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Abstract

In every field that deep learning has infiltrated we have seen a reduction in the use of

specialist knowledge, to be replaced with knowledge automatically derived from data.

We have already seen this process play out in many ‘applied deep learning’ fields such

as computer Go, protein folding, natural language processing, and computer vision.

This thesis argues that astronomy is no different to these applied deep learning fields.

To this end, this thesis’ introduction serves as a historical background on astronomy’s

‘three waves’ of increasingly automated connectionism: initial work on multilayer

perceptrons within astronomy required manually selected emergent properties as

input; the second wave coincided with the dissemination of convolutional neural

networks and recurrent neural networks, models where the multilayer perceptron’s

manually selected inputs are replaced with raw data ingestion; and in the current

third wave we are seeing the removal of human supervision altogether with deep

learning methods inferring labels and knowledge directly from the data.

§2, §3, and §4 of this thesis explore these waves through application. In §2 I show

that a convolutional/recurrent encoder/decoder network is capable of emulating a

complicated semi-manual galaxy processing pipeline. I find that this ‘Pix2Prof’ neural

network can satisfactorily carry out this task over 100× faster than the method it em-

ulates. §3 and §4 explore the application of deep generative models to astronomical

simulation. §3 uses a generative adversarial network to generate mock deep field

surveys, and finds it capable of generating mock images that are statistically indistin-

guishable from the real thing. Likewise, §4 demonstrates that a Diffusion model is

capable of generating galaxy images that are both qualitatively and quantitatively

indistinguishable from the training set. The main benefit of these deep learning based

simulations is that they do not rely on a possibly flawed (or incomplete) physical

knowledge of their subjects and observation processes. Also, once trained, they are

capable of rapidly generating a very large amount of mock data.

§5 looks to the future and predicts that we will soon enter a fourth wave of

astronomical connectionism. If astronomy follows in the footsteps of other applied

deep learning fields we will see the removal of expertly crafted deep learning models,
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to be replaced with finetuned versions of an all-encompassing ‘foundation’ model. As

part of this fourth wave I argue for a symbiosis between astronomy and connectionism.

This symbiosis is predicated on astronomy’s relative data wealth, and contemporary

deep learning’s enormous data appetite; many ultra-large datasets in machine learning

are proprietary or of poor quality, and so astronomy as a whole could develop and

provide a high quality multimodal public dataset. In turn, this dataset could be

used to train an astronomical foundation model that can be used for state-of-the-art

downstream tasks. Due to the foundation models’ hunger for data and compute,

a single astronomical research group could not bring about such a model alone.

Therefore, I conclude that astronomy as a whole has slim chance of keeping up with

a research pace set by the Big Tech goliaths—that is, unless we follow the examples

of EleutherAI and HuggingFace and pool our resources in a grassroots open source

fashion.



Declarations

Copyright

© 2022 Michael J. Smith, Some Rights Reserved.

This work is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International Licence.

Previous submissions

I declare that no part of this work is being submitted concurrently for another award

of the University or any other awarding body or institution. This thesis contains a

substantial body of work that has not previously been submitted successfully for an

award of the University or any other awarding body or institution.

The following parts of this submission have been published previously and/or

undertaken as part of a previous degree or research programme:

Chapter 2: M. J. Smith et al. (2021). ‘Pix2Prof: fast extraction of sequential infor-

mation from galaxy imagery via a deep natural language ’captioning’ model’.

In: Monthly Notices of the Royal Astronomical Society 503.1, pp. 96–105. DOI:

10.1093/mnras/stab424. arXiv: 2010.00622 [astro-ph.IM].

Chapter 3: M. J. Smith and J. E. Geach (2019). ‘Generative deep fields: arbitrar-

ily sized, random synthetic astronomical images through deep learning’. In:

"Monthly Notices of the Royal Astronomical Society" 490.4, pp. 4985–4990. DOI:

10.1093/mnras/stz2886. arXiv: 1904.10286 [astro-ph.IM].

Chapter 4: M. J. Smith et al. (2022). ‘Realistic galaxy image simulation via score-

based generative models’. In: Monthly Notices of the Royal Astronomical Society

511.2, pp. 1808–1818. DOI: 10.1093/mnras/stac130. arXiv: 2111.01713
[astro-ph.IM].

Except where indicated otherwise in the submission, the submission is my own work

and has not previously been submitted successfully for any award.

v

https://doi.org/10.1093/mnras/stab424
https://arxiv.org/abs/2010.00622
https://doi.org/10.1093/mnras/stz2886
https://arxiv.org/abs/1904.10286
https://doi.org/10.1093/mnras/stac130
https://arxiv.org/abs/2111.01713
https://arxiv.org/abs/2111.01713


vi



Acknowledgements

There are so many people that have helped me during this PhD. First and foremost I

would like to say a huge thank you to Jim Geach, for being the best guide I could

have asked for. I look up to Jim both as a researcher, and as a person, and I hope

to one day become half the scientist he is. Thanks Jim for all of your guidance and

support since our chance meeting in 2017; I am looking forward to working with

you at Aspia, and beyond.

A big thanks must also go to Stéphane Courteau. Thanks for welcoming me with

open arms into your research group, and for guiding a fledgling student through

the ins and outs of academia. You taught me that science is a social endeavour, and

I thank you for that. I remember one of our first meetings at Queen’s where you

warned me how quickly this PhD will fly by. It’s passed by even faster than I expected!

I would like to thank John Mooney for introducing me to the world of ‘shiny and

new’ deep learning way back during my MPhys at Leeds in 2016. Your enthusiasm

and expertise for the subject got me hooked, and I wouldn’t be where I am now

without your initial guidance. I would also like to thank all the collaborators I have

been lucky enough to accumulate over the years: Nikhil Arora, Tom Bewley, Will

Cooper, Ryan Jackson, Niall Miller, Rachael Pirie, Ashley Spindler, and Connor Stone.

I learnt so much from all of your unique perspectives, personalities, backgrounds,

and ways of thinking, and I am very grateful for that.

Thanks to all my friends, colleagues, and officemates at Herts, Queen’s, and the

Turing for all the lunches, coffee (procrastination!) breaks, and impromptu pubbing.

Alyssa, Ben L., Ben T., Calum, Dhruv, Jaime, John, Kasia, Luke, Maddie, Marina, Matt,

Rob, Soumyadeep, Tracy, Vijay—cheers to all of you for making the last four years so

much fun.

