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Abstract

We perform a bifurcation analysis of normal—internal resonances in parametrised families of quasi—periodically forced
Hamiltonian oscillators, for small forcing. The unforced system is a one degree of freedom oscillator, called the ‘back-
bone’ system; forced, the system is a skew—product flow with a quasi—periodic driving: \Wwilkic frequencies. The
dynamics of the forced system are simplified by averaging over the orbits of a linearisation of the unforced system. The
averaged system turns out to have the same structure as in the well-known case of periodic/iotciny for a real

analytic system, the non—integrable part can even be made exponentially small in the forcing strength. We investigate
the persistence and the bifurcations of quasi—periaditimensional tori in the averaged system, filling normal—-internal
resonance ‘gaps’ that had been excluded in previous analyses. However, these gaps cannot completely be filled up: sec-
ondary resonance gaps appear, to which the averaging analysis can be applied again. This phenomenon of ‘gaps within
gaps’ makes the quasi—periodic case more complicated than the periodic case.
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1 Introduction

This article studies families of quasi—periodically forced nonlinear Hamiltonian oscillators at normal—internal resonances.
The motivating example, which is quite representative for the general case considered later on, is the quasi—periodically
forced mechanical pendulum

F + o’sinz = eg(t), (2)

wherez,t € R, @« > 0 ande > 0. Quasi—periodicity of the forcing means that there is a frequency veator=
(w1, ...,wy) with rationally independent components, and a smooth funéioff' * — R such that

9(t) = G(wit, - -+, wnt);
hereT™ = R™ /27 Z"™. The oscillator is said to be at a normal-interhall resonance, if satisfies
(k,w) + La =0,

for somek € Z™\{0}, somel € {1,2,---}, and if £ is the smallest positive integer with this property. Throughout
this article, the frequency vectar is fixed andDiophantine while the parametet ranges over a compact interval not
containing.

A classical question, which has been posed explicitly by Stoker [80] but which goes back to the acoustical investiga-
tions of Helmholtz and Rayleigh [53, 76], asks for solutions of (1) that are quasi—periodic with the same frequency vector
as the forcing: so—calle@sponse solutiong he central question of this article is whether response solutions exist, and if
so, how these solutions behave as the parametiskes values near a normal-internal resonance value.

We reformulate the question in geometric terms by associating to the differential equation (1) a dynamical system on
the phase spac®* x R? by posing

= w,
T = Y, (2
;] = —a’sinz +G(6);

here§ € T™ andz,y € R. Any invariant torus that can be represented as the graph of a functiofr,, 7) : T* — R?
corresponds to a family of response solutions
z(t) = 71 (wt + 6p),

parametrised by,. Hence, in geometric terms Stoker’s problem asks for invariant tori of the system (2) in graph form.
The forcing strengtls will be regarded as a perturbation parameter. et 0, the torusr = 0 is invariant; we are
interested in the fate of this torussfis small and positive.

The unperturbed torus is normally elliptic, and its normal frequency is equalkolmogorov—Arnold—Moser (KAM)
theory shows that for smadl > 0, this torus will persist for the parameteartaking values in a Cantor set of positive
Lebesgue measure, cf. [8, 19, 59, 60, 69, 75]. The complement of this Cantor set consists of countably many open inter-
vals — usually called ‘gaps’ in this context — whose union is dense. These gaps correspond to normal—internal resonances;
in their presence standard KAM theory cannot be applied directly. Note that in the well-known periodic analogue of this
problem, that is in the case= 1, cf. [67], response solutions are known to persist fonalnging over some compact
interval.

The main goal of the present article is hence to analyse what happens in a given normal-internal resonance gap. After
averaging at the resonance under consideration, and lifting to a suitable covering space, the system can be written as the
sum of an integrable part, which may be reduced to a one degree of freedom system, and a very small non—integrable part.
Analysis of the integrable part yields that there are two types of gaps. At a nhormal—iriterha¢sonance, the invariant
torus is ‘pushed away’ from the origin, and two more tori are generated in a quasi—periodic centre—saddle bifurcation. At
a normal—internal : 2 resonance the invariant torus changes from being normally elliptic to normally hyperbolic — and
back — in two quasi—periodic frequency—halving bifurcations. This second type of gap is proof—generated in classical
KAM-schemes, which control the normal behaviour of invariant tori tightly. Consequently this type of gap is not present
in [6, 7], where an alternative scheme is used.
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Figure 1:Response diagram @1), (2). Shown are the parameter on the horizontal axis, against the? norm of the
response solution on the vertical axis. Classical KAM—theory can only prove the existence of invariant torii¥hose
norm is below some boundwhich is of the same ordép(¢) as the forcing, as — 0. Moreover the normal dynamics
of these invariant tori should be elliptic, which fails to be the caselfoR resonances (the corresponding gaps are not

shown in this figure).
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1.1 Phenomenology

To illustrate the dynamical phenomena we are interested in, numerical simulations of system (2) have been performed for
the caser = 2, w = (1, —3 + 3+/5), cf. [24]. ForG, the trigonometric rational function

G(0) = (3 + cosfy + cosfy) ™"

has been taken, whose Fourier coefficients are all non—zero. The perturbation strength has been 8€tio

Response solutions have been computed numerically for a range of values of the pasanidtermethod works
roughly as follows: system (2) induces a Poircarap of the PoincarSectiord; = 0 onto itself. Invariant tori of the
system correspond to invariant circles of the Poiacaap, with rotation numberr+7 /5. An explicit parametrisation of
such aninvariant circle is obtained by representing it as a Fourier series and computing its Fourier coefficients numerically.
Then, the invariant curve can be continued with respect to the paramdtarmore details, see [31, 56]. The results are
summarised in Figure 1, where on the vertical axisienorm of the Fourier series is plotted against the paranseter

In the figure, it can be seen clearly how invariant tori are ‘pushed awaly"lyresonances; however, these resonances
do not destroy the tori. As remarked before, ‘classical’ KAM theory handles only the case that response solutions have an
amplitude of ordeO(¢): this corresponds to the lower part of the curves. The ‘spikes’ are cut off, and hence correspond
to the ‘gaps’ in the Cantor sets for which classical KAM theory fails to find invariant tori. These gaps will be almost
completely ‘filled’ by the results of the present paper.

Another case for which gaps occur in the KAM Cantor sets islfor2 resonances. Although in that case invariant
tori are not pushed away, their normal linear behaviour changes from elliptic to hyperbolic and back again. Classical
KAM theory also fails for these tori: this gives rise to another kind of ‘gap’ in the KAM Cantor sets, which will be filled
completely by the present paper.

Let us briefly compare these findings with the results in the case of periodic fereing (see [67] for a survey). There
the resonance gaps are isolated. However, the same amplification of response solutions is observed for thegparameter
close to al : 1 resonancekw + a = 0 andk # 0). Atal : 2 resonance — that iw + 2a = 0 with £ odd — the
response solution changes from elliptic to hyperbolic and back again, through two period doubling (also called frequency
halving) bifurcations, cf. [17, 18, 27, 41]. For higher resonarices- /o = 0 with £ > 3, periodic orbits withY times the
period branch off from the response solution.

All these periodic resonance phenomena reappear in our quasi—periodic case, but now forming a dense set. In fact, in
the casen = 1 the parameter values af for which kw + ¢a = 0 for some fixedd — the resonances — form a set of
isolated points; the corresponding set#ior 2 is dense.

This denseness of resonances leads us to expect ‘secondary’ resonances located on the ‘primary’ resonance curves.
To illustrate these, the left—hand picture in figure 2 zooms in on the intébvat, 0.70] C [0.5,1.5] of Figure 1. In this
way the ‘primary’ resonance at = —1 + 1,/5 is magnified and a ‘secondary’ resonancexats 0.563813 becomes
visible. Although resonances form a dense set, the width of the associated gaps decreases rapidly (in first approximation,
this width is proportional to the corresponding Fourier coefficient of the forcing fun€ti@), see section 5) and the
numerical detection of these phenomena becomes difficult.

In order to obtain a two—dimensional impression of the dynamics in phase space, ‘quasi—periodicePsantians
of system (2) are displayed in Figure 3. These are constructed by taking the first return map under the flow of (2) to the
sety = {6; =0, 0 € [a,b]} x R%, where[a, b] is a small interval, and then plotting the resulting points only using their
R?—coordinates.

Figure 4 shows three slices of the phase space for thekcas€0, —3), ¢ = 2, clearly showing a period doubling
bifurcation.

1.2 Setting of the problem

In the sequel, the phenomena illustrated in the previous subsection are analysed using a series of well-known techniques,
like (efficient) normal form analysis, van der Pol liftings, local equivariant bifurcation theory and KAM theory.
Note that the following Hamiltonian system is equivalent to equation (1)

b = w

=55 O ®)
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Figure 2: Two more response diagrams associated tolthel normal-internal resonance. The left plot shows the big
resonance for near the golden number  + £,/5 = 0.618.... ., and the right plot is a magnification of the ‘secondary’
gap that appears in the left plot.

T = y
y = —a’sinz+eG(0)

where the added variablee R" is canonically conjugate t6 € T™. System (3) is an autonomous Hamiltonian system
on the phase spa@®& (T" xR) = T" x R" x Rx R = {6, I, z, y}, with symplectic formif A dI + dx A dy and Hamilton
function

H,z,I,y) = (w,I) + %y2 — a?cosx — eG ().

This motivates the introduction of a more general (parametrised) Hamiltonian

2 2 ~
T+ hwia) + £GlB,ap50,2), @

where i, contains terms of orde®(|(z,y)|?), and whereG is an arbitrary real analytic function. Fer = 0, the
torus (z,y) = (0,0) is invariant and a response solution. This response solution is said to be at a normal—internal
1: {resonance at = ay, if

H = (w,I) + «a

(k,w) +Lag =0
for somek € Z"™\{0}, somef € {1,2,---}, and if¢ is the smallest positive integer with this property.
Note that system (3) is a special case of this general form. Moreover, note that this general parametrised Hamiltonian
is generic in the universe of parametrised families of ‘forced’ (or ‘driven’ or ‘skew’) Hamiltonian systems

K = (w,I) + k(0,,y),

which have the property that the ‘torus dynamics’
0 =w
are decoupled from the ‘normal dynamics’
. Ok . Ok
T = 8_y’ Yy = B
This set—up keeps constant, and allows to concentrate on the normal behaviour of invariant tori, while not having to
worry about possible internal resonances. For the rest, we want our system to be ‘as generic as possible’ and ‘sufficiently

smooth’, although in the later parts of the article, the Hamiltonian (4) is assumed to be real analytic in all its arguments.
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Figure 3:Six phase portraits associated to thd—resonance, the first three far~ — % + é\/S , and the other three for
‘a gap within that gap’ & ~ 0.563813, see Figure2, left).

