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We prove the existence and multiplicity of periodic solutions as well as solutions presenting a complex behavior for the one-
dimensional nonlinear Schrödinger equation −𝜀2𝑢󸀠󸀠 + 𝑉(𝑥)𝑢 = 𝑓(𝑢), where the potential 𝑉(𝑥) approximates a two-step function.
The term 𝑓(𝑢) generalizes the typical 𝑝-power nonlinearity considered by several authors in this context. Our approach is based
on some recent developments of the theory of topological horseshoes, in connection with a linked twist maps geometry, which are
applied to the discrete dynamics of the Poincaré map. We discuss the periodic and the Neumann boundary conditions. The value
of the term 𝜀 > 0, although small, can be explicitly estimated.

1. Introduction

In a recent paper [1] we have proved the existence of chaotic
dynamics associated with a class of second order nonlinear
ODEs of Schrödinger type of the form

−𝑢󸀠󸀠 − 𝜇𝑢 + 𝑔 (𝑥) 𝑢3 = 0, (𝜇 > 0) (1)

for 𝑔(𝑥) a positive periodic coefficient. The study of such
equation was motivated by previous works on some models
of Bose-Einstein condensates considered in [2–4].

Amore classical form ofNonlinear Schrödinger Equation
(NLSE fromnowon)which has been studied bymany authors
is given by

𝑖ℏ𝜕𝜓𝜕𝑡 = − ℏ
2

2𝑚Δ𝜓 + ] (𝑥) 𝜓 − 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨𝑝−1 𝜓, 𝑥 ∈ R𝑁, (2)

where ℏ denotes the Planck constant, 𝑖 is the imaginary unit,𝑚 is a positive constant, ](𝑥) is the potential, and 𝑝 > 1.
The search of stationary waves, namely, solutions of the form𝜓(𝑡, 𝑥) = exp(𝑖𝜆ℏ−1𝑡)𝑢(𝑥), where 𝜆 ∈ R and 𝑢(𝑥) is a real
valued function, leads to the study of

− ℏ22𝑚Δ𝑢 + (] (𝑥) + 𝜆) 𝑢 = |𝑢|𝑝−1 𝑢. (3)

This latter equation, which is usually written as

−𝜀2Δ𝑢 + 𝜆𝑢 + ] (𝑥) 𝑢 = |𝑢|𝑝−1 𝑢, 𝜀 > 0 (4)
or equivalently (by a standard rescaling) as

−Δ𝑢 + 𝜆𝑢 + ] (𝜀𝑥) 𝑢 = |𝑢|𝑝−1 𝑢, 𝜀 > 0, (5)
has motivated a great deal of research from different points
of view (see, for instance, [5–11] just to quote a few classical
contributions among a very large and constantly increasing
literature on the subject). The case of a periodic potential has
been considered as well (see [12, 13]).

In various articles, the hypothesis 𝜆 > − inf ] has been
assumed. Setting 𝑉(𝜉) fl 𝜆 + ](𝜉), this is equivalent to
consider the equation

Δ𝑢 − 𝑉 (𝜀𝑥) 𝑢 + |𝑢|𝑝−1 𝑢 = 0, 𝜀 > 0, (6)
with 𝑉(⋅) a positive weight function.

Looking at (6) in one-dimension, we can interpret it
as a slowly varying perturbation of the planar Hamiltonian
system

𝑢󸀠 = 𝑦,
𝑦󸀠 = 𝑉𝑢 − |𝑢|𝑝−1 𝑢 (7)
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Figure 1: Energy level lines of system (7) in the phase-plane (𝑢, 𝑢󸀠),𝑢 ≥ 0, for 𝑉 = 1, and 𝑝 = 3. A darker color represents a lower value
of the energy of the orbits.

which presents a hyperbolic equilibrium point (the origin
which is a saddle point) with a homoclinic orbit enclosing
a region that contains another equilibrium point which is
a (local) center (see Figure 1). Similar phase-portraits are
common in many different situations and it is known that
their perturbations can produce chaotic-like dynamics (see,
for instance, [14–18]).

Analogous equations appear in somemathematical mod-
els of nonlinear optics derived from Maxwell’s equations
[19]. For instance, in [20] the study of the propagation of
electromagnetic waves in layered media leads to the scalar
equation

𝑢󸀠󸀠 − 𝜆𝑢 + 𝜖 (𝑥, 12𝑢2)𝑢 = 0, 𝜆 > 0, (8)

where the dielectric function 𝜖(𝑥, 𝑠) takes into account the
presence of layers with different refractive indexes. A possible
choice of 𝜖(𝑥, 𝑠) for three layers (one “internal” and two
“external”) is given by

𝜖 (𝑥, 𝑠) = {{{
𝜖1 (𝑥, 𝑠) , |𝑥| ≤ 𝑑
𝜖2 (𝑠) , |𝑥| > 𝑑. (9)

For some other typical forms of 𝜖(𝑥, 𝑠), see [20] and the
references therein. Also this class of equations has been
widely investigated in the last decades [20–23].

Finally, we brieflymention another area of research where
similar equations arise, that is in the context of wave propa-
gation or stationary solutions for bistable reaction diffusion
equations in excitable media (see, for instance, [24–27] and
the references therein). In the above quoted papers, a typical
one-dimensional model equation takes the form

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑔 (𝑢, 𝑥) , (10)

where the function 𝑔(𝑢, 𝑥) is defined piecewise as follows:

𝑔 (𝑢, 𝑥)
= {{{

𝑓 (𝑢) , −∞ < 𝑥 ≤ 𝑥1, 𝑥2 < 𝑥 ≤ 𝑥3, . . . , 𝑥2𝑛 < 𝑥 < +∞
𝑔0 (𝑢, 𝑥) , otherwise

(11)

(see [26, 27] for different choices of 𝑔0(𝑠, 𝑥)). The kinetic
term is usually taken to be a Nagumo type cubic function

𝑓(𝑠) = 𝑠(1 − 𝑠)(𝑠 − 𝑎) (with 0 < 𝑎 < 1/2) or a McKean’s
piecewise linear reaction term [28]. Other possible variants
concern the equation

𝑢𝑡 = 𝐷 (𝑥) 𝑢𝑥𝑥 + 𝑔 (𝑢, 𝑥) , (12)

with𝐷(𝑥) a stepwise function [24].The case of periodicity in
the 𝑥-variable has been also considered. With this respect we
mention a paper of Keener [29], dealing with the equation

𝑢𝑡 = 𝐷𝑢𝑥𝑥 + (1 + 𝑔󸀠 (𝑥𝐿)) 𝑘𝑓 (𝑢) − 𝑘𝑎𝑢, (13)

where 𝑔(𝑥) is the so-called 1-periodic “sawtooth function”.
Analogous investigations have been addressed also in [30, 31].

In the present paper we restrict ourselves to the one-
dimensional case and we study a second order nonlinear
equation which is related to the models considered above.
More in detail, we deal with a class of equations of the form

−𝑢󸀠󸀠 + 𝑉 (𝑡) 𝑢 = 𝑞 (𝑡) 𝑓 (𝑢) , (14)

where, for notational convenience, we consider the indepen-
dent variable (which usually refers in the above quoted mod-
els as a space variable) as a time variable. Such a convention
is also motivated by the dynamical systems approach which
is followed in the present paper. The choice of introducing
two weight functions (that is, 𝑉(𝑡) for the linear part of the
equation and 𝑞(𝑡) for the nonlinear part) is useful in view of
dealing with the more general Schrödinger equation

−𝜀2Δ𝑢 + 𝜆𝑢 + ] (𝑥) 𝑢 = 𝐾 (𝑥) |𝑢|𝑝−1 𝑢 (15)

(previously considered in [32]).
The nonlinear term 𝑓(𝑠) in (14) is assumed to be a

continuously differentiable function and is chosen in order to
include, as a particular case, the polynomial nonlinearities
which usually appear in the context of the NLSEs (see
Section 2 for the precise assumptions on 𝑓(𝑠)). The main
hypothesis on the coefficients 𝑉(𝑡) and 𝑞(𝑡), which are
supposed to be nonnegative, is that they are close in the𝐿1-norm to stepwise functions. Such a particular choice
for the shape of the coefficients is mainly motivated by
mathematical convenience, as it permits to develop the proofs
in a simpler and more transparent way and thus to avoid
more complicated technicalities. However, it is interesting
to observe that second order equations or, more generally,
first order planar systems with piecewise constant coefficients
naturally appear in several applications, such as the theory
of switching control [33], electric or mechanical systems
[34, 35], periodically forced Nagumo equations [36], and
biological models subject to seasonal dynamics [37–39], as
well as in the context of NLSEs arising in nonlinear optics
[23] and inmathematical modelling of structures like crystals
or switches in optical fibers [40]. In this connection and
as already observed at the beginning of the Introduction,
stepwise periodic coefficients have been recently considered
also in some (Gross-Pitaevskii) equations describing the phe-
nomenon of Bose-Einstein condensation where the existence
of complex dynamics for 𝑢󸀠󸀠 + 𝜇𝑢 − 𝑔(𝑡)𝑢3 = 0 and
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𝑢󸀠󸀠 + (𝜔 − 𝑈(𝑡))𝑢 − 𝑢3 = 0 was proved in [1] and
[41], respectively. Periodically forced second order nonlinear
equations with stepwise coefficients are widely analyzed
also in connection with Littlewood’s example of unbounded
solutions to Duffing equations and its generalizations [42–
45]. Finally, we observe that variants of these equations with
a stepwise weight function have been considered with respect
to the search of multiple “large” solutions, namely, solutions
presenting a blow-up phenomenon at the boundary of a given
interval (see [46, 47]).

The main part of the paper is devoted to the study of
the periodic boundary value problem associated with (14).
In doing so, we prove the presence of infinitely many sub-
harmonic solutions and also the existence of solutions with
certain oscillatory properties which can reproduce any pre-
scribed sequence of coin-tossing type [48] (see Definition 1
in Section 2). Such chaotic-like solutions are obtained by an
application of the theory of topological horseshoes [49, 50], in
a variant developed in [51, 52]. We will also discuss how the
arguments of the proofs can bemodified in order to deal with
the Neumann and the Dirichlet boundary value problems. In
this latter context, the recent years have witnessed a growing
interest toward the search of existence andmultiplicity results
of solutions of

−𝜀2Δ𝑢 + 𝑢 = 𝑢𝑝, 𝑢 > 0 (16)

on a bounded domain Ω ⊂ R𝑁, 𝑁 ≥ 2 with interior and/or
boundary peaks [53–56]. With this respect, we stress the
fact that our multiplicity results appear to be of completely
different nature; they are typically one-dimensional, even if
they could be applied to PDEs on thin annular domains of
R𝑁.