This thesis is dedicated to my family, and I would especially like to thank them for

keeping me sane through two long years of pandemic. Without you all I don’t think I

would have finished. A big thank you to dad for always being there for advice and

reassurance. You have done so much for me and I don’t think a thousand paragraphs

of acknowledgements would be enough to convey how much it means to me.

vii



viii



Contents

1 Astronomical connectionism 1

1.1 The perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The first wave of astronomical connectionism . . . . . . . . . . . . . . . 10

1.3.1 Classification problems . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Regression problems . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Scaling and expert reliance . . . . . . . . . . . . . . . . . . . . . 12

1.4 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Sidestepping the vanishing gradient problem . . . . . . . . . . . . . . . 17

1.6.1 Non-saturating activation functions . . . . . . . . . . . . . . . . 19

1.6.2 Graphical processing unit acceleration . . . . . . . . . . . . . . . 19

1.6.3 Gated recurrent neural networks and residual networks . . . . 20

1.7 Translation, attention, and transformers . . . . . . . . . . . . . . . . . . 23

1.8 Astronomy’s second wave of connectionism . . . . . . . . . . . . . . . . 25

1.8.1 Recurrent neural network applications . . . . . . . . . . . . . . 26

1.8.2 Convolutional neural network applications . . . . . . . . . . . . 27

1.8.3 Transformer applications . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.4 A problem with supervised learning . . . . . . . . . . . . . . . . 29

1.9 Deep generative modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9.1 (Variational) autoencoders . . . . . . . . . . . . . . . . . . . . . . 29

1.9.2 Generative adversarial networks . . . . . . . . . . . . . . . . . . 31

1.9.3 Score-based generative modelling and diffusion models . . . . 32

1.10 Representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.1 Contrastive learning . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.2 Learning representations via a surrogate task . . . . . . . . . . 41

1.11 Astronomy’s third wave of connectionism . . . . . . . . . . . . . . . . . 42

1.11.1 Deep astronomical generative modelling . . . . . . . . . . . . . 44

1.11.2 Self-supervised astronomical representation learning . . . . . 46

ix



x CONTENTS

1.12 Deep learning for large astronomical datasets . . . . . . . . . . . . . . . 46

2 Pix2Prof 49

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 The classical surface brightness profile extraction algorithm . 51

2.2.2 Borrowing from automated image captioning . . . . . . . . . . 53

2.2.3 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.5 Training the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Results and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.1 Comparison with AutoProf . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 SAGAN 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Spatial GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Architecture and training . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Score-based modelling 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Denoising diffusion probabilistic models . . . . . . . . . . . . . . . . . . 80

4.2.1 Forward process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Reverse process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Simulating DESI galaxy images . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Data sample, preparation, and training . . . . . . . . . . . . . . 84

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Quantifying similarity . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Satellite trail removal via guided diffusion . . . . . . . . . . . . 90

4.4.3 Domain transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.4 A fun aside: mock Astronomy Picture of the Day . . . . . . . . 93

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS xi

5 A fourth wave? 97

5.1 Foundation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Scaling laws and data moats . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 A new class of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

A 139

A.1 A further selection of quotes ‘authored’ by GPT-3 . . . . . . . . . . . . . 139

A.2 Flamingo’s flamingos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xii CONTENTS



List of Figures

1.1 Astronomical survey data volume doubles every 16 months . . . . . . 2

1.2 The increasing rate of machine learning papers submitted to astro-ph 2

1.3 Rosenblatt’s perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 NAND is computed with a single perceptron . . . . . . . . . . . . . . . . 6

1.5 Multi layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 A curated selection of activation functions. . . . . . . . . . . . . . . . . 8

1.7 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 A galaxy rotation curve example . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Demarcating the ‘Deep Learning Era’ . . . . . . . . . . . . . . . . . . . . 21

1.11 Long-short term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.12 The residual connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.13 Neural machine translation via RNNs . . . . . . . . . . . . . . . . . . . . 24

1.14 The self-attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.15 Discriminative and generative modelling . . . . . . . . . . . . . . . . . . 30

1.16 An autoencoder attends to an image of a black hole . . . . . . . . . . . 30

1.17 A variational autoencoder attends to an image of a spiral galaxy . . . 31

1.18 The GAN and Pix2Pix models. . . . . . . . . . . . . . . . . . . . . . . . . 33

1.19 The Denoising Diffusion Probabalistic Model . . . . . . . . . . . . . . . 35

1.20 DDIM latent space interpolation . . . . . . . . . . . . . . . . . . . . . . . 38

1.21 A simple contrastive learning model . . . . . . . . . . . . . . . . . . . . . 40

1.22 Triplet loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.23 Types of negative embeddings . . . . . . . . . . . . . . . . . . . . . . . . 41

1.24 A surrogate task for extracting rotation curve representations . . . . . 43

2.1 Surface brightness examples . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Pix2Prof architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Comparison of Pix2Prof predictions with the ground truth . . . . . . . 58

2.4 Pix2Prof summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



xiv LIST OF FIGURES

2.5 Test set error per band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Test set error vs ellipticity and size . . . . . . . . . . . . . . . . . . . . . 61

3.1 SAGAN training progression . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 SAGAN results and comparison to real Hubble XDF . . . . . . . . . . . 69

3.3 Thumbnail images of real and generated SAGAN galaxies . . . . . . . 71

3.4 Photometric properties of SAGAN generated galaxies vs real XDF galaxies 74

4.1 An illustration of the DDPM . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 A montage of simulated and real galaxies . . . . . . . . . . . . . . . . . 82

4.3 Pixelspace nearest neighbours to generated galaxies . . . . . . . . . . . 85

4.4 Emergent galaxy property comparison . . . . . . . . . . . . . . . . . . . 88

4.5 Satellite trail inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Satellite trail recovered flux comparison . . . . . . . . . . . . . . . . . . 91

4.7 Domain transfer via a diffusion model . . . . . . . . . . . . . . . . . . . 92

4.8 This is not an APOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 A demonstration of the generality of DeepMind’s Flamingo model . . 100

5.2 A slack in the minimum losses of foundation models . . . . . . . . . . 102

5.3 Simulation via an astronomical foundation model . . . . . . . . . . . . 105

5.4 Imagen, a recent text to image translator model . . . . . . . . . . . . . 106

5.5 Three distinct waves within astronomical connectionism . . . . . . . . 107

A.1 A reddit discussion on Flamingo’s predictions . . . . . . . . . . . . . . . 140



List of Tables

2.1 Summary of manual processes in the Courteau (1996) algorithm . . . 52

2.2 We eliminate all interactive steps in the Courteau (1996) algorithm . 62

4.1 SGD and FID comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



xvi LIST OF TABLES



Chapter 1

Astronomical connectionism

With machine learning, we are finally able to keep up with the

data deluge in astronomy. No longer will we be limited by our

human ability to process and make sense of huge amounts of

data. Now, we can let the machines do the work for us!