Figure 4:Three phase portraits associated td 2-resonance, for-3(— % + %\/5) +2a = 0.

Remark 1.1

1. We make the general conjecture that the analysis of the present article is, suitably modified, valid for the more
general system

z2 + y2
2

in the universe of ‘ordinary’ Hamiltonian systems. Restricting ourselves to the forced case in this article is mainly

for convenience, but also because this setting is interesting in its own right.

Indeed, there are many models in Celestial Mechanics that are written as periodic or quasi-periodic perturbations
of autonomous Hamiltonian systems; for instance [31, 37, 45, 46, 47, 48]. The families of invariant tori in such
models must present the phenomena studied here. In fact, the classical KAM theory for this case, cf. [59, 60],
avoids the normal-internal resonance gaps under study here by excluding the corresponding values in the action
and/or parameter spaces.

H = (w,I) + « + iNL(:v,y;a) + eG(0,1,z,y;a,¢)

2. Our restriction to a real analytic universe (endowed with the compact—open topology on holomorphic extensions)
partly is for convenience. Large parts of this treatment also work irfor s € N U {oc} large,e.g.the normal
form transformations, the van der Pol lifting, Kupka—Smale genericity [25, 26], and the quasi—periodic persistence
results [20, 75]. Real analyticity is crucial, however, to obtain exponential estimates on the remainder terms in the
normal forms, which in turn determine the widths of the gaps [22, 23, 71, 79].
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1.3 Outline

We outline the analysis performed in the rest of the article. As mentioned before, we consider the Hamiltonian

x? +y2

H = (w,I) + « + h(z,y;a) + GO,z y;0,¢).

Observe that fog = 0 this Hamiltonian is integrable. Its dynamics leave invariant an elliptidimensional torus(f) =

0 of graph form and a surrounding family of invarigit + 1)—tori. The termeG is regarded as a perturbative forcing
term. We are interested in the fate of thetorus wher is small and positive, in particular forin a small neighbourhood
of a normal—internal resonance valug # 0 satisfying

(k,w) + oy = 0 (5)

for certainf € {1,2,---} andk € Z™\{0}.

If £ € {1,2}, classical KAM-theory cannot be applied to this perturbation problem directly. However, by restricting
to a single normal resonance, the problem may be transformed as follows.dfase toa o, € close to0 and(z,y) in a
neighbourhood off (whose size depends e} a resonant normal form is computed. Byan der Pol transformatiothe
system is lifted to a suitable covering space, where it can be split into an integrable system (that can be reduced to a one
degree of freedom ‘backbone’ system) and a non—integrable remainder term of arbitrary high order in all variables.

The ‘backbone’ system is equivariant with respect to the deck transformations of the covering space, and hence
equivariant bifurcation theory is invoked to analyse its bifurcations with respect to the param@&er main concern,
persistence of quasi—periodic response tori of graph form, then reduces to analysing the persistence of response tori of the
integrable ‘backbone’ system under small non—integrable perturbations. For this part of the analysis, we draw on results
of quasi—periodic Hamiltonian bifurcation theory already available. From the bifurcation diagrams obtained in this way,
the response diagram near the resonance (5) can be reconstructed, using ‘classical’ KAM—-theory, cf. [8, 9, 11, 19, 52, 55,
61, 63, 69, 80]. To this end we use the following Diophantine conditions: the paramsheuld satisfy

gl
L

forall (k',¢") € Z™\{0} x {£1, £2} that are different from thék, ¢) which satisfy (5). These conditions effectively
define a Cantor set inside the resonance gap ar@indThough we are mainly interested in the case that {1, 2},

for completeness sake the cdée> 3 will be included as well. We emphasise that our approach deals with one normal
frequency at a time.

We give a brief overview of the effects of the valueof If £ = 1, the response torus is ‘pushed away’ by the
perturbation and standard KAM theory does not apply. # 2, the torus is not affected but its normal behaviour can
change from elliptic to hyperbolic. In this case, KAM theory could be applied directly without including the normal
directions (see [7]). If > 3, the normal stability of the torus is not affected and standard KAM machinery can be applied;
in this case the effect of the resonance is the ‘birth’ of new invariant response tori.

Combining the normal form approach with Neishtadt—Nekhoroshev estimates, which can be obtained in the real—
analytic case as in [22, 23, 60, 71, 79], leaves only gaps that are exponentially small in the perturbatiorestrength

Indeed, our analysis shows that normally elliptic tori, known to exist outside these gaps, can be continued inside
where they may or may not pass through quasi—periodic bifurcations. However, the continuation is not complete: new
gaps show up because (), which have to be treated the same way. This ‘inductive principle’ suggests an infinite
repetition of the bifurcation patterns at ever smaller scales. Compare with the ‘bubbles inside bubbles’ as they occur in
dissipative quasi—periodic bifurcation theory [4, 8, 32, 33, 34, 84].

Note that in the formulation of the perturbation problem, there is no essential difference between the periadie case
1, cf. [17, 18, 27, 38, 67, 80], and the quasi—periodic case 2. In the sequel we shall often compare these two cases;
the main difference between them is that normal—internal resonances yield isolated gaps in the periodic scenario, but a
dense union of gaps in the quasi—periodic scenario.

(K, w) + Cal >

(6)

Remark 1.2 The gaps associated fo= 0 in ‘classical’ KAM—theory concern the internal resonances, which are of

a different type. They are in fact excluded in this article, sinckeas been fixed at some Diophantine value. Various
violations of the corresponding non-resonance conditions are dealt with elsewhere. See for instance [9, 14, 15, 55, 70,
75, 83].
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1.4 Organisation

The article is organised as follows. In Section 2 we simplify the Hamiltonian (4) in two steps. First a formal normal form
is developped. Second, by a van der Pol transformation, we lift the system to a covering space adapted to the resonance.
After truncation and reduction, a one degree of freedom system is obtained, which is the same as in the periodic
case. In Section 3 this one degree of freedom system is investigated for its own sake, since it forms the backbone of our
perturbation problem. Our main interest is with the (relative) equilibria, since they correspond to response solutions in
the full system. They can be continued by the Implicit Function Theorem. The analysis is simplified by suitable scalings,
allowing us to retain only significant lowest order terms of the system.
The corresponding dynamicsin+ 1 degrees of freedom of the integrable part of the normal form is reconstructed
in Section 4 using structural stability arguments. Section 5 re—incorporates the non—integrable terms neglected earlier
on, and KAM-theory is applied to show persistence of response solutions, solving the original perturbation problem.
Actually, by using normal forms with exponentially small remainders, the new gaps in the parameter space are shown
to be exponentially small in the perturbation parametefor completeness’ sake we present details on how the normal
forms are obtained in an appendix.

2 Simplifications of the Hamiltonian

Several canonical transformations are applied to our Hamiltonian system with Hamiltonian (4), simplifying it stepwise.
We begin by putting the normal linear part into standard form. After this we put the nonlinear part into a formal resonant
normal form, which also is quite standard, cf., e.g., [5, 9, 10, 29, 30, 50, 65, 81]. In this way the dynamics normal to the
torus decouples from the ‘internal’ part (the quasi—periodic forcing), which allows a (formal) reduction to a system with
one degree of freedom. Finally, by a van der Pol transformation (also known as ‘passing to co—rotating coordinates’) the
system is lifted to a covering space, see for instance [1, 27, 51].

2.1 Preiminaries
On the phase spacg” x R" x R? with symplectic structurey_ df; A dI; + dx A dy we have the Hamiltonian (4)

HO,I,z,y;0,8) = (w,I) + h(z,y;a) + eG(0,7,y;0,¢), (7

where(-, - denotes the standard inner product, and where(a/2)(x 2 + y2) + h. Consider the one degree of freedom
system defined b¥(z, y; «) . Assuming that the origin is an elliptic equilibrium, it follows fer= 0 and for fixed! that
then—torus T™ x {(0,0)} is a normally elliptic invariant torus for the full system defined by (4). The quadratidipart
of h reads as

2 + y2
4T
Recall thath = h — h, contains the higher order terms. Roe= 0, the variables can be interpreted geometrically as
follows. Individual tori are given byl = I, and parametrised b/. They model the quasi—periodic forcing. We refer to
(0, I) as theinternal variables and tdz, y) as thenormalvariables of the tori.

Invariantn—tori of (4) give rise to families of response solutions. Fef 0, the response solutionis =0 = y . From

standard KAM-theory, see [19] and references therein, we know that response solutions exist also for small sion—zero
and that they are of ordé¥(¢), provided the Diophantine conditions

h2(ar,y) =

|(k,w) + la| > ﬁ forall k € Z"™\{0} andalll € {0,+1,+2} ®)
are met, where > n — 1 andy > 0. We taker constant, but allovwy to depend on the perturbation parameteXote
that for/ = 0 these conditions express that the internal frequency vedbiophantine. The main interest of this paper
is however to study the case that a Diophantine conditiof fert1 or £ = +2 is violated. To this end we investigate the
case thaty is close ton which is such that for some (fixed) € Z"™\{0} and ¢ € {1,2} the equation (5):

(k,w) + by = 0
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holds. For instance, it turns out that fér= 1 the response solution is at a distari2g 3 ) of the ‘unperturbed torus’

x = 0 = y . This necessitates semi—localapproach, that is we do not view the occurring bifurcations as isolated
phenomena, but focus on the total structure of the bifurcation diagram close to the resonance (5). This approach also
yields new insights for the resonangg, w) + 3ay = 0, therefore we investigate (5) also in the cdse 3.

2.2 Formal normal form

We begin with a basic observation. Let two paits,, ¢1), (k2, ¢2) € Z™\ {0} xN both satisfy (5). Since is Diophantine,
this implies £2k; = ¢,k . It follows that there is at most one pd#, ¢) satisfying (5), for whictd > 0 and ged(k) =
ged(ky, ..., k,) = 1; hereged(k) of an integer vectok € Z ™\ {0} is the greatest common divisor of its componénts
Consequently the ‘remaining’ Diophantine conditions (8) are valid for sufficiently smalh the neighbourhood of the
resonance (5) we have the following result.

