444 research outputs found

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Towards a heterogeneous mist, fog, and cloud based framework for the Internet of Healthcare Things

    Get PDF
    Rapid developments in the fields of information and communication technology and microelectronics allowed seamless interconnection among various devices letting them to communicate with each other. This technological integration opened up new possibilities in many disciplines including healthcare and well-being. With the aim of reducing healthcare costs and providing improved and reliable services, several healthcare frameworks based on Internet of Healthcare Things (IoHT) have been developed. However, due to the critical and heterogeneous nature of healthcare data, maintaining high quality of service (QoS) -in terms of faster responsiveness and data-specific complex analytics -has always been the main challenge in designing such systems. Addressing these issues, this paper proposes a five-layered heterogeneous mist, fog, and cloud based IoHT framework capable of efficiently handling and routing (near-)real-time as well as offline/batch mode data. Also, by employing software defined networking and link adaptation based load balancing, the framework ensures optimal resource allocation and efficient resource utilization. The results, obtained by simulating the framework, indicate that the designed network via its various components can achieve high QoS, with reduced end-to-end latency and packet drop rate, which is essential for developing next generation e-healthcare systems

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    An m-health application for cerebral stroke detection and monitoring using cloud services

    Full text link
    [EN] Over 25 million people suffered from cerebral strokes in a span of 23 years. Many systems are being developed to monitor and improve the life of patients that suffer from different diseases. However, solutions for cerebral strokes are hard to find. Moreover, due to their widespread utilization, smartphones have presented themselves as the most appropriate devices for many e-health systems. In this paper, we propose a cerebral stroke detection solution that employs the cloud to store and analyze data in order to provide statistics to public institutions. Moreover, the prototype of the application is presented. The three most important symptoms of cerebral strokes were considered to develop the tasks that are conducted. Thus, the first task detects smiles, the second task employs voice recognition to determine if a sentence is repeated correctly and, the third task determines if the arms can be raised. Several tests were performed in order to verify the application. Results show its ability to determine whether users have the symptoms of cerebral stroke or not.This work has been partially supported by the pre-doctoral student grant "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)" by the "Ministerio de Educacion, Cultura y Deporte", with reference: FPU14/02953.García-García, L.; Tomás Gironés, J.; Parra-Boronat, L.; Lloret, J. (2019). An m-health application for cerebral stroke detection and monitoring using cloud services. International Journal of Information Management. 45:319-327. https://doi.org/10.1016/j.ijinfomgt.2018.06.004S3193274

    InContexto: Multisensor Architecture to Obtain People Context from Smartphones

    Get PDF
    The way users intectact with smartphones is changing after the improvements made in their embedded sensors. Increasingly, these devices are being employed as tools to observe individuals habits. Smartphones provide a great set of embedded sensors, such as accelerometer, digital compass, gyroscope, GPS, microphone, and camera. This paper aims to describe a distributed architecture, called inContexto, to recognize user context information using mobile phones. Moreover, it aims to infer physical actions performed by users such as walking, running, and still. Sensory data is collected by HTC magic application made in Android OS, and it was tested achieving about 97% of accuracy classifying five different actions (still, walking and running).This work was supported in part by Projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029- C02-02.Publicad
    • …
    corecore