For simplicity in the exposition, we will focus our
presentation mainly to the study of positive solutions. We
shall explain how to obtain sign changing solutions with
prescribed nodal properties with some illustrative remarks at
the end of the article.

2. Setting of the Problem and Main Results

We consider the second order nonlinear equation (of
Schrödinger type)

−𝑢󸀠󸀠 + 𝑉 (𝑡) 𝑢 = 𝑓 (𝑢) (17)

where 𝑓 : R 󳨀→ R is a continuously differentiable function
of the form

𝑓 (𝑠) = 𝑠ℎ (𝑠) (18)

with ℎ : R 󳨀→ R satisfying

ℎ (0) = 0
𝑎𝑛𝑑 ℎ󸀠 (𝑠) > 0 for 𝑠 > 0,

𝑤𝑖𝑡ℎ ℎ (+∞) = +∞.
(∗)

As a consequence of (∗) it follows that 𝑓(0) = 0, 𝑓(𝑠) > 0 for𝑠 > 0 and
lim
𝑠󳨀→0+

𝑓 (𝑠)𝑠 = 0,
lim
𝑠󳨀→+∞

𝑓 (𝑠)𝑠 = +∞.
(∗∗)

Since we are looking for positive solutions, the actual behavior
of 𝑓(𝑠) for 𝑠 < 0 will not affect our result. For simplicity, we
suppose that 𝑓 is odd (that is, ℎ is even). We assume such
a symmetry condition also in order to cover the classical
example ℎ(𝑠) = |𝑠|𝑝−1 with 𝑝 > 1.All the results of the present
paper could be proved for a locally Lipschitz continuous
function 𝑓 satisfying (∗∗) and with ℎ(𝑠) = 𝑓(𝑠)/𝑠 strictly
increasing on ]0, +∞) (and strictly decreasing on (−∞, 0[).
We prefer to consider the smooth case for simplicity in the
presentation.

For the potential 𝑉(𝑡) we suppose that 𝑉 : R 󳨀→ R+0 fl]0, +∞) is a𝑇-periodic stepwise function (for some 𝑇 > 0) of
the form

𝑉 (𝑡) fl {{{
𝑉1 for 𝑡 ∈ [0, 𝑇1[
𝑉2 for 𝑡 ∈ [𝑇1, 𝑇[ (19)

with𝑉1 ̸= 𝑉2.Writing (17) as the equivalent first order system

𝑥󸀠 = 𝑦
𝑦󸀠 = 𝑉 (𝑡) 𝑥 − 𝑓 (𝑥) (𝑆)

in the phase-plane, we can describe the presence of a
piecewise constant 𝑇-periodic coefficient as follows: the
trajectories are governed by the autonomous system

𝑥󸀠 = 𝑦
𝑦󸀠 = 𝑉1𝑥 − 𝑓 (𝑥) (𝑆1)

in the time interval [0, 𝑇1[. At the time 𝑡 = 𝑇1 we have a
switching to system

𝑥󸀠 = 𝑦
𝑦󸀠 = 𝑉2𝑥 − 𝑓 (𝑥) (𝑆2)

which, in turns, rules themotions for a time interval of length

𝑇2 fl 𝑇 − 𝑇1. (20)

All this switching behavior is then repeated in a 𝑇-periodic
fashion.

Recall that, given a first order differential system 𝑧󸀠 =𝑍(𝑡, 𝑧), its Poincaré map, on a time interval [𝑡0, 𝑡1], is the
function which maps any initial point 𝑤0 to 𝜁(𝑡1; 𝑡0, 𝑤0),
where 𝜁(𝑡) fl 𝜁(𝑡; 𝑡0, 𝑤0), is the solution of the differential
system satisfying the initial condition 𝑧(𝑡0) = 𝑤0. In our
setting, it is straightforward to check that the Poincaré map
on [0, 𝑇] for system (𝑆), that we denote by Φ, can be
decomposed as

Φ = Φ2 ∘ Φ1, (21)
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whereΦ𝑖 is the Poincarémap associatedwith the autonomous
system (𝑆𝑖) along the time interval [0, 𝑇𝑖]. Notice that, due
to the autonomous nature of the subsystem, the map Φ2
coincides with the Poincaré map of (𝑆2) on [𝑇1, 𝑇]. The
assumptions on 𝑓(𝑠) guarantee the global existence of the
solutions for all the Cauchy problems and therefore Φ is a
global homeomorphism of the plane.

Our goal is to prove the existence of periodic solutions
(harmonic and subharmonic) for (17). Following a classical
procedure [57], this will be achieved by looking for the fixed
points of Φ and its iterates. In our approach we apply some
recent results on planar maps which provide not only the
existence of fixed points and periodic points, but also the fact
that the associated discrete dynamical system is “chaotic”.
In the literature one can find several different methods
which guarantee the presence of chaos for planar maps or,
more generally, for homeomorphisms (or diffeomorphisms)
in finite dimensional spaces. Moreover, different definitions
of chaotic dynamics have been proposed by various authors.
For the reader convenience, we recall now the concept of
chaos that we are going to consider. Although the main
definitions and the abstract setting can be presented in the
framework of metric spaces, we confine ourselves to the case
of homeomorphisms of the plane, which is the situation
encountered by dealing with the Poincaré map associated
with a planar system.

Definition 1. LetΦ : 𝐷Φ(⊆ R2) 󳨀→ R2 be a homeomorphism
and let D ⊆ 𝐷Φ be a nonempty set. Assume also that 𝑚 ≥2 is an integer. We say that Φ induces chaotic dynamics on𝑚 symbols in the set D if there exist 𝑚 nonempty pairwise
disjoint compact sets

K0,K1, . . . ,K𝑚−1 ⊆ D (22)

such that, for each two-sided sequence of𝑚 symbols

(𝑠𝑖)𝑖∈Z ∈ Σ𝑚 fl {0, . . . , 𝑚 − 1}Z , (23)

there exists a corresponding sequence (𝑤𝑖)𝑖∈Z ∈ DZ with

𝑤𝑖 ∈K𝑠𝑖 and 𝑤𝑖+1 = Φ (𝑤𝑖) , ∀𝑖 ∈ Z (24)

and, whenever (𝑠𝑖)𝑖∈Z is a 𝑘−periodic sequence (that is, 𝑠𝑖+𝑘 =𝑠𝑖, ∀𝑖 ∈ Z) for some 𝑘 ≥ 1, there exists a 𝑘−periodic sequence(𝑤𝑖)𝑖∈Z ∈ DZ satisfying (24).

Note that, as a particular consequence of this definition,
we have that for each 𝑖 ∈ {0, . . . , 𝑚 − 1} there is at least one
fixed point ofΦ inK𝑖. Since Φ is a homeomorphism from

K fl
𝑚−1⋃
𝑖=0

K𝑖 ⊆ D (25)

onto its image, it follows also that there exists a nonempty
compact set Λ ⊆K which is invariant for Φ (i.e.,Φ(Λ) = Λ)
and such thatΦ|Λ is semiconjugate to the two-sided Bernoulli
shift 𝜎 on𝑚 symbols

𝜎 : Σ𝑚 󳨀→ Σ𝑚,
𝜎 ((𝑠𝑖)𝑖∈Z) = (𝑠𝑖+1)𝑖∈Z , (26)

according to the commutative diagram

Λ Λ
Φ

g g

Σm Σm

(27)

where 𝑔 is a continuous and surjective function. Moreover,
as a consequence of Definition 1 we can take Λ such that
it contains as a dense subset the periodic points of Φ and
such that the counterimage (by the semiconjugacy 𝑔) of any
periodic sequence in Σ𝑚 contains a periodic point of Φ (see
[58] for the details). As usual, in Σ𝑚, the set of two-sided
sequence of 𝑚 symbols, we take its standard metric [18] for
which Σ𝑚 turns out to be a compact set with the product
topology.

We observe that Definition 1 is related to the concept of
chaos in the sense of coin-tossing [48] and it also implies the
presence of chaotic dynamics according to Block and Coppel
[59, 60], as well as a positive topological entropy for the mapΦ|Λ. Similar examples of complex dynamics for the Poincaré
map associated with differential systems have been discussed,
e.g., in [61–65], using different methods. See also [1, 31, 66] for
recent contributions in this direction.

Now we are in position to state our main result for (17).

Theorem 2. Let 𝑓 : R 󳨀→ R be a 𝐶1-function of the form
(18), with ℎ satisfying (∗). Let 𝑉 : R 󳨀→ R+0 be a 𝑇-periodic
stepwise function as in (19), such that 𝑉1 ̸= 𝑉2. Then, there
exist a compact set D ⊂ R+0 × R and, for every integer 𝑚 ≥ 2,
two positive constants 𝑇∗1 and 𝑇∗2 such that, if 𝑇1 > 𝑇∗1 and𝑇2 > 𝑇∗2 , the Poincaré map Φ for system (𝑆) on [0, 𝑇] (with𝑇 = 𝑇1 +𝑇2) induces chaotic dynamics on𝑚 symbols in the set
D.Moreover, for the corresponding solutions (𝑥(𝑡), 𝑦(𝑡)) of (𝑆)
we have 𝑥(𝑡) > 0 for every 𝑡 ∈ R.

The constants 𝑇∗1 and 𝑇∗2 can be explicitly determined in
terms of 𝑚 and some Abelian integrals depending by 𝑉1, 𝑉2
and 𝑓(𝑥) as in formula (41). The set D is explicitly exhibited
in the course of the proof. Indeed, we have D fl A with A
defined in (54).

The proof is based on a topological technique, named
stretching along the paths (SAP), which is a variant of the clas-
sical Smale’s horseshoe geometry (see [67]). Our approach
is closely related to the theory of topological horseshoes of
Kennedy and Yorke [50] as well as to the concept of covering
relations introduced by Zgliczyński in [68]. The general
theory concerning the “SAP method” has been already
exposed in some previous papers (see, for instance, [58] and
the references therein). In order to make our paper self-
contained, we recall the main notation and the results which
are needed for the proof of Theorem 2.

By path 𝛾 we mean a continuous mapping 𝛾 : [𝑡0, 𝑡1] 󳨀→
R2 and we set 𝛾 fl 𝛾([𝑡0, 𝑡1]).Without loss of generality we
will usually take [𝑡0, 𝑡1] = [0, 1]. By a sub-path 𝜎 of 𝛾wemean
the restriction of 𝛾 to a compact subinterval of its domain. An
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arc is the homeomorphic image of the compact interval [0, 1].
We define an oriented rectangle inR2 as a pair

R̂ fl (R,R−) , (28)

where R ⊆ R2 is homeomorphic to the unit square [0, 1]2
(we usually refer toR as a topological rectangle) and

R
− fl R

−
𝑙 ∪R−𝑟 (29)

is the disjoint union of two disjoint compact arcs R−𝑙 ,R−𝑟 ⊆𝜕R (which are called the components or sides of R−). We
also denote by R+ the closure of 𝜕R \ (R−𝑙 ∪R−𝑟 ) which is
the union of two compact arcs R+𝑑 and R+𝑢 .The subscripts𝑙, 𝑟, 𝑢, 𝑑 stand, conventionally, for left, right, up, and down.