—GPT-31

Astronomers often seek to compare simulated and empirical data. Both of these types

of data are already available in abundance, and the total volume is set to increase

exponentially in the coming years. Fig. 1.1 presents a selection of astronomical

surveys and their estimated data volume output over their lifetimes (Zhang and Zhao

2015). From this graph we can see an exponential growth in survey volume.

The current scale of astronomical data volume already poses an issue for astron-

omy as many contemporary data extraction methods rely on human supervision and

specialist expertise. The coming growth in data volume will make exploring and

exploiting these surveys through traditional human supervised and semi-supervised

means an intractable problem. Of most concern is the possibility that we will miss,

or substantially delay, interesting and important discoveries due to our inability to

accurately and consistently interrogate astronomical data at scale.

Convolutional Neural Networks (CNN; Fukushima 1980), Generative Adversar-

ial Networks (GAN; Goodfellow et al. 2014), and other deep learning techniques

(Hochreiter and Schmidhuber 1997; He et al. 2015; Ronneberger, Fischer, and Brox

2015; Vaswani et al. 2017) have recently shown great promise in automating infor-

mation extraction in various data intensive fields. Therefore, deep learning is ideally

poised as a solution to our problem of processing ultra-large scale astronomical data.

1This is a quote that was originally generated by prompting OpenAI’s large language model ‘Gener-
ative Pretrained Transformer 3’ (Brown et al. 2020, https://beta.openai.com/playground).
More generated ‘quotes’ can be found in §A.1.

1
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Figure 1.1: Data volume output of a selection of astronomical surveys over their lifetimes.
Astronomical survey data volume doubles every 16 months. Data is taken from Zhang and
Zhao (2015).
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and is available at https://www.kaggle.com/Cornell-University/arxiv.
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As Fig. 1.2 demonstrates, there is already a rich, and rapidly expanding body of liter-

ature on the application of artificial neural networks and deep learning to problems

in astronomy, and in this thesis I will explore deep learning from the perspective of

an astronomer. This chapter will specifically review the history of connectionism, and

explore the interconnection between astronomy and deep learning.

1.1 The perceptron

In 1943, McCulloch and Pitts proposed the first computational model of a biological

neuron (MP neuron; McCulloch and Pitts 1943). Their model consisted of a set of

binary inputs x i ∈ {0,1} and a single binary output y ∈ {0,1}. Their model also

defines a single ‘inhibitory’ input I ∈ {0,1} that blocks output if I = 1. If the sum

of the inputs exceeds a threshold value Θ, the MP neuron ‘fires’ and outputs y = 1.

Mathematically we can write the MP neuron function as

MP(x) =





1 if
∑n

i=0 x i > Θ and I = 0,

0 otherwise.

The MP neuron is quite a powerful abstraction; single MP neurons can calculate

simple boolean functions, and more complicated functions can be calculated when

many MP neurons are chained together.

The MP neuron is missing one crucial element—the capacity to learn. Rosenblatt

(1958) addressed this, by combining the MP neuron with Hebb’s neuronal wiring

theory2 (Hebb 1949). Like the MP neuron, Rosenblatt’s perceptron takes a number

of numeric inputs (x i). However, unlike the MP neuron each one of these inputs are

multiplied by a corresponding weight (wi) signifying the importance the perceptron

assigns to a given input. As shown in Fig. 1.3, Rosenblatt then sums this list of

products and passes it into an ‘activation function’. Rosenblatt used the Heaviside

step function in his original formulation:

2Also known by the mantra ‘cells that fire together wire together’.



4 CHAPTER 1. ASTRONOMICAL CONNECTIONISM

−5 0 5

0.5

1

w · x

prediction= H(w · x) =




0 if w · x< 0,

1 if w · x≥ 1.
(1.1)

To concretise exactly how Rosenblatt’s perceptron learns we will use an example.

Let us say that we want to automatically label a set of galaxy images as either ‘spiral’

or ‘elliptical’. To do this we first need to compile a training dataset of galaxy images.

This training set would consist of spiral and elliptical galaxies, and each image would

have a ground truth label y—say ‘0’ for a spiral galaxy and ‘1’ for an elliptical. To

train our perceptron we randomly choose one image from the training set, and feed

it to the perceptron, with the numerical value of each pixel corresponding to an input

{x1, . . . , xN}. These inputs are multiplied by their corresponding weight {w1, . . . , wN}.
Since we do not want our perceptron to have any prior knowledge of the task, we

initialise the weights at random. The resulting products are then summed. Finally,

our activation function H transforms w · x and produces a prediction p. We then

compare p to y via a ‘loss function’, which is a function that measures the difference

between p and y. The loss can be any differentiable function, so for illustration

purposes we will define it here as the L1 loss: L (y, p) =
��y − p

��. Now that we can

compare to the ground truth, we need to work out how a change in one of our weights

affects the loss (that is, we want to find ∂L /∂w). We can calculate this change with

the chain rule
∂L
∂w

=
∂L
∂ p

∂ p
∂w

, (1.2)

and since p = H(w · x) and ∂ p/∂w= H ′xT we get

∂L
∂w

=
∂L
∂ p
� (H ′xT )

where � is the distributive Hadamard product. Thus we can update the weights to

decrease the loss function:

wnext =w−η∂L
∂w

=w−η∂L
∂ p
� (H ′xT ),
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where η is the learning rate3. If we repeat this process our perceptron will get better

and better at classifying our galaxies!

Figure 1.3: A single neuron (or perception)
with a bias w0, inputs x1, x2, . . . , xN , and
weights w1, w2, . . . , wN .

x0 = 1

x1

x2

∑ |H

. . .

xN

w0

w1

w2

wN

prediction

H(w · x)

We must go further than training a single layer perceptron; in Perceptrons: An

Introduction to Computational Geometry, Minsky and Papert (e.g. §13.0; 1969)

show that the single layer perceptron is only able to calculate linearly separable

functions, among other limitations. Their book (alongside a consensus that AI

had failed to deliver on its early grandiose promises) delivered a big blow to the

connectionist school of artificial intelligence4. In the years following Minsky and

Papert (1969) governmental and industry funding was pulled from connectionist

research laboratories, ushering in the first ‘AI winter’5.