Theorem 2.1 (Formal normal form) Consider the Hamiltoniari4) where forr > n — 1 andy > 0 the frequency
vectorw satisfies the Diophantine conditions

kl > ’y
)] >

forall k' € Z™\{0}. For somek € Z™\{0} and/ € {1,2, -}, leta, satisfy a resonance conditiq, w) + fag = 0,
and leta be sufficiently close tay. GivenL € N, for sufficiently smalt there exists a real analytic and canonical change
of variables®(-; a, )
d: T'xR*xR — T"xR*xR2
(07I7$7y) H (07 ‘]7X7 Y)

close to the identity atx, y, , ¢) = (0,0, ag,0), such that the following holds. By the change of variables, the Hamilto-
nian (4) is transformed into normal form

Hod '(0,],X,Y;a,e) = N@,J,X,Y;a,¢) + RO,X,Y;a,¢).

The integrable pariV of the normal form reads as

X2 4+Yv? X2 4Yy2 X2 4 y2\2
N = (@) + a2 4 (a—ag) X e (22
2 2 2
X24+Y2 o
+ 06% + Ae Re((X _iy)t’el(@,e)—%)) ©)
+ ) Femijla—ag)e' (X7 +Y2)™
K,m,j,i

. Re((X _ iy)néé(ﬂk,o%w,m,i.j))

withk >0, +49+ 2m + &€ < L — 1, andyy ,i;,; = 0, where the sum does not contain the terms that are explicitly
displayed; the remaindeR of the normal form satisfies the estimate

R(6,X,Y;a,e) = On(X,Y,a—ap,¢)
The proof is based on the normalisation of the Hamiltorfiawith respect to the action of

X2 472

H2(07J7X7Y) = <W7J> + ap 2

(10)

The details are given in the appendix.
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Remark 2.1

1. The system is nondegerate whenevet 0 and A # 0, which will be assumed throughout. By reversing the
direction of time, if necessary, we can restrict our attention4o0.

By an appropriate scaling of the Hamiltonian, the constamthich gives the second Birkhoff coefficient, can be
replaced by-1. This leaves us with two cased, > 0 andA < 0. By a rotation over an angle// in the normal
direction, that is, i X, Y)—coordinates, these cases are shown to be equivalent. However, for clarity’s sake we
shall give phase portraits for both.

2. We will see in section 3 that in most cases the higher order part (the last sum term) of (9) can be considered as being
part of the non-integrable remaind@iof the normal form.

2.3 Reduction to an autonomous system on a covering space

The integrable pay of the normal form (9) is equivariant with respect to the adjoint action of the normal ‘linearFpart
given in (10), of the Hamiltonian. Since is non-resonant, the first ter(w, J) of H, generates a fre€™—action. For
non-zeron, the second term generates a further fide-action. As these two actions commute they defiria!—
action. In the case of normal non-resonance, Tri$ ! —action is again free; if additionally Diophantine conditions (8)
hold, we obtain persisting normally elliptic quasi—periodic response solutions; see again [19, 59, 70, 75].

Given the resonance relation (5), tié+'—action is not free but reduces tdal&—action. And even thi¥”—action is
not free (unlesg = 1), for then—torus(z,y) = (0,0) has isotropyZ ,: there is aZ, sub—action of tha&”—action that
leaves every point of the—torus(z,y) = (0, 0) fixed. This situation is most conveniently treated by lifting the normal
form (9) to an/—fold covering of T™ x R™ x R? on which theT™—action is free. Note that there is no point in lifting the
complete HamiltoniadV + R to the covering, since the remainder tefhis in general not invariant under thig"—action.

On the covering space the integrable pirof the normal form is invariant under the frég*—action, that is, it does
not depend explicitly on the ‘torus variablé. Now we proceed as follows. First, a basis of the lattice defifiiffgis
chosen that is adapted to the resonance (5), in such a wawtliEpends only on a single angle. This allows us to
continue as if we were in the periodic case.

If for an integer vectok € Z\{0} its greatest common divis@ed(k) is equal tol, then there exist integer vectors
va,...,v, € Z™ such that the determinant of the linear map = (kv ... v,)7 is equal tol, cf. [36], chapter 10.
This linear map is obviously not unique. The miap € SL(n, Z) defines a transformatioh= L of then—torusT™ to
itself, with the property that .

61 = (k,6).
Note that in these coordinatéé is independent of the other anglés, . . ., §,,, which have consequently become cyclic
variables.

In the general case that the greatest common divigoof the k; is not necessarily equal th we write k as nok
where fork € 7" we have gcgk) = 1. As above, we can find a linear mdp, € SL(n,Z) whose first row equals.

By applyingL; to then—torus, the integrable paN of the normal form becomesafunctlon((ﬁ J X,Y;a,¢), where
J= ( 1T J is the vector of the new actionkconjugate to:

. X2 +Y? X2 +Y? X2 4+72\°
N = <w,J>+aOT+(a—a0) 5 - < 5 )
X2 4?2 e
+ as% + Ae Re((X - iY)’-’e““O"l*%))
+ Y Famijlo—ao)e (X2 +Y2)™
K,m,j,i

. Re((X _ iY)N[ei(’“‘vNoél—Uln,m,i,j))

Herew = L;w is the new frequency vector; in particular, we have that= <l~c, w> = hio (k,w). Note that the resonance
condition now reads asyw; + fag = 0.
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We are now in the position to mimic the treatment of the periodic case, by introducing co—rotating coordinates through
a so—called van der Pol transformation. The system is lifted by this transformatior-tfodsthcovering space, on which
the normal dynamics oWV decouple from the quasi—periodic forcing terms. The transformation is given by

( <X> _ <cos Kop1 —sin n0<p1> <Q>
Y sin ko1 COS Ko1 P
él = lp1 + f—g
jl = NTOP2—5Q2 + %Il
éj = ;, forj=2....n

l J; = I, forj=2,....m

After the van der Pol transformation the averaged padf the Hamiltonian is of the form

N(LQ,P;Q,S) = <(;Jg,[> + F(Q,P;a,s) (11)
with & = (2L, @, - -+, &y,), and with ' given by
Q2+P2 Q2+P2 2
F = — x - (-
(a — ) 5 5
2 P2
+ asQ+ + AeRe(Q —iP)" (12)
+ Y Femij(o— a0 (Q*+ P?)"
K,m,j,t

. Re((Q — ip)ﬁfei(ﬁwo*wn,m,i.j))

By construction the lifted dynamics is equivariant with respect to the deck group 6tftblel covering space; this group
is isomorphic tdZ, . It is generated by

(4, 1,Q,P) v
2m  gip 2x
}—)<1/J1+277r,¢27,¢n,1’<—(;?3£ sz)r;ﬁ ><g>>

l l
Furthermore, on the covering spadéis independent of the torus variables. By reducing the (now fie®}action,
or in other words by restricting to the normal dynamicsh\aof a one degree of freedom system is obtained, which has

HamiltonianF'. After this reduction, th& —~symmetry reads as

(Q,P)H< cos 7 Sin%)(g). (14)

14 2T 27
— Sin A COS VA

Observe that in the presefitfold covering space the resonance condition (5) is trivially satisfieH ,les been mapped
to0 € Z"andagto0 € R.
In the next section we analyse the reduZedsymmetric one degree of freedom systérfor £ = 1,2,3.4, . ...

Remark 2.2

1. Notice that for # 1 further reduction of th&. —symmetry would give rise to a conical singularity at the origin of
the reduced phase space, cf. [40, 41, 62]. It is exactly to avoid this singularity that we work widguivariant
systems on the covering space.

2. We make a short remark on parametrically forced systems. As an example consider the nonlinear étilir@ahr”
equation
&+ (a®+ep(t))sine = 0
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cf. [17, 18, 24, 27]. For quasi—periodi¢t) this fits into the framework of this article & (wt, z,y) = —p(t) sinz
is taken. However, the nonlinear Hill-Sddlinger equation is not ‘as generic as possible’, sineei = 0 always
is an invariant manifold, and hence if put in the present frameworlk; ferl we would have thatl = 0.

The remaining resonances (5) with> 2 of the present investigation, however, lead t@ a-symmetric lifted
system wheréz, y) = (0,0) actually is invariant, and hence the classification obtained will be the same as that for
parametric resonances, cf. [18, 27].

3 Theonedegree of freedom ‘backbone’ system
As a result of the various transformations performed in the previous section, we have obtained the Hamiltonian
H={(u;,I)+ F+R,

which is defined on ari—fold cover of the original phase space. In this section the ‘backbone’ Hamiltdnian
F(Q, P;a,¢) is analysed; the next two sections investigate the dynamical consequences of addititetmtegrable
term({w,, I') and the non—integrable terR\ and of projecting the system back to the base of the covering.

Recall that the backbone systefhis Z —~symmetric, where depends on the type of normal—internal resonance.
Below F’ will be truncated even further: the order of truncation will be the lowest possible, dependfnguwoh that we
maintain a sufficient amount of control over the equilibria and their bifurcations to be able to prove their persistence under
the non—integrable perturbatidhlater on.

Remark 3.1

1. The origin(@, P) = (0,0) is always a critical point of'(Q, P; a, ) for £ > 2; however, generically it is not a
critical point when/ = 1.

2. The present backbone system is the same slow system as would be obtained in the periodically forcedicase
Hence to a large extent the one degree of freedom dynamics is as in [2, 67]. Whenever bifurcations occur, these
are governed by the corresponding singularity of the (planar) Hamiltonian function and its universal unfolding.
Following [74] simple adjustments have to be made where such a singularity has to be unfoldeg-syanmetric
context.

3.1 Thecase/=1

In the cas¢ = 1 the HamiltonianF' of the one degree of freedom backbone system reads as

F@,Pia.e) = (a—ao)

Q2+P2 Q2+P2
2 2

2
) + Ae@ + -+, (15)
where the ‘- " indicate those terms if’ that will be dropped below. In this case the deck grAugs trivial.

SinceF is considered fo€), P ande all three close t®, a suitable scaling yields the dominant terms of an expansion
in . For the present cage= 1 such a scaling is given by

— 3 —
€= M7, Q—lﬂla (16)

We now drop the higher order terms jinand divide the truncateff (P, Q; «, ) by the remaining common facter? .