Suppose that Φ : 𝐷Φ(⊆ R2) 󳨀→ R2 is a planar
homeomorphism of 𝐷Φ onto its image. Let M̂ fl (M,M−)
and N̂ fl (N,N−) be oriented rectangles.

Definition 3. LetH ⊆M ∩𝐷Φ be a compact set. We say that(H, Φ) stretches M̂ to N̂ along the paths and write

(ℋ,Φ) : ℳ , (30)

if for every path 𝛾 : [𝑎, 𝑏] 󳨀→ M such that 𝛾(𝑎) ∈ M−𝑙 and𝛾(𝑏) ∈ M−𝑟 (or 𝛾(𝑎) ∈ M−𝑟 and 𝛾(𝑏) ∈ M−𝑙 ), there exists a
subinterval [𝑡󸀠, 𝑡󸀠󸀠] ⊆ [𝑎, 𝑏] such that

𝛾 (𝑡) ∈H,
Φ (𝛾 (𝑡)) ∈N,

∀𝑡 ∈ [𝑡󸀠, 𝑡󸀠󸀠]
(31)

and, moreover, Φ(𝛾(𝑡󸀠)) and Φ(𝛾(𝑡󸀠󸀠)) belong to different
components of N−. In the special case in which H = M,
we simply write Φ : ℳ .

The next result, taken from [69, Theorem 2.1], provides
the existence of periodic points and chaotic-like dynamics
according toDefinition 1, whenΦ admits a splitting as in (21).

Theorem 4. Let Φ1 : 𝐷Φ1(⊆ R2) 󳨀→ R2 and Φ2 : 𝐷Φ2(⊆
R2) 󳨀→ R2 be continuous maps and let Â fl (A,A−), B̂ fl(B,B−) be oriented rectangles. Suppose that the following
conditions are satisfied:

(i) there exist 𝑚 ≥ 2 pairwise disjoint compact sets
H0, . . . ,H𝑚−1 ⊆ A ∩ 𝐷Φ1 such that

(ℋi, Φ1) :  ℬ, for i = 0, . . . , m − 1; (32)

(ii) there is a compact set K ⊆ B ∩ 𝐷Φ2 such that
(,Φ2) : ℬ .

Then the map Φ fl Φ2 ∘ Φ1 induces chaotic dynamics on 𝑚
symbols in the set

H
∗ fl ⋃
𝑗=0,...,𝑚−1

H
󸀠
𝑗, for H󸀠𝑗 fl H𝑗 ∩ Φ−11 (K) . (33)

Figure 2: The present figure describes our geometric construction.
The points on the 𝑥-axis marked with a black circle (from right to
the left) represent (𝑎1, 0) and (𝑎2, 0) on the orbits Γ𝛼11 and Γ𝛼21 . For
this figure we have considered 𝑓(𝑥) = 𝑥3 and 𝑉1 = 2, 𝑉2 = 1. For
graphical reasons a slightly different 𝑥- and 𝑦-scaling has been used.

Moreover, for each sequence of 𝑚 symbols 𝑠 = (𝑠𝑛)𝑛 ∈{0, . . . , 𝑚−1}N, there exists a compact connected setC
𝑠
⊆H󸀠𝑠0

with C
𝑠
∩ A+𝑑 ̸= 0 and C

𝑠
∩ A+𝑢 ̸= 0, such that, for every𝑤 ∈ C

𝑠
, there exists a sequence (𝑦𝑛)𝑛 with 𝑦0 = 𝑤 and

𝑦𝑛 ∈H󸀠𝑠𝑛 ,
Φ (𝑦𝑛) = 𝑦𝑛+1,

∀𝑛 ≥ 0.
(34)

A dual version of Theorem 4 holds if we interchange the
hypotheses onΦ1 and Φ2, namely, if we suppose that

(i) there is a compact set K ⊆ A ∩ 𝐷Φ1 such that
(,Φ1) :  ℬ;

(ii) there exist 𝑚 ≥ 2 pairwise disjoint compact sets
H0, . . . ,H𝑚−1 ⊆B ∩ 𝐷Φ2 such that

(ℋi, Φ2) : ℬ , i = 0, . . . , m − 1.＠ＩＬ (35)

The corresponding conclusion has to be modified accord-
ingly.

The application of Theorem 4 to Theorem 2 is possible
thanks to a linked twist maps geometry which appears from
the phase-plane analysis of the systems (𝑆1) and (𝑆2). The
theory of “linked twist maps” regards the case in which a
map can be expressed as a composition of two twist maps
acting on two annuli crossing each other (see [70–74] for
an introduction of the topic and for interesting applications
to chaotic mixing). The main argument in the proof of
Theorem 2 relies on the construction of two annular regions
which cross each other in a suitable manner (see Figures 2
and 3) and such that (Φ1, Φ2) acts on them as a linked twist
map.
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Figure 3: The present figure describes the oriented regions Â and
B̂ (in lighter and darker colors, respectively). As in Figure 2 we have
considered 𝑓(𝑥) = 𝑥3 and 𝑉1 = 2, 𝑉2 = 1.

3. Technical Estimates and Proofs

As already observed in Section 2, the motion associated with
system (𝑆) is given by a switching in a 𝑇-periodic fashion
between the orbits of the two autonomous systems (𝑆1) and(𝑆2). Such systems have the same qualitative structure and
differ only for the value of the 𝑉-coefficient. For this reason,
we first perform a phase-plane analysis of the planar system

𝑥󸀠 = 𝑦
𝑦󸀠 = 𝑉𝑥 − 𝑓 (𝑥) (36)

for𝑉 > 0 a given parameter. System (36) is a conservative one
with associated energy

𝐸 (𝑥, 𝑦) fl 12𝑦2 +F𝑉 (𝑥) , (37)

where

F𝑉 (𝑥) fl −12𝑉𝑥2 + 𝐹 (𝑥)
with 𝐹 (𝑥) fl ∫𝑥

0
𝑓 (𝑠) 𝑑𝑠.

(38)

As a consequence of (∗), there is a unique 𝑥0 = ℎ−1(𝑉) >0 solution of the equation ℎ(𝑥) = 𝑉. The corresponding
equilibrium point 𝑃 fl (𝑥0, 0) is a center surrounded by a
trajectory which represents the homoclinic solution at zero.

The origin and the homoclinic trajectory determine the
part of the level line Γ0 at energy zero contained in the half-
plane 𝑥 ≥ 0.We denote by (𝑥, 0) the intersection point of the
homoclinic orbit with the (positive) 𝑥-axis. Notice that 𝑥 is
the unique (positive) solution of the equation 2𝐹(𝑥)/𝑥2 = 𝑉.
As a consequence of (∗), both 𝑥0 and 𝑥, thought as functions
of the parameter𝑉, are strictlymonotone increasing.Observe
also that, for every constant 𝑐 with

0 > 𝑐 > 𝑐0 fl F𝑉 (𝑥0) , (39)

the level line

Γ𝑐 fl {(𝑥, 𝑦) ∈ R+ × R : 𝐸 (𝑥, 𝑦) = 𝑐} , (40)

is a closed curve which is a (positive) periodic orbit of (36).
The period 𝜏(𝑐) of Γ𝑐 can be computed by the quadrature
formula

𝜏 (𝑐) = 2∫𝛽(𝑐)
𝛼(𝑐)

𝑑𝜉
√2 (𝑐 −F𝑉 (𝜉)) , (41)

where𝛼(𝑐) and𝛽(𝑐) are the solutions of the equationF𝑉(𝑥) =𝑐, with 0 < 𝛼(𝑐) < 𝑥0 < 𝛽(𝑐) < 𝑥.Moreover, we have that

lim
𝑐󳨀→𝑐+
0

𝜏 (𝑐) = 2𝜋
√F𝑉󸀠󸀠 (𝑥0) =

2𝜋
√𝑥0ℎ󸀠 (𝑥0) ,

lim
𝑐󳨀→0−

𝜏 (𝑐) = +∞.
(42)

Without further assumptions on 𝑓(𝑥) (or, equivalently, onℎ(𝑥)) we cannot guarantee the monotonicity of the time-
mapping function 𝑐 󳨃󳨀→ 𝜏(𝑐). Sufficient conditions ensuring
that 𝜏(𝑐) is strictly increasing can be found in literature. For
instance, according to [75], the convexity of the auxiliary
function

𝜙𝑉 (𝑥) fl (F𝑉 (𝑥) −F𝑉 (𝑥0))(F󸀠𝑉 (𝑥))2 (43)

guarantees that 𝜏(𝑐) is increasing.
Example 5. Consider the typical nonlinear term 𝑓(𝑥) =|𝑥|𝑝−1𝑥, with 𝑝 > 1. In this case, condition (∗) holds forℎ(𝑥) = |𝑥|𝑝−1 and

F𝑉 (𝑥) = −12𝑉𝑥2 + 1𝑝 + 1𝑥𝑝+1, for 𝑥 ≥ 0. (44)

Moreover, we find that

𝑥0 = 𝑉1/(𝑝−1),
𝑥 = ((𝑝 + 1)𝑉2 )1/(𝑝−1) ,

F𝑉
󸀠󸀠 (𝑥0) = 𝑥0ℎ󸀠 (𝑥0) = (𝑝 − 1)𝑉.

(45)

In order to prove the monotonicity of the time-map, via the
Chicone theorem in [75] we have to study the sign of auxiliary
function 𝑁(𝑥) fl (F󸀠𝑉(𝑥))4𝜙𝑉󸀠󸀠(𝑥) on the open interval]0, 𝑥[.After performing the required computations and using
the change of variable 𝑥 = 𝑠𝑥0, one can see that the sign of𝑁(𝑥) for 0 < 𝑥 < 𝑥 is the same of the expression

3 + 𝑝 (𝑝 − 7) 𝑠𝑝−1 + 𝑝 (2𝑝 + 1) 𝑠2𝑝−2 − 𝑝 (𝑝 − 2) 𝑠𝑝+1
− (2𝑝2 − 3𝑝 + 3) 𝑠2𝑝 + 𝑝𝑠3𝑝−1, (46)

for 0 < 𝑠 < ((𝑝 + 1)/2)1/(𝑝−1).
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

ℬ

(s)

Φ1((s))

Figure 4: The present figure describes how a path 𝛾(𝑠) crossing A
fromA−𝑙 toA

−
𝑟 is stretched by Φ1 to a path Φ1(𝛾(𝑠)) which crosses

twiceB fromB−𝑙 toB
−
𝑟 . As in Figure 2 we have considered 𝑓(𝑥) =𝑥3 and 𝑉1 = 2, 𝑉2 = 1. For this example we have taken 𝑇1 = 50.



