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Abstract

We perform a bifurcation analysis of normal–internal resonances in parametrised families of quasi–periodically forced
Hamiltonian oscillators, for small forcing. The unforced system is a one degree of freedom oscillator, called the ‘back-
bone’ system; forced, the system is a skew–product flow with a quasi–periodic driving with� basic frequencies. The
dynamics of the forced system are simplified by averaging over the orbits of a linearisation of the unforced system. The
averaged system turns out to have the same structure as in the well–known case of periodic forcing (� � �); for a real
analytic system, the non–integrable part can even be made exponentially small in the forcing strength. We investigate
the persistence and the bifurcations of quasi–periodic�–dimensional tori in the averaged system, filling normal–internal
resonance ‘gaps’ that had been excluded in previous analyses. However, these gaps cannot completely be filled up: sec-
ondary resonance gaps appear, to which the averaging analysis can be applied again. This phenomenon of ‘gaps within
gaps’ makes the quasi–periodic case more complicated than the periodic case.
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1 Introduction

This article studies families of quasi–periodically forced nonlinear Hamiltonian oscillators at normal–internal resonances.
The motivating example, which is quite representative for the general case considered later on, is the quasi–periodically
forced mechanical pendulum

�� � �� �	
� � ����� � (1)

where�� � � �, � � 
 and� � 
. Quasi–periodicity of the forcing� means that there is a frequency vector	 �
�	�� 
 
 
 � 	�� with rationally independent components, and a smooth function� � � � � � such that

���� � ��	��� � � � � 	����

here�� � ����
��. The oscillator is said to be at a normal–internal� � � resonance, if� satisfies

��� 	�� �� � 
�

for some� � ����
	, some� � ��� �� � � �	, and if � is the smallest positive integer with this property. Throughout
this article, the frequency vector	 is fixed andDiophantine, while the parameter� ranges over a compact interval not
containing
.

A classical question, which has been posed explicitly by Stoker [80] but which goes back to the acoustical investiga-
tions of Helmholtz and Rayleigh [53, 76], asks for solutions of (1) that are quasi–periodic with the same frequency vector
as the forcing: so–calledresponse solutions. The central question of this article is whether response solutions exist, and if
so, how these solutions behave as the parameter� takes values near a normal–internal resonance value.

We reformulate the question in geometric terms by associating to the differential equation (1) a dynamical system on
the phase space�� 
 �� by posing

�� � 	�

�� � �� (2)

�� � ��� �	
�� ������

here� � �� and�� � � � . Any invariant torus that can be represented as the graph of a function� � �� �� ��� � �� � �
�

corresponds to a family of response solutions
���� � ���	�� ����

parametrised by��. Hence, in geometric terms Stoker’s problem asks for invariant tori of the system (2) in graph form.
The forcing strength� will be regarded as a perturbation parameter. For� � 
, the torus� � 
 is invariant; we are
interested in the fate of this torus if� is small and positive.

The unperturbed torus is normally elliptic, and its normal frequency is equal to�. Kolmogorov–Arnold–Moser (KAM)
theory shows that for small� � 
, this torus will persist for the parameter� taking values in a Cantor set of positive
Lebesgue measure, cf. [8, 19, 59, 60, 69, 75]. The complement of this Cantor set consists of countably many open inter-
vals – usually called ‘gaps’ in this context – whose union is dense. These gaps correspond to normal–internal resonances;
in their presence standard KAM theory cannot be applied directly. Note that in the well–known periodic analogue of this
problem, that is in the case� � �, cf. [67], response solutions are known to persist for all� ranging over some compact
interval.

The main goal of the present article is hence to analyse what happens in a given normal–internal resonance gap. After
averaging at the resonance under consideration, and lifting to a suitable covering space, the system can be written as the
sum of an integrable part, which may be reduced to a one degree of freedom system, and a very small non–integrable part.
Analysis of the integrable part yields that there are two types of gaps. At a normal–internal� � � resonance, the invariant
torus is ‘pushed away’ from the origin, and two more tori are generated in a quasi–periodic centre–saddle bifurcation. At
a normal–internal� � � resonance the invariant torus changes from being normally elliptic to normally hyperbolic — and
back — in two quasi–periodic frequency–halving bifurcations. This second type of gap is proof–generated in classical
KAM–schemes, which control the normal behaviour of invariant tori tightly. Consequently this type of gap is not present
in [6, 7], where an alternative scheme is used.



Normal–internal resonances 4

0

0.05

0.1

0.15

0.2

0.6 0.8 1 1.2 1.4

�

A
m

pl
itu

de

�

Figure 1:Response diagram of(1), (2). Shown are the parameter� on the horizontal axis, against the� � norm of the
response solution on the vertical axis. Classical KAM–theory can only prove the existence of invariant tori whose� �–
norm is below some bound�, which is of the same order���� as the forcing, as� � 
. Moreover the normal dynamics
of these invariant tori should be elliptic, which fails to be the case for� � � resonances (the corresponding gaps are not
shown in this figure).
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1.1 Phenomenology

To illustrate the dynamical phenomena we are interested in, numerical simulations of system (2) have been performed for
the case� � �, 	 � ���� �

� � �
�

�
��, cf. [24]. For�, the trigonometric rational function

���� � �� � ��� �� � ��� ���
��

has been taken, whose Fourier coefficients are all non–zero. The perturbation strength has been set to� � 


�.
Response solutions have been computed numerically for a range of values of the parameter�. The method works

roughly as follows: system (2) induces a Poincar´e map of the Poincar´e section� � � 
 onto itself. Invariant tori of the
system correspond to invariant circles of the Poincar´e map, with rotation number�
�


�
�. An explicit parametrisation of

such an invariant circle is obtained by representing it as a Fourier series and computing its Fourier coefficients numerically.
Then, the invariant curve can be continued with respect to the parameter�: for more details, see [31, 56]. The results are
summarised in Figure 1, where on the vertical axis the�� norm of the Fourier series is plotted against the parameter�.

In the figure, it can be seen clearly how invariant tori are ‘pushed away’ by� � � resonances; however, these resonances
do not destroy the tori. As remarked before, ‘classical’ KAM theory handles only the case that response solutions have an
amplitude of order����: this corresponds to the lower part of the curves. The ‘spikes’ are cut off, and hence correspond
to the ‘gaps’ in the Cantor sets for which classical KAM theory fails to find invariant tori. These gaps will be almost
completely ‘filled’ by the results of the present paper.

Another case for which gaps occur in the KAM Cantor sets is for� � � resonances. Although in that case invariant
tori are not pushed away, their normal linear behaviour changes from elliptic to hyperbolic and back again. Classical
KAM theory also fails for these tori: this gives rise to another kind of ‘gap’ in the KAM Cantor sets, which will be filled
completely by the present paper.

Let us briefly compare these findings with the results in the case of periodic forcing� � � (see [67] for a survey). There
the resonance gaps are isolated. However, the same amplification of response solutions is observed for the parameter�
close to a� � � resonance (�	 � � � 
 and� 
� 
). At a � � � resonance — that is�	 � �� � 
 with � odd — the
response solution changes from elliptic to hyperbolic and back again, through two period doubling (also called frequency
halving) bifurcations, cf. [17, 18, 27, 41]. For higher resonances�	� �� � 
 with � � �, periodic orbits with� times the
period branch off from the response solution.

All these periodic resonance phenomena reappear in our quasi–periodic case, but now forming a dense set. In fact, in
the case� � � the parameter values of� for which �	 � �� � 
 for some fixed� — the resonances — form a set of
isolated points; the corresponding set for� � � is dense.

This denseness of resonances leads us to expect ‘secondary’ resonances located on the ‘primary’ resonance curves.
To illustrate these, the left–hand picture in figure 2 zooms in on the interval�

��� 

�
� � �

�� �
�� of Figure 1. In this
way the ‘primary’ resonance at� � � �

� � �
�

�
� is magnified and a ‘secondary’ resonance at� � 

������ becomes

visible. Although resonances form a dense set, the width of the associated gaps decreases rapidly (in first approximation,
this width is proportional to the corresponding Fourier coefficient of the forcing function����, see section 5) and the
numerical detection of these phenomena becomes difficult.

In order to obtain a two–dimensional impression of the dynamics in phase space, ‘quasi–periodic’ Poincar´e sections
of system (2) are displayed in Figure 3. These are constructed by taking the first return map under the flow of (2) to the
set� � ��� � 
� �� � ��� ��	
�� , where��� �� is a small interval, and then plotting the resulting points only using their
��–coordinates.

Figure 4 shows three slices of the phase space for the case� � �
����, � � �, clearly showing a period doubling
bifurcation.

1.2 Setting of the problem

In the sequel, the phenomena illustrated in the previous subsection are analysed using a series of well–known techniques,
like (efficient) normal form analysis, van der Pol liftings, local equivariant bifurcation theory and KAM theory.

Note that the following Hamiltonian system is equivalent to equation (1)

�� � 	

�� � �
��

��
���� (3)
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Figure 2: Two more response diagrams associated to the� � � normal–internal resonance. The left plot shows the big
resonance for� near the golden number� �

� � �
�

�
� � 

��� 
 
 
, and the right plot is a magnification of the ‘secondary’

gap that appears in the left plot.

�� � �

�� � ��� �	
�� �����

where the added variable� � �� is canonically conjugate to� � ��. System (3) is an autonomous Hamiltonian system
on the phase space� ����
�� � �

�
��
�
� � ��� �� �� �	, with symplectic form����������� and Hamilton
function

���� �� �� �� � �	� �� �
�

�
�� � �� ���� � ������


This motivates the introduction of a more general (parametrised) Hamiltonian

� � �	� �� � �
�� � ��

�
� ����� ���� � ����� �� ���� ��� (4)

where�� contains terms of order������ �����, and where� is an arbitrary real analytic function. For� � 
, the
torus ��� �� � �
� 
� is invariant and a response solution. This response solution is said to be at a normal–internal
� � � resonance at� � ��, if

��� 	�� ��� � 


for some� � ����
	, some� � ��� �� � � �	, and if� is the smallest positive integer with this property.
Note that system (3) is a special case of this general form. Moreover, note that this general parametrised Hamiltonian

is generic in the universe of parametrised families of ‘forced’ (or ‘driven’ or ‘skew’) Hamiltonian systems

� � �	� �� � ���� �� ���

which have the property that the ‘torus dynamics’
�� � 	

are decoupled from the ‘normal dynamics’

�� �
��

��
� �� � ���

��



This set–up keeps	 constant, and allows to concentrate on the normal behaviour of invariant tori, while not having to
worry about possible internal resonances. For the rest, we want our system to be ‘as generic as possible’ and ‘sufficiently
smooth’, although in the later parts of the article, the Hamiltonian (4) is assumed to be real analytic in all its arguments.
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Figure 4:Three phase portraits associated to a1:2–resonance, for���� �
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Remark 1.1

1. We make the general conjecture that the analysis of the present article is, suitably modified, valid for the more
general system

� � �	� �� � �
�� � ��

�
� ����� ���� � ����� �� �� ���� ��

in the universe of ‘ordinary’ Hamiltonian systems. Restricting ourselves to the forced case in this article is mainly
for convenience, but also because this setting is interesting in its own right.

