 21  

It is a measure of the ‘amount’ of diffusion and is related to the average diffusion by 

 ( )
3

DTraceDav =  

Derivation of the other invariants is somewhat more complex and is best appreciated 

with reference to principal space. 

 

Principal Space & Derivation of the Anisotropy Indices 

A tensor D  may be represented by plotting its eigenvalues on a principal (Haigh-

Westerguard) space diagram. Each eigenvalue is plotted along the principal axes as in 

Figure A.C.2. Thus a point ( )'
3

'
2

'
1 ,, λλλD  is defined in principal space for the tensor 

D . By joining this line to the origin, the tensor may be represented by a vector. In this 

principal space diagram, an isotropic line may also be defined along which the 

eigenvalues must be equal sλλλ == 21  . 

 



 200

 

 

The diffusion tensor D   is composed of isotropic p and anisotropic (or deviatoric) 

parts q. The isotropic part of the tensor may be defined as the product of the average 

diffusion λ  and the isotropic identity tensor I  

 Ip λ=  

where: 
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The anisotropic component of the tensor is may be defined as: 

 IDq λ−=  

Therefore:  

Figure A.C.2: The principal space diagram that may be used to plot the 
diffusion tensor (D). The axes define each of the eigenvalues. 
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( )IDID λλ −+=  

In the principal space diagram this can be demonstrated as in Figure A.C.3. The 

isotropic part is represented by a vector which lies on the isotropic line. The 

anisotropic part of the is represented by another vector perpendicular to the isotropic 

line such that the three vectors form a triangle 

 

 

 

The magnitude of a tensor is given by the square root of the (scalar) generalised tensor 

product or tensor dot product 

DDD :=  

2
3

2
2

2
1: λλλ ++=DD  

Thus for the isotropic part of the tensor 

Figure A.C.3: When the diffusion tensor D has been plotted in principal 
space then the isotropic component p, and the anisotropic component q are 
represented in relation to the isotropic line. 
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IIII :: λλλ =  

For the isotropic identity tensor the eigenvalues are equal to 1. Thus: 

3: λλ == IIp   

The anisotropic part of the tensor can be defined as 

( ) ( ) ( )λλλλλλ −+−+−= 321q  

thus 
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Relative anisotropy (RA) is defined as the ratio of anisotropic diffusion to isotropic 

diffusion. Thus, RA may be defined as: 

p
qRA =  
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In defining fractional anisotropy the principal space diagram is most useful (Figure 

A.C.4). At a point A, that is, where the isotropic and anisotropic diffusion vectors 

meet, a  plane is constructed perpendicular to the isotropic line. This plane is known 

as the π-plane or deviatoric plane. The anisotropic diffusion component of diffusion 

lies within this plane. The plane allows for comparison of the eigenvalues without 

compromising mathematical integrity. When comparing eigenvalues or tensors, it is 

their projection onto this plane which is most important rather than their actual values. 

The projection of these values onto the π-plane is best appreciated by rotating the axes 
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such that the isotropic line is viewed straight on and hence from this perspective it 

becomes a point (Figure A.C.5). 
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Figure A.C.4: The π-plane in the principal space diagram is 
perpendicular to the isotropic line.

Figure A.C.5: The diffusion tensor can be represented by its 
projection into the π-plane.
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Figure A.C.4: The π-plane in the principal space diagram is 
perpendicular to the isotropic line.

Figure A.C.5: The diffusion tensor can be represented by its 
projection into the π-plane.
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As the axes and π-plane and the principal axes make 3
2cos 1−  then the projected 

eigenvalues are 321 3
2,3

2,3
2 λλλ   Hence the projection of D  is also D3

2 .  

 

Fractional anisotropy (FA) is defined as the ratio of anisotropic diffusion to total 

diffusion.. Thus FA may be defined as: 

D
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Maps of these invariants can be calculated on the basis of the eigenvalues of each 

voxel to display information regarding regional diffusion and anisotropy. Measures of 

anisotropy and in particular the direction of the principal eigenvectors also serve as a 

basis from the technique of MR tractography. A disadvantage of the invariants is that 

information regarding the symmetry of the tensor is lost. In order to answer this 

question, the eigenvalues themselves must be considered. 
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