Yet, as exemplified in Rosenblatt (§5.2, theorem 1; 1962) it was known at the time

that multilayer perceptrons could calculate non-linearly separable functions (such as

the ‘exclusive or’). We can prove intuitively that a set of neurons can calculate any

function: a perceptron can perfectly emulate a NAND gate (Fig. 1.4), and the singleton

set {NAND} is functionally complete. Since we can combine a set of NAND gates to

calculate any function, we must also be able to combine a set of neurons to calculate

any function6. Such a group of neurons is known as the multilayer perceptron (MLP).

Unfortunately, we cannot simply stack perceptrons together as we are missing one
3The eagle eyed reader may have noticed that since the derivative of the Heaviside step function is

the Dirac delta function, we will only update the perceptron’s weights on an incorrect prediction. If
we want to also learn from positive examples, we need to use a smoothly differentiable activation
function. This is explored in the next section.

4See Metz (2021) for a closer look at the conflicts and personalities that shaped AI.
5At least, in the Western world. Connectionism continued in earnest in the Soviet Union (Ivakhnenko

and Lapa 1965; Ivakhnenko 1971).
6More formally, Cybenko (1989) and Hornik, Tinchcombe, and White (1991) prove that an infinitely

wide neural network can calculate any function, and Lu et al. (2017) prove that an infinitely deep
neural network is a universal approximator.
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vital ingredient; a way to train the network! At the time of Minsky and Papert’s

treatise on perceptrons there was no widely known algorithm (in the West; see

Ivakhnenko and Lapa 1965) that could train such a multilayer network. In Minsky

and Papert’s own words:

Nevertheless, we consider it to be an important research problem to elucidate

(or reject) our intuitive judgment that the extension [from one layer to many] is

sterile. Perhaps some powerful convergence theorem will be discovered, or some

profound reason for the failure to produce an interesting ‘learning theorem’ for

the multilayered machine will be found.

(§13.2; Minsky and Papert 1969, on MLPs)

The field had to wait almost two decades for such an algorithm to become widespread.

In the next section we will explore backpropagation, the algorithm that ultimately

proved Minsky and Papert’s intuition wrong.

= x1

x0 = 1

x2

∑ |H

w
0 = 1.5

w1 = −1

w 2
= −1

p = H(w · x)

x1 x2 ¬(x1 ∧ x2) p = H(w · x)

0 0 1 H(1.5+ (−1) · 0+ (−1) · 0) = 1
0 1 1 H(1.5+ (−1) · 0+ (−1) · 1) = 1
1 0 1 H(1.5+ (−1) · 1+ (−1) · 0) = 1
1 1 0 H(1.5+ (−1) · 1+ (−1) · 1) = 0

Figure 1.4: If we define H(w · x) as in Eq. 1.1 we can set a perceptron’s weights so that it is
equivalent to the NAND gate.

1.2 The multilayer perceptron

Grouping many artificial neurons together may result in something resembling Fig. 1.5.

This network consists of an input layer, two intermediate ‘hidden’ layers, and an
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output layer. As in the previous section, let us say that we want a classifier that can

classify a set of galaxy images into elliptical and spiral types. In an MLP similar to

Fig. 1.5 a neuron would be assigned to each pixel in a galaxy image. Each neuron

would take the numeric value of that pixel, and propagate that signal forward into

the network. The next layer of neurons does the same, with the input being the

previous layer’s output. This process continues until we reach the output layer. In a

binary classification task like our galaxy classifier this layer outputs a value between

zero and one. Thus, if we define a spiral galaxy as one, and an elliptical galaxy as

zero, we would want the network output to be near one for a spiral galaxy input

(and vice versa).

Input
l = (L − 3)

Hidden
l = (L − 2)

Hidden
l = (L − 1)

Output
l = L

. . . . . .

. . .

x1

x2

x3

xN

pL

Figure 1.5: The multilayer perceptron, or artificial neural network. The depicted network
has two hidden layers. It takes N inputs x1, x2, . . . , xN , and outputs a prediction pL .

In §1.1 we found the change we needed to apply to a single neuron’s weights

to make it learn from a training example. We can train an MLP in a similar way by

employing the reverse mode of automatic differentiation (or backpropagation) to

learn from our galaxy training data set (Linnainmaa 1976; Werbos 1981; Rumelhart,

Hinton, and Williams 1986b)7. We want our network to learn when it makes both a

7Some controversy surrounds backpropagation’s discovery. The Finnish computer scientist Lin-
nainmaa proposed the reverse mode of automatic differentiation and adapted the algorithm to run
on computers in their 1970 (Finnish language) thesis (Linnainmaa 1970). They first published their
findings in English in 1976. Werbos then proposed applying an adaptation of Linnainmaa’s method
to artificial neural networks. Rumelhart, Hinton, and Williams (1986b) showed experimentally that
backpropagation can generate meaningful internal representations within a neural network, and
popularised the method. Here I will err on the side of caution and cite all three manuscripts. For
further reading I recommend Schmidhuber (2014) and Baydin et al. (2018).
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−5 5

−1

1

Sigmoid

−5 5

−1

1

Tanh

−5 5

−1

1

ReLU

−5 5

−1

1

ELU

−5 5

−1

1

Swish

−5 5

−1

1

Mish

Figure 1.6: A curated selection of activation functions. In all plots, the x axis is the input,
and the y axis is the output. The Rectified Linear Unit activation function was first introduced
in the context of neural networks in Fukushima (1980) and later rediscovered, named,
and popularised in Nair and Hinton (2010). The Exponential Linear Unit, Swish and Mish
activations were respectively introduced in Clevert, Unterthiner, and Hochreiter (2016),
Ramachandran, Zoph, and Le (2017), and Misra (2019).
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correct and incorrect prediction, so we define our activation function as a smoothed

version of Rosenblatt’s perceptron activation. This ensures that a signal is present in

the derivative no matter which values are input. This activation function is known as

the ‘sigmoid’ function, and is shown in Fig. 1.6. As in §1.1 we define a loss function

L (y, p) that describes the similarity between a ground truth (y) and a prediction (p).