This leads to )
2 2 2 2
Fapo) = 6T tP _ (q “’) ©Aq 17)

2 2
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Note that this amounts to a rescaling of time. Indeed, had we dividecPtipstead ofu? then the scaling16) would
amount to aonjugacybetween the flows of the Hamiltonian vector fields defined and by the truncation of, that
is, a co—ordinate change that maps orbits into orbits and does respect the time—parametrisation. Since we do rescale time
the two flows are no longer conjugate but odignamically equivalent
Also note that the Hamiltoniagi has, unlikeF, a reversing symmetry, p) — (q, —p); see subsection 3.5 for more
details.

Proposition 3.1 (¢ = 1) Consider the Hamiltonian system with Hamiltoniiras given by(17), and letA # 0. This
system has at most three equilibria, all on the line: 0. A centre—saddle bifurcation of equilibria occurs at

A
(505 = 3 <5>

Foré > d¢s, there are three equilibria, two elliptic and one hyperbolic; ok d ¢ g, there is a single elliptic equilibrium.
This is a generic scenario, structurally stable for sufficiently small perturbations.

W

Proof. We look for the critical points of, that is, pointgq, p) such that the right hand sides of
¢ = op— (+p)p,
p = =0+ (@ +p°)q — A,
both vanish. As the fixed points have to satigfy: 0, equilibria are given by
A+6¢—¢ = 0. (18)

Since the scaled system only depends on one parameter, generically centre—saddle bifurcations are expected to occur,
where two equilibria collide and disappear. This is expressed by the equations

A+6g—¢* =0, §—3¢>=0.

These equations yield a single bifurcation parameter véye = 3 (3)2/3, the corresponding bifurcating equilibrium

being (¢,p) = (gc5,0) with ges = — (4)"/*. Note that for variabled andé the left hand side of (18) would be

a universal two parameter unfolding of the map+ —¢?3. As A is actually fixed to a non-zero value, and o#ljs

a varying parameter, the resulting parametrised family is a generic one parameter unfolding, corresponding to a non—
degenerate centre—saddle bifurcation, cf. [12, 52, 66]. Here we have used standard singularity theory. Note that at
bifurcation, the equilibriunfqgc s, 0) is parabolic. The system (17) contains no further bifurcations.

The bifurcation diagram at this resonance, which is shown in figure 5, can be described as follows: for inéréesing
amplitude of the elliptic equilibria starts to increase at the resonance=Ad - s a centre—saddle bifurcation takes place,
generating two additional equilibria, one elliptic and the other hyperbolicé k&reases further, the amplitude of the
hyperbolic branch starts to increase as well and approaches that of the non-bifurcating elliptic branch. The elliptic branch
generated at the bifurcation tends to Oddacreases pastcs. See figures 3a—c. Also compare with [80] (chapter 1V,
section 2), or [2, 67].

Remark 3.2 Equilibria of the systeny correspond to response solutions of the systémf the previous section, and

their distance to the origin is related to the amplitude of those solutions. Here and in the following, we shall abuse
terminology by referring to the ‘amplitude’ of an equilibrium when we have their distance to the origin in mind. The
scaling (16) translates ‘amplitudes’ gfinto ‘amplitudes’ of F': equilibria of f of orderO(1) correspond to responses

with amplitudes of orde® (¢ 7 ) in the original systen#.
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Amplitude

(@ J (b) 5

Figure 5: (a)Response diagram for the caée= 1: dotted lines indicate the position of elliptic equilibria, solid lines
correspond to hyperbolic equilibria. Compare with figure 2, of which the present picture is a scaled version. See
also Stokef80]. (b) Structurally stable phase portraits in g@, A) diagram: for constant4, the figure shows a one
dimensional bifurcation diagram for the bifurcation parameter The dashed horizontal line corresponds to the (ex-
cluded) non—generic casé = 0. Compare with figur@a&c.

32 Thecasel! =2

For the next casé = 2, the significant part of the one degree of freedom Hamiltonian reads as

Q? + P? Q? + P2 2+ Q? + P?
2 2 “T

+ Ae(Q* - P?) + .- . (19)

F@,Pia,e) = (a—ao)

Note that this system i&.—equivariant, with the symmetry acting b§, P) — (—Q, —P). In this case, an appropriate
scaling is
2
e= pus, P = up,
20

a—ap=0op?, Q= pg (20)
Again we drop the higher order termsjinand divide the truncateH(P, Q; a, <) by the remaining common facter? .
This leads to

2 2 2 2\ 2
flamd) = G+ i - (TI0) 4w - @)

As before, the scaled and truncated sysjeinreversible with respect t@, p) — (¢, —p).

Proposition 3.2 (¢ = 2) Consider the Hamiltonian system with Hamiltonigras given by(21), and letA # 0. The
origin (¢,p) = (0,0) is always an equilibrium of this system. Hamiltonian pitchfork bifurcations from the origin occur
atéd = 6b, andd = 6%, where

Sppi=—a—2A, and 6% := —a+2A.

If A > 0,thend}, < 6%, and the origin is hyperbolic fof € 16}, 0% [ , elliptic for § < dpp andd > 6% 5. Atdhp,
a pair of elliptic equilibria on the lingy = 0 branches off from the origin; at% ., a pair of hyperbolic equilibria lying on
the linep = 0 branches off.
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Amplitude

(@) (b)

Figure 6: (a)Response diagram for the caée= 2: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in &, A)—bifurcation diagram.

If A < 0, we have that%, < d}1, and the origin is hyperbolic fo§ € |6%,dL[ and elliptic foré < 6%,
andd > §h. Até% ., a pair of elliptic equilibria lying on the ling = 0 branches off from the origin; at% ., a pair of
hyperbolic equilibria on the ling = 0 branches off.

This is a generic scenario, structurally stable for sufficiently sidaltequivariant perturbations.

Proof. We obtain as equations of motion

¢ = (@+ap— (¢ +p°)p—24p,
p = —(6+a)g+ (¢ +p°)q—2A4q.
SinceA # 0, the equilibria(q, p) satisfy either of the following sets of equations:
¢q=0, p=0,

=0, 24— (5+a)+p>=0,
p=0, 24+ +a)—q>=0.

The equilibria are given by

(a,p) 6{@Jm(Qi¢5+a—2A)(i¢FIEIEZm)}

The equilibrium(q, p) = (0,0) undergoes two subsequent bifurcations.

If A > 0, this equilibrium is elliptic for6 < —a — 2A, parabolic foré = —a — 2A, and as it turns hyperbolic
for§ > —a — 24, the pair of elliptic equilibria
(¢,p) = (£Vé+a+2A4,0) (22)
branches off. Ab = —a + 24 the equilibrium(q, p) = (0, 0) is again parabolic, turning elliptic for even larger values

of § while a second pair of equilibria, this time hyperbolic ones, branches off from the origin.
The obvious modifications for the cade< 0 are left to the reader.
In the presen¥ ,—equivariant context these Hamiltonian pitchfork bifurcations are generic. [ |

The two bifurcations take place in the orthogonal plagnes 0 andp = 0. Compare this with [27] figures 5 and 8,
and again with [80] (chapter IV, section 2) and [2, 38, 67].
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Remark 3.3 Since in the scaled system given [fythe ‘amplitude’ of equilibria off the origin is of ordeP(1), the
corresponding equilibria in the original systdirhave an amplitude of ordé¥(e %).

3.3 Higher order resonances. thecases/ > 3

For completeness also the cdsge 3 is included, although these resonances will not produce gaps and only give rise to
bifurcations, cf., e.g., [38, 19].
Considering (12) in the present context, the suggested scaling is

e=u,  P=up,
23
a—ao=0u,  Q=pg, (23)

which leads to

2 2 2 2
@ +p @ +p
F = p*(0+a)—— + M4(F0,1,2,0+F0,1,1,15+F0,1,0,252)72
2 2\ 2
@ +p .
-t < 5 > + ptARe(q - ip)*

+ Y TR 8 (@ )+ O().

5<2m+j+i<i+1
Note that the termyu® can be removed by solving
d = —a+p (>\ —Fy1,20 — Fo,1,1,00 — F0,1,0,2(52)
for the new bifurcation parametar. This time we truncaté’ including orderO (. “*') before dividing byu* and obtain
2
P (P
2 2
+pC(@ +p%5 A p) + Ap'*Re(g —ip)*

fla, ;s\ p) =

Here the termu C(¢* + p?, 6, 1) corresponds to the large sum in the expressiotfor

Remark 3.4 For/ = 3 the T'-symmetry breaking termyu‘—>Re(q — ip)’ is of the same order ip as the leading
orderT!—symmetric terms, while it is of smaller order whén- 3. Therefore the cases= 3 with u = 0, and/ > 3
with ¢ > 0 small but nonzero, are analysed separately.

3.3.1 Thecasel! =3

In the case/ = 3, which is considered next, the invariant torgsp) = (0,0) is normally elliptic for all values of

A # 0. For a certain valug ¢ s of X there is a centre—saddle bifurcation of invariant tori outside the origin. The normally
hyperbolic torus generated in this bifurcation then approaches the origin, disappears forand reappears again for

A > 0. The symmetries of the (truncated) Hamiltonian

2 452 2 42 2
fa,p;2,0) = AL 2p - (q 2p> + A(¢® - 3p°q) (24)

are the deck transformations (generated byggrerotation about the origin) and the reversing involutighp) — (¢, —p)
(together with their%’f—rotated counterparts). The equations of motion are

i = A — (®+p*)p — 64pq.

: (25)
p = —A+ (¢ +p°)q — 3A(¢*> — p?)
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Proposition 3.3 (¢ = 3) Consider the Hamiltonian systems given pysee(25)) where A # 0. Three simultaneous
Z s—related centre—saddle bifurcations occurapasses through

9
Acs = —1A2 <0

At A = 0 the origin has aZs—equivariant transcritical bifurcation. This scenario is structurally stable for sufficiently
smallZs;—equivariant perturbations.

Proof. First consider the case thdt> 0. The right hand side df25) always vanishes at the origin, p) = (0,0) . For
A > Acs one readily computes six further equilibria, three elliptic equilibria at

(¢,p) € {(ﬂ,O), (_gﬂT‘/g> , (_g_%ﬁ)}

with 3 = 24 + $v/942 + 4X and three hyperbolic equilibria at

(¢,p) € {(7,0), (_%VT\E> , (_%_WT\@>}

with v = gA — %\/9/12 +4X . Note that these equilibria coalesce ‘pairwise’ for= Acs and that the latter three
coalesce with the origin fox = 0. On both sets of equilibria the deck transformations yield even permutations, while the
reversing transformations act as the transpositions. These symmetries allow us to concentrate on the equilibyia at
and(v,0) .

