197 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    The Human Connectome Project's neuroimaging approach

    Get PDF
    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoĂŁoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de décès en Amérique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant épidémie d’obésité entraînée par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de conséquences pour les personnes affectées, mais aussi sur le système de santé. La principale cause de morbidité et de mortalité chez ces patients est l’athérosclérose, une accumulation de plaque à l’intérieur des vaisseaux sanguins à hautes pressions telles que les artères coronaires. Les lésions athérosclérotiques peuvent entraîner l’ischémie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mène souvent à de graves conséquences telles qu’un infarctus. Outre les problèmes liés à la sténose, les parois artérielles des régions criblées de plaque augmentent la rigidité des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pédiatrique, la pathologie cardiovasculaire acquise la plus fréquente est la maladie de Kawasaki. Il s’agit d’une vasculite aigüe pouvant affecter l’intégrité structurale des parois des artères coronaires et mener à la formation d’anévrismes. Dans certains cas, ceux-ci entravent l’hémodynamie artérielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectués à l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en séries suite à l’infusion artérielle d’un agent de contraste. Ces images révèlent la lumière des vaisseaux sanguins et la présence de lésions potentiellement pathologiques, s’il y a lieu. Parce que les séries acquises contiennent de l’information très dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et déplacement d’organes), le clinicien base généralement son interprétation sur une seule image angiographique où des mesures géométriques sont effectuées manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit fréquemment utilisé partout dans le monde et souvent considéré comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalité d’imagerie est malheureusement très limitante en termes de spécification géométrique des différentes régions pathologiques. En effet, la structure tridimensionnelle des sténoses et des anévrismes ne peut pas être pleinement appréciée en 2D car les caractéristiques observées varient selon la configuration angulaire de l’imageur. De plus, la présence de lésions affectant les artères coronaires peut ne pas refléter la véritable santé du myocarde, car des mécanismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Brachial plexus delineation in intensity modulated radiotherapy treatment planning

    Get PDF

    Image Processing and Simulation Toolboxes of Microscopy Images of Bacterial Cells

    Get PDF
    Recent advances in microscopy imaging technology have allowed the characterization of the dynamics of cellular processes at the single-cell and single-molecule level. Particularly in bacterial cell studies, and using the E. coli as a case study, these techniques have been used to detect and track internal cell structures such as the Nucleoid and the Cell Wall and fluorescently tagged molecular aggregates such as FtsZ proteins, Min system proteins, inclusion bodies and all the different types of RNA molecules. These studies have been performed with using multi-modal, multi-process, time-lapse microscopy, producing both morphological and functional images. To facilitate the finding of relationships between cellular processes, from small-scale, such as gene expression, to large-scale, such as cell division, an image processing toolbox was implemented with several automatic and/or manual features such as, cell segmentation and tracking, intra-modal and intra-modal image registration, as well as the detection, counting and characterization of several cellular components. Two segmentation algorithms of cellular component were implemented, the first one based on the Gaussian Distribution and the second based on Thresholding and morphological structuring functions. These algorithms were used to perform the segmentation of Nucleoids and to identify the different stages of FtsZ Ring formation (allied with the use of machine learning algorithms), which allowed to understand how the temperature influences the physical properties of the Nucleoid and correlated those properties with the exclusion of protein aggregates from the center of the cell. Another study used the segmentation algorithms to study how the temperature affects the formation of the FtsZ Ring. The validation of the developed image processing methods and techniques has been based on benchmark databases manually produced and curated by experts. When dealing with thousands of cells and hundreds of images, these manually generated datasets can become the biggest cost in a research project. To expedite these studies in terms of time and lower the cost of the manual labour, an image simulation was implemented to generate realistic artificial images. The proposed image simulation toolbox can generate biologically inspired objects that mimic the spatial and temporal organization of bacterial cells and their processes, such as cell growth and division and cell motility, and cell morphology (shape, size and cluster organization). The image simulation toolbox was shown to be useful in the validation of three cell tracking algorithms: Simple Nearest-Neighbour, Nearest-Neighbour with Morphology and DBSCAN cluster identification algorithm. It was shown that the Simple Nearest-Neighbour still performed with great reliability when simulating objects with small velocities, while the other algorithms performed better for higher velocities and when there were larger clusters present

    Towards a theory for pattern formation in reaction-diffusion systems

    Get PDF

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications
    • …
    corecore