We also define a neuron’s activation function as ϕ(w · x) where w · x is the weighted

sum of a neuron’s inputs. Following from Eq. 1.2:

∂L
∂wl

=
∂L
∂ pl

∂ pl

∂wl

where l is a layer in the MLP. In the same way as in §1.1 we can calculate an MLP’s

final layer’s (l = L) weight updates in terms of known values:

∂L
∂wL

=
∂L
∂ pL
� �ϕ′LpT

L−1

�
, (1.3)

where pL−1 are the outputs from the previous layer. To calculate the (L − 1)th layer’s

weight updates we use the chain rule:

∂L
∂wL−1

=
∂L
∂ pL

∂ pL

∂ pL−1

∂ pL−1

∂wL−1
.

Likewise for the (L − n)th layer:

∂L
∂wL−n

=
∂L
∂ pL

 
n∏

i=1

∂ pL+1−i

∂ pL−i

!
∂ pL−n

∂wL−n
.

Now we can start plugging in some known values. Since pl = ϕl(wl · pl−1), it follows

that ∂ pl/∂ pl−1 = ϕ′lw
T
l , and ∂ pl/∂wl = ϕ′lp

T
l−1. So:

∂L
∂wL−n

=
∂L
∂ pL
�
 

n∏
i=1

ϕ′L−iw
T
L−i

!
�
ϕ′L−npT

L−n−1

�
. (1.4)

Combining Eq. 1.3 with Eq. 1.4 we get the weight update algorithm for the (L − n)th
layer of the MLP:

wnext =w−η



∂L
∂ pL
� �ϕ′LpT

L−1

�
, for n= 0,

∂L
∂ pL
� �∏n

i=1ϕ
′
L−iw

T
L−i

� �
ϕ′L−npT

L−n−1

�
, for n> 0.

(1.5)
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With this equation8 in hand we can use the same technique described earlier in

this section and in §1.1 to update the network’s weights with each galaxy image to

decrease the loss function L . Again, as L is minimised, our MLP will classify our

elliptical and spiral galaxy images with better and better accuracy.

1.3 The first wave of astronomical connectionism

Connectionism was first discussed within astronomy in the late 1980s, after the

popularisation of backpropagation (see footnote 7) and the consequent passing of

the first ‘AI winter’. Two radical studies emerged in 1988 that recognised areas

where astronomy could benefit from the use of artificial neural networks (Adorf

and Johnston 1988; Rappaport and Anderson 1988). Together, they identified that

astronomical object classification9 and telescope scheduling could be solved through

the use of an artificial neural network. These studies were followed by a rapid

broadening of the field, and the application of connectionism to many disparate

astronomical use cases (Miller 1993, and references therein). In this section, I will

outline areas where MLPs found an early use in astronomy.

1.3.1 Classification problems

Odewahn et al. (1992) classified astronomical objects into star and galaxy types.

These objects were taken from the Palomar Sky Survey Automated Plate Scanner

catalogue (Pennington et al. 1993). To compile their dataset, they first extracted a

set of emergent image parameters from the scanned observations. These parameters

included the diameter, ellipticity, area, and plate transmission. The parameters were

then used to train both a linear perceptron and a feedforward MLP to classify the

astronomical objects into stars or galaxies. Odewahn et al. (1992) found that their

best performing model could classify galaxies with a completeness of 95% for objects

with a magnitude < 19.5. This work was followed by many more studies on the

star/galaxy classification problem (e.g. Odewahn et al. 1993; Bertin and Arnouts

1996; Andreon et al. 2000).

Galaxy morphological type classification was explored in the early 1990s. Storrie-

Lombardi et al. (1992) describe an MLP that takes an input a selected set of thirteen

galaxy summary statistics, and uses this information to classify the galaxy into one of

8If we examine Eq. 1.5 carefully, we can see why we add nonlinearities between the MLP layers;
without activation functions Eq. 1.5 collapses to the equivilent of a single layer MLP!

9Specifically, galaxies were discussed in Rappaport and Anderson (1988) and point sources observed
with the Infra-Red Astronomical Satellite (IRAS) were discussed in Adorf and Johnston (1988).
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five morphological types. Storrie-Lombardi et al. (1992) report a top one accuracy of

64%, and a top two accuracy of 90%. This pilot study was followed by several studies

from the same group that confirmed that MLPs are effective galaxy morphological

classifiers (Lahav et al. 1995; Naim et al. 1995a,b, see §1.8 for a continuation of this

line of research).

MLPs were also used in other classification tasks; here I select for discussion a

few further areas where MLPs were applied. Hippel et al. (1994) classified stellar

spectra into temperature types. Chon (1998) described the use of an MLP to search

for and classify Muon events (and therefore neutrino observations) in the Sudbury

Neutrino Observatory. Quasar classification has been explored in several studies

(Carballo, Cofiño, and González-Serrano 2004; Claeskens et al. 2006; Carballo et al.

2008). Seminally, Carballo, Cofiño, and González-Serrano (2004) used an MLP

to select quasar candidates, given their radio flux, integrated-to-peak flux ratio,

photometry and point spread function in the red and blue bands, and their radio-

optical position separation. They found good agreement between their model and

that of the decision tree described in White et al. (2000), confirming MLPs as a

competitive alternative to more traditional machine learning. As part of the Supernova

photometric Classification Challenge (SPCC; Kessler et al. 2010), Karpenka, Feroz,

and Hobson (2013) proposed the use of a neural network to classify supernovae into

Type-1a/non-Type-1a classes. To classify their light curves, they first used a hand-

crafted fitting function, and then trained their MLP on the fitted coefficients. They

found that their model was competitive with other, more complex models trained on

the SPCC dataset.

1.3.2 Regression problems

MLPs have also been used in regression problems. Angel et al. (1990) applied them

first to adaptive telescope optics. They trained their MLP on 250000 simulated in

focus and out of focus observations of stars as seen by the multiple mirror telescope

(MMT). From the flattened 13× 13 pixel observations, their network predicted the

piston position and tilt required for each of the MMT’s mirrors to bring the stars into

focus. After the application of these corrections, the authors were able to recover

the original profile. In follow up studies, Sandler et al. (1991) and Lloyd-Hart et al.

(1992) proved that Angel et al.’s MLP works on the real MMT.