Indeed, there are many models in Celestial Mechanics that are written as periodic or quasi-periodic perturbations
of autonomous Hamiltonian systems; for instance [31, 37, 45, 46, 47, 48]. The families of invariant tori in such
models must present the phenomena studied here. In fact, the classical KAM theory for this case, cf. [59, 60],
avoids the normal–internal resonance gaps under study here by excluding the corresponding values in the action
and/or parameter spaces.

2. Our restriction to a real analytic universe (endowed with the compact–open topology on holomorphic extensions)
partly is for convenience. Large parts of this treatment also work in� � for  � � � ��	 large,e.g.the normal
form transformations, the van der Pol lifting, Kupka–Smale genericity [25, 26], and the quasi–periodic persistence
results [20, 75]. Real analyticity is crucial, however, to obtain exponential estimates on the remainder terms in the
normal forms, which in turn determine the widths of the gaps [22, 23, 71, 79].
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1.3 Outline

We outline the analysis performed in the rest of the article. As mentioned before, we consider the Hamiltonian

� � �	� �� � �
�� � ��

�
� ����� ���� � ����� �� ���� ��


Observe that for� � 
 this Hamiltonian is integrable. Its dynamics leave invariant an elliptic�–dimensional torus���� �

 of graph form and a surrounding family of invariant�� � ��–tori. The term�� is regarded as a perturbative forcing
term. We are interested in the fate of the�–torus when� is small and positive, in particular for� in a small neighbourhood
of a normal–internal resonance value�� 
� 
 satisfying

��� 	� � ��� � 
 (5)

for certain� � ��� �� � � �	 and� � ����
	.
If � � ��� �	, classical KAM–theory cannot be applied to this perturbation problem directly. However, by restricting

to a single normal resonance, the problem may be transformed as follows. For� close to� �, � close to
 and��� �� in a
neighbourhood of
 (whose size depends on�), a resonant normal form is computed. By avan der Pol transformationthe
system is lifted to a suitable covering space, where it can be split into an integrable system (that can be reduced to a one
degree of freedom ‘backbone’ system) and a non–integrable remainder term of arbitrary high order in all variables.

The ‘backbone’ system is equivariant with respect to the deck transformations of the covering space, and hence
equivariant bifurcation theory is invoked to analyse its bifurcations with respect to the parameter�. Our main concern,
persistence of quasi–periodic response tori of graph form, then reduces to analysing the persistence of response tori of the
integrable ‘backbone’ system under small non–integrable perturbations. For this part of the analysis, we draw on results
of quasi–periodic Hamiltonian bifurcation theory already available. From the bifurcation diagrams obtained in this way,
the response diagram near the resonance (5) can be reconstructed, using ‘classical’ KAM–theory, cf. [8, 9, 11, 19, 52, 55,
61, 63, 69, 80]. To this end we use the following Diophantine conditions: the parameter� should satisfy

����� 	�� ���� � !

����� � (6)

for all ���� ��� � ����
	 
 ������	 that are different from the��� �� which satisfy (5). These conditions effectively
define a Cantor set inside the resonance gap around���. Though we are mainly interested in the case that� � ��� �	,
for completeness sake the case��� � � will be included as well. We emphasise that our approach deals with one normal
frequency at a time.

We give a brief overview of the effects of the value of�. If � � �, the response torus is ‘pushed away’ by the
perturbation and standard KAM theory does not apply. If� � �, the torus is not affected but its normal behaviour can
change from elliptic to hyperbolic. In this case, KAM theory could be applied directly without including the normal
directions (see [7]). If� � �, the normal stability of the torus is not affected and standard KAM machinery can be applied;
in this case the effect of the resonance is the ‘birth’ of new invariant response tori.

Combining the normal form approach with Neishtadt–Nekhoroshev estimates, which can be obtained in the real–
analytic case as in [22, 23, 60, 71, 79], leaves only gaps that are exponentially small in the perturbation strength�.

Indeed, our analysis shows that normally elliptic tori, known to exist outside these gaps, can be continued inside
where they may or may not pass through quasi–periodic bifurcations. However, the continuation is not complete: new
gaps show up because of���, which have to be treated the same way. This ‘inductive principle’ suggests an infinite
repetition of the bifurcation patterns at ever smaller scales. Compare with the ‘bubbles inside bubbles’ as they occur in
dissipative quasi–periodic bifurcation theory [4, 8, 32, 33, 34, 84].

Note that in the formulation of the perturbation problem, there is no essential difference between the periodic case� �
�, cf. [17, 18, 27, 38, 67, 80], and the quasi–periodic case� � �. In the sequel we shall often compare these two cases;
the main difference between them is that normal–internal resonances yield isolated gaps in the periodic scenario, but a
dense union of gaps in the quasi–periodic scenario.

Remark 1.2 The gaps associated to� � 
 in ‘classical’ KAM–theory concern the internal resonances, which are of
a different type. They are in fact excluded in this article, since	 has been fixed at some Diophantine value. Various
violations of the corresponding non–resonance conditions are dealt with elsewhere. See for instance [9, 14, 15, 55, 70,
75, 83].
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1.4 Organisation

The article is organised as follows. In Section 2 we simplify the Hamiltonian (4) in two steps. First a formal normal form
is developped. Second, by a van der Pol transformation, we lift the system to a covering space adapted to the resonance.

After truncation and reduction, a one degree of freedom system is obtained, which is the same as in the periodic
case. In Section 3 this one degree of freedom system is investigated for its own sake, since it forms the backbone of our
perturbation problem. Our main interest is with the (relative) equilibria, since they correspond to response solutions in
the full system. They can be continued by the Implicit Function Theorem. The analysis is simplified by suitable scalings,
allowing us to retain only significant lowest order terms of the system.

The corresponding dynamics in� � � degrees of freedom of the integrable part of the normal form is reconstructed
in Section 4 using structural stability arguments. Section 5 re–incorporates the non–integrable terms neglected earlier
on, and KAM–theory is applied to show persistence of response solutions, solving the original perturbation problem.
Actually, by using normal forms with exponentially small remainders, the new gaps in the parameter space are shown
to be exponentially small in the perturbation parameter�. For completeness’ sake we present details on how the normal
forms are obtained in an appendix.

2 Simplifications of the Hamiltonian

Several canonical transformations are applied to our Hamiltonian system with Hamiltonian (4), simplifying it stepwise.
We begin by putting the normal linear part into standard form. After this we put the nonlinear part into a formal resonant
normal form, which also is quite standard, cf., e.g., [5, 9, 10, 29, 30, 50, 65, 81]. In this way the dynamics normal to the
torus decouples from the ‘internal’ part (the quasi–periodic forcing), which allows a (formal) reduction to a system with
one degree of freedom. Finally, by a van der Pol transformation (also known as ‘passing to co–rotating coordinates’) the
system is lifted to a covering space, see for instance [1, 27, 51].

2.1 Preliminaries

On the phase space�� 
 �� 
 �� with symplectic structure
�

��� � ��� � �� � �� we have the Hamiltonian (4)

���� �� �� ���� �� � �	� �� � ���� ���� � ����� �� ���� �� � (7)

where��� �� denotes the standard inner product, and where� � ������� � � ��� � ��. Consider the one degree of freedom
system defined by���� ���� . Assuming that the origin is an elliptic equilibrium, it follows for� � 
 and for fixed� that
the�–torus �� 
 ��
� 
�	 is a normally elliptic invariant torus for the full system defined by (4). The quadratic part� �

of � reads as

����� �� � �
�� � ��

�



Recall that�� � � � �� contains the higher order terms. For� � 
 , the variables can be interpreted geometrically as
follows. Individual tori are given by� � �� and parametrised by� . They model the quasi–periodic forcing. We refer to
��� �� as theinternalvariables and to��� �� as thenormalvariables of the tori.

Invariant�–tori of (4) give rise to families of response solutions. For� � 
, the response solution is� � 
 � � . From
standard KAM–theory, see [19] and references therein, we know that response solutions exist also for small non–zero�,
and that they are of order����, provided the Diophantine conditions

���� 	�� ��� � !

���� � for all � � ����
	 and all� � �
������	 (8)

are met, where� � � � � and! � 

 We take� constant, but allow! to depend on the perturbation parameter�
 Note
that for� � 
 these conditions express that the internal frequency vector	 is Diophantine. The main interest of this paper
is however to study the case that a Diophantine condition for� � �� or � � �� is violated. To this end we investigate the
case that� is close to�� which is such that for some (fixed)� � ����
	 and � � ��� �	 the equation (5):

��� 	� � ��� � 
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holds. For instance, it turns out that for� � � the response solution is at a distance���
�
� � of the ‘unperturbed torus’

� � 
 � � . This necessitates asemi–localapproach, that is we do not view the occurring bifurcations as isolated
phenomena, but focus on the total structure of the bifurcation diagram close to the resonance (5). This approach also
yields new insights for the resonance��� 	�� ��� � 
 , therefore we investigate (5) also in the case� � �.

2.2 Formal normal form

We begin with a basic observation. Let two pairs���� ���� ���� ��� � ����
	
� both satisfy (5). Since	 is Diophantine,
this implies ���� � ���� . It follows that there is at most one pair��� �� satisfying (5), for which� � 
 and ������ �
������� 
 
 
 � ��� � � ; here������ of an integer vector� � ����
	 is the greatest common divisor of its components� �.
Consequently the ‘remaining’ Diophantine conditions (8) are valid for sufficiently small! . In the neighbourhood of the
resonance (5) we have the following result.

Theorem 2.1 (Formal normal form) Consider the Hamiltonian(4) where for� � � � � and ! � 
 the frequency
vector	 satisfies the Diophantine conditions

����� 	�� � !