ℬ

Φ2((s))

(s)

Figure 5: The present figure describes how a path 𝛾(𝑠) crossing B
fromB−𝑙 toB

−
𝑟 is stretched by Φ2 to a path Φ2(𝛾(𝑠)) which crosses

(once)A fromA−𝑙 toA
−
𝑟 .As in Figure 2 we have considered 𝑓(𝑥) =𝑥3 and 𝑉1 = 2, 𝑉2 = 1. For this example we have taken 𝑇2 = 10.

For instance, if 𝑝 = 3, it is easy to check that the above
expression is strictly positive for 𝑠 ̸= 1 (which corresponds
to 𝑥 ̸= 𝑥0) and therefore the time-mapping function 𝜏(𝑐)
is strictly increasing on ]𝑐0, 0[.The case 𝑝 = 3 is the model
situation that we have chosen in all our illustrative examples
of Figures 1–8.

The monotonicity of the period map still holds for an
arbitrary 𝑝 > 1.The proof in this case is a more complicated
task (see [76, 77]).

Until now we have considered some general properties
of the solutions of system (36). As a next step, in order to
investigate the dynamics associate to system (𝑆) for a 𝑇-
periodic potential 𝑉(𝑡) defined as in (19), we need to make
a comparison between the phase–portraits associated with
the autonomous systems (𝑆1) and (𝑆2). Keeping the notation
just introduced, we set F𝑖 fl F𝑉𝑖 and denote by 𝐸𝑖 the
associated energy, for 𝑖 = 1, 2. Accordingly, we indicate by𝑃𝑖 = (𝑥0𝑖, 0) and (𝑥𝑖, 0) the corresponding equilibrium points
and the intersection points of the homoclinic orbits with
the positive 𝑥-axis. Moreover, 𝜏𝑖(𝑐) denotes the fundamental

Figure 6: Phase-portrait of (36) for 𝑓(𝑥) = 𝑥3 and 𝑉 = 2. For
graphical reasons a slightly different 𝑥- and 𝑦-scaling has been used.

Figure 7: The present figure shows some possible rectangular
regions which can be considered for the application of Theorem 4.
The setsA andB are the same as in Figure 3 and (as we have already
proved in Section 3) they can be used to provide a complex dynamics
on positive solutions. If we choose, for instance, the sets A󸀠 and
B󸀠 we can prove the presence of a complex dynamics generated by
solutions which are negative on the time interval [0, 𝑇1] and oscillate
in the phase-plane around the point (−𝑥01, 0), and then, in the
time interval [𝑇1, 𝑇] oscillate a certain number of times around the
origin. More in detail, given any positive integer𝑀, we can produce
solutions 𝑢(𝑡) of (17) which have precisely 2, 4, . . . , 2𝑀 simple zeros
in the interval ]𝑇1, 𝑇[, provided that 𝑇2 = 𝑇−𝑇1 is sufficiently large.
A lower estimate for 𝑇2 can be easily determined by the knowledge
of the period of the closed trajectory Γ󸀠2 which bounds “externally”
A󸀠 andB󸀠. Similar remarks can be made by selecting other pairs of
topological rectangles among those put in evidence with a color. As
in the preceding figures, we have considered 𝑓(𝑥) = 𝑥3 and 𝑉1 = 2,𝑉2 = 1. For graphical reasons a slightly different 𝑥- and 𝑦-scaling
has been used.

period of the closed orbits defined in (41) for the potential
functionsF𝑖.

Just to fix a case of study, we suppose that

𝑉1 > 𝑉2. (47)

The case when 𝑉1 < 𝑉2 can be treated in a similar manner.
Observe that from (47) it follows that the homoclinic orbit Γ02
of system (𝑆2) is contained in the part of the right half-plane
bounded by the homoclinic orbit Γ01 of system (𝑆1).

Now we are in position to introduce the rectangular
regions (topological rectangles) A and B in order to apply
Theorem 4. As a first step, we chose a closed trajectory Γ𝑐1
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Figure 8: The present figure suggests a possible argument to prove
multiplicity of sign changing solutions to the Neumann problem
(94). We start with system (𝑆1) by considering initial points 𝑤0 =(𝑢0, 0) with 𝑥01 < 𝑢0 ≤ 𝑥1 (recall that 𝑃1 = (𝑥01, 0) is the positive
center of (𝑆1), while (𝑥1, 0) is the intersectionpoint of the homoclinic
orbit Γ01 with the positive𝑥-axis).We parameterize such initial points
as an arc 𝜎(𝑠). If 𝑇1 is sufficiently large (with a lower bound which
can be easily estimated from the equation) we find thatΦ1(𝜎(𝑠)) is a
spiral-like curve winding a certain number of times around 𝑃1 and
with an end point on Γ01 in the fourth quadrant near the origin. If
we fix a (small) positive constant 𝑐󸀠󸀠 and denote by C fl {(𝑥, 𝑦) :0 ≤ 𝐸2(𝑥, 𝑦) ≤ 𝑐󸀠󸀠} the region between the homoclinic trajectories
of (𝑆2) and the level line Γ󸀠󸀠2 fl Γ𝑐󸀠󸀠2 , we observe that the points ofΦ1(𝜎(𝑠)) ∩ Γ02 remain on Γ02 under the action ofΦ2, while the points
of Φ1(𝜎(𝑠)) ∩ Γ󸀠󸀠2 run around the origin along the periodic orbit Γ󸀠󸀠2
and will perform a certain number of revolutions if 𝑇2 is sufficiently
large.More precisely, if we denote by 𝜏󸀠󸀠 the period of Γ󸀠󸀠2 and suppose
that 𝑇2/𝜏󸀠󸀠 > 𝑚, we can find solutions of (94) having precisely 2𝑗-
zeros in the interval ]𝑇1, 𝑇1 + 𝑇2[, for every 𝑗 = 1, . . . , 𝑚. As in the
preceding figures, we have considered 𝑓(𝑥) = 𝑥3 and𝑉1 = 2,𝑉2 = 1.
For graphical reasons a slightly different 𝑥- and 𝑦-scaling has been
used.

of system (𝑆1) which intersects in two distinct points the
homoclinic trajectory Γ02 \ {(0, 0)} of system (𝑆2). From an
analytic point of view, this corresponds to solving the system

𝐸2 (𝑥, 𝑦) = 12𝑦2 − 12𝑉2𝑥2 + 𝐹 (𝑥) = 0
𝐸1 (𝑥, 𝑦) = 12𝑦2 − 12𝑉1𝑥2 + 𝐹 (𝑥) = 𝑐,

(48)

for a suitable 𝑐 ∈]𝑐01, 0[, with 𝑐01 fl F1(𝑥01). It is clear that
this system has a pair of solutions (𝜉𝑐, ±𝜂𝑐) with 𝜉𝑐, 𝜂𝑐 > 0 if
and only if

𝜉𝑐 fl √ 2 |𝑐|𝑉1 − 𝑉2 ,
F2 (𝜉𝑐) < 0.

(49)

The latter condition holds if and only if 0 < 𝜉𝑐 < 𝑥2. We
conclude that the desired geometry can be produced if and
only if we choose an energy level 𝑐 for 𝐸1(𝑥, 𝑦) such that

0 > 𝑐 > 𝑐∗ fl F1 (𝑥2) ≥ 𝑐01. (50)

Fromnow on, we suppose to have fixed a constant 𝑐 satisfying
(50). Let us call 𝛼1 such a constant and denote by (𝑎1, 0) the
intersection of the closed orbit Γ𝛼11 with the positive 𝑥-axis
which is closer to the origin. Next, we choose 𝑎2 with 0 < 𝑎2 <𝑎1 and consider the level line of system (𝑆1) passing through(𝑎2, 0).This is the closed orbit Γ𝛼21 , for 𝛼2 fl 𝐸1(𝑎2, 0). For 𝛼2
we further require that

𝜏1 (𝛼2) > 𝜏1 (𝛼1) . (51)

We notice that it is always possible to find an open interval]0, 𝑎∗[⊆]0, 𝑎1[ such that for each 𝑎2 ∈]0, 𝑎∗[ the condition (51)
holds. This follows from the fact that 𝜏1(𝑐) 󳨀→ +∞ as 𝑐 󳨀→0−. In the special case in which the time-mapping is strictly
monotone increasing, one can take an arbitrary 𝑎2 ∈]0, 𝑎1[.
Observe that, by construction, we also have

𝑐01 ≤ 𝑐∗ < 𝛼1 < 𝛼2 < 0. (52)

As a last step, we fix a constant 𝛽 such that

0 > 𝛽 > max {𝐸2 (𝑎1, 0) , 𝐸2 (𝑎2, 0)} ≥ 𝑐02
fl F2 (𝑥02) . (53)

By this latter choice, the corresponding (periodic) trajectoryΓ𝛽2 of system (𝑆2) intersects both Γ𝛼11 and Γ𝛼21 in the region{(𝑥, 𝑦) : 𝑥 > 0, 𝐸2(𝑥, 𝑦) < 0} bounded by the homoclinic
orbit Γ02 . Figure 2 illustrates the geometric construction per-
formed above.