Photometric redshift estimation was been explored in many concurrent studies

(e.g. Firth, Lahav, and Somerville 2003; Tagliaferri et al. 2003; Ball et al. 2004;

Collister and Lahav 2004; Vanzella et al. 2004). Firth, Lahav, and Somerville (2003)

train a neural network to predict the redshift of galaxies contained in the Sloan Digital
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Sky Survey (SDSS) early data release (Stoughton et al. 2002). The galaxies were

input to the neural network as a set of summary parameters, and the output was a

single float correlating with the galaxy redshift. They found their network attained a

performance comparable to classical techniques. Extending and confirming the work

by Firth, Lahav, and Somerville (2003), Ball et al. (2004) used an MLP to predict the

redshift of galaxies contained in the SDSS’s first data release (York et al. 2000). They

also showed that MLPs were capable of predicting the galaxies’ spectral types and

morphological classifications.

Of course, MLPs have been used more widely in astronomical regression tasks.

Here I will cherry pick a few studies to show the MLP’s early breadth of use. Sunspot

maxima prediction was carried out by Koons and Gorney (1990). They found their

MLP based method was capable of predicting the number of sunspots when trained on

previous cycles. Bailer-Jones et al. (1997) predicted the effective temperature of a star

from its spectrum. Auld et al. (2007) and Auld, Bridges, and Hobson (2008) applied

MLPs to cosmology, demonstrating that MLPs are capable of computing the cosmic

microwave background, given a set of cosmological parameters. Nørgaard-Nielsen

and Jørgensen (2008) used an MLP to remove the foreground from microwave

temperature maps.

1.3.3 Scaling and expert reliance

There are some issues with MLPs. Primarily they do not scale well to high dimensional

datasets. For example, if our dataset consists of images with a 128×128 resolution, we

will need 16 384 neurons in the MLP’s input layer alone! As we move into the hidden

layers, this scaling issue only gets worse. Also, since MLPs must take an unrolled

image as an input, they disregard any spatial properties of their training images, and

so either need a substantial amount of training data to classify or generate large

images10, or an expert to extract descriptive features from the data in a preprocessing

step. We can see this issue writ large in the subsections above—most of the MLP

applications described in §1.3 require an expert to extract features from the data for

the network to then train on! This drawback is not ideal; what if there are features

within the raw data that are not present in these cherry picked statistics? In that

case, it would be preferable to let the neural network take in the raw data as input,

10At the height of the convolutional neural network architecture’s popularity in the mid 2010s these
were real problems. However, with the growth of computing power and data in recent years we are
seeing a resurgence of the more general MLP model (e.g. H. Liu et al. 2021; Melas-Kyriazi 2021;
Tolstikhin et al. 2021; Touvron et al. 2021). This follows the prevailing trend in AI where the removal
of human-crafted features and biases ultimately results in more expressive models that learn such
features and biases directly from data (Sutton 2019; Branwen 2022).



1.4. CONVOLUTIONAL NEURAL NETWORKS 13

and then learn which features are the most descriptive. I will discuss neural network

architectures that solve both the MLP scaling problem and the expert reliance problem

in §1.4–§1.8.

1.4 Convolutional neural networks

Unlike the MLP described in the previous section, convolutional neural networks

(CNNs; introduced in Fukushima (1980) and first combined with backpropagation in

LeCun et al. (1989)) do not entirely consist of fully connected layers, where every

neuron is connected to every neuron in the previous and subsequent layers. Instead,

the CNN (such as the one depicted in Fig. 1.7) uses convolutional layers in place of

the majority (or all) of the dense layers.

p

Convolution

Subsampling

Convolution

Subsampling

Fully connected

Fully connected

Figure 1.7: A convolutional neural network classifying a spiral galaxy image11.

We can think of a convolutional layer as a set of learnt ‘feature filters’. These

feature filters perform a local transform on input imagery. In classical computer

vision, these filters are hand crafted, and perform a predetermined function, such as

edge detection or blurring. In contrast, a CNN learns the optimal set of filters for its

task (say, galaxy classification). Eq. 1.6 shows two different convolution12 operators

11All astronomical objects shown in the neural network diagrams within §1 and §5 are generated
via text prompts fed into a latent diffusion neural network model (Rombach et al. 2021).

12We must note that in Eq. 1.6 we follow most deep learning libraries and perform a cross-correlation
and not a convolution. However, since the weights are learnt, this does not matter; the neural network
will simply learn a flipped representation of the cross-correlation.
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being performed on an array.
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220 101 158

155 179 56




(1.6)

In the above equation the operation is represented as a matrix. In a CNN the matrix

is a set of neuronal weights. As seen in Fig. 1.7 there are multiple feature maps in a

convolutional layer, each containing a set of weights independent to the other feature

maps, and learning to extract a different feature. As in the MLP described in the

previous section, the weights are updated using backpropagation to minimise a loss

function. I will discuss astronomical applications of CNNs in §1.8, after I introduce

modern CNN architectures.

1.5 Recurrent neural networks

Standard feedforward neural networks like the MLP (§1.2) and CNN (§1.4) generate

a fixed size vector given a fixed size input13. But, what if we want to classify or

generate a variably sized vector? For example, we might want to classify a galaxy’s

morphology given its rotation curve. A rotation curve describes the velocity of a

galaxy’s visible stars versus their distance from the galaxy’s centre. Fig. 1.8 shows

a possible rotation curve for Messier 81. A rotation curve’s length depends on the

size of its galaxy, and due to this variable length, and the fact that MLPs take a fixed

size input, we cannot easily use an MLP for classification. Recurrent neural networks

(RNNs), however, can take a variable length input and produce a variable length

output.

A RNN differs from a feed forward MLP by having a hidden state that acts as a

13As with any rule there are exceptions, such as CNNs containing a global average pooling layer
(Lin, Chen, and Yan 2013).
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Figure 1.8: An example of a galaxy
rotation curve, plotted over an image
of Messier 81 (Crawford 2015).
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‘memory’ store of previously seen information. As the RNN encounters new data,

its weights are altered through the backpropagation through time algorithm (BPTT;

Werbos 1990, and references therein. Also see footnote 7).