����� �

for all �� � �
���
	. For some� � �

���
	 and� � ��� �� � � �	, let �� satisfy a resonance condition��� 	� � ��� � 
,
and let� be sufficiently close to��. Given� � �, for sufficiently small� there exists a real analytic and canonical change
of variables������ ��

� � �� 
 �� 
 �� �� �� 
 �� 
 ��

��� �� �� �� �� ��� "�#� $ �

close to the identity at��� �� �� �� � �
� 
� ��� 
�, such that the following holds. By the change of variables, the Hamilto-
nian (4) is transformed into normal form

� Æ������ "�#� $ ��� �� � %��� "�#� $ ��� �� � &���#� $ ��� ��


The integrable part% of the normal form reads as

% � �	� "� � ��
#� � $ �

�
� ��� ���

#� � $ �

�
� �

�
#� � $ �

�

��

� ��
#� � $ �

�
� '� Re

�
�# � 	$ ��e�����	��
��

�
(9)

�
�

�������

(���������� ���
����#� � $ ���

� Re
�
�# � 	$ ���e������	��
��������

�
with ) � 
, * � + � �, � )� � � � �, and-������� � 
, where the sum does not contain the terms that are explicitly
displayed; the remainder& of the normal form satisfies the estimate

&���#� $ ��� �� � �
�#�$� �� ��� �� 


The proof is based on the normalisation of the Hamiltonian� with respect to the action of

����� "�#� $ � � �	� "� � ��
#� � $ �

�

 (10)

The details are given in the appendix.
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Remark 2.1

1. The system is nondegerate whenever� 
� 
 and' 
� 
, which will be assumed throughout. By reversing the
direction of time, if necessary, we can restrict our attention to� . 
.

By an appropriate scaling of the Hamiltonian, the constant�, which gives the second Birkhoff coefficient, can be
replaced by��. This leaves us with two cases,' � 
 and' . 
. By a rotation over an angle
�� in the normal
direction, that is, in�#�$ �–coordinates, these cases are shown to be equivalent. However, for clarity’s sake we
shall give phase portraits for both.

2. We will see in section 3 that in most cases the higher order part (the last sum term) of (9) can be considered as being
part of the non–integrable remainder& of the normal form.

2.3 Reduction to an autonomous system on a covering space

The integrable part% of the normal form (9) is equivariant with respect to the adjoint action of the normal ‘linear’ part� �,
given in (10), of the Hamiltonian. Since	 is non–resonant, the first term�	� "� of � � generates a free��–action. For
non–zero�� the second term generates a further free��–action. As these two actions commute they define a����–
action. In the case of normal non–resonance, this�

���–action is again free; if additionally Diophantine conditions (8)
hold, we obtain persisting normally elliptic quasi–periodic response solutions; see again [19, 59, 70, 75].

Given the resonance relation (5), the����–action is not free but reduces to a��–action. And even this��–action is
not free (unless� � �), for the�–torus��� �� � �
� 
� has isotropy� �: there is a�� sub–action of the��–action that
leaves every point of the�–torus��� �� � �
� 
� fixed. This situation is most conveniently treated by lifting the normal
form (9) to an�–fold covering of�� 
 �� 
 �� on which the��–action is free. Note that there is no point in lifting the
complete Hamiltonian% �& to the covering, since the remainder term& is in general not invariant under the� �–action.

On the covering space the integrable part% of the normal form is invariant under the free� �–action, that is, it does
not depend explicitly on the ‘torus variable’�. Now we proceed as follows. First, a basis of the lattice defining�

� is
chosen that is adapted to the resonance (5), in such a way that% depends only on a single angle. This allows us to
continue as if we were in the periodic case.

If for an integer vector� � ���
	 its greatest common divisor������ is equal to�, then there exist integer vectors
/�� 
 
 
 � /� � �� such that the determinant of the linear map�� � �� /� 
 
 
 /��

� is equal to�, cf. [36], chapter 10.
This linear map is obviously not unique. The map�� � SL����� defines a transformation�� � ��� of the�–torus�� to
itself, with the property that

��� � ��� ��

Note that in these coordinates% is independent of the other angles���� 
 
 
 � ���, which have consequently become cyclic
variables.

In the general case that the greatest common divisor)� of the �� is not necessarily equal to�, we write� as)���,
where for�� � �� we have gcd���� � �. As above, we can find a linear map�	� � SL����� whose first row equals��.
By applying�	� to the�–torus, the integrable part% of the normal form becomes a function of� ��� �"�#� $ ��� ��, where
�" � ����	� �
" is the vector of the new actions" conjugate to��:

% �
�
�	� �"

�
� ��

#� � $ �

�
� ��� ���

#� � $ �

�
�
�
#� � $ �

�

��

� ��
#� � $ �

�
� '�Re

�
�# � 	$ ��e����

�	��
��
�

�
�

�������

(��������� � ���
����#� � $ ���

� Re
�
�# � 	$ ���e�����

�	��
��������
�




Here�	 � �	�	 is the new frequency vector; in particular, we have that�	� �
�
��� 	

�
� �

��
��� 	�. Note that the resonance

condition now reads as)��	� � ��� � 
.
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We are now in the position to mimic the treatment of the periodic case, by introducing co–rotating coordinates through
a so–called van der Pol transformation. The system is lifted by this transformation to an�–fold covering space, on which
the normal dynamics of% decouple from the quasi–periodic forcing terms. The transformation is given by	







�









�

�
#
$

�
�

�
���)�0� � �	
)�0�

�	
)�0� ���)�0�

��
1
2

�
��� � �0� � 
�

��

�"� � ��
�

� ����

� � �
� ��

��� � 0� � for * � �� 
 
 
 � �

�"� � �� � for * � �� 
 
 
 � � 


After the van der Pol transformation the averaged part% of the Hamiltonian is of the form

%���1� 2 ��� �� � ��	�� �� � ( �1�2 ��� �� (11)

with �	� � � ���� � �	�� � � � � �	��, and with( given by

( � ��� ���
1� � 2 �

�
�
�
1� � 2 �

�

��

� ��
1� � 2 �

�
� '�Re�1� 	2 �� (12)

�
�

�������

(��������� � ���
����1� � 2 ���

� Re
�
�1� 	2 ���e���
��
������� �

�



By construction the lifted dynamics is equivariant with respect to the deck group of the�–fold covering space; this group
is isomorphic to�� . It is generated by

�-� ��1� 2 � (13)

��
�
-� �

�


�
� -�� � � � � -�� ��

�
��� ��

� �	
 ��
�

� �	
 ��
� ��� ��

�

��
1
2

��



Furthermore, on the covering space% is independent of the torus variables. By reducing the (now free)� �–action,
or in other words by restricting to the normal dynamics of% , a one degree of freedom system is obtained, which has
Hamiltonian( . After this reduction, the��–symmetry reads as

�1�2 � ��
�

��� ��
� �	
 ��

�
� �	
 ��

� ��� ��
�

��
1
2

�

 (14)

Observe that in the present�–fold covering space the resonance condition (5) is trivially satisfied, as� has been mapped
to 
 � �� and�� to 
 � �


In the next section we analyse the reduced��–symmetric one degree of freedom system( for � � �� �� �� �� 
 
 
 .

Remark 2.2

1. Notice that for� 
� � further reduction of the� �–symmetry would give rise to a conical singularity at the origin of
the reduced phase space, cf. [40, 41, 62]. It is exactly to avoid this singularity that we work with� �–equivariant
systems on the covering space.

2. We make a short remark on parametrically forced systems. As an example consider the nonlinear Hill–Schr¨odinger
equation

�� � ��� � �3���� �	
� � 
 �
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cf. [17, 18, 24, 27]. For quasi–periodic3��� this fits into the framework of this article if��	�� �� �� � �3��� �	
�
is taken. However, the nonlinear Hill–Schr¨odinger equation is not ‘as generic as possible’, since� � �� � 
 always
is an invariant manifold, and hence if put in the present framework, for� � � we would have that' � 
.

The remaining resonances (5) with� � � of the present investigation, however, lead to a� �–symmetric lifted
system where��� �� � �
� 
� actually is invariant, and hence the classification obtained will be the same as that for
parametric resonances, cf. [18, 27].

3 The one degree of freedom ‘backbone’ system

As a result of the various transformations performed in the previous section, we have obtained the Hamiltonian

� � ��	�� ��� ( �&�

which is defined on an�–fold cover of the original phase space. In this section the ‘backbone’ Hamiltonian( �
( �1�2 ��� �� is analysed; the next two sections investigate the dynamical consequences of adding to( the integrable
term��	�� �� and the non–integrable term&, and of projecting the system back to the base of the covering.

Recall that the backbone system( is ��–symmetric, where� depends on the type of normal–internal resonance.
Below( will be truncated even further: the order of truncation will be the lowest possible, depending on�, such that we
maintain a sufficient amount of control over the equilibria and their bifurcations to be able to prove their persistence under
the non–integrable perturbation& later on.

Remark 3.1

1. The origin�1�2 � � �
� 
� is always a critical point of( �1�2 ��� �� for � � �; however, generically it is not a
critical point when� � �.

2. The present backbone system is the same slow system as would be obtained in the periodically forced case� � �.
Hence to a large extent the one degree of freedom dynamics is as in [2, 67]. Whenever bifurcations occur, these
are governed by the corresponding singularity of the (planar) Hamiltonian function and its universal unfolding.
Following [74] simple adjustments have to be made where such a singularity has to be unfolded in a� �–symmetric
context.

3.1 The case � � �

In the case� � � the Hamiltonian( of the one degree of freedom backbone system reads as

( �1�2 ��� �� � ��� ���
1� � 2 �

�
�
�
1� � 2 �

�

��

� '�1 � � � � � (15)

where the ‘� � �’ indicate those terms in( that will be dropped below. In this case the deck group� � is trivial.
Since( is considered for1, 2 and� all three close to
, a suitable scaling yields the dominant terms of an expansion

in �. For the present case� � � such a scaling is given by

� � 4�� 1 � 45�
�� �� � Æ4�� 2 � 46


(16)

We now drop the higher order terms in4 and divide the truncated( �2�1��� �� by the remaining common factor4 � .
This leads to

7�5� 6� Æ� � Æ
5� � 6�

�
�
�
5� � 6�

�

��

� '5 
 (17)
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Note that this amounts to a rescaling of time. Indeed, had we divided by4 � instead of4� then the scaling���� would
amount to aconjugacybetween the flows of the Hamiltonian vector fields defined by7 and by the truncation of( , that
is, a co–ordinate change that maps orbits into orbits and does respect the time–parametrisation. Since we do rescale time
the two flows are no longer conjugate but onlydynamically equivalent.