Next we define

A fl {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 > 0, 𝛼1 ≤ 𝐸1 (𝑥, 𝑦) ≤ 𝛼2, 𝛽
≤ 𝐸2 (𝑥, 𝑦) ≤ 0} (54)

and its specular imageB with respect to the 𝑥-axis, namely,

B fl {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 < 0, 𝛼1 ≤ 𝐸1 (𝑥, 𝑦) ≤ 𝛼2, 𝛽
≤ 𝐸2 (𝑥, 𝑦) ≤ 0} . (55)

For these regions we select an orientation as follows:

A
− fl A

−
𝑙 ∪A−𝑟

with A
−
𝑙 fl A ∩ Γ𝛼21 , A−𝑟 fl A ∩ Γ𝛼11 ,

B
− fl B

−
𝑙 ∪B−𝑟

with B
−
𝑙 fl B ∩ Γ02 , B−𝑟 fl B ∩ Γ𝛽2

(56)

(see Figure 3).
Now we describe the behavior of the points in the regions

A and B under the action of the Poincaré maps Φ1 and Φ2,
respectively.
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Suppose that

0 ≤ 𝑡 ≤ 𝑇1. (57)

For each point 𝑧 ∈ A the solution 𝜁(𝑡; 0, 𝑧) of (𝑆) is indeed
a solution of the autonomous conservative system (𝑆1) and
therefore, 𝐸1(𝜁(𝑡; 0, 𝑧)) = 𝐸1(𝑧), for all 𝑡 ∈ [0, 𝑇1]. The
orbit Γ𝑐1 for 𝑐 fl 𝐸1(𝑧) is closed trajectory surrounding the
equilibrium point 𝑃1 = (𝑥01, 0) of (𝑆1). Consistently with the
previous notation, the period of the points in Γ𝑐1 is denoted
by 𝜏1(𝑐). Since all the points of Γ𝑐1 (for 𝛼1 ≤ 𝑐 ≤ 𝛼2) move
in the clockwise sense along the orbit under the action of the
dynamical system associatedwith (𝑆1 ), it will be convenient to
introduce a system of polar coordinates with center at 𝑃1 and
take the clockwise orientation as a positive orientation for the
angles starting from the positive half-line {(𝑥, 0) : 𝑥 > 𝑥01}.
In this manner, we can associate an angular coordinate 𝜃(𝑡; 𝑧)
to any solution 𝜁(𝑡; 0, 𝑧) for any initial point 𝑧 ∈ A and𝑡 ∈ [0, 𝑇1].

In such a situation, we find that

𝑑𝑑𝑡𝜃 (𝑡; 𝑧) =
𝑦 (𝑡) 𝑥󸀠 (𝑡) − (𝑥 (𝑡) − 𝑥01) 𝑦󸀠 (𝑡)(𝑥 (𝑡) − 𝑥01)2 + 𝑦 (𝑡)2

for (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝜁 (𝑡; 0, 𝑧) .
(58)

Since (𝑥(𝑡), 𝑦(𝑡)) is a solution of (𝑆1) and, moreover, 𝛼1 ≤𝐸1(𝑥(𝑡), 𝑦(𝑡)) ≤ 𝛼2 with 𝑥(𝑡) > 0, for all 𝑡 ∈ [0, 𝑇1], we have
that (𝑑/𝑑𝑡)𝜃(𝑡; 𝑧) > 0 for all 𝑡 ∈ [0, 𝑇1]. In fact, by (18) and(∗), we obtain
𝑦𝑥󸀠 − (𝑥 − 𝑥01) 𝑦󸀠 = 𝑦2 − (𝑥 − 𝑥01) (𝑉1𝑥 − 𝑓 (𝑥))

= 𝑦2
+ 𝑥 (𝑥 − 𝑥01) (ℎ (𝑥) − ℎ (𝑥01))

> 0, ∀𝑥 > 0.
(59)

We have thus proved that the angle is a strictly increasing
function of the time variable. Hence, for any positive integer𝑘 we conclude that
𝜃 (𝑡; 𝑧) ⋛ 𝜃 (0, 𝑧) + 2𝑘𝜋 if and only if 𝑡 ⋛ 𝑘𝜏1 (𝑐) (60)

(of course, the above relation holds provided that 𝑡 ∈ [0, 𝑇1]
and 𝑇1 > 𝑘𝜏1(𝑐)).

After these preliminary observations, we are now in posi-
tion to prove the validity of the first condition of Theorem 4
provided that 𝑇1 is large enough.

Let us fix an integer 𝑚 ≥ 2 and set

𝑇∗1 fl (𝑚 + 2) 𝜏1 (𝛼1) 𝜏1 (𝛼2)𝜏1 (𝛼2) − 𝜏1 (𝛼1) . (61)

Given 𝑇∗1 as above, we also fix 𝑇1 > 𝑇∗1 and define

𝑘1 fl ⌊ 𝑇1𝜏1 (𝛼1)⌋ ,

𝑘2 fl ⌈ 𝑇1𝜏1 (𝛼2)⌉ .
(62)

The position (61) and the choice of 𝑇1 imply that

𝑇1𝜏1 (𝛼1) −
𝑇1𝜏1 (𝛼2) > 𝑚 + 2 (63)

and hence 𝑘1 − 𝑘2 > 𝑚.
Now we consider the motion associated with (𝑆1) for 𝑡 ∈[0, 𝑇1].
First of all, we note that

𝜃 (0, 𝑧) ∈ ]−𝜋, 0[ , ∀𝑧 ∈ A. (64)

On the other hand, sinceA−𝑟 ⊆ Γ𝛼11 , we know that

𝜃 (𝑇1, 𝑧) ≥ 𝜃 (0, 𝑧) + 2𝑘1𝜋 > (2𝑘1 − 1)𝜋, ∀𝑧 ∈ A−𝑟 . (65)

Similarly, sinceA−𝑙 ⊆ Γ𝛼21 , we know that

𝜃 (𝑇1, 𝑧) ≤ 𝜃 (0, 𝑧) + 2𝑘2𝜋 < 2𝑘2𝜋, ∀𝑧 ∈ A−𝑙 . (66)

We thus conclude that the range of the angular function{𝜃(𝑇1, 𝑧) : 𝑧 ∈ A} covers the interval [2𝑘2𝜋, (2𝑘1 − 1)𝜋] ⊇[2𝑘2𝜋, (2𝑘2+1)𝜋+2(𝑚−1)𝜋].This interval contains𝑚 closed
disjoint intervals of the form [2𝑘2𝜋 + 2𝑗𝜋, (2𝑘2 + 1)𝜋 + 2𝑗𝜋],
for 𝑗 = 0, . . . , 𝑚 − 1.Hence, if for each nonnegative integer 𝑗,
we define

H𝑗 fl {𝑧 ∈ A : 𝜃 (𝑇1, 𝑧)
∈ [2𝑘2𝜋 + 2𝑗𝜋, (2𝑘2 + 1) 𝜋 + 2𝑗𝜋]} , (67)

we obtain𝑚 nonempty and pairwise disjoint compact subsets
H0, . . . ,H𝑚−1 ofA.

Let 𝛾 : [0, 1] 󳨀→ A be a (continuous) path such that𝛾(0) ∈ A−𝑙 and 𝛾(1) ∈ A−𝑟 and consider the path [0, 1] ∋𝑠 󳨃󳨀→ Φ1(𝛾(𝑠)). Passing to the polar coordinates we have that
𝜃 (0, 𝛾 (𝑠)) ∈ ]−𝜋, 0[ , ∀𝑠 ∈ [0, 1] (68)

and, moreover,

𝜃 (𝑇1, 𝛾 (0)) < 2𝑘2𝜋,
𝜃 (𝑇1, 𝛾 (1)) > (2𝑘1 − 1)𝜋

> (2𝑘2 + 1)𝜋 + 2 (𝑚 − 1) 𝜋.
(69)

Hence, for every 𝑗 = 0, . . . , 𝑚 − 1 there exists an interval[𝑠󸀠𝑗, 𝑠󸀠󸀠𝑗 ] ⊆ [0, 1] such that 𝛾(𝑠) ∈ H𝑗 for all 𝑠 ∈ [𝑠󸀠𝑗, 𝑠󸀠󸀠𝑗 ], and,
moreover,

𝜃 (𝑇1, 𝛾 (𝑠󸀠𝑗)) = 2𝑘2𝜋 + 2𝑗𝜋,
𝜃 (𝑇1, 𝛾 (𝑠󸀠󸀠𝑗 )) = (2𝑘2 + 1) 𝜋 + 2𝑗𝜋.

(70)

Using the fact that 𝛼1 ≤ 𝐸1(Φ1(𝛾(𝑠))) ≤ 𝛼2 for every 𝑠 ∈[0, 1] (by the invariance of the annular region bounded by Γ𝛼11
and Γ𝛼21 with respect to system (𝑆1)), we conclude that the set{Φ1(𝛾(𝑠)) : 𝑠 ∈ [𝑠󸀠𝑗, 𝑠󸀠󸀠𝑗 ]} crosses the region B. Hence, by the
continuity of the map [𝑠󸀠𝑗, 𝑠󸀠󸀠𝑗 ] ∋ 𝑠 󳨃󳨀→ Φ1(𝛾(𝑠)), we can find a
subinterval [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ] ⊆ [𝑠󸀠𝑗, 𝑠󸀠󸀠𝑗 ] such that

Φ1 (𝛾 (𝑠)) ∈B, ∀𝑠 ∈ [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ] (71)
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and, moreover,

Φ1 (𝛾 (𝑡󸀠𝑗)) ∈B−𝑙 ,
Φ1 (𝛾 (𝑡󸀠󸀠𝑗 )) ∈B−𝑟 .

(72)

We also know that

𝛾 (𝑠) ∈H𝑗, ∀𝑠 ∈ [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ] . (73)

According to Definition 3 we conclude that

(ℋj, Φ1) :  ℬ, ＠ＩＬ j = 0, . . . , m − 1 (74)

and thus the first condition in Theorem 4 is fulfilled (see
Figure 4 for a graphical description of this step in the proof).

After the time𝑇1 we switch to equation (𝑆2 ). As previously
observed, due to the autonomous nature of the system, the
study of the solutions in the time interval [𝑇1, 𝑇] is equivalent
to the study for 0 ≤ 𝑡 ≤ 𝑇2. Now we set

𝑇∗2 fl 𝜏2 (𝛽) (75)

and fix 𝑇2 > 𝑇∗2 .
Arguing in a similar manner as before, we introduce a

system of polar coordinates with center at the point 𝑃2 =(𝑥02, 0) and take the clockwise orientation as a positive
orientation for the angles starting from the positive half-line{(𝑥, 0) : 𝑥 > 𝑥02}. In this manner, we can associate an angular
coordinate 𝜗(𝑡; 𝑧) to any solution (𝑆2)with initial point 𝑧 ∈B
and 𝑡 ∈ [0, 𝑇2]. Repeating the same argument as above, one
can see that the angle is a strictly increasing function of the
time variable and, moreover, for any positive integer 𝑘
𝜗 (𝑡; 𝑧) ⋛ 𝜗 (0, 𝑧) + 2𝑘𝜋 if and only if 𝑡 ⋛ 𝑘𝜏2 (𝑐) (76)

(of course, the above relation holds provided that 𝑡 ∈ [0, 𝑇2]
and 𝑇2 > 𝑘𝜏2(𝑐) for 𝑐 ∈ [𝛽, 0]).

