411 research outputs found

    Machine learning and deep learning for intelligent insoles

    Get PDF
    The field of pervasive healthcare relies heavily on mobile personal sensing technology to identify everyday human activities. One company, eSteps Inc., headquartered in Bologna, Italy, with American origins, is actively working to address the increasing motor disabilities affecting the lower limbs. They provide comprehensive monitoring solutions that cover pre-hospitalization, hospitalization, and post-hospitalization phases, all based on biomechanics and telerehabilitation protocols. This paper's main goal is to develop an Artificial Intelligence (AI) model. The AI model's purpose is to accurately recognize the specific activities performed by individuals, whether they have Multiple Sclerosis or are in good health. The model uses data collected from eSteps' innovative devices and aims to significantly enhance the quality of care and support for patients with motor disabilities

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Cumulative Index to NASA Tech Briefs, 1963 - 1966

    Get PDF
    Cumulative index of NASA Tech Briefs dealing with electrical and electronic, physical science and energy sources, materials and chemistry, life science, and mechanical innovation

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Using Deep Learning to Explore Ultra-Large Scale Astronomical Datasets

    Get PDF
    In every field that deep learning has infiltrated we have seen a reduction in the use of specialist knowledge, to be replaced with knowledge automatically derived from data. We have already seen this process play out in many ‘applied deep learning’ fields such as computer Go, protein folding, natural language processing, and computer vision. This thesis argues that astronomy is no different to these applied deep learning fields. To this end, this thesis’ introduction serves as a historical background on astronomy’s ‘three waves’ of increasingly automated connectionism: initial work on multilayerperceptrons within astronomy required manually selected emergent properties as input; the second wave coincided with the dissemination of convolutional neural networks and recurrent neural networks, models where the multilayer perceptron’s manually selected inputs are replaced with raw data ingestion; and in the current third wave we are seeing the removal of human supervision altogether with deep learning methods inferring labels and knowledge directly from the data. §2, §3, and §4 of this thesis explore these waves through application. In §2 I show that a convolutional/recurrent encoder/decoder network is capable of emulating a complicated semi-manual galaxy processing pipeline. I find that this ‘Pix2Prof’ neural network can satisfactorily carry out this task over 100x faster than the method it emulates. §3 and §4 explore the application of deep generative models to astronomical simulation. §3 uses a generative adversarial network to generate mock deep field surveys, and finds it capable of generating mock images that are statistically indistinguishable from the real thing. Likewise, §4 demonstrates that a Diffusion model is capable of generating galaxy images that are both qualitatively and quantitatively indistinguishable from the training set. The main benefit of these deep learning based simulations is that they do not rely on a possibly flawed (or incomplete) physical knowledge of their subjects and observation processes. Also, once trained, they are capable of rapidly generating a very large amount of mock data. §5 looks to the future and predicts that we will soon enter a fourth wave of astronomical connectionism. If astronomy follows in the footsteps of other applied deep learning fields we will see the removal of expertly crafted deep learning models, to be replaced with finetuned versions of an all-encompassing ‘foundation’ model. As part of this fourth wave I argue for a symbiosis between astronomy and connectionism. This symbiosis is predicated on astronomy’s relative data wealth, and contemporary deep learning’s enormous data appetite; many ultra-large datasets in machine learning are proprietary or of poor quality, and so astronomy as a whole could develop and provide a high quality multimodal public dataset. In turn, this dataset could be used to train an astronomical foundation model that can be used for state-of-the-art downstream tasks. Due to the foundation models’ hunger for data and compute, a single astronomical research group could not bring about such a model alone. Therefore, I conclude that astronomy as a whole has slim chance of keeping up with a research pace set by the Big Tech goliaths—that is, unless we follow the examples of EleutherAI and HuggingFace and pool our resources in a grassroots open source fashion

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Revealing the Invisible: On the Extraction of Latent Information from Generalized Image Data

    Get PDF
    The desire to reveal the invisible in order to explain the world around us has been a source of impetus for technological and scientific progress throughout human history. Many of the phenomena that directly affect us cannot be sufficiently explained based on the observations using our primary senses alone. Often this is because their originating cause is either too small, too far away, or in other ways obstructed. To put it in other words: it is invisible to us. Without careful observation and experimentation, our models of the world remain inaccurate and research has to be conducted in order to improve our understanding of even the most basic effects. In this thesis, we1 are going to present our solutions to three challenging problems in visual computing, where a surprising amount of information is hidden in generalized image data and cannot easily be extracted by human observation or existing methods. We are able to extract the latent information using non-linear and discrete optimization methods based on physically motivated models and computer graphics methodology, such as ray tracing, real-time transient rendering, and image-based rendering
    • …
    corecore