Also note that the Hamiltonian7 has, unlike( , a reversing symmetry�5� 6� �� �5��6�; see subsection 3.5 for more
details.

Proposition 3.1 �� � �� Consider the Hamiltonian system with Hamiltonian7 as given by(17), and let' 
� 

 This
system has at most three equilibria, all on the line6 � 
. A centre–saddle bifurcation of equilibria occurs at

Æ�� �� �

�
'

�

� �
�




For Æ � Æ�� , there are three equilibria, two elliptic and one hyperbolic; forÆ . Æ�� , there is a single elliptic equilibrium.
This is a generic scenario, structurally stable for sufficiently small perturbations.

Proof. We look for the critical points of7 , that is, points�5� 6� such that the right hand sides of

�5 � Æ6 � 

5� � 6�

�
6�

�6 � �Æ5 �


5� � 6�

�
5 � '�

both vanish. As the fixed points have to satisfy6 � 
, equilibria are given by

'� Æ5 � 5� � 

 (18)

Since the scaled system only depends on one parameter, generically centre–saddle bifurcations are expected to occur,
where two equilibria collide and disappear. This is expressed by the equations

'� Æ5 � 5� � 
� Æ � �5� � 



These equations yield a single bifurcation parameter valueÆ�� � �


�
�

����
, the corresponding bifurcating equilibrium

being �5� 6� � �5�� � 
� with 5�� � � 
�� ����. Note that for variable' and Æ the left hand side of (18) would be
a universal two parameter unfolding of the map5 �� �5 �. As ' is actually fixed to a non–zero value, and onlyÆ is
a varying parameter, the resulting parametrised family is a generic one parameter unfolding, corresponding to a non–
degenerate centre–saddle bifurcation, cf. [12, 52, 66]. Here we have used standard singularity theory. Note that at
bifurcation, the equilibrium�5�� � 
� is parabolic. The system (17) contains no further bifurcations.

The bifurcation diagram at this resonance, which is shown in figure 5, can be described as follows: for increasingÆ the
amplitude of the elliptic equilibria starts to increase at the resonance. AtÆ � Æ�� a centre–saddle bifurcation takes place,
generating two additional equilibria, one elliptic and the other hyperbolic. AsÆ increases further, the amplitude of the
hyperbolic branch starts to increase as well and approaches that of the non–bifurcating elliptic branch. The elliptic branch
generated at the bifurcation tends to 0 asÆ increases pastÆ�� . See figures 3a–c. Also compare with [80] (chapter IV,
section 2), or [2, 67].

Remark 3.2 Equilibria of the system7 correspond to response solutions of the system% of the previous section, and
their distance to the origin is related to the amplitude of those solutions. Here and in the following, we shall abuse
terminology by referring to the ‘amplitude’ of an equilibrium when we have their distance to the origin in mind. The
scaling (16) translates ‘amplitudes’ of7 into ‘amplitudes’ of( : equilibria of7 of order���� correspond to responses
with amplitudes of order���

�
� � in the original system( .
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Figure 5: (a)Response diagram for the case� � �: dotted lines indicate the position of elliptic equilibria, solid lines
correspond to hyperbolic equilibria. Compare with figure 2, of which the present picture is a scaled version. See
also Stoker[80]. (b) Structurally stable phase portraits in an�Æ� '� diagram: for constant', the figure shows a one
dimensional bifurcation diagram for the bifurcation parameterÆ. The dashed horizontal line corresponds to the (ex-
cluded) non–generic case' � 
. Compare with figure3a&c.

3.2 The case � � �

For the next case� � �, the significant part of the one degree of freedom Hamiltonian reads as

( �1�2 ��� �� � �� � ���
1� � 2 �

�
�
�
1� � 2 �

�

��

� ��
1� � 2 �

�

� '��1� � 2 �� � � � � 
 (19)

Note that this system is��–equivariant, with the symmetry acting by�1�2 � �� ��1��2 �. In this case, an appropriate
scaling is

� � 4�� 2 � 46�
�� �� � Æ4�� 1 � 45


(20)

Again we drop the higher order terms in4 and divide the truncated( �2�1��� �� by the remaining common factor4 � .
This leads to

7�5� 6� Æ� � �Æ � ��
5� � 6�

�
�
�
5� � 6�

�

��

� ' �5� � 6�� 
 (21)

As before, the scaled and truncated system7 is reversible with respect to�5� 6� �� �5��6�.

Proposition 3.2 �� � �� Consider the Hamiltonian system with Hamiltonian7 as given by(21), and let' 
� 
. The
origin �5� 6� � �
� 
� is always an equilibrium of this system. Hamiltonian pitchfork bifurcations from the origin occur
at Æ � Æ��� andÆ � Æ��� , where

Æ��� �� ��� �'� and Æ��� �� ��� �'


If ' � 
, thenÆ��� . Æ��� , and the origin is hyperbolic forÆ � �Æ��� � Æ
�
�� � , elliptic for Æ . Æ��� andÆ � Æ��� . At Æ��� ,

a pair of elliptic equilibria on the line5 � 
 branches off from the origin; atÆ ��� , a pair of hyperbolic equilibria lying on
the line6 � 
 branches off.
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Figure 6: (a)Response diagram for the case� � �: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in an�Æ� '�–bifurcation diagram.

If ' . 
, we have thatÆ��� . Æ��� , and the origin is hyperbolic forÆ � �Æ��� � Æ
�
�� � and elliptic for Æ . Æ���

andÆ � Æ��� . At Æ��� , a pair of elliptic equilibria lying on the line6 � 
 branches off from the origin; atÆ ��� , a pair of
hyperbolic equilibria on the line5 � 
 branches off.

This is a generic scenario, structurally stable for sufficiently small��–equivariant perturbations.

Proof. We obtain as equations of motion

�5 � �Æ � ��6� 
5� � 6�
�
6� �'6�

�6 � ��Æ � ��5 �


5� � 6�

�
5 � �'5


Since' 
� 
, the equilibria�5� 6� satisfy either of the following sets of equations:

5 � 
� 6 � 
�

5 � 
� �'� �Æ � �� � 6� � 
�

6 � 
� �'� �Æ � ��� 5� � 



The equilibria are given by

�5� 6� �
�
�
� 
��

�

���Æ � �� �'

�
�
�
��Æ � �� �'� 


��



The equilibrium�5� 6� � �
� 
� undergoes two subsequent bifurcations.
If ' � 
, this equilibrium is elliptic forÆ . �� � �', parabolic forÆ � �� � �', and as it turns hyperbolic

for Æ � ��� �', the pair of elliptic equilibria

�5� 6� � ���Æ � �� �'� 
� (22)

branches off. AtÆ � �� � �' the equilibrium�5� 6� � �
� 
� is again parabolic, turning elliptic for even larger values
of Æ while a second pair of equilibria, this time hyperbolic ones, branches off from the origin.

The obvious modifications for the case' . 
 are left to the reader.
In the present��–equivariant context these Hamiltonian pitchfork bifurcations are generic.

The two bifurcations take place in the orthogonal planes5 � 
 and6 � 
 . Compare this with [27] figures 5 and 8,
and again with [80] (chapter IV, section 2) and [2, 38, 67].
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Remark 3.3 Since in the scaled system given by7 the ‘amplitude’ of equilibria off the origin is of order����, the
corresponding equilibria in the original system( have an amplitude of order���

�
� �.

3.3 Higher order resonances: the cases � � �

For completeness also the case� � � is included, although these resonances will not produce gaps and only give rise to
bifurcations, cf., e.g., [38, 19].

Considering (12) in the present context, the suggested scaling is

� � 4� 2 � 46�
�� �� � Æ4� 1 � 45�

(23)

which leads to

( � 4��Æ � ��
5� � 6�

�
� 4��(������� � (�������Æ � (�������Æ

��
5� � 6�

�

� 4�
�
5� � 6�

�

��

� 4���'Re�5 � 	6��

�
�

������������

4������(�������Æ
��5� � 6��� � ��4����


Note that the term�4� can be removed by solving

Æ � �� � 4


8� (������� � (�������Æ � (�������Æ

�
�

for the new bifurcation parameter8 . This time we truncate( including order��4 ���� before dividing by4� and obtain

7�5� 6�8� 4� � 8
5� � 6�

�
�
�
5� � 6�

�

��

� 4��5� � 6��8� 4� � '4���Re�5 � 	6�� 


Here the term4��5� � 6�� Æ� 4� corresponds to the large sum in the expression for( .

Remark 3.4 For � � � the��–symmetry breaking term'4���Re�5 � 	6�� is of the same order in4 as the leading
order��–symmetric terms, while it is of smaller order when� � �. Therefore the cases� � � with 4 � 
, and� � �
with 4 � 
 small but nonzero, are analysed separately.

3.3.1 The case � � �

In the case� � �, which is considered next, the invariant torus�5� 6� � �
� 
� is normally elliptic for all values of
8 
� 
. For a certain value8�� of 8 there is a centre–saddle bifurcation of invariant tori outside the origin. The normally
hyperbolic torus generated in this bifurcation then approaches the origin, disappears for8 � 
, and reappears again for
8 � 
. The symmetries of the (truncated) Hamiltonian

7�5� 6�8� 
� � 8
5� � 6�

�
�
�
5� � 6�

�

��

� '�5� � �6�5� (24)

are the deck transformations (generated by the��
� –rotation about the origin) and the reversing involution�5� 6� �� �5��6�

(together with their��� –rotated counterparts). The equations of motion are

�5 � 86 � 

5� � 6�

�
6 � �'65


�6 � �85 �


5� � 6�

�
5 � �'�5� � 6��

(25)
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Proposition 3.3 �� � �� Consider the Hamiltonian systems given by7 (see����) where' 
� 

 Three simultaneous
��–related centre–saddle bifurcations occur as8 passes through

8�� � ��

�
'� . 
 


At 8 � 
 the origin has a��–equivariant transcritical bifurcation. This scenario is structurally stable for sufficiently
small��–equivariant perturbations.

Proof. First consider the case that' � 
. The right hand side of���� always vanishes at the origin�5� 6� � �
� 
� . For
8 � 8�� one readily computes six further equilibria, three elliptic equilibria at

�5� 6� �
�
�9� 
��

�
�9

�
�
9
�
�

�

�
�

�
�9

�
��9

�
�

�

��

with 9 � �
�'� �

�

�
�'� � �8 and three hyperbolic equilibria at

�5� 6� �
�
�!� 
��

�
�!

�
�
!
�
�

�

�
�

�
�!

�
��!