For A = Ac¢s we developf into a (Taylor) polynomial in the point2 4,0, \cs) , i.e.we write (¢, p; ) = (2A +
&,m, A\cs + v) and obtain

274% , A, 34
f(£7n7’/)__ 4 n _5£+7V£+

where * - -’ denotes both constant and higher order terms. This proves that a (non—degenerate) centre—saddle bifurcation
takes place, at 4, 0) and hence also at it§f —rotated counterparts, whérpasses throughcs.

Similarly, we putp = 0 and obtain neafg, \) = (0, 0)

fE00) = AL + g§2 + ..

where * - -’ stands for the sole higher order te#n% . Consequently, a transcritical bifurcation takes place along-the
axis, and hence also along ﬁ;—rotated counterparts, wharpasses through. Since the only two occurring bifurcations
at\ = A\¢s and at\ = 0 are versally unfolded by the family of Hamiltonian systems define(2by, we have structural
stability.

If A <0, the equilibrium(8,0) and its images under tt#;—action are hyperbolic instead of elliptic, wheré¢as0)
and its images are elliptic instead of hyperbolic. The rest of the proof is unchanged. [ |

Remark 3.5

1. An alternative proof of the second part, concerningZheequivariant transcritical bifurcation, can be given in the
following way. First consider the proof of [12] in the general non—-symmetric context. This leads to the elliptic
umbilic catastrophe, 8—parameter universal unfolding of the planar singuldrig (¢, p; A\) = (0,0,0) . The
present s—equivariani—parameter unfolding then can be obtained from this by applying [74].

2. The response solutions of ‘amplitude’ of ordgfl) and in particular the centre—saddle bifurcations correspond to
equilibria with amplitude)(¢) in the original system determined By.

1In the ‘ADE’ classification this singularity is referred to Eg , see [3]
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Figure 7: (a)Response diagram for the caée= 3: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in@, A)—bifurcation diagram.

3.32 Thecase/l >4

The remaining case > 4. In this case/ equilibria,/ elliptic and/ hyperbolic, bifurcate from the central equilibrium

at(q,p) = (0,0).
The scaled and truncated Hamilton functipis given by

2 4 p2 2 42 2
R ) (26)

+uC(q® +p* A p) + Au °Re(g —ip)"

where as before we assume# 0. Recall that Réy — ip) ¢ is shorthand fog* — (5)p?¢‘=2 + .. ., and thai is related to
the perturbation strength If © = 0, the equilibria outside the origifp, ¢) = (0, 0) lie on a circle

¢ +p° = X,

that is, they branch off from the origin at= 0 . For # 0 the u’~*—term breaks thaf '—~symmetry to thé&Z —symmetry
of the deck group on thé-fold covering. This is seen most easily in action—angle coordirfated introduced by

q—ip = V2Ie¥.
In these coordinates the Hamiltonian takes the form
F=XM T+ pCI* M\ p) + p' A D)2 cos lyp.
The deck group is generated by, I) — (¢ + 27”, I), and it maps elliptic and hyperbolic equilibria on equilibria of the

same type. Hence, there are saddléthatoots of A + O(A?) and centres at thog#th roots that are ndth roots.

34 On persistence

In all of the above cases we found that the reduced integrable parts of the normal form give fispaceaneter family of
one degree of freedom Hamiltonian systems, the so—called backbone systemd—paeameter families are structurally
stable in appropriate universes of symmetric systems; the corresponding symmetries are the deck symmetries of the
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Figure 8: (a)Response diagram for the caée= 5: dotted lines indicate elliptic equilibria, solid lines correspond to
hyperbolic equilibria.(b) Structurally stable phase portraits in di, A)—bifurcation diagram.

covering. The structural stability implies in particular that the special perturbations obtained by adding terms of higher
order do not change the qualitative behaviour of the reduced dynamics, as these terms can be made arbitrarily small by
decreasing.

In other words: after various transformations, we arrived at a normal form for our system, which consisted of an
integrable system and a non—integrable perturbation of arbitrary high order in the perturbation strength. Analysis of the
integrable system leads after reduction of the torus symmetry to a planar (equivariant) Hamiltonian system, to which
(equivariant) singularity theory of planar functions is applied, compare with [28, 38, 42, 43, 44, 74, 82]; also see [12, 13,
16, 17, 18, 21, 41, 64, 66, 67, 72]. We observe that in our case singularity theory classifies up to smooth equivalences,
meaning that addition of normalised higher order terms would only give rise to a near—identity diffeomorphic distortion
of the bifurcation diagrams obtained so far.

Note that for/ # 1, instead of working in the universe @f,—symmetric systems, we might have chosen to reduce also
theZ —symmetry(14). This approach gives rise to a conical singularity at the origin of the reduced phase space, which is
not a manifold any more, cf. [40, 41, 62]. The singularity reflects thaftheaction generated byl 0) is not free (unless
¢ = 1), but has isotrop¥. ¢ at the centrah—torus. It is exactly to avoid this conical singularity that we lift the system to
the covering space (before reducing fig—action), always keeping thi&,~symmetry into account. For the alternative
approach of also reducing tlfe—symmetry, the bifurcation scenarios can be described as follows.

In the case = 2 the two pairs of elliptic and hyperbolic equilibria (that are generated in the two bifurcations) each
reduce to one (elliptic resp. hyperbolic) equilibrium on the quotient sfackzZ, , bifurcating off from the singular
equilibrium. See [41] for a similar treatment of Hamiltonian flip bifurcations through passage to a 2:1 covering.

In the cas€ = 3 the Zs;—equivariant transcritical bifurcation takes place in the singular equilibrium, while the three
centre—saddle bifurcations all get reduced to the same centre—saddle bifurcation in one (regular) equiliBrfyt# pn
Compare this with [2, 12, 38, 67].

For ¢ > 4 one elliptic and one hyperbolic equilibrium bifurcate simultaneously off from the singular equilibrium
of R? /Z[ .

3.5 Reversible systems

In this subsection we outline how the arguments given in the previous sections have to be charayedditiesystems.
Let H be a Hamiltonian defined on the phase spA¢ET™ x R) = T" x R* x R? = {4, 1, (z,y)}. Introduce the
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involution
7: (O,I,x,y) = (—G,I,l',—y) . (27)

By definition the Hamiltoniarn# is said to define a reversible Hamiltonian systent/ift Z = H. For instance, the
pendulum example (1) is reversible if the functigns even int. Similarly, a Hamiltonian of the general class (4) is
reversible if bothh and@ are even iry, and if G is ‘even’ in 4 as well. In general, many Hamiltonian systems coming
from classical mechanics have this property.

Reversibility is respected by the normalising and covering transformations of the previous section, compare for in-
stance [27]. In particular this means that the integrable truncafigalso reversible, implying that the backbone system
F is invariant with respect to the involutiqid), P) — (Q, —P). This Z, reflectional symmetry, combined with tize,
deck—symmetry (14), gives rise tdla—symmetry of the backbone systdm

Note that the truncation df' to lowest significant order, which throughout the present section has been dengted by
alwaysdisplays this extra symmetry, and that therefore it is actugllysymmetric whether the original system (7) is
reversible or not: see equations (17), (21), (24) and (26). This is a quite common artefact of the normalisation process, cf.
for instance [18].

In the case of a normal-internal resonafiegv) + fa = 0, the truncatiory is structurally stable in the universe of
D,—equivariant Hamiltonian functions, and our analysis carries over to the reversible case.

4 Reconstruction of the integrable dynamics

The integrable systemWV (I, Q, P;«,¢) is given by (11) and defined on tifefold covering space df * x R® x R2;
from it, we have obtained the slow one degree of freedom ‘backki@@gby reducing out the fre® "—translation action.
Hence, reconstructing the dynamicsiéfon the covering space simply consists in attaching a quasi—perietticus to
every point of the reduced systefhon the reduced phase sp&eé.

For ¢ = 1 this immediately yields the dynamics &f (as the base is equal to the covering in this case). In the
periodic caser = 1 the centre—saddle bifurcation of relative equilibria in the ‘backbone’ system corresponds to a similar
bifurcation of periodic solutions in the full system, cf. [12, 13, 66]. In the quasi—periodic pase2], the centre—saddle
bifurcation of relative equilibria corresponds to an (integrable) quasi—periodic centre—saddle bifurcation, cf. [52].

For ¢ > 2 we have to take into account the action (13) of the deck gfupThe (relative) equilibria of the planar
system determined by give rise to quasi—periodic invariant-tori of the reconstructed integrable systémon the
covering space. These tori have a Diophantine frequency vectorthe next section the perturbation analysis of these
tori is carried out on the covering space.

The rest of this section is devoted to the description of the structure of the reconstructed flow on the base of the
covering in the casé > 2. The key observation to this is the following: tori in the cover which are mapped into each
other by the action of the deck group project down to a single torus in the base. Since we are still focusing on a fixed
resonancés) — recall that only then the normal form and its integrable padre meaningful — this structure strongly
resembles that obtained in the case of periodic forcing.

For ¢ = 2, consider first the periodic case = 1. The equilibrium of the backbone system located at the origin
of R? gives rise to a periodic orbit of peridl = 27 /w in the base and of perid{" in the covering. The two equilibria
generated by the Hamiltonian pitchfork bifurcation of the backbone system correspond in the covering to two periodic
orbits of period2T" generated in a periodic Hamiltonian pitchfork bifurcation. These are mapped onto each other by the
action of the deck group, and they project to one and the same periodic orbit of p&rindthe base space, which is
generated in a Hamiltonian ‘period doubling’ (also called ‘flip’ or ‘frequency halving’) bifurcation, cf. [27, 41, 66].

Completely analogously, we obtain in the quasi—periodic @ase2 two quasi—periodia—tori in the covering which
are generated in a quasi—periodic pitchfork bifurcation. These project down to assitgtes in the base space, which
is generated in a quasi—periodic Hamiltonian period doubling bifurcation. We recall that the response solution, while
passing through the gap defined(y, undergoes two such bifurcations : one at the beginning when it turns from elliptic
to hyperbolic, and one at the end when it turns back again from hyperbolic to elliptic.