We can use an RNN similar to Fig. 1.9 to classify our rotation curves. We take the

rotation curve in list form {x1, x2, . . . , xN}, with each x being a measurement of the

rotational velocity at a certain radius. Then we feed this list into the RNN sequentially

in the same way as shown in Fig. 1.9. The RNN will produce an output for each x fed

to it, but we ignore those until we feed in xN , the rotational velocity furthest from

our galaxy’s centre. When we feed in xN , the RNN produces a prediction pN , which

we can then compare to a ground truth yN via a loss function LN . In our case, y

is an integer label representing the galaxy’s morphological class. This comparison

LN(yN , pN) is a function that represents the distance between the RNN prediction

and the ground truth. We can then reduceLN (yN , pN ) by updating the RNN’s weights

through BPTT so that the weights {wx ,wp,wh} follow ∇LN downwards. As we do

this, our RNN will improve its galaxy classifications.

BPTT’s mathematical derivation is akin to the one we explored in §1.2, and I

will quickly derive it here for posterity. Let us first look at the forward propagation

equations:

Ln =
��yn − pn

�� ,
pn = ϕ(wp · hn), and

hn = φ(wh · hn−1 +wx · xn).
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hn−1 hn hn+1
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Figure 1.9: A recurrent neural network with weights {wx ,wp,wh}, a hidden state hn, inputs
x, and a prediction pn=N is unrolled into its constituent processes.

From these we see that we need to express ∂Ln/∂wp, ∂Ln/∂wh, and ∂Ln/∂wx as

known values to train the network. ∂Ln/∂wp is relatively easy; via the chain rule,

and the fact that ∂ pn/∂wp = ϕ′hT
n :

∂Ln

∂wp
=
∂Ln

∂ pn

∂ pn

∂wp
,

=
∂Ln

∂ pn
�ϕ′hT

n . (1.7)

∂Ln/∂wh is more tricky, so we will go step by step. We already know that

∂Ln

∂wh
=
∂Ln

∂ pn

∂ pn

∂ hn

∂ hn

∂wh
. (1.8)

However, we see in Fig. 1.9 that hn depends on hn−1, which depends on hn−2 (and so

on). We also notice that all the hidden states depend on wh. We therefore rewrite

Eq. 1.8 to make these facts explicit:

∂Ln

∂wh
=
∂Ln

∂ pn

∂ pn

∂ hn

n∑
j=1

∂ hn

∂ h j

∂ h j

∂wh
,

=
∂Ln

∂ pn

∂ pn

∂ hn

n∑
j=1

 
n∏

i= j+1

∂ hi

∂ hi−1

!
∂ h j

∂wh
.

We can now substitute in some known values:

∂Ln

∂wh
=
∂Ln

∂ pn
�ϕ′hT

n

n∑
j=1

 
n∏

i= j+1

φ′wT
h,i

!
φ′hT

j−1. (1.9)
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Finally, ∂Ln/∂wx is derived in the same way as ∂Ln/∂wh:

∂Ln

∂wx
=
∂Ln

∂ pn

∂ pn

∂ hn

n∑
j=1

 
n∏

i= j+1

∂ hi

∂ hi−1

!
∂ h j

∂wx
,

=
∂Ln

∂ pn
�ϕ′hT

n

n∑
j=1

 
n∏

i= j+1

φ′wT
h,i

!
φ′xT

j . (1.10)

With ∂Ln/∂wp, ∂Ln/∂wh, and ∂Ln/∂wx in hand we can apply the same update

rule shown in Eq. 1.5.

Aside from many-to-one encoding, RNNs can produce many predictions given

many inputs, act similarly to an MLP and produce one or many outputs given a single

input. I will discuss the application of recurrent neural networks to astronomical

data in §1.8, after I introduce gated recurrent neural networks.

1.6 Sidestepping the vanishing gradient problem

In the early 1990s, researchers identified a major issue with the training of deep

neural networks through backpropagation. Hochreiter first formally examined the

‘vanishing gradient’ problem in their diploma thesis (Hochreiter (1991), see also

later work by Bengio, Simard, and Frasconi (1994)). Due to the vanishing gradient

problem, it was widely believed that training very deep artificial neural networks

from scratch via backpropagation was impossible. In this section we will explore

what the vanishing gradient problem is, and how contemporary end-to-end trained

neural networks sidestep this issue.

First let us remind ourselves of the sigmoid activation function introduced in

Fig. 1.6:

−5 0 5

0.5

1

x

ϕ(x) ϕ′(x)

ϕ(x) = 1/(1− e−x). (1.11)

Eq. 1.11 and its accompanying plot shows the output of a sigmoid function ϕ and its
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derivative ϕ′, when given an input x.

Now, let us revisit the weight update rule for the (L − n)th layer of a feedforward

MLP (Eq. 1.4):

∂L
∂wL−n

=
∂L
∂ pL
�
 

n∏
i=1

ϕ′L−iw
T
L−i

!

︸ ︷︷ ︸
lim

n→∞
∏n

i=1ϕ
′
L−iw

T
L−i=0

�
ϕ′L−npT

L−n−1

�
. (1.12)

If ϕ′ is typically less than one (as in Eq. 1.11 and most other saturating nonlinearities)

the product term in the above equation becomes an issue. In that case, we can see that

the product rapidly goes to zero as n (the number of layers) becomes large14. If we

study Eq. 1.9, we can see the same problem also plagues RNNs as we backpropagate

through hidden states:

∂Ln

∂wh
=
∂Ln

∂ pn
�ϕ′hT

n

n∑
j=1

 
n∏

i= j+1

φ′wT
h,i

!

︸ ︷︷ ︸
lim

n→∞
∏n

i= j+1φ
′wT

h,i=0

φ′hT
j−1. (1.13)

Let us solidify this issue by reminding ourselves about Eq. 1.5—the weight update

rule for a network trained through backpropagation:

wnext =w−η∂L
∂w

. (1.14)

Combining Eq. 1.14 and the limits defined in Eq. 1.12 and Eq. 1.13 results in the

below weight update rule in the limit n→∞.

lim
n→∞wnext =w. (1.15)

Eq. 1.15 shows that learning via backpropagation slows as we move deeper into the

network. This problem once again caused a loss of faith in the connectionist model,

ushering in the second AI winter. It took until 2012 for a new boom to begin. In the

following three subsections I will explore some of the proposed partial solutions to

the vanishing gradient problem and show how they came together to contribute to

the current deep learning boom.