�
�

�

��

with ! � �
�' � �

�

�
�'� � �8 . Note that these equilibria coalesce ‘pairwise’ for8 � 8�� and that the latter three

coalesce with the origin for8 � 
 . On both sets of equilibria the deck transformations yield even permutations, while the
reversing transformations act as the transpositions. These symmetries allow us to concentrate on the equilibria at�9� 
�
and�!� 
� .

For 8 � 8�� we develop7 into a (Taylor) polynomial in the point� �
�'� 
� 8��� , i.e. we write �5� 6�8� � � ��' �

:� ;� 8�� � <� and obtain

7�:� ;� <� � ���'�

�
;� � '

�
:� �

�'

�
<: � � � �

where ‘� � �’ denotes both constant and higher order terms. This proves that a (non–degenerate) centre–saddle bifurcation
takes place, at� ��'� 
� and hence also at its��� –rotated counterparts, when8 passes through8�� 


Similarly, we put6 � 
 and obtain near�5� 8� � �
� 
�

7�:� 
� <� � ':� �
<

�
:� � � � �

where ‘� � �’ stands for the sole higher order term� ��

� . Consequently, a transcritical bifurcation takes place along the5–
axis, and hence also along its��� –rotated counterparts, when8 passes through
 . Since the only two occurring bifurcations
at8 � 8�� and at8 � 
 are versally unfolded by the family of Hamiltonian systems defined by����, we have structural
stability.

If ' . 
, the equilibrium�9� 
� and its images under the��–action are hyperbolic instead of elliptic, whereas�!� 
�
and its images are elliptic instead of hyperbolic. The rest of the proof is unchanged.

Remark 3.5

1. An alternative proof of the second part, concerning the� �–equivariant transcritical bifurcation, can be given in the
following way. First consider the proof of [12] in the general non–symmetric context. This leads to the elliptic
umbilic catastrophe, a�–parameter universal unfolding of the planar singularity1 at �5� 6�8� � �
� 
� 
� . The
present��–equivariant�–parameter unfolding then can be obtained from this by applying [74].

2. The response solutions of ‘amplitude’ of order���� and in particular the centre–saddle bifurcations correspond to
equilibria with amplitude���� in the original system determined by( .

1In the ‘ADE’ classification this singularity is referred to as��
�

, see [3]
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Figure 7: (a)Response diagram for the case� � �: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in a�8�'�–bifurcation diagram.

3.3.2 The case � � �

The remaining case is� � �. In this case�� equilibria,� elliptic and� hyperbolic, bifurcate from the central equilibrium
at �5� 6� � �
� 
�.

The scaled and truncated Hamilton function7 is given by

7�5� 6�8� 4� � 8
5� � 6�

�
�
�
5� � 6�

�

��

(26)

� 4��5� � 6��8� 4� � '4���Re�5 � 	6�� �

where as before we assume' 
� 

 Recall that Re�5 � 	6�� is shorthand for5� � 
���6�5��� � 
 
 
, and that4 is related to
the perturbation strength�. If 4 � 
, the equilibria outside the origin�6� 5� � �
� 
� lie on a circle

5� � 6� � 8 �

that is, they branch off from the origin at8 � 
 . For4 
� 
 the4 ���–term breaks that��–symmetry to the��–symmetry
of the deck group on the�–fold covering. This is seen most easily in action–angle coordinates�0� �� introduced by

5 � 	6 �
�
��  ��


In these coordinates the Hamiltonian takes the form

7 � 8� � �� � 4�����8� 4� � 4���' ������� ��� �0


The deck group is generated by�0� �� �� �0 � ��
� � ��, and it maps elliptic and hyperbolic equilibria on equilibria of the

same type. Hence, there are saddles at�th roots of8���8�� and centres at those��th roots that are not�th roots.

3.4 On persistence

In all of the above cases we found that the reduced integrable parts of the normal form give rise to a�–parameter family of
one degree of freedom Hamiltonian systems, the so–called backbone systems. These�–parameter families are structurally
stable in appropriate universes of symmetric systems; the corresponding symmetries are the deck symmetries of the
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Figure 8: (a)Response diagram for the case� � �: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in an�8�'�–bifurcation diagram.

covering. The structural stability implies in particular that the special perturbations obtained by adding terms of higher
order do not change the qualitative behaviour of the reduced dynamics, as these terms can be made arbitrarily small by
decreasing�.

In other words: after various transformations, we arrived at a normal form for our system, which consisted of an
integrable system and a non–integrable perturbation of arbitrary high order in the perturbation strength. Analysis of the
integrable system leads after reduction of the torus symmetry to a planar (equivariant) Hamiltonian system, to which
(equivariant) singularity theory of planar functions is applied, compare with [28, 38, 42, 43, 44, 74, 82]; also see [12, 13,
16, 17, 18, 21, 41, 64, 66, 67, 72]. We observe that in our case singularity theory classifies up to smooth equivalences,
meaning that addition of normalised higher order terms would only give rise to a near–identity diffeomorphic distortion
of the bifurcation diagrams obtained so far.

Note that for� 
� �, instead of working in the universe of� �–symmetric systems, we might have chosen to reduce also
the��–symmetry����. This approach gives rise to a conical singularity at the origin of the reduced phase space, which is
not a manifold any more, cf. [40, 41, 62]. The singularity reflects that the� �–action generated by��
� is not free (unless
� � �), but has isotropy�� at the central�–torus. It is exactly to avoid this conical singularity that we lift the system to
the covering space (before reducing the��–action), always keeping the��–symmetry into account. For the alternative
approach of also reducing the��–symmetry, the bifurcation scenarios can be described as follows.

In the case� � � the two pairs of elliptic and hyperbolic equilibria (that are generated in the two bifurcations) each
reduce to one (elliptic resp. hyperbolic) equilibrium on the quotient space� ���� , bifurcating off from the singular
equilibrium. See [41] for a similar treatment of Hamiltonian flip bifurcations through passage to a 2:1 covering.

In the case� � � the��–equivariant transcritical bifurcation takes place in the singular equilibrium, while the three
centre–saddle bifurcations all get reduced to the same centre–saddle bifurcation in one (regular) equilibrium on� ���� .
Compare this with [2, 12, 38, 67].

For � � � one elliptic and one hyperbolic equilibrium bifurcate simultaneously off from the singular equilibrium
of ����� .

3.5 Reversible systems

In this subsection we outline how the arguments given in the previous sections have to be changed forreversiblesystems.
Let � be a Hamiltonian defined on the phase space� ���� 
 �� � �� 
 �� 
 �� � ��� �� ��� ��	. Introduce the
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involution
� � ��� �� �� �� �� ���� �� ����� 
 (27)

By definition the Hamiltonian� is said to define a reversible Hamiltonian system if� Æ � � � . For instance, the
pendulum example (1) is reversible if the function� is even in�. Similarly, a Hamiltonian of the general class (4) is
reversible if both�� and� are even in�, and if� is ‘even’ in � as well. In general, many Hamiltonian systems coming
from classical mechanics have this property.

Reversibility is respected by the normalising and covering transformations of the previous section, compare for in-
stance [27]. In particular this means that the integrable truncation% is also reversible, implying that the backbone system
( is invariant with respect to the involution�1�2 � �� �1��2 �
 This�� reflectional symmetry, combined with the��

deck–symmetry (14), gives rise to a� �–symmetry of the backbone system( .
Note that the truncation of( to lowest significant order, which throughout the present section has been denoted by7 ,

alwaysdisplays this extra symmetry, and that therefore it is actually� �–symmetric whether the original system (7) is
reversible or not: see equations (17), (21), (24) and (26). This is a quite common artefact of the normalisation process, cf.
for instance [18].

In the case of a normal–internal resonance��� 	� � �� � 
, the truncation7 is structurally stable in the universe of
� �–equivariant Hamiltonian functions, and our analysis carries over to the reversible case.

4 Reconstruction of the integrable dynamics

The integrable system%���1� 2 ��� �� is given by (11) and defined on the�–fold covering space of� � 
 �� 
 �� ;
from it, we have obtained the slow one degree of freedom ‘backbone’���� by reducing out the free� �–translation action.
Hence, reconstructing the dynamics of% on the covering space simply consists in attaching a quasi–periodic�–torus to
every point of the reduced system( on the reduced phase space� � .

For � � � this immediately yields the dynamics of% (as the base is equal to the covering in this case). In the
periodic case� � � the centre–saddle bifurcation of relative equilibria in the ‘backbone’ system corresponds to a similar
bifurcation of periodic solutions in the full system, cf. [12, 13, 66]. In the quasi–periodic case (� � �), the centre–saddle
bifurcation of relative equilibria corresponds to an (integrable) quasi–periodic centre–saddle bifurcation, cf. [52].

For � � � we have to take into account the action (13) of the deck group� �. The (relative) equilibria of the planar
system determined by( give rise to quasi–periodic invariant�–tori of the reconstructed integrable system% on the
covering space. These tori have a Diophantine frequency vector	; in the next section the perturbation analysis of these
tori is carried out on the covering space.

The rest of this section is devoted to the description of the structure of the reconstructed flow on the base of the
covering in the case� � �. The key observation to this is the following: tori in the cover which are mapped into each
other by the action of the deck group project down to a single torus in the base. Since we are still focusing on a fixed
resonance��� — recall that only then the normal form and its integrable part% are meaningful — this structure strongly
resembles that obtained in the case of periodic forcing.

For � � �, consider first the periodic case� � �. The equilibrium of the backbone system located at the origin
of �� gives rise to a periodic orbit of period� � �
�	 in the base and of period�� in the covering. The two equilibria
generated by the Hamiltonian pitchfork bifurcation of the backbone system correspond in the covering to two periodic
orbits of period�� generated in a periodic Hamiltonian pitchfork bifurcation. These are mapped onto each other by the
action of the deck group, and they project to one and the same periodic orbit of period�� in the base space, which is
generated in a Hamiltonian ‘period doubling’ (also called ‘flip’ or ‘frequency halving’) bifurcation, cf. [27, 41, 66].

Completely analogously, we obtain in the quasi–periodic case� � � two quasi–periodic�–tori in the covering which
are generated in a quasi–periodic pitchfork bifurcation. These project down to a single�–torus in the base space, which
is generated in a quasi–periodic Hamiltonian period doubling bifurcation. We recall that the response solution, while
passing through the gap defined by���, undergoes two such bifurcations : one at the beginning when it turns from elliptic
to hyperbolic, and one at the end when it turns back again from hyperbolic to elliptic.