For ¢ = 3, consider again the periodic case first. The equilibrium at the origit?ofives rise to a periodic solution
with periodT = 27 /w in the base an8T in the covering. In a centre—saddle bifurcation away from the origin, two times
three equilibria are born. These give rise to two times three péfibderiodic solutions in the covering, which project
down to two periodT" periodic solution in the base, one elliptic, one hyperbolic. The hyperbolic orbit subsequently
undergoes a periodic transcritical bifurcation involving the central periodic orbit.



Normal-internal resonances 22

In the quasi—periodic case two times three invariadtori are born in an integrable quasi—periodic centre—saddle
bifurcation. These correspond in the base to two quasi—periodic response solutions, one elliptic, one hyperbolic, with in
each case one of the frequencies divided iffpr a well-chosen basis of frequencies). While the amplitude of the elliptic
tori is continually growing, the hyperbolic tori first passes through a kind of transcritical bifurcation involving the central
w—quasi—periodic response solution.

5 Quasi—periodic stability and exponentially small gaps

We briefly summarise what happened so far. In Section 2, we started out with a Hamikbdifined orT » x R? x R? =
{6,1,(z,y)}, of the form

1.2 _+_y2

H = (wI) + « + h(z,y;0) + eG(6,z,y;a,¢),

with (z,y) near(0, 0) and fora close to a resonant normal frequergy. This means that, satisfies a relatiofk, w) +
Loy = 0for k € Z™\{0} and? # 0. We recall thatv € R" is a fixed, Diophantine frequency vector. By consecutive
normal form transformations and a lift to &nfold covering space, the Hamiltonian has been rewritten into

H = N+ R = (&) + F + R,

with© = (%@1,@2, ...Wy) , whereF is independent of and whereR is of arbitrary high order iz, y, « — a, €).

Then, in section 3 the one degree of freedom ‘backbone’ Hamiltorfiansre analysed by first truncating to lowest
‘significant’ order, performing a bifurcation analysis on the truncated part — denotge-band finally remarking that,
since all bifurcating families obtained are structurally stable, they are equivalent to the full backbonef ystavrall (see
subsection 3.4). As said before, up to this point there is no difference between the cases of periodic and quasi—periodic
forcing.

Hence we may consider the behaviourfafand consequently of the integrable reconstrucfigras known. What
remains to do is to analyse the full systéfyor in other words, the impact of the quasi—periodic non—integrable tBrms
Equilibria of the one degree of freedom systéhare invariant quasi—periodic-tori for vV, and their persistence (under
the small perturbatiod), as well as the persistence of their bifurcations, will be shown by KAM-theory in the present
section.

It turns out that the ‘periodic’ scenarios obtained in section 3 are complicated by quasi—periodic resonance phenomena,
leading to a dense collection of resonance gaps in the elliptic branches of the figures 5-8. This means that the smooth
branches (continua) in the bifurcation diagrams of the periodic case are replaced by Cantor sets in the quasi—periodic case.

At this point the regularity of the HamiltoniaH becomes an issue. Until now all considerations apply in the world
of C*—systems fos € N U {oco} sufficiently large. However, in the real analytic setting we can get more information:
the size of the resonance gaps is of exponentially small orderTia obtain this result we first prove exponentially small
estimates orkk by Neishtadt—Nekhoroshev techniques, which are then fed into the KAM part.

5.1 Exponentially small estimates of the remainder

From now we restrict to the case whéfeis real analytic. Notice that any normal form of finite order also can be obtained
by a real analytic transformation. Our starting point is the formal normal form as obtained by Theorem 2.1 of Section 2:

Hod® '(9,],X,Y;a,e) = NH,J,X,Y;a,6) + R(,X,Y;0,¢).

We shall pursue a slightly different strategy than in the first sections, performing first scalings, and only afterwards
normal form transformations. Recall from Section 3, that scalings (16), (20) and (23) were applied, which depénded on
Application of these scalings before carrying out the van der Pol transformation yields a Hamiltbgjan.—2 H of the

form
2

22+ y2 B
Hse = (w,Is)) + aoSCTySC + 1?Fsc + P 2R (28)

HerelIsc = p~2I; moreoverL can be chosen as large as desired, Rrdis uniformly bounded in a neighbourhood
of (¢,p) = (0,0). Note that the symplectic 2—fornd\ dlsc + dzsc A dysc = p2(dd A dI + dz A dy).

The following result considerably sharpens the bound that can be obtainBd iy exploiting the fact that the
original Hamiltonian(4) is real analytic. Its proof can be found in appendix 5.3.
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Notations. To formulate the result, complex neighbourho@g, r) of the n—dimensional tor{z s¢, ysc) = (0,0) are
introduced, of the form

D(p,T) = {(0,3:50, ysc) eC'"xCxC:
Itm 8| < pforall j, [zsc]® + |ysd® < 72} -

The supremum norm of any functighdefined orD(p, r) is denoted by| f|| p(,,») = || fllp-
The (constant) frequency vectore R" is assumed to be Diophantine, that is, thereyare 0, 7 > n — 1 such that

forall ' € Z™\{0}:

(K, w)| > |k
Recall thatag is a normal frequency that satisfies the normal resonance ref@)joand that the integrable part of a
resonant normal form is a trigonometric polynomiabiand a polynomial in its other variables, containing only terms in
the kernel of the Lie operator defined D).

Theorem 5.1 (Normal form with exponentially small remainder)
Consider the Hamiltoniarf{sc as given by equatio28). Let p,r > 0 be such that the remainddR sc is analytic

onD = D(p,r) and||Rsd||p < oc.
Then there is ap > 0 such that for any) < o < o, there is a real analytic canonical transformation

(P(Oa ISC, Tsc, Ysc; ,LL) = (@’ J, Qa P)a
such that the following statements hold.

1. If D, = D(p/2,re */?), then
®(D,) C D and @~ (D,) C D.

2. There is some constant> 0 not depending o s¢c such that
p. < e Y| Rsdlp.

|® —id||p,, ||® " —id|

D.>
whereL is as in equation (28). That i is (C*, éu”~*)—close to the identity with = ¢ - || Rsd|| p -
3. Inthe new coordinate®, J, ), P), the Hamiltonian takes the form

Q2+P2

. + 1 2F 4 " 2R,

H(GaJaQap;aau) = <W7J>+a0
whereF (0, Q, P; a, 1) is in resonant normal form,

|Fsc— Fllp. < cu"~*||Rsdlp,

andR(0,Q, P; a, u) satisfies
C

12]lp. < exp <—W> | Bscllp- (29)

Remark 5.1

1. If Hsc depends real analytically on additional parameferand R sc is uniformly bounded on some domain with
respect to\, then® is also real analytic with respect to these parameters, and the final bounds hold unifokmly in
as well.

2. Assume thafsc depends analytically op. From the proof of theorem 5.1, only piecewise analytic dependence
of ® with respect tqu can be inferred, see for instance [23, 22, 71]. Alternatively, the same method of proof yields
that if y; is taken small enough, theh can be shown to be analytic jnfor 0 < p < p1, but the exponentially
small estimate holds in this case wjih in the exponent.
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5.2 Persistence of quasi—periodic response tori

We arrive at the analysis of the persistence of the quasi—periodic response tori, which is one of the main goals of this
paper. In the previous subsection, coordinates have been found such that for the remaindeirteha Hamiltonian

~ 2 P2
H = (w,J) + a0Q+

an exponentially small bound is obtained. By applying the van der Pol transformation, a system of the form

+ 2F + u'R,

H = (0,1) + pi°F + "R (30)

is obtained, wherd”(q, p; 6, 1) = f(q,p; ) + O(p) is independent of; recall thate = ¢ + 24 in the cased = 1
and/ = 2; the other cases are treated similarly. See section 2 for the relationship betaerds ,. Note that we dropped
the tildes onH andR.

Recall that in equation (30), the terfis the only non—integrable term i, which can (and will) be viewed as a
small non—integrable perturbation of the integrable Hamiltodlan= (&, I) + p?F.

Note thatH,, has been investigated in section 3. Depending on the kind of resonance, that is, depeAdin@ on) +
lap = 0, parametrised families of elliptic and hyperbolietori have been found, as well as single parabelitori for
certain distinguished values of the paraméter

In this subsection, the persistence of these respeat®i is investigated under the perturbatjefy—2 R, taking into
account the quantitative information on the smallness of the remaihdétained in the previous section.

Hyperbolic tori. This is the simplest case. If the varialdlds viewed as a parameter, the phase space of the system
is T™ x R?, and hyperbolic equilibria of" correspond to normally hyperbolic invariamttori. These persist because
of normal hyperbolicity, compare with [35, 49, 54, 78]. Note that the parallel (quasi—periodic) flow on the tori persists
trivially in the context of this paper.

In particular, letr(d) € R? parametrise a normally hyperbolic family of equilibria 8% and letA(§) € R be
the associated positive Floquet exponent — in this case, this exponent is the positive eigenvalue of the corresponding
equilibrium of F'. Moreover, assume that the HamiltoniBis analytic ind on a strip of widtho around some compact
interval A C R in the complex plane.

Theorem 5.2 (Persistence of hyperbolictori)
Let A = [d1,02] be an interval such that the Floquet exponexid) is bounded away from zero aa. Then there is
ap > 0suchthatfor) <y < pq, there are constants> 0 and

&
vV = exp <—7M2/(T+2)> s
and maps(4,6) — 75(8) € R? , § — A(d) € R such that the following hold.

1. The map\ is analytic on4, ;» = {§ € C : d(J, A) < ¢/2},and

sup [A(8) — A(8)] < v.
.Ag/g

2. The magr is analytic foré taking values ind, -, and foré taking values i, whereT = {|Im ;| < 3p/8} is a
complex neighbourhood of the realtorusT™. Moreover,

sup  |75(0) — 15| < v
66./40/2,967‘

3. For anyd € A, the torusT7j, given as
T ={(6,1,0,p) : (g,p) = 75(0)},
is invariant under the flow off .

4. The flow orff; is quasi—periodic with frequency vectdy .
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Elliptictori. This s the case of the persistence of lower dimensional elliptic tori, treated in (for instance) [20, 39, 57, 75].
Assume thad — 75 parametrises a family of elliptic integrable-tori 75, as found in one of the cases of section 3, by

Ts =1{0,1,q,p) : (¢,p) = 75(0)}.