Let 𝛾 : [0, 1] 󳨀→ B be a (continuous) path such that𝛾(0) ∈ B−𝑙 and 𝛾(1) ∈ B−𝑟 and consider the path [0, 1] ∋𝑠 󳨃󳨀→ Φ2(𝛾(𝑠)). Passing to the polar coordinates we have that
𝜗 (0, 𝛾 (𝑠)) ∈ ]0, 𝜋[ , ∀𝑠 ∈ [0, 1] (77)

and, moreover,

𝜗 (𝑇2, 𝛾 (0)) < 𝜋,
𝜗 (𝑇2, 𝛾 (1)) > 2𝜋. (78)

Indeed, the point 𝛾(0) ∈B−𝑙 lies on the homoclinic trajectoryΓ02 and thereforeΦ2(𝛾(0)) remains in the fourth quadrant. On
the other hand, the point 𝛾(1) ∈B−𝑟 lies on the periodic orbitΓ𝛽2 and, since 𝑇2 > 𝜏2(𝛽) (which is the period of Γ𝛽2 ), it follows
that 𝛾(1)makes at least one turn around the center 𝑃2 during
the time interval [0, 𝑇2].

Hence, there exists an interval [𝑠󸀠, 𝑠󸀠󸀠] ⊆ [0, 1] such that

𝜗 (𝑇2, 𝛾 (𝑠󸀠)) = 𝜋,
𝜗 (𝑇2, 𝛾 (𝑠󸀠󸀠)) = 2𝜋. (79)

Using the fact that 𝛽 ≤ 𝐸2(Φ2(𝛾(𝑠))) ≤ 0 for every 𝑠 ∈ [0, 1]
(by the invariance of the region bounded by Γ𝛽2 and Γ02 with
respect to system (𝑆2)), we conclude that the set {Φ2(𝛾(𝑠)) :𝑠 ∈ [𝑠󸀠, 𝑠󸀠󸀠]} crosses the regionA. Hence, by the continuity of
the map [𝑠󸀠, 𝑠󸀠󸀠] ∋ 𝑠 󳨃󳨀→ Φ2(𝛾(𝑠)), we can find a subinterval[𝑡󸀠, 𝑡󸀠󸀠] ⊆ [𝑠󸀠, 𝑠󸀠󸀠] such that

Φ2 (𝛾 (𝑠)) ∈ A, ∀𝑠 ∈ [𝑡󸀠, 𝑡󸀠󸀠] (80)

and, moreover,

Φ2 (𝛾 (𝑡󸀠)) ∈ A−𝑙 ,
Φ2 (𝛾 (𝑡󸀠󸀠)) ∈ A−𝑟 .

(81)

According to Definition 3 we conclude that

(ℬ,Φ2) : ℬ  (82)

and thus the second condition in Theorem 4 is fulfilled for
K fl B (see Figure 5 for a graphical description of this last
step in the proof).

Then, Theorem 4 applies and the proof of Theorem 2 is
complete (with respect to the “chaotic part”), providing the
existence of complex dynamics on𝑚 symbols for the Poincaré
map Φ (of system (𝑆)) on the compact set A, according to
Definition 1.

Regarding the fact that all the solutions we find via
Theorem 4 are always positive in the 𝑥-variable, we need only
to observe that, in the first step of the proof concerning the
property

(ℋi, Φ1) :  ℬ, (83)

we have also found that 𝑥(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇1] when(𝑥(0), 𝑦(0)) ∈ H𝑖.Moreover, by construction, it follows that𝑥(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇2] when (𝑥(0), 𝑦(0)) ∈ B. This
concludes the proof.

Remark 6. From the proof of Theorem 2 (and the geometric
construction involving A and B) it follows that our result is
stable with respect to small perturbations of the coefficients.
Indeed, from the fundamental theory of ODEs we know
that, for any fixed time interval [0, 𝑇], a “small” perturbation
of the coefficients in the 𝐿1-norm on [0,T] produces a
“small” perturbation on the Poincaré map (in the sense of the
continuous dependence of the solutions from the data). With
this respect, the following result holds.

Theorem 7. Let 𝑓 : R 󳨀→ R and 𝑉 : R 󳨀→ R+0 be as
in Theorem 2, with 𝑉1 ̸= 𝑉2. Given 𝑚 ≥ 2 and 𝑇∗1 and 𝑇∗2
according to Theorem 2, let us fix 𝑇1 > 𝑇∗1 and 𝑇2 > 𝑇∗2 and
let 𝑇 fl 𝑇1 + 𝑇2.Then, there is 𝜀 = 𝜀(𝑚, 𝑇1, 𝑇2) > 0 such that
equation

−𝑢󸀠󸀠 + 𝑎 (𝑡) 𝑢 = 𝑓 (𝑢) , (84)

has infinitely many periodic (subharmonic) solutions as well
as solutions presenting a complex dynamics, with 𝑢(𝑡) > 0,
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provided that 𝑎(⋅) : R 󳨀→ R is a (measurable) 𝑇-periodic
function satisfying

∫𝑇
0
|𝑎 (𝑡) − 𝑉 (𝑡)| 𝑑𝑡 < 𝜀. (85)

In Theorem 7 the solutions are considered in the
Carathéodory sense [78] (when 𝑎(𝑡) is only measurable).
On the other hand, we can also take an arbitrarily smooth
function 𝑎(𝑡) which approximates the step function 𝑉(𝑡),
provided that (85) is satisfied. The stability ofTheorem 2 with
respect to small perturbations of the Poincaré map is not
confined to the coefficient of the nonlinearity. For instance,
we can obtain the same result for a perturbed equation of the
form

−𝑢󸀠󸀠 + 𝑐𝑢󸀠 + 𝑎 (𝑡) 𝑢 = 𝑞 (𝑡) 𝑓 (𝑢) + 𝑒 (𝑡, 𝑢, 𝑢󸀠) , (86)

provided that 𝑐, ∫𝑇
0
|𝑎(𝑡) −𝑉(𝑡)|𝑑𝑡 and |𝑒(⋅ ⋅ ⋅ )| are sufficiently

small and 𝑞(⋅) : R 󳨀→ R is a 𝑇-periodic function with
∫𝑇
0
|𝑞(𝑡) − 1|𝑑𝑡 small, too. Finally, we stress that 𝑇∗1 and 𝑇∗2

can be easily computed and are not necessarily “large” (see,
for instance, the examples considered in Figures 4-5).

4. Related Results

In the previous sections we have discussed the presence of
chaotic-like dynamics (including the existence of infinitely
many subharmonic solutions) for (17), by assuming that
the period is large enough. From this point of view, our
results can be interpreted in line with analogous theorem
on Hamiltonian systems with slowly varying coefficients (see
[14, 16]). On the other hand, via a simple change of variable,
we can apply our results to a typical Schrödinger equation of
the form

−𝜀2𝑢󸀠󸀠 +V (𝑡) 𝑢 = 𝑓 (𝑢) , (87)

forV : R 󳨀→ R+0 a periodic stepwise function of fixed period
T > 0, of the form

V (𝑡) fl {{{
V1 for 𝑡 ∈ [0,T1[
V2 for 𝑡 ∈ [T1,T[ (88)

with V1 ̸= V2 and 0 < T1 < T. As before, we also set
T2 fl T−T1.Writing (87) as an equivalent first order system

𝑢󸀠 = 𝜀−1V
V󸀠 = 𝜀−1 (V (𝑡) 𝑢 − 𝑓 (𝑢)) (89)

in the phase-plane, we obtain the following result.

Theorem 8. Let 𝑓 : R 󳨀→ R be a 𝐶1-function of the form
(18), with ℎ satisfying (∗). Let V : R 󳨀→ R+0 be aT-periodic
stepwise function as in (88). Then, there exist a compact set
D ⊂ R+0 × R and, for every integer 𝑚 ≥ 2, a constant 𝜀∗𝑚 > 0
such that, for every 𝜀 ∈]0, 𝜀∗𝑚[ the Poincaré map Ψ𝜀 associated
with (89) on [0,T] induces chaotic dynamics on𝑚 symbols in
the setD.Moreover, for the corresponding solutions (𝑢(𝑡), V(𝑡))
of (89) we have 𝑢(𝑡) > 0 for every 𝑡 ∈ R.

The constant 𝜀∗𝑚 can be explicitly determined in terms of𝑚 andT1,T2.
Proof. As in the proof of Theorem 2, we suppose

0 < V2 < V1 (90)

(the treatment of the other situation is completely similar and
thus is omitted).

The change of variables 𝑡 fl 𝜀𝑠 and 𝑥(𝑠) fl 𝑢(𝜀𝑠), 𝑦(𝑠) fl
V(𝜀𝑠), transforms system (89) to the equivalent first order
system

𝑥󸀠 = 𝑦
𝑦󸀠 = 𝑉 (𝑠) 𝑥 − 𝑓 (𝑥) (91)

for 𝑉(𝑠) fl V(𝜀𝑠) a stepwise periodic function of period 𝑇 fl
T/𝜀.By (88) and setting𝑇1 fl T1/𝜀 and𝑇2 fl T2/𝜀, it follows
that 𝑉(𝑠) = 𝑉1 fl V1 on [0, 𝑇1[ and 𝑉(𝑠) = 𝑉2 fl V2 on[𝑇1, 𝑇[ with 𝑇 = 𝑇1 + 𝑇2. Notice that if we denote by Φ the
Poincaré map associated with system (91) on [0, 𝑇], then it
follows that Ψ𝜀 = Φ (one can easily check this fact, because(𝑥(𝑇), 𝑦(𝑇)) = (𝑢(T), V(T))).

Now, for (91) we can apply Theorem 2. In particular,
through the proof of that result in Section 3, we find a
compact region D ⊆ R+0 × R and two constants 𝑇∗1 and𝑇∗2 such that the chaotic dynamics for Φ (according to
Definition 1) is ensured provided that 𝑇1 > 𝑇∗1 and 𝑇2 > 𝑇∗2 .
The lower estimates on 𝑇1 and 𝑇2 transfer to an upper bound
for 𝜀, so that if

0 < 𝜀 < 𝜀∗𝑚 fl min{T1𝑇∗1 ,
T2𝑇∗2 } , (92)

then the chaotic dynamics for Ψ𝜀 on the same set D is
guaranteed. In particular, recalling the definition of 𝑇∗1 in
(61) and 𝑇∗2 in (75), we derive a precise estimate to 𝜀∗𝑚.
For instance, if we take 𝑉1 = 2, 𝑉2 = 1 and 𝑓(𝑥) =𝑥3 (like in the example of Figure 2) then we know that𝜀∗2 ≥ min{T1/50,T2/10} and therefore, if we choose 𝜀 <
min{T1/50,T2/10}, the conclusion ofTheorem 8 holds.

We observe that, similarly to Remark 6, the stability of the
result with respect to small perturbations of the coefficients is
guaranteed, too.