For � � �, consider again the periodic case first. The equilibrium at the origin of�
� gives rise to a periodic solution

with period� � �
�	 in the base and�� in the covering. In a centre–saddle bifurcation away from the origin, two times
three equilibria are born. These give rise to two times three period�� periodic solutions in the covering, which project
down to two period�� periodic solution in the base, one elliptic, one hyperbolic. The hyperbolic orbit subsequently
undergoes a periodic transcritical bifurcation involving the central periodic orbit.
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In the quasi–periodic case two times three invariant�–tori are born in an integrable quasi–periodic centre–saddle
bifurcation. These correspond in the base to two quasi–periodic response solutions, one elliptic, one hyperbolic, with in
each case one of the frequencies divided by� (for a well–chosen basis of frequencies). While the amplitude of the elliptic
tori is continually growing, the hyperbolic tori first passes through a kind of transcritical bifurcation involving the central
	–quasi–periodic response solution.

5 Quasi–periodic stability and exponentially small gaps

We briefly summarise what happened so far. In Section 2, we started out with a Hamiltonian� defined on� �
��
�� �
��� �� ��� ��	� of the form

� � �	� �� � �
�� � ��

�
� ����� ���� � ����� �� ���� ���

with ��� �� near�
� 
� and for� close to a resonant normal frequency� �
 This means that�� satisfies a relation��� 	��
��� � 
 for � � ����
	 and� 
� 
. We recall that	 � �� is a fixed, Diophantine frequency vector. By consecutive
normal form transformations and a lift to an�–fold covering space, the Hamiltonian has been rewritten into

� � % � & � ��	� �� � ( � &�

with �	 � � �� �	�� �	�� 
 
 
 �	�� , where( is independent of� and where& is of arbitrary high order in��� �� � � � �� ��.
Then, in section 3 the one degree of freedom ‘backbone’ Hamiltonians( were analysed by first truncating to lowest

‘significant’ order, performing a bifurcation analysis on the truncated part — denoted by7 — and finally remarking that,
since all bifurcating families obtained are structurally stable, they are equivalent to the full backbone system( as well (see
subsection 3.4). As said before, up to this point there is no difference between the cases of periodic and quasi–periodic
forcing.

Hence we may consider the behaviour of( , and consequently of the integrable reconstruction% , as known. What
remains to do is to analyse the full system� , or in other words, the impact of the quasi–periodic non–integrable terms&.
Equilibria of the one degree of freedom system( are invariant quasi–periodic�–tori for % , and their persistence (under
the small perturbation&), as well as the persistence of their bifurcations, will be shown by KAM–theory in the present
section.

It turns out that the ‘periodic’ scenarios obtained in section 3 are complicated by quasi–periodic resonance phenomena,
leading to a dense collection of resonance gaps in the elliptic branches of the figures 5–8. This means that the smooth
branches (continua) in the bifurcation diagrams of the periodic case are replaced by Cantor sets in the quasi–periodic case.

At this point the regularity of the Hamiltonian� becomes an issue. Until now all considerations apply in the world
of ��–systems for � � � ��	 sufficiently large. However, in the real analytic setting we can get more information:
the size of the resonance gaps is of exponentially small order in�. To obtain this result we first prove exponentially small
estimates on& by Neishtadt–Nekhoroshev techniques, which are then fed into the KAM part.

5.1 Exponentially small estimates of the remainder

From now we restrict to the case where� is real analytic. Notice that any normal form of finite order also can be obtained
by a real analytic transformation. Our starting point is the formal normal form as obtained by Theorem 2.1 of Section 2:

� Æ������ "�#� $ ��� �� � %��� "�#� $ ��� �� � &���#� $ ��� ��


We shall pursue a slightly different strategy than in the first sections, performing first scalings, and only afterwards
normal form transformations. Recall from Section 3, that scalings (16), (20) and (23) were applied, which depended on�.
Application of these scalings before carrying out the van der Pol transformation yields a Hamiltonian� sc � 4��� of the
form

�sc � �	� �sc� � ��
��sc� ��sc

�
� 4�(sc � 4
��&sc (28)

Here�sc � 4��� ; moreover� can be chosen as large as desired, and&sc is uniformly bounded in a neighbourhood
of �5� 6� � �
� 
�. Note that the symplectic 2–form d� � d�sc� d�sc� d�sc � 4��d� � d� � d� � d��.

The following result considerably sharpens the bound that can be obtained on& sc, by exploiting the fact that the
original Hamiltonian��� is real analytic. Its proof can be found in appendix 5.3.
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Notations. To formulate the result, complex neighbourhoods��3� =� of the�–dimensional tori�� sc� �sc� � �
� 
� are
introduced, of the form

��3� =� � ���� �sc� �sc� � � � 
 � 
 � �

�!" �� � . 3 for all *� ��sc�� � ��sc�� . =�
�



The supremum norm of any function7 defined on��3� =� is denoted by�7������� � �7��.
The (constant) frequency vector	 � �

� is assumed to be Diophantine, that is, there are! � 
, � � �� � such that
for all �� � ����
	:

����� 	�� � !������ 


Recall that�� is a normal frequency that satisfies the normal resonance relation���, and that the integrable part of a
resonant normal form is a trigonometric polynomial in� and a polynomial in its other variables, containing only terms in
the kernel of the Lie operator defined by��
�.

Theorem 5.1 (Normal form with exponentially small remainder)
Consider the Hamiltonian�sc as given by equation(28). Let 3� = � 
 be such that the remainder& sc is analytic
on� � ��3� =� and�&sc�� .�.

Then there is a4� � 
 such that for any
 � 4 . 4�, there is a real analytic canonical transformation

���� �sc� �sc� �sc�4� � �#� "�1� 2 ��

such that the following statements hold.

1. If�� � ��3��� = �����, then
����� � � and ������� � �


2. There is some constant� � 
 not depending on&sc such that

��� 	���� � ���� � 	���� � �4
���&sc��


where� is as in equation (28). That is,� is


�� � ��4
��

�
–close to the identity with�� � � � �&sc�� .

3. In the new coordinates�#� "�1� 2 �, the Hamiltonian takes the form

���#� "�1� 2 ��� 4� � �	� "�� ��
1� � 2 �

�
� 4� �( � 4
�� �&�

where �( �#� 1� 2 ��� 4� is in resonant normal form,

�(sc� �(��� � � 4
���&sc���

and �&�#� 1� 2 ��� 4� satisfies

� �&��� �  $%

�
� �

4�������

�
�&sc��
 (29)

Remark 5.1

1. If �sc depends real analytically on additional parameters8, and& sc is uniformly bounded on some domain with
respect to8, then� is also real analytic with respect to these parameters, and the final bounds hold uniformly in8
as well.

2. Assume that�sc depends analytically on4. From the proof of theorem 5.1, only piecewise analytic dependence
of � with respect to4 can be inferred, see for instance [23, 22, 71]. Alternatively, the same method of proof yields
that if 4� is taken small enough, then� can be shown to be analytic in4 for 
 � 4 � 4 �, but the exponentially
small estimate holds in this case with4� in the exponent.
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5.2 Persistence of quasi–periodic response tori

We arrive at the analysis of the persistence of the quasi–periodic response tori, which is one of the main goals of this
paper. In the previous subsection, coordinates have been found such that for the remainder term�& in the Hamiltonian

�� � �	� "� � ��
1� � 2 �

�
� 4� �( � 4
�� �&�

an exponentially small bound is obtained. By applying the van der Pol transformation, a system of the form

� � ��	�� �� � 4�( � 4
��& (30)

is obtained, where( �5� 6� Æ� 4� � 7�5� 6� Æ� � ��4� is independent of�; recall that� � �� � 4�Æ in the cases� � �
and� � �; the other cases are treated similarly. See section 2 for the relationship between	 and�	 �. Note that we dropped
the tildes on� and&.

Recall that in equation (30), the term& is the only non–integrable term in� , which can (and will) be viewed as a
small non–integrable perturbation of the integrable Hamiltonian� � � ��	�� ��� 4�( .

Note that�� has been investigated in section 3. Depending on the kind of resonance, that is, depending on� in ��� 	��
��� � 
, parametrised families of elliptic and hyperbolic�–tori have been found, as well as single parabolic�–tori for
certain distinguished values of the parameterÆ.

In this subsection, the persistence of these response�–tori is investigated under the perturbation4 
��&, taking into
account the quantitative information on the smallness of the remainder& obtained in the previous section.

Hyperbolic tori. This is the simplest case. If the variable� is viewed as a parameter, the phase space of the system
is �� 
 �� , and hyperbolic equilibria of( correspond to normally hyperbolic invariant�–tori. These persist because
of normal hyperbolicity, compare with [35, 49, 54, 78]. Note that the parallel (quasi–periodic) flow on the tori persists
trivially in the context of this paper.

In particular, let��Æ� � �� parametrise a normally hyperbolic family of equilibria of( , and let8�Æ� � � be
the associated positive Floquet exponent — in this case, this exponent is the positive eigenvalue of the corresponding
equilibrium of( . Moreover, assume that the Hamiltonian� is analytic inÆ on a strip of width> around some compact
interval' � � in the complex plane.

Theorem 5.2 (Persistence of hyperbolic tori)
Let� � �Æ�� Æ�� be an interval such that the Floquet exponent8�Æ� is bounded away from zero on�
 Then there is
a 4� � 
 such that for
 � 4 . 4�, there are constants� � 
 and

< �  $%

�
� �

4�������

�
�

and maps�Æ� �� �� ��Æ��� � �� , Æ �� �8�Æ� � � such that the following hold.

1. The map�8 is analytic on���� � �Æ � � � ��Æ��� . >��	, and

�&%
����

��8�Æ�� 8�Æ�� . <


2. The map�� is analytic forÆ taking values in����, and for� taking values in� , where� � ��!" �� � . �3��	 is a
complex neighbourhood of the real�-torus��. Moreover,

�&%
Æ������	��

���Æ��� � �Æ� . <


3. For anyÆ � �, the torus��Æ, given as

��Æ � ���� �� 5� 6� � �5� 6� � ��Æ���	 �
is invariant under the flow of� .