The Floquet exponenit(d) of 75 is purely imaginary in this case: therefore, introduce the normal freque@yof 7T
by settingQ(d) = [Im(\(d))| > 0.
Note that in the present situation the internal frequenéyassumed constant. Therefore, the normally elliptitori
persist on a Cantor set that is defined exclusively by the normal resonances. Modulo these simplifications, the following
theorem follows from the results of [20, 39, 57, 75]. To formulate the result, th&(sgtis introduced by

Alv) = {QeR: [(K, &) +0Q > vk,
forall k' € Z™\{0},0 < |¢'| < 2}.
Also, introduce theZ'® norm|| f||s, 4 = max|g|<s sup,e 4 |Ds f(2)|.

Theorem 5.3 (Persistence of elliptic tori)
Fix anintervalA = [0y, d2] such that}(d) is bounded away frohon.A. Thenthereisa; > 0 suchthatfol < u < py,
there are constants > 0, ¢; > 0 for every integes € N,

c
V= o (‘W)

and maps(d,8) — 75(6) € R? , § — Q(J) € R such that the following hold.
1. The mag is smooth. Denote byl the inverse imagel N Q! (A()). OnA,, Q is C>°—close ta2, and

10 — Qs 4, < csv.

2. Foranyé € A, the mapd — 75(0) is analytic onT', whereT is the following complex neighbourhood of the real
n—torusT = {0 € C* : |Im§;| < 3p/8 for all j}. Moreover7s(#) depends Whitney—smoothly &rand

sup ||75(0) — T5lls,.4. < cs .
peT

3. Foranyé € A, the torusTs;, given as
7:5 :{(Q,I,q,p) : (q,p) :7:6(9)},
is invariant under the flow off .

4. The flow orff; is quasi—periodic with frequency vectdy .

Remark 5.2 Since the gaps in the Cantor sét are of ordew asv | 0, it follows that all gap—widths tend toase — 0.

Parabolic tori. There are two occurrences of parabolic tori in the investigations of the one degree of freedom back-
bone system in section 3: arising from centre—saddle bifurcations, and from Hamiltonian pitchfork bifurcations in a
Zo—symmetric context. We restrict our attention to the former case. This has been treated in [15, 52], the results of which
are paraphrased in the following.

If in the integrable system, there is a centre—saddle bifurcation parafettven foré = 4,, there exists, € R?
such that

7; = {(an,p) : (q’p) = T*}’



Normal-internal resonances 26

dcs

ZA\GINN

(=2}

Figure 9:a). Bifurcation diagram of the centre—saddle bifurcation wheétie the bifurcation parameter angl is some
well-chosen auxiliary variable. b). Phase portraits before, at and after the bifurcation.

is an invariant normally parabolic torus. Introducing an auxiliary parameteR, from the fact thab . is a centre—saddle
bifurcation, it follows that there is a map— (4(n), 7,,) € R x R?, parametrising a family of invariant integrable tori

7;‘I:{(eal—aq,p) : (q,p) :Tn}a
in the integrable system whefe= 4(n). This parametrisation has the property thatrfee 0:
6(0) = 4., ¢'(0)=0, ¢"(0)#0,

andry = 7.. Moreover, the parametrisation can be chosen in such a way that for0, the tori 7,, are normally
hyperbolic, while fom > 0, they are normally elliptic.

Let the Flogquet exponent of the invariant toffis be denoted by (), and, forp > 0, the normal frequency of,
by Q(n) = i\(n). For definiteness, it is assumed tha)) > 0 if n < 0, andQ2(n) > 0if n > 0. Cf. figure 9.

Theorem 5.4 (Persistence of quasi-periodic centre-saddle bifurcation)
For no > 0 small enough, there is a; > 0 such that fol0 < p < p4, there are constants> 0, ¢; > 0for s € N,

C
V= oxp <—m>

and maps(n,8) — 7,(8) € R? , n+ d(n) € C, 5+ \(n) € C defined on]—7¢,70[ , such that the following hold.
1. The map\ is smooth fom # 0, and asy — 0, |A(5)| ~ O(|n|2). Denote byA. C [0,70[ the set
Ac = [0,m[NQ~H (Aw)).
On A., § and() are C>°—close tos and respectively, and

18 = 015405 12 = Qlsa, < e,

for everys > 0.
2. Foranyn € A., the mapé — 7,(0) is analytic on

T={0cC" : |Iméb;| < 3p/8forall j}.
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Moreover, it depends Whitney—smoothlyg@and

sup ||7,(0) — mylls < es v,
peT

for everys > 0.

3. Foranyn € ]—1o,0] U A., the torus7,, given as

is invariant under the flow off (6, I, ¢, p; (n),<). Moreover, ify < 0, the invariant torus is normally hyperbolic,
while forn € A., it is normally elliptic. Forn = 0 the invariant torusyy is normally parabolic.

4. All invariant tori have quasi—periodic flow with frequency vector.

Remark 5.3

1. As before, since the gaps in the Cantor.detare of ordew asv | 0, it follows that all gap—widths tend 0 as
e —0.

2. By the scalings (16), (20), (23), the gap—widths also tertda®d | 6 ¢s.

Base space For the near—integrable systef, theorems 5.2, 5.3 and 5.4 prove the persistence of hyperbolic, elliptic

and parabolic response tori on the covering space for certain (large) parameter sets. These response tori correspond to
response tori in the base space in exactly the same way as tori of the integrable Systethe cover correspond to tori

in the base: the central torus in the cover is mappithes over the central torus in the base, while tori in the cover that

are mapped onto each other by the action of the deck group are mapped onto a single torus in the base, see section 4.

5.3 Conclusions

Let us see how the ‘periodic’ response diagrams in section 3 have to be modified for the quasi—periodic case in the light
of theorems 5.2, 5.3, and 5.4. From theorems 5.2 and 5.4, it follows that each hyperbolic branch of the periodic diagram
persists in the quasi—periodic diagrams up to bifurcation points. Theorems 5.3 and 5.4 indicate that each (continuous)
elliptic branch of a periodic diagram should be replaced by a Whitney—smooth image of a Cantor subsets of such an
elliptic branch.

Concerning the gap—widths in these Cantor sets we observe the following. In the warlef-e$ystems, the only
conclusion would be that, the gap—widths decrease more rapidly than any polynomialbashey vanish with infinite
flatness for = 0. See for instance [19, 25]. For analytic systems, the gaps become exponentially singld al the
figures of the introduction this shows by the very few gaps that can be distinguished at the given level of accuracy.

It is quite common in numerical simulations that only a few of the KAM gaps are visible (the numerical simulations
in this paper form a good example of that). One of the goals of this paper is to explain this fact.

The analysis of the backbone systems in section 3 shows that the gap width is proportional to some fractional power
of the generic coefficienti, which in turn is proportional to thg'th Fourier coefficient7 ;. in the Fourier expansion of
the forcingG (6, z,y). For smooth systems, these coefficients decrease polynomigly exreases; for real analytic
systems, the order of decrease is exponential, implying very small gaps for high valigs of

Moreover, as we have seen in this section, the size of the gaps is proportional to the size of the remainder. In general
for C¢ systems one obtains-flat remainders, that is, remainders that are smaller than a homogeneous polynomial of
degrees. Fors = oo, the remainder is smaller than any power, [25]. However, in the present real-analytic case, we have
shown that by an optimal choice of the normalising order, the remainder can be made exponentially small, which gives a
second reason for the the smallness of the gaps. For more details on these techniques, see [22, 23, 58, 59, 61, 60, 68, 73].

Notice that by normalising to an exponentially small remainder, we move into the world of systems that are only
piecewise analytic in the perturbation parametesee remark 5.1. We refer to [22] for a treatment of this.
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The strategy of the present paper can be repeated any finite number of times at all of the gaps described in this section.
Our result is that there is bifurcation of secondary (and higher order) elliptic and hyperbolic branches at each resonance.
Finally notice that we have simplified our analysis by keeping the internal frequency veconstant. As we
have mentioned, we conjecture that for the more general perturbatiffis’, =, y) the analysis of this article, suitably
modified, would lead to similar results with Cantor sets also inuthdirection of the parameter space. There is a vast
literature on this subject; we only mention [8, 9, 14, 19, 20, 15, 52, 61, 70, 75, 84].

Remark 5.4 In[8, 9], in a dissipative analogue, methods from [35, 54, 78] are exploited to find normally hyperbolic tori
nearby the quasi—periodic ones. Also see [19] for further reference.
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Appendix

Formal normal form theorem

In this section the formal normal form Theorem 2.1 is proved, that gives the transformation of

2?2 + y?
2

into normal form. Although this is a very well-known result, see [1, 5, 10, 65, 81], we include its proof for completeness
sake and for further use of the notation. The theorem reads as:

H = (W) + « + h(z,y;0) + eG(0,z,y;a,¢) (31)

Theorem 2.1 Consider the Hamiltonia(31) for a satisfying(k,w) + fay = 0. GivenL € N, for sufficiently smalk
there exists a real analytic and canonical change of varialdésa, ¢)

$: T"xR* xR — T"xR* xR
(07 I’ :I’.’ y) '_) (07 J7 X7 Y)

close to the identity atz, y, o, ) = (0,0, ag, 0), such that the following holds. The Hamiltonig81)is transformed into
normal form
Ho® '(9,],X,Y;a,e) = N(,J,X,Y;a,e) + R(6,X,Y;a,¢).

The integrable parfV of the normal form reads as

X2 Y2 X2 4+V2 X2 y2 2
N = <w7‘]> + ao# + (a—ao)é + c #
2 ) 2
X24+Y2 .
+ 06% + Ae Re((X —iY)Eel(Uf’g)*i//o)) (32)
+ Z Fn,m,i,jgi(a—ao)j(XQ+Y2)m
K,m,j,0

. Re((X _ iy)'»‘fei(wkﬁ%wm,m,i.j)) :

withk > 0, j+i+2m+kf < L, andyyg », ;,; = 0, where the sum does not contain the terms that are explicitly displayed;
the remainderR of the normal form satisfies the estimate

R(6,X,Y;a,e) = On(X,Y,a—ap,¢)
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Proof. The argumentis completely standard. Starting from (31), subsequent coordinate transformations oféhg form
are applied to the system, whebgy is the time one map of a Hamiltonian vector fiefdy with Hamilton functioniV.