5. Boundary Value Problems on
Finite Intervals: Positive Solutions

We start this section by briefly describing how the method
applied in the proof of Theorem 2 can be adapted to obtain
multiplicity results for the Neumann boundary value prob-
lem

−𝜀2𝑢󸀠󸀠 +V (𝑡) 𝑢 = 𝑓 (𝑢)
𝑢󸀠 (0) = 𝑢󸀠 (𝑇) = 0 (93)

(see (87)). Our aim is to find multiple positive solutions for
(93), where the number of the solutions becomes arbitrarily
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large as 𝜀 󳨀→ 0+. Actually, such kind of result can be
obtained by a variant of Theorem 2, via a change of variables
as in the proof of Theorem 8. With this respect, we study the
equivalent problem

−𝑢󸀠󸀠 + 𝑉 (𝑡) 𝑢 = 𝑓 (𝑢)
𝑢󸀠 (0) = 𝑢󸀠 (𝑇) = 0 (94)

(see (17)) and look for multiplicity results, where the number
of the solutions increases as the time-interval length grows.

As in Section 2 we suppose that 𝑉 : [0, 𝑇] 󳨀→ R+0 is
a stepwise function of the form (19) for 𝑉1 > 𝑉2 (the case
in which 𝑉1 < 𝑉2 can be treated in a similar manner). The
assumptions on 𝑓(𝑥) are the same as in Section 2.

Following the argument of the proof of Theorem 2 we
consider the Poincaré map Φ associated with the planar
system (𝑆) as well as its components Φ𝑖 associated with
systems (𝑆𝑖). The difference with respect to the proof of
Theorem 2, consists into the fact that this time we look for
initial points 𝑤0 fl (𝑢0, 0), with 𝑢0 > 0 such that the second
component of Φ(𝑤0) fl 𝜁(𝑇; 0, 𝑤0) vanishes. In other words,
we apply a shooting method, looking for a solution which
departs at time 𝑡 = 0 from a point on the positive 𝑥-axis and
hits again the (positive) 𝑥-axis at the time 𝑡 = 𝑇, with 𝑥(𝑡) > 0
for all 𝑡 ∈ [0, 𝑇].

We repeat step by step (keeping the same notation)
the geometrical construction in the proof of Theorem 2. In
particular, as before, we choose the closed orbits Γ𝛼11 and Γ𝛼21
of system (𝑆1) and Γ𝛽2 of system (𝑆2) in order to produce
the regions A and B in the phase-plane. Recall also that𝜏1(𝛼2) > 𝜏1(𝛼1) (see (51)).We have already indicated by (𝑎𝑖, 0)
the intersection point of Γ𝛼𝑖1 with the positive 𝑥-axis which
is closer to the origin. We introduce now also the second
intersection point of Γ𝛼𝑖1 with the positive 𝑥-axis, which will
be denoted by (𝑏𝑖, 0). Clearly we have

0 < 𝑎2 < 𝑎1 < 𝑥01 < 𝑏1 < 𝑏2 (95)

(compared also with Figure 2).
We produce the solutions of (94) by shooting from initial

points 𝑤0 = (𝑢0, 0) with
𝑢0 ∈ [𝑎2, 𝑎1] or 𝑢0 ∈ [𝑏1, 𝑏2] . (96)

Just to fix one case for our discussion, let us assume that
the former of the above alternative occurs. More precisely,
we shall develop the following argument that we first briefly
describe in an heuristic manner for the reader’s convenience.
We start from an initial point in the segment [𝑎2, 𝑎1] × {0}
of the phase-plane and apply the Poincaré map Φ1 for a time𝑇1 sufficiently long so that the image of such segment crosses
at least 𝑚 times the set B.Then we switch to the Poincaré
mapΦ2 and apply it for a time 𝑇2 sufficiently long so that the
above arcs crossing B will be transformed (by Φ2) to some
curves winding around the point 𝑃2 and crossing at least 𝑘
times the 𝑥-axis. Putting all together these facts we conclude
that there are at least𝑚×𝑘 solutions to (94). We present now
the technical justification, by slightlymodifying the argument
of the proof of Theorem 2.

As before, we represent the solutions of (𝑆1) in polar
coordinates with respect to the center 𝑃1 = (𝑥01, 0), using
a clockwise orientation for the angular coordinate. In this
case, instead of taking 𝑧 ∈ A, we have 𝑧 ∈ [𝑎2, 𝑎1] × {0}
and therefore 𝜃(0, 𝑧) = −𝜋. Accordingly, we replace the path𝛾 : [0, 1] 󳨀→ A with the map which parameterizes the
segment [𝑎2, 𝑎1] × {0}, namely we take

𝛾 (𝑠) fl (𝑠, 0) , for 𝑠 ∈ [𝑎2, 𝑎1] . (97)

As a consequence, for

𝑐 (𝑠) fl 𝐸1 (𝛾 (𝑠)) , 𝑠 ∈ [𝑎2, 𝑎1] , (98)

we have that

𝜃 (𝑡, 𝛾 (𝑠)) ⋛ (𝑘 − 1) 𝜋
if and only if 𝑡 ⋛ 𝑘𝜏1 (𝑐 (𝑠))2 . (99)

For an integer 𝑚 ≥ 2, we define 𝑇∗1 as in (61) and fix𝑇1 > 𝑇∗1 . Then, repeating the same argument of the proof
of Theorem 2, we define the integers 𝑘1 and 𝑘2 and obtain

𝜃 (𝑇1, 𝛾 (𝑎1)) = 𝜃 (𝑇1, (𝑎1, 0)) ≥ (2𝑘1 − 1) 𝜋 (100)

and

𝜃 (𝑇1, 𝛾 (𝑎2)) = 𝜃 (𝑇1, (𝑎2, 0)) < 2𝑘2𝜋 (101)

(which, in this case, is an obvious choice). As a consequence
we find𝑚 pairwise disjoint intervals [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ] ⊆ [𝑎2, 𝑎1] for 𝑗 =0, . . . , 𝑚 − 1 such that

Φ1 ((𝑠, 0)) ∈B, ∀, 𝑠 ∈ [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ] (102)

and, moreover,

Φ1 ((𝑡󸀠𝑗, 0)) ∈B−𝑙 ,
Φ1 ((𝑡󸀠󸀠𝑗 , 0)) ∈B−𝑟 .

(103)

After the time 𝑇1 we switch to equation (𝑆2). As remarked
before, the study of the solutions in the time interval [𝑇1, 𝑇] is
equivalent to the study for 0 ≤ 𝑡 ≤ 𝑇2, where, for the moment,𝑇2 is not yet fixed.

We introduce another system of polar coordinates with
center at the point 𝑃2 = (𝑥02, 0) and take the clockwise
orientation as a positive orientation for the angles starting
from the positive half-line {(𝑥, 0) : 𝑥 > 𝑥02}. In this manner,
we can associate an angular coordinate 𝜗(𝑡; 𝑧) to any solution(𝑆2) with initial point 𝑧 ∈ B and 𝑡 ∈ [0, 𝑇2]. In order to
have the condition 𝑢󸀠(𝑇) = 0 satisfied, we look for solutions
(in the phase-plane) such that 𝑦(𝑇2) = 0. In terms of these
new angular coordinates, this corresponds to the condition𝜗(𝑇2, 𝑧) = 𝑘𝜋 for some positive integer 𝑘.

We have already proved that the angle is a strictly
increasing function of the time variable. Moreover, as a
consequence of (60) and the symmetry of the orbits with
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respect to the 𝑥-axis, we find that, for any positive integer 𝑘
and for any 𝑧 ∈B,

𝜗 (𝑡; 𝑧) > 𝑘𝜋 whenever 𝑡 > 𝑘𝜏2 (𝑐)2 (104)

(of course, the above relation holds provided that 𝑡 ∈ [0, 𝑇2]
and 𝑇2 > 𝑘𝜏2(𝑐)/2 for 𝑐 ∈ [𝛽, 0]).

Nowwe are ready to introduce the constant 𝑇∗2 which will
be defined as follows. Let us fix a positive integer 𝑘 and set

𝑇∗2 = 𝑇∗2 (𝑘) fl 𝑘𝜏2 (𝛽)2 (105)

and fix 𝑇2 > 𝑇∗2 .
The point Φ1((𝑡󸀠𝑗, 0)) ∈ B−𝑙 lies on the level line Γ02 of the

homoclinic trajectory and therefore, 𝜗(𝑇2; Φ1((𝑡󸀠𝑗, 0))) < 𝜋.
On the other hand, Φ1((𝑡󸀠󸀠𝑗 , 0)) ∈ B−𝑟 lies on the level line Γ𝛽2
of the closed trajectory of period 𝜏2(𝛽) and therefore we have𝜗(𝑇2; Φ1((𝑡󸀠󸀠𝑗 , 0))) > 𝑘𝜋. Hence, we can conclude that the arc
{Φ1((𝑠, 0)) : 𝑠 ∈ [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ]}, which connect in B the opposite
sides B−𝑙 and B−𝑟 , is mapped by Φ2 to an arc which crosses
at least 𝑘 times the 𝑥-axis. In other words, for each integer𝑖 ∈ {1, . . . , 𝑘} there exists one point

𝑧𝑖𝑗 ∈ {Φ1 ((𝑠, 0)) : 𝑠 ∈ [𝑡󸀠𝑗, 𝑡󸀠󸀠𝑗 ]} (106)

such that 𝜗(𝑇2; 𝑧𝑖𝑗) = 𝑖𝜋.The corresponding solution 𝑢(𝑡) has
precisely 𝑖-zeros of the derivative in the interval ]0, 𝑇2].

Finally, recalling that the𝑚 × 𝑘 points 𝑧𝑖𝑗 ∈B are images
through Φ1 of corresponding points in the interval [𝑎2, 𝑎1] ×{0}, allows us to conclude with the following claim.

Theorem 9. Let 𝑓 : R 󳨀→ R be a 𝐶1-function of the form
(18), with ℎ satisfying (∗). Let 𝑉 : [0, 𝑇] 󳨀→ R+0 be a stepwise
function as in (19), and such that 𝑉1 > 𝑉2 > 0.Then, for every
pair of integers (𝑚, 𝑘) with 𝑚 ≥ 2 and 𝑘 ≥ 1, there exist two
positive constants𝑇∗1 and𝑇∗2 such that, if𝑇1 > 𝑇∗1 and𝑇2 > 𝑇∗2 ,
the problem (94) has at least𝑚 × 𝑘 positive solutions on [0, 𝑇]
(with 𝑇 = 𝑇1 + 𝑇2). More precisely, for each 𝑖 = 1, . . . , 𝑘 there
are at least 𝑚 solutions of (94) with 𝑢󸀠(𝑇1) < 0 and such that𝑢󸀠(𝑡) has precisely 𝑖-zeros in [𝑇1, 𝑇].