4. The flow on��Æ is quasi–periodic with frequency vector�	� .
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Elliptic tori. This is the case of the persistence of lower dimensional elliptic tori, treated in (for instance) [20, 39, 57, 75].
Assume thatÆ �� �Æ parametrises a family of elliptic integrable�–tori �Æ , as found in one of the cases of section 3, by

�Æ � ���� �� 5� 6� � �5� 6� � �Æ���	


The Floquet exponent8�Æ� of �Æ is purely imaginary in this case: therefore, introduce the normal frequency'�Æ� of � Æ

by setting'�Æ� � �!"�8�Æ��� � 
 .
Note that in the present situation the internal frequency	 is assumed constant. Therefore, the normally elliptic�–tori

persist on a Cantor set that is defined exclusively by the normal resonances. Modulo these simplifications, the following
theorem follows from the results of [20, 39, 57, 75]. To formulate the result, the set(�<� is introduced by

(�<� �
�
' � � � ����� �	��� ��'� � <������ �

for all �� � ����
	� 
 . ���� � �	 


Also, introduce the� � norm�7���� � ")$	�	
� �&%��� �?�7����.
Theorem 5.3 (Persistence of elliptic tori)
Fix an interval� � �Æ�� Æ�� such that'�Æ� is bounded away from
 on�. Then there is a4� � 
 such that for
 � 4 . 4�,
there are constants� � 
, �� � 
 for every integer � �,

< �  $%

�
� �

4�������

�
�

and maps�Æ� �� �� ��Æ��� � �� , Æ �� �'�Æ� � � such that the following hold.

1. The map�' is smooth. Denote by� the inverse image�� �'�� �(�<��. On� , �' is ��–close to', and

��'�'����	 . ��<


2. For anyÆ � � , the map� �� ��Æ��� is analytic on� , where� is the following complex neighbourhood of the real
�–torus� � �� � � � � �!" �� � . �3�� for all *	. Moreover,��Æ��� depends Whitney–smoothly onÆ, and

�&%
	��

���Æ���� �Æ����	 . �� <


3. For anyÆ � � , the torus��Æ , given as

��Æ � ���� �� 5� 6� � �5� 6� � ��Æ���	 �

is invariant under the flow of� .

4. The flow on��Æ is quasi–periodic with frequency vector�	� .

Remark 5.2 Since the gaps in the Cantor set� are of order< as< � 
� it follows that all gap–widths tend to
 as�� 



Parabolic tori. There are two occurrences of parabolic tori in the investigations of the one degree of freedom back-
bone system in section 3: arising from centre–saddle bifurcations, and from Hamiltonian pitchfork bifurcations in a
��–symmetric context. We restrict our attention to the former case. This has been treated in [15, 52], the results of which
are paraphrased in the following.

If in the integrable system, there is a centre–saddle bifurcation parameterÆ �, then forÆ � Æ�, there exists�� � ��

such that
�� � ���� 5� 6� � �5� 6� � ��	�
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Æ

Æ��

;

Æ

Æ��

Figure 9: a). Bifurcation diagram of the centre–saddle bifurcation whereÆ is the bifurcation parameter and; is some
well–chosen auxiliary variable. b). Phase portraits before, at and after the bifurcation.

is an invariant normally parabolic torus. Introducing an auxiliary parameter; � �, from the fact thatÆ � is a centre–saddle
bifurcation, it follows that there is a map; �� �Æ�;�� �!� � � 
 �� , parametrising a family of invariant integrable tori

�! � ���� �� 5� 6� � �5� 6� � �!	�
in the integrable system whereÆ � Æ�;�. This parametrisation has the property that for; � 
:

Æ�
� � Æ�� Æ��
� � 
� Æ���
� 
� 
�

and �� � ��. Moreover, the parametrisation can be chosen in such a way that for; . 
, the tori � ! are normally
hyperbolic, while for; � 
, they are normally elliptic.

Let the Floquet exponent of the invariant torus�! be denoted by8�;�, and, for; � 
, the normal frequency of� !

by '�;� � 	8�;�. For definiteness, it is assumed that8�;� � 
 if ; . 
, and'�;� � 
 if ; � 
. Cf. figure 9.

Theorem 5.4 (Persistence of quasi-periodic centre-saddle bifurcation)
For ; � � 
 small enough, there is a4� � 
 such that for
 � 4 . 4�, there are constants� � 
, �� � 
 for  � �,

< �  $%

�
� �

4�������

�
�

and maps�;� �� �� ��!��� � �� , ; �� �Æ�;� � � , ; �� �8�;� � � defined on��; �� ; �� , such that the following hold.

1. The map�8 is smooth for; 
� 
, and as; � 
, ��8�;�� � *��;� �� �. Denote by� � �
� ;�� the set

� � �
� ;�� � �'�� �(�<�� 


On� , �Æ and �' are��–close toÆ and' respectively, and

��Æ � Æ����	 � ��'�'����	 . ��<�

for every � 
.

2. For any; � � , the map� �� ��!��� is analytic on

� � �� � � � � �!" �� � . �3�� for all *	 
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Moreover, it depends Whitney–smoothly on;, and

�&%
	��

���!���� �!�� . �� <�

for every � 
.

3. For any; � ��;�� 
� � � , the torus��! , given as

��! � ���� �� 5� 6� � �5� 6� � ��!���	 �

is invariant under the flow of���� �� 5� 6� �Æ�;�� ��. Moreover, if; . 
, the invariant torus is normally hyperbolic,
while for; � � , it is normally elliptic. For; � 
 the invariant torus�� is normally parabolic.

4. All invariant tori have quasi–periodic flow with frequency vector�	 � .

Remark 5.3

1. As before, since the gaps in the Cantor set� are of order< as< � 
� it follows that all gap–widths tend to
 as
�� 



2. By the scalings (16), (20), (23), the gap–widths also tend to
 asÆ � Æ��


Base space For the near–integrable system� , theorems 5.2, 5.3 and 5.4 prove the persistence of hyperbolic, elliptic
and parabolic response tori on the covering space for certain (large) parameter sets. These response tori correspond to
response tori in the base space in exactly the same way as tori of the integrable system% on the cover correspond to tori
in the base: the central torus in the cover is mapped� times over the central torus in the base, while tori in the cover that
are mapped onto each other by the action of the deck group are mapped onto a single torus in the base, see section 4.

5.3 Conclusions

Let us see how the ‘periodic’ response diagrams in section 3 have to be modified for the quasi–periodic case in the light
of theorems 5.2, 5.3, and 5.4. From theorems 5.2 and 5.4, it follows that each hyperbolic branch of the periodic diagram
persists in the quasi–periodic diagrams up to bifurcation points. Theorems 5.3 and 5.4 indicate that each (continuous)
elliptic branch of a periodic diagram should be replaced by a Whitney–smooth image of a Cantor subsets of such an
elliptic branch.

Concerning the gap–widths in these Cantor sets we observe the following. In the world of� �–systems, the only
conclusion would be that, the gap–widths decrease more rapidly than any polynomial as� � 
; they vanish with infinite
flatness for� � 
. See for instance [19, 25]. For analytic systems, the gaps become exponentially small as� � 

 In the
figures of the introduction this shows by the very few gaps that can be distinguished at the given level of accuracy.

It is quite common in numerical simulations that only a few of the KAM gaps are visible (the numerical simulations
in this paper form a good example of that). One of the goals of this paper is to explain this fact.

The analysis of the backbone systems in section 3 shows that the gap width is proportional to some fractional power
of the generic coefficient', which in turn is proportional to the�’th Fourier coefficient� � in the Fourier expansion of
the forcing���� �� ��. For smooth systems, these coefficients decrease polynomially as��� increases; for real analytic
systems, the order of decrease is exponential, implying very small gaps for high values of���.

Moreover, as we have seen in this section, the size of the gaps is proportional to the size of the remainder. In general
for �� systems one obtains –flat remainders, that is, remainders that are smaller than a homogeneous polynomial of
degree . For ��� the remainder is smaller than any power, [25]. However, in the present real–analytic case, we have
shown that by an optimal choice of the normalising order, the remainder can be made exponentially small, which gives a
second reason for the the smallness of the gaps. For more details on these techniques, see [22, 23, 58, 59, 61, 60, 68, 73].

Notice that by normalising to an exponentially small remainder, we move into the world of systems that are only
piecewise analytic in the perturbation parameter�, see remark 5.1. We refer to [22] for a treatment of this.
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The strategy of the present paper can be repeated any finite number of times at all of the gaps described in this section.
Our result is that there is bifurcation of secondary (and higher order) elliptic and hyperbolic branches at each resonance.

Finally notice that we have simplified our analysis by keeping the internal frequency vector	 constant. As we
have mentioned, we conjecture that for the more general perturbations����� �� �� �� the analysis of this article, suitably
modified, would lead to similar results with Cantor sets also in the	–direction of the parameter space. There is a vast
literature on this subject; we only mention [8, 9, 14, 19, 20, 15, 52, 61, 70, 75, 84].

Remark 5.4 In [8, 9], in a dissipative analogue, methods from [35, 54, 78] are exploited to find normally hyperbolic tori
nearby the quasi–periodic ones. Also see [19] for further reference.
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Appendix

Formal normal form theorem

In this section the formal normal form Theorem 2.1 is proved, that gives the transformation of

� � �	� �� � �
�� � ��

�
� ���� ���� � ����� �� ���� �� (31)

into normal form. Although this is a very well–known result, see [1, 5, 10, 65, 81], we include its proof for completeness’
sake and for further use of the notation. The theorem reads as:

Theorem 2.1 Consider the Hamiltonian(31) for �� satisfying��� 	� � ��� � 
. Given� � �, for sufficiently small�
there exists a real analytic and canonical change of variables������ ��

� � �� 
 �� 
 �� �� �� 
 �� 
 ��

��� �� �� �� �� ��� "�#� $ �

close to the identity at��� �� �� �� � �
� 
� ��� 
�, such that the following holds. The Hamiltonian(31) is transformed into
normal form

� Æ������ "�#� $ ��� �� � %��� "�#� $ ��� �� � &���#� $ ��� ��


The integrable part% of the normal form reads as

% � �	� "� � ��
#� � $ �

�
� ��� ���

#� � $ �

�
� �

�
#� � $ �

�
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� ��
#� � $ �

�
� '�Re

�
�# � 	$ ��e�����	��
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�
(32)
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���� ���

��#� � $ ���

� Re
�
�# � 	$ ���e������	��
��������

�
�

with) � 
, *�+��,�)� � �, and-������� � 
, where the sum does not contain the terms that are explicitly displayed;
the remainder& of the normal form satisfies the estimate

&���#� $ ��� �� � �
�#�$� �� ��� �� 
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Proof. The argument is completely standard. Starting from (31), subsequent coordinate transformations of the form� #

are applied to the system, where�# is the time one map of a Hamiltonian vector field## with Hamilton function@ .
We call a function7 be oforder"��� if 7 � "�# ��$ ���� � ���

������, with
�

� 9� � �. Assume that� has been
normalised with respect to��
� up to order�� �, that is:

���#� "�#� $ ��� �� � � Æ+��� � � Æ�#
�� Æ � � � Æ�#�

� �	� "��
����
�
�

�� � �� � =���

where�� � ��

�
$��% �

�

�
, and, more generally, where���#�$ �� � ��� �� is a homogeneous polynomial of order* in

its variables already in (resonant) normal form,�� � "���, and=��� � "�� � ��.
The Hamilton function@ � @� of the next normalising transformation is taken as a homogeneous polynomial of

order� in the variables�#�$� �� ��� ��. We have

�� Æ �# � �� � ���@	�"��� ��

� �	� "��
����
�
�

�� � ����@	� �� �"��� ���

where�� � �	� "� � ��, and where���@	 denotes the Poisson bracket of� and@ . We will solve thehomological
equation

����@	� �� � ���

such that the contribution�� of �� to the normal form has as few terms as possible.
The action of�� on@ is given as

����@	 � �	�@

�#
� ��#

�@

�$
� ��$

�@

�#



This action diagonalises in suitable complex coordinatesA � # � 	$ ; introduce the derivative���A � �
� ����# �

	���$ �. Then����@	 reads

����@	 � �	�@

�#
� 	��A

�@

�A
� 	��

,A
�@

� ,A



Hence the Lie operator)�&�
�@ � � ����@	 is semi–simple, and its kernel can be chosen as complement to its image.