We call a functionf be oforderO(n) if f = O(X”1Y?2(a — ap)P2eP4), with 3, 3; = n. Assume thaHl has been
normalised with respect td0) up to ordem — 1, that is:

Hn(G,J,X,Y;Oé,E) = Hoq’n—leoéwn_lo"'o(I)Wg
n—1

= <W,J>+Zg]+hn+7'n+1

Jj=2

wherehs = ag (W) and, more generally, whegg (X,Y’; a — ao, €) is a homogeneous polynomial of ordein
its variables already in (resonant) normal fofm, = O(n), andr,+; = O(n + 1).

The Hamilton functiod?V = W,, of the next normalising transformation is taken as a homogeneous polynomial of
ordern in the variableg X, Y, o — g, €). We have

Hoo®w = H,+{HW}+0n+1)
n—1
= (W, D)+ > gj+{Hy,W}+hy+On+1),

=2

whereH, = (w, J) + ha, and wheregl H, W'} denotes the Poisson bracketifand1¥. We will solve thehomological
equation
{H27 W} + hn = gn,

such that the contributiog,, of h,, to the normal form has as few terms as possible.
The action ofH, on W is given as
ow ow ow
{H2,VV} = —w% +a0X8—Y - aoYa—X.
This action diagonalises in suitable complex coordindtes X + iY; introduce the derivative/0Z = 1(0/0X —
i0/9Y). Then{H,, W} reads
ow ow - oW
H = —w—+iwl— — il —.
{He, W} = —w5g +laZ g7 —laZ 57
Hence the Lie operatard s, (W) = {H», W} is semi-simple, and its kernel can be chosen as complement to its image.
Split correspondinglyi, = by, + gn, With by, in the image ang,, in the kernel ofad ,. A complex diagonalising basis
of adn, Is given byvs ,, = gi(s:0) zma zma andadw, (vsm) = 0if s = kk andms = m + kl, m; = m, for some
integerx with m + k£ > 0 for m > 0. Consequentlyy,, consists of a sum of monomials of the kind

Re (ei(<h‘sﬂ9>+’¢1n,m,i,j) |Z|2mZh‘£) Si(a _ ao)]
= (X2 + V%)™ (@ - ag)Re( (X - iv)relts),
where2m + kl+ i+ j = n ands > 0. The equatiorad i, (W) = b,, is then solved as in the next section of this appendix,
yielding an analytic functiofmy’.

The normal form given in the theorem is then obtained by performhinfithese normalising steps. This finishes the
proof of the normal form theorem. [ |

Normal form with exponentially small remainder

Here, theorem 5.1 of section 5 concerning the quantitative estimates of the normal form is proved. The following notations
are recalled from section 5, since they will be needed in the proof below.
By D(p,r), complex neighbourhoods of the-dimensional tor{z s¢, ysc) = (0, 0) are denoted, where
D(p,T) = {(0,3:50, ysc) € (Cn xCxC:
IIm 8| < pforall j, [zsc]® + |ysd? < 7} .
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For a functionf : D(p,r) — C", the supremum norm is denoted byl = || f|l p,r)-
Let Hsc be a Hamiltonian given by

2 2
Tsc+ Ysc

5 + p?Fsc + p*?Rsc (33)

Hse = (w,Isq) + ap

Itis assumed thal{sc can be extended analytically (p, r), and that the frequency vectore R™ is Diophantine: there
arey > 0,7 > n — 1 such that for alk’ € Z™\{0}:

(K, w)| = ~|K']77

The normal frequency, satisfies a normal resonance relat{gnw) + fap = 0.

Theorem 5.1 Consider the Hamiltoniail sc as given by equation (33). Letr > 0 be such that the remaindét ¢ is
analytic onD = D(p, r), and||Rsc||p < .
Then there is o > 0 such that for any) < o < o, there is a real analytic canonical transformation

(I)(ea I: Tsc, Ysc; IU/) = (@7 J: Q7 P)7
such that the following statements hold.

1. If D, = D(p/2,re=*/?), then
®(D,) C D and @~ (D,) C D.

2. There is some constant> 0 not depending o s¢c such that
[|® — id]

|® ' —id||p, <epul | Rsdllp.

D.>
Thatis,® is (C, cu™~*)—close to the identity.

3. Inthe new coordinate®, J, @), P), the Hamiltonian takes the form

Q2+P2

. + 1 2F 4 )b 2R,

H(@,J,Q,P;Ol,,u) = <W7J>+a0

whereF (0, Q, P; a, ) is in resonant normal form,

1Fsc— Fllp, < cu” | Rsdip,

andR(0,Q, P; o, u) satisfies

~ C
IRl < exp (= 7 ) Wl (34)

Proof. This proof can be seen as an expansion of the proof of the formal normal form, given in section 5.3. As in that
proof, a (finite) serie§ H/} of different Hamiltonians is constructed iteratively, which are all of the form:

2+y2

HI = (w,I) + g + (2 FI 4 2RI (35)

Forj = 0, we have that{® = Hgcetc. Moreover, for allk’ € Z™\{0}:
(K", w)| = [k

The functionsH’, FV and R/ are analytic and bounded on the dom@in = D(p;,r;). Moreover, it is assumed that
FJ consists only of resonance terms, whité contains only non-resonant terms. In order to improve readability of the
following discussion, for the next couple of paragrapRs$7 andu” 2R’ are replaced by'/ andR7.

Since our main concern will be with a single iteration step, the supergasiitbe dropped in the following, ang+ 1
will be replaced byt (so—called+—notation). Also, in the analysis of the iteration step, a host of different constants appear
in the estimates, which do not depend on the inflekthe step, nor on the ‘stepsiz&’ which will be introduced below.
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These constants will collectively be denoted by a dot following an inequality sign. For instarce(z + y) will be
taken to meamn < c(z + y), wherec is some constant not dependingoar ¢.

As before, then, the new Hamiltoni&h is obtained from the given Hamiltonidi by a variable transformatioh y,
which is the time—one map of the Hamiltonian vector fidlgy associated to a functidiv’. This function is determined
by the homological equation

and the requirement th#t itself contains no resonant terms. Note thatin the present caiitext (w, I} +ap(z?+y?)/2.
Introducing complex coordinates= z + iy as above, the functioi’’ can be expanded in a Taylor—Fourier series:

W(G,Z,Z) — Z Z Wk’ﬁ ei(k’,9>251262,

K €27 3] >0

where the notatiof (6, z, z) indicates thatV (6, z, w) is an analytic function in all its variables. Note that= (51, 52)
is a multi-index. AlsoR is expanded in a Taylor—Fourier series, with coefficieRtgs. By equating coefficients

of (k') 261 562 in the homological equation (36), the following formal expressiorifors derived:

= Ry s i(K'.0) .81 582
W=2 2 (K, @) —ao(Br — B2) '

K €Z™ |3]>0

Convergence. The formal expression obtained foF” will be shown to converge uniformly on some domdry =
D(p — §,re~?), where the ‘stepsize’ will be determined below. For this, note first that from the Cauchy inequalities it
follows that

|Riws| < [|Rl|lpe ¥ lr—151,

This implies, together with the Diophantine inequalities, the following estimatd/for

1Ello

o

Remark A.1 We here used the optimal estimates obtained bgsRiann [77], obtained by fine tuning the Diophantine
non-resonance estimates.

Estimates. Let Xy be the Hamiltonian vector field associated with, and let®§;, denote its times map. The new
HamiltonianH * can be written as

H+:H—}—{H,W}—l—/:(l—s){{H,W},W}O‘I’%ds. (37)

This expression is defined on any dom@in which is mapped byp{;,, for all s, into D;. In order to find a suitabl®.,,
note that

[Wlip; _ [IRllD
. 5 < 6767“ .
Since||®5, — id||p,; < || Xwl|p,; forall s € [0, 1], the domairD,s will be mapped intdDy, if

1Xwlpos = llgrad Wilp,; <

IR|lp < c™tyd™*2. (38)

Note that the constant does neither depend gi nor ond. This inequality is verified below, after the constanis
determined.

To obtain expressions fdr ™ and RT, equation (35) is substituted into (37). Using the homological equation (36),
this yields ford +

HY = Hy+F+ R+ {H;,W}+{F,W}+{R,W}+S (39)
= Hy+F+{F,W}+{RW}+S.
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Note that the integral in (37) is indicated Sy
By applying Cauchy’s estimate to all derivatives in the Poisson brackets, successively the following estimates are
obtained:

[Flips [Wllos _ [IElp

||{F, VV}”'Dzs < 5 5 y67+2 ) (40)
IRl W lko, __ IR
||{R7W}||D25 < 6 (S < ’}/67——"_2 ) (41)
1E o1, _ IRIE
ISllpae < IKEH, T3, Wi, s < 1, (@2)

Here it has been used that (and consequently?) can be bounded by a constant that is independejtarfs, a fact
which will be verified below.

Incor poration of the perturbation parameter. At this point, the parameter is incorporated again, and the functions
F, R andW are replaced by>F, u*—2R andu”—2W. Hence, from (39), we obtain far + and R+ from:
WPFT + pbPRY = PF 4 M {F, W + YR, W Y + 1S,

whereF'* consists only of resonant terms aRd™ only of nonresonant ones. Choosing = p — 36 andr, = re™3°,
the domairD,. equalsDss. Using estimates (40)—(42) obtained above, the following are obtained:

C ,U/2 ,U/L72
IR, < SIRls (5 + ).

Cut—* W "
|F* = Fllp, < Sl \ 55 + 573 )

whereC does not depend on the iteration index

Exponentially small estimates. The constand is now determined by setting

1
2 2\ 7§32
O _ L thatis 5= (2C°8 .
yOTH2 2 v
Then it follows that foru sufficiently small,
IR I, <€ '|Rlp,  [IF = F*llp, <en" *||Rllp.

Note that as a consequence of thiB7||p, < —*:[|R°||p,, a fact that was used in the estimates above. Also, the

estimate (38) holds fgt small enough, since then
Tsm+2 > g,
C

andu”~2||R||p is smaller tharg.? for 1 small enough (recall that the factef—?2 is absent from (38) by convention).
As a single iteration step decreases the width of a domaidbiy the Inp—direction, the total number of steps
should be such such that - 36 < po/2, yielding:

. _ C
]*:[0_206 1]:[ 2]'
’uq—+2
The remainder tern7= can now be estimated by
||Rj*

D, < e I+ ROHDO,

Ix —

which yields the exponentially small estimate.
Finally, the transformatio® of the theorem is given by the concatenation of¢hg;’s:

(I):(pwlo"'oq)wj*.

The statements of the theorem now follow easily. [ |