The solutions that we have produced are only those
obtained by shooting from [𝑎2, 𝑎1] × {0}, achieving the set
B at the time 𝑇1 and coming back at the 𝑥-axis at the time𝑇.With obvious changes in the argument, we could produce
solutions which are in A at the time 𝑇1.Moreover, we could
also start from the segment [𝑏1, 𝑏2] × {0} and reach the region
B (or, respectively, A) at the time 𝑇1. Therefore, with the
same technique, we can produce four different classes of𝑚×𝑘
solutions. Finally, we can consider (by suitably modifying the
same approach) also the case 𝑉2 > 𝑉1 > 0.

A variant of Theorem 9 for problem (93) with 𝜀 suffi-
ciently small can be also obtained via the same change of
variables as in the proof of Theorem 8.

In order to obtain positive solutions for theDirichlet (two-
point) boundary value problem

−𝜀2𝑢󸀠󸀠 +V (𝑡) 𝑢 = 𝑓 (𝑢)
𝑢 (0) = 𝑢 (𝑇) = 0 (107)

or (after a suitable rescaling)

−𝑢󸀠󸀠 + 𝑉 (𝑡) 𝑢 = 𝑓 (𝑢)
𝑢 (0) = 𝑢 (𝑇) = 0 (108)

a natural implementation of the shooting approach consid-
ered for the periodic and the Neumann problem consists into
shooting from the positive 𝑦-axis of the phase-plane. More
precisely, we consider the initial condition

(𝑥 (0) , 𝑦 (0)) = 𝑤0 = (0, 𝑟) , with 𝑟 > 0 (109)

for system (𝑆) and look for a suitable value of the parameter𝑟 such that

Φ(𝑤0) fl (𝑥 (𝑇; 0, 𝑤0) , 𝑦 (𝑇; 0, 𝑤0)) (110)

satisfies

𝑥 (𝑇; 0, 𝑤0) = 0, with 𝑥 (𝑡) > 0 ∀𝑡 ∈ ]0, 𝑇[ . (111)

In such a situation, for a weight function with only two steps,
we do not obtain multiplicity results (in general). However,
one could easily provide a mechanism for multiple solutions
by taking a weight function 𝑉(𝑡) with three steps defined as
follows:

𝑉 (𝑡) fl
{{{{{{{{{

𝑉1 for 𝑡 ∈ [0, 𝑇1[
𝑉2 for 𝑡 ∈ [𝑇1, 𝑇1 + 𝑇2[
𝑉3 for 𝑡 ∈ [𝑇1 + 𝑇2, 𝑇[

(112)

with 𝑇 = 𝑇1 + 𝑇2 + 𝑇3 and 𝑉1, 𝑉2, 𝑉3 positive constants with
𝑉2 > max {𝑉1, 𝑉3} . (113)

In fact, under these assumptions, we can find solutions of
(108) which are positive on ]0, 𝑇[ and oscillate a certain
(prescribed) number of times in the phase-plane around the
point 𝑃2 = (𝑥02, 0), during the time interval [𝑇1, 𝑇1 +𝑇2].The
number of such solutions can be larger than a preassigned
number 𝑚, provided that 𝑇2 > 𝑇∗2 for 𝑇∗2 a sufficiently large
time (depending on 𝑚). An analogous conclusion can be
derived for problem (107).

As a consequence of the technique we can also prove
the stability of the multiplicity results with respect to small
perturbations of the coefficients.

6. Final Remarks

6.1. Sign Changing Solutions. In the previous sectionswe have
focused our attention only to the search of positive solutions.
We stress the fact that the same approach works well in order
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to produce nodal solutions, that is solutions with a prescribed
number of zeros in a given interval. For the sake of simplicity
in the exposition and consistently with the classical case𝑓(𝑢) = |𝑢|𝑝−1𝑢, we confine ourselves to the case of an odd
nonlinear term in the equation. If 𝑓(𝑠) = 𝑠ℎ(𝑠) is not odd, we
can still adapt the same argument with minor efforts.

The assumption (18), with ℎ(𝑠) an even function satisfying(∗), implies that the phase–portrait of (36) is similar to that
of Figure 1 with a mirror symmetry with respect to the 𝑦-axis
(see Figure 6).

Now we consider again (17) with a periodic stepwise
weight function 𝑉(𝑡) as in (19), with 𝑉1 ̸= 𝑉2. Actually, in
order to enter in the same situation analyzed in Section 3, we
assume

𝑉1 > 𝑉2 > 0. (114)

As previously observed, the dynamics associated with system(𝑆) can be described as that of a couple of switching systems of
the form (𝑆1) and (𝑆2).This time we are interested also in sign
changing solutions and therefore we exploit the properties of
the trajectories in the negative half-plane, too. If we overlap
the energy level lines of the two autonomous systems we
have the possibility of applying our abstract result (namely,
Theorem 4) to different choices of rectangular regionsA and
Bwhich are determined through the intersections of the level
lines of the two systems. An illustrative example of possible
choices of topological rectangles is given in Figure 7 where
we have put in evidence some sets which are suitable for the
application of Theorem 4.

As a consequence, we can find different rectangular
regions where chaotic dynamics occur. The corresponding
solutions can have different qualitative behaviors on the
intervals ]𝑗𝑇, 𝑗𝑇 + 𝑇1[ and/or ]𝑗𝑇 + 𝑇1, (𝑗 + 1)𝑇[, depending
on the regions where we apply Theorem 4. For instance, we
can find solutions with prescribed nodal properties on the
intervals ]𝑗𝑇, 𝑗𝑇 + 𝑇1[ and ]𝑗𝑇 + 𝑇1, (𝑗 + 1)𝑇[, as well as
solutions which are positive (or negative) on ]𝑗𝑇, 𝑗𝑇+𝑇1[ and
have a prescribed number of zeros on ]𝑗𝑇 + 𝑇1, (𝑗 + 1)𝑇[.

For the search of sign changing solutions to the Neumann
problems (93) or (94), we suppose (114) and apply a shooting
method by selecting initial points on the 𝑥-axis of the phase-
plane. A possible argument is illustrated in Figure 8.

Finally, for the Dirichlet problem (108), where again we
suppose that 𝑉(𝑡) is step function like in (19), we can prove
the existence of multiple sign changing solutions by shooting
from the 𝑦-axis in the phase-plane and suitably adapting the
argument described above for the Neumann problem.

6.2. Remarks on the Weight Functions. Throughout the paper
we have focused our analysis to an equation of the form (17),
namely −𝑢󸀠󸀠 + 𝑉(𝑡)𝑢 = 𝑓(𝑢). We point out that the same
technique works for the case of equation

−𝑢󸀠󸀠 + 𝑉𝑢 = 𝑞 (𝑡) 𝑓 (𝑢) , (115)

with 𝑞(⋅) a positive stepwise function. This follows from
the elementary observation that the equation −𝑦󸀠󸀠 + 𝑎𝑦 =𝑏𝑓(𝑦), with constant coefficients 𝑎, 𝑏 > 0, is equivalent to

−𝑢󸀠󸀠 + (𝑎/𝑏)𝑢 = 𝑓(𝑢), for 𝑢(𝑡) fl 𝑦(𝑏−1/2𝑡). Hence, if we take𝑞(𝑡) as a step function on an interval [0, 𝑇𝑞] (with 𝑞(𝑡) possibly
periodic), we find that (115) turns out to be equivalent to (17).
For theDirichlet problem, existence,multiplicity and stability
of positive solutions to equations of the form (115) have been
obtained in [79] in the more general PDEs case for 𝑞(𝑡) a sign
changing weight function. In our setting, we suppose 𝑞(𝑡) > 0
for every 𝑡.

Finally, we observe that a simple adaptation of our
approach (as described in Sections 2 and 3 can be applied
to (14) provided that both 𝑉(𝑡) and 𝑞(𝑡) are close to stepwise
functions.
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Gómez for the kind invitation and the hospitality.The authors
also thank their colleagues A. Boscaggin, W. Dambrosio, and
D. Papini who quoted a preliminary version of their article in
some of their own recent works [80, 81].

References

[1] C. Zanini and F. Zanolin, “An example of chaos for a cubic
nonlinear Schrödinger equation with periodic inhomogeneous
nonlinearity,”AdvancedNonlinear Studies, vol. 12, no. 3, pp. 481–
499, 2012.

[2] J. Belmonte-Beitia and P. J. Torres, “Existence of dark soliton
solutions of the cubic nonlinear Schrödinger equation with
periodic inhomogeneous nonlinearity,” Journal of Nonlinear
Mathematical Physics, vol. 15, no. suppl. 3, pp. 65–72, 2008.

[3] A. S. Rodrigues, P. G. Kevrekidis, M. A. Porter, D. J. Frantz-
eskakis, P. Schmelcher, and A. R. Bishop, “Matter-wave solitons
with a periodic, piecewise-constant scattering length,” Physical
Review A: Atomic, Molecular and Optical Physics, vol. 78, no. 1,
2008.

[4] P. J. Torres and V. V. Konotop, “On the existence of dark
solitons in a cubic-quintic nonlinear Schrödinger equation with
a periodic potential,”Communications in Mathematical Physics,
vol. 282, no. 1, pp. 1–9, 2008.

[5] A. Ambrosetti, M. Badiale, and S. Cingolani, “Semiclassical
states of nonlinear Schrödinger equations,” Archive for Rational
Mechanics and Analysis, vol. 140, no. 3, pp. 285–300, 1997.



Complexity 15

[6] A. Ambrosetti and M. Berti, “Homoclinics and complex dy-
namics in slowly oscillating systems,” Discrete and Continuous
Dynamical Systems - Series A, vol. 4, no. 3, pp. 393–403, 1998.

[7] M. del Pino and P. L. Felmer, “Local mountain passes for semi-
linear elliptic problems in unbounded domains,” Calculus of
Variations and Partial Differential Equations, vol. 4, no. 2, pp.
121–137, 1996.

[8] M. Del Pino, P. L. Felmer, and O. . Miyagaki, “Existence of
positive bound states of nonlinear Schrödinger equations with
saddle-like potential,” Nonlinear Analysis. Theory, Methods &
Applications. An International Multidisciplinary Journal, vol. 34,
no. 7, pp. 979–989, 1998.

[9] A. Floer and A. Weinstein, “Nonspreading wave packets for the
cubic Schrödinger equation with a bounded potential,” Journal
of Functional Analysis, vol. 69, no. 3, pp. 397–408, 1986.

[10] P. H. Rabinowitz, “On a class of nonlinear Schröinger equa-
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