14Likewise, if ϕ′ is typically greater than one, the product term rapidly ‘explodes’ to infinity. This is
known as the ‘exploding gradient’ problem, also first identified in Hochreiter (1991).
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1.6.1 Non-saturating activation functions

We can see in Eq. 1.13 and Eq. 1.12 that if ϕ′ = 1 then the product term does not

automatically go to zero or infinity. If this is the case, why not simply design our

activation function around this property? The Rectified Linear Unit (ReLU; Fukushima

1980; Nair and Hinton 2010) is an activation function that does precisely this15:

−1 0 1

0.5

1

x

ReLU(x) ReLU′(x)

ReLU(x) =max(x, 0). (1.16)

The gradient of ReLU is one if the inputs are above zero, exactly the property we

needed to mitigate the vanishing gradient problem. Similar non-saturating activa-

tion functions also share the ReLU gradient’s useful property, see for example the

Exponential Linear Unit, Swish, and Mish functions in Fig. 1.6.

1.6.2 Graphical processing unit acceleration

If we can speed up training, we can run an inefficient algorithm (such as backpropa-

gation through saturating activations) to completion in less time. One way to speed

up training is by using hardware that is specifically suited to the training of neural

networks. Graphical processing units (GPUs) were originally developed to render

video games and other intensive graphical processing tasks. These rendering tasks

require a processor capable of massive parallelism. We have seen in the previous

sections that neural networks trained through backpropagation also require many

small weight update calculations. With this in mind, it is natural to try to accelerate

deep neural networks with GPUs.

Oh and Jung (2004) were the first to use GPUs to accelerate an MLP model,

reporting a 20× performance increase in inference with their GPU accelerated neural

15ReLU′ is always zero if its inputs are < 0, removing any signal for further training. This is known
as the ‘dying ReLU’ problem, but is not as big of an issue as it first seems. Since contemporary deep
neural networks are greatly overparameterised (see for example Frankle and Carbin 2018, and other
work on the ‘lottery ticket hypothesis’) backpropagation through the ReLU activation function can act
as a pruning mechanism, creating sparse representations within the neural network and thus reducing
training time even further (Glorot, Bordes, and Bengio 2011).
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network. Shortly after, Steinkrau, Simard, and Buck (2005) showed that backpropa-

gation can also benefit from GPU acceleration, reporting a three-fold performance

increase in both training and inference. These two breakthroughs were followed

by a flurry of activity in the area (e.g. Chellapilla, Puri, and Simard 2006; Raina,

Madhavan, and Ng 2009; Cireşan et al. 2010, 2011), culminating in a milestone

victory for GPU accelerated neural networks at ImageNet 2012. AlexNet (Krizhevsky,

Sutskever, and Hinton 2012) won the ImageNet classification and localisation chal-

lenges (Russakovsky et al. 2015), scoring an unprecedented top-5 classification error

of 16.4%, and a single object localisation error of 34.2%. In both challenges AlexNet

scored over 10% better than the models in second place. Krizhevsky, Sutskever, and

Hinton’s winning network was a CNN (Fukushima 1980) trained through backpropa-

gation (Linnainmaa 1976; LeCun et al. 1989), with ReLU activation (Nair and Hinton

2010), and dropout (Srivastava et al. 2014a) as a regulariser. The performance

increase afforded by GPU accelerated training enabled the network to be trained

from scratch via backpropagation in a reasonable amount of time. The discovery that

it is possible to train a neural network from scratch by using readily available hard-

ware ultimately resulted in the end of connectionism’s second winter, and ushered

in the Cambrianeqsue deep learning explosion of the mid-to-late 2010s and 2020s

(Fig. 1.10).

1.6.3 Gated recurrent neural networks and residual networks

The Long-Short Term Memory unit (LSTM; Hochreiter and Schmidhuber 1997; Gers,

Schmidhuber, and Cummins 2000)16 mitigates the vanishing gradient problem by

introducing a new hidden state, the ‘cell state’ (cn), to the standard recurrent neural

network architecture. This cell state allows the network to learn long range depen-

dencies, and I will show why this is the case via a brief derivation17. First, as always,

let us study Fig. 1.11 and write down the forward pass equation for updating the cell

state:

cn = f (cn−1,hn−1,xn) + g(hn−1,xn)

where f (cn−1,hn−1,xn) = cn−1 �ϕ(hn−1,xn). For brevity I define ϕn = ϕ(hn−1,xn).

Like the RNN case (Eq. 1.9 and Eq. 1.10), we will need to find ∂ cn/∂ cn−1 to

16Compare also the Gated Recurrent Unit (GRU; Cho et al. 2014).
17Here I loosely follow Bayer (2015, §1.3.4).
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Figure 1.10: If we plot the total number of floating point operations (FLOPs) required to
train a neural network model, and compare it to the model’s publication date, we can see a
change in trend at around 2012. This corresponds to the popularisation of GPU accelerated
training of very deep neural networks, with 2012 demarcating AI’s ‘Deep Learning Era’ and
the beginning of astronomy’s second wave of connectionism (§1.8). Data is taken from Sevilla
et al. (2022).
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Figure 1.11: A set of sequential data xn is input into an LSTM network. Inside the cell
denotes elementwise operations and denotes neuronal layers. ϕ is the sigmoid activation
function, and Tanh is the hyperbolic tangent activation function. ⊕ is an elementwise addition,
� is the Hadamard product, and line mergers are concatenations. cn is the cell state, and hn
is the hidden state.
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calculate ∇L . Therefore,
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Thus, if we want to backpropagate to a cell state deep in the network we must do

∂ cn

∂ cN
=

n−N∏
i=1

ϕi, n> N . (1.17)

The product term above does not depend on the derivative of a saturating activation

function, and so does not automatically go to zero as N goes to∞. This means that

a gradient signal can be carried through the LSTM cell state without losing amplitude

and vanishing18.

We can use a technique derived from the LSTM to solve our vanishing gradient

problem for deep feedforward neural networks (as studied in §1.2). Srivastava,

Greff, and Schmidhuber (2015) do this by applying the concept of the LSTM’s cell

state to their deep convolutional ‘Highway Network’. The Highway Network uses

gated connections to modulate the gradient flow back through neuronal layers. Later

work by He et al. (2015) introduces the ‘ResNet’ by taking the Highway Network

and simplifying its connections. They apply an elementwise addition (or ‘residual

connection’) in place of the Highway Network’s gated connection (Fig. 1.12a). One

can go even further with residual connections, as Ronneberger, Fischer, and Brox

(2015) demonstrate with their U-Net model. The U-Net combines residual connections

with an autoencoder-like architecture (Fig. 1.12b). The U-Net has gone on to become

the de facto network for many tasks that require an input and output of the same size

(such as segmentation, colourisation, