103 research outputs found

    Bifurcation diagrams and global phase portraits for some hamiltonian systems with rational potentials

    Get PDF
    In this paper, we study the global dynamical behavior of the Hamiltonian system áș‹ = Hy(x,y), áș=−Hx(x,y) with the rational potential Hamiltonian H(x,y) = y2/2 + P(x)/Q(y), where P(x) and Q(y) are polynomials of degree 1 or 2. First we get the normal forms for these rational Hamiltonian systems by some linear change of variables. Then we classify all the global phase portraits of these systems in the PoincarĂ© disk and provide their bifurcation diagrams

    Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach

    Get PDF
    We perform a bifurcation analysis of normal–internal resonances in parametrised families of quasi–periodically forced Hamiltonian oscillators, for small forcing. The unforced system is a one degree of freedom oscillator, called the ‘backbone’ system; forced, the system is a skew–product flow with a quasi–periodic driving with basic frequencies. The dynamics of the forced system are simplified by averaging over the orbits of a linearisation of the unforced system. The averaged system turns out to have the same structure as in the well–known case of periodic forcing ; for a real analytic system, the non–integrable part can even be made exponentially small in the forcing strength. We investigate the persistence and the bifurcations of quasi–periodic –dimensional tori in the averaged system, filling normal–internal resonance ‘gaps’ that had been excluded in previous analyses. However, these gaps cannot completely be filled up: secondary resonance gaps appear, to which the averaging analysis can be applied again. This phenomenon of ‘gaps within gaps’ makes the quasi–periodic case more complicated than the periodic case

    Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with Stepwise Potential

    Get PDF
    We prove the existence and multiplicity of periodic solutions as well as solutions presenting a complex behavior for the one-dimensional nonlinear Schrödinger equation -Δ2uâ€Čâ€Č+V(x)u=f(u), where the potential V(x) approximates a two-step function. The term f(u) generalizes the typical p-power nonlinearity considered by several authors in this context. Our approach is based on some recent developments of the theory of topological horseshoes, in connection with a linked twist maps geometry, which are applied to the discrete dynamics of the PoincarĂ© map. We discuss the periodic and the Neumann boundary conditions. The value of the term Δ>0, although small, can be explicitly estimated

    Dynamics of biologically informed neural mass models of the brain

    Get PDF
    This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von Computermodellen zum VerstĂ€ndnis von Hirnfunktionen dar. Es wird die mittlere AktivitĂ€t eines Hirnareals analytisch einfach und dabei biologisch plausibel modelliert. Auf Grundlage eines Neuronalen Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B. durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte ZustandsĂ€nderungen) als geordnete Folge beschrieben und ResonanzphĂ€nomene in einem Photic-Driving-Experiment erklĂ€rt. Dieses NMM kann sehr komplexe Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche hervorbringen. Um das Verhalten abzuschĂ€tzen, wird das NMM als Funktion konstanter EingangsgrĂ¶ĂŸen und charakteristischer Zeitenkonstanten vollstĂ€ndig auf Bifurkationen untersucht und klassifiziert. Dies ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um komplexe PhĂ€nomene durch Prozesse verschiedener Zeitskalen darzustellen. Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von NeuronenverbĂ€nden die EingangsgrĂ¶ĂŸen hĂ€ufig periodisch sind, wird das Verhalten des NMM als Funktion der IntensitĂ€t und Frequenz einer periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der Zeitreihen charakterisiert. Auf der Basis der grĂ¶ĂŸten Lyapunov-Exponenten wird das NMM mit dem Photic-Driving-Experiment ĂŒberein gebracht. Dieses Experiment findet routinemĂ€ĂŸige Anwendung in der Diagnostik verschiedener Erkrankungen wie Epilepsie, MigrĂ€ne, Schizophrenie und Depression. Durch die Anwendung des vorgestellten NMM wird der fĂŒr die Diagnostik entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen fĂŒr eine Verbesserung der Indikation getroffen
    • 

    corecore