Split correspondingly�� � �� � ��, with �� in the image and�� in the kernel of)�&�
. A complex diagonalising basis

of )�&�
is given by/��� � e����	�A�� ,A�� , and)�&�

�/���� � 
 if  � )� and,� � , � )�, ,� � ,, for some
integer) with ,� )� � 
 for , � 

 Consequently,�� consists of a sum of monomials of the kind

Re
�
 ������	��
���������A��� ,A��

�
����� ���

�

� �#� � $ �������� ���
�Re

�
�# � 	$ ��� �����	�

�
�

where�,�)�� +�* � � and) � 

 The equation)�&�
�@ � � �� is then solved as in the next section of this appendix,

yielding an analytic function@ .
The normal form given in the theorem is then obtained by performing� of these normalising steps. This finishes the

proof of the normal form theorem.

Normal form with exponentially small remainder

Here, theorem 5.1 of section 5 concerning the quantitative estimates of the normal form is proved. The following notations
are recalled from section 5, since they will be needed in the proof below.

By ��3� =�, complex neighbourhoods of the�–dimensional tori�� sc� �sc� � �
� 
� are denoted, where

��3� =� � ���� �sc� �sc� � � � 
 � 
 � �

�!" �� � . 3 for all *� ��sc�� � ��sc�� . =�
�
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For a function7 � ��3� =�� � � , the supremum norm is denoted by�7� � �7�������.
Let �sc be a Hamiltonian given by

�sc � �	� �sc� � ��
��sc� ��sc

�
� 4�(sc � 4
��&sc
 (33)

It is assumed that�sc can be extended analytically to��3� =�, and that the frequency vector	 � � � is Diophantine: there
are! � 
, � � �� � such that for all� � � ����
	:

����� 	�� � !������ 


The normal frequency�� satisfies a normal resonance relation��� 	�� ��� � 
.

Theorem 5.1 Consider the Hamiltonian�sc as given by equation (33). Let3� = � 
 be such that the remainder& sc is
analytic on� � ��3� =�, and�&sc�� .�.

Then there is a4� � 
 such that for any
 � 4 . 4�, there is a real analytic canonical transformation

���� �� �sc� �sc�4� � �#� "�1� 2 ��

such that the following statements hold.

1. If�� � ��3��� = �����, then
����� � � and ������� � �


2. There is some constant� � 
 not depending on&sc such that

��� 	���� � ���� � 	���� � �4
���&sc��

That is,� is



�� � �4
��

�
–close to the identity.

3. In the new coordinates�#� "�1� 2 �, the Hamiltonian takes the form

��#� "�1� 2 ��� 4� � �	� "�� ��
1� � 2 �

�
� 4� �( � 4
�� �&�

where �( �#� 1� 2 ��� 4� is in resonant normal form,

�(sc� �(���
� � 4
���&sc���

and �&�#� 1� 2 ��� 4� satisfies

� �&���
�  $%

�
� �

4�������

�
�&sc��
 (34)

Proof. This proof can be seen as an expansion of the proof of the formal normal form, given in section 5.3. As in that
proof, a (finite) series�� �	 of different Hamiltonians is constructed iteratively, which are all of the form:

�� � �	� ��� ��
�� � ��

�
� 4�( � � 4
��&� 
 (35)

For * � 
, we have that�� � �sc etc. Moreover, for all� � � ����
	:
����� 	�� � !������ 


The functions� � , ( � and&� are analytic and bounded on the domain� � � ��3� � =��. Moreover, it is assumed that
( � consists only of resonance terms, while&� contains only non–resonant terms. In order to improve readability of the
following discussion, for the next couple of paragraphs4 �( � and4
��&� are replaced by( � and&� .

Since our main concern will be with a single iteration step, the superscript* will be dropped in the following, and*��
will be replaced by� (so–called�–notation). Also, in the analysis of the iteration step, a host of different constants appear
in the estimates, which do not depend on the index* of the step, nor on the ‘stepsize’Æ, which will be introduced below.
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These constants will collectively be denoted by a dot following an inequality sign. For instance,� . � �� � �� will be
taken to mean� . ���� ��, where� is some constant not depending on* or Æ.

As before, then, the new Hamiltonian�� is obtained from the given Hamiltonian� by a variable transformation�# ,
which is the time–one map of the Hamiltonian vector field## associated to a function@ . This function is determined
by the homological equation

����@	�& � 
� (36)

and the requirement that@ itself contains no resonant terms. Note that in the present context� � � �	� �������
�������.

Introducing complex coordinatesB � �� 	� as above, the function@ can be expanded in a Taylor–Fourier series:

@ ��� B� ,B� �
�

����


�
	�	��

@���  �����	�B��,B�� �

where the notation@ ��� B� ,B� indicates that@ ��� B� C� is an analytic function in all its variables. Note that9 � �9 �� 9��
is a multi–index. Also& is expanded in a Taylor–Fourier series, with coefficients& ��� . By equating coefficients

of  �������B��,B�� in the homological equation (36), the following formal expression for@ is derived:

@ �
�

����


�
	�	��

&���

	 ����� 	� � ���9� � 9���
 �����	�B��,B�� 


Convergence. The formal expression obtained for@ will be shown to converge uniformly on some domain� Æ �
��3 � Æ� = �Æ�, where the ‘stepsize’Æ will be determined below. For this, note first that from the Cauchy inequalities it
follows that

�&���� � �&��e��	��	=�	�	


This implies, together with the Diophantine inequalities, the following estimate for@ :

�@��Æ
. � �&��

!Æ�



Remark A.1 We here used the optimal estimates obtained by R¨ussmann [77], obtained by fine tuning the Diophantine
non-resonance estimates.

Estimates. Let ## be the Hamiltonian vector field associated with@ , and let��
# denote its time- map. The new

Hamiltonian�� can be written as

�� � � � ���@	�
� �

�

���  �����@	�@	 Æ��
# � 
 (37)

This expression is defined on any domain�� which is mapped by��
# , for all  , into�Æ . In order to find a suitable��,

note that

�##���Æ
� ��-)�@���Æ

. � �@��Æ

Æ
� �
�&��
!Æ���




Since���
# � 	����Æ

� �## ���Æ
for all  � �
� ��, the domain��Æ will be mapped into�Æ, if

�&�� � ���!Æ���
 (38)

Note that the constant� does neither depend on*, nor onÆ. This inequality is verified below, after the constantÆ is
determined.

To obtain expressions for( � and&�, equation (35) is substituted into (37). Using the homological equation (36),
this yields for��

�� � �� � ( �&� ����@	� �(�@	� �&�@	� D (39)

� �� � ( � �(�@	� �&�@	� D
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Note that the integral in (37) is indicated byD.
By applying Cauchy’s estimate to all derivatives in the Poisson brackets, successively the following estimates are

obtained:

��(�@	���Æ
. � �(��Æ

Æ

�@��Æ

Æ
. � �&��

!Æ���
� (40)

��&�@	���Æ
. � �&��Æ

Æ

�@��Æ

Æ
. � �&�

�
�

!Æ���
� (41)

�D���Æ
� �����@	�@	���Æ

. � ����Æ
�@���Æ

Æ�
. � �&�

�
�

!Æ���

 (42)

Here it has been used that( (and consequently�) can be bounded by a constant that is independent of* or Æ, a fact
which will be verified below.

Incorporation of the perturbation parameter. At this point, the parameter4 is incorporated again, and the functions
( , & and@ are replaced by4�( , 4
��& and4
��@ . Hence, from (39), we obtain for( � and&� from:

4�(� � 4
��&� � 4�( � 4
�(�@	� 4�
���&�@	� 4�
��D�

where(� consists only of resonant terms and&� only of nonresonant ones. Choosing3� � 3 � �Æ and=� � =e��Æ ,
the domain�� equals��Æ. Using estimates (40)–(42) obtained above, the following are obtained:

�&����
� �

!
�&��

�
4�

Æ���
�

4
��

Æ���

�
�

�(� � (���
� �4
��

!
�&��

�
4�

Æ���
�

4


Æ���

�
�

where� does not depend on the iteration index*.

Exponentially small estimates. The constantÆ is now determined by setting

�4�

!Æ���
�

�

� 
� that is Æ �

�
�� 4�

!

� �
���




Then it follows that for4 sufficiently small,

�&����
� e���&��� �( � (����

� �4
���&�� 


Note that as a consequence of this�( ���� � �
����& ����

, a fact that was used in the estimates above. Also, the
estimate (38) holds for4 small enough, since then

!

�
Æ��� � ��4��

and4
���&�� is smaller than��4� for 4 small enough (recall that the factor4
�� is absent from (38) by convention).
As a single iteration step decreases the width of a domain by�Æ in the Im�–direction, the total number of steps* �

should be such such that*� � �Æ . 3���, yielding:

*� �
�3�
�
Æ��

�
�

�
�

4
�

���

�



The remainder term&�� can now be estimated by

�&������
�  ����& ����

�

which yields the exponentially small estimate.
Finally, the transformation� of the theorem is given by the concatenation of the�'� ’s:

� � �# � Æ � � � Æ�# �� 


The statements of the theorem now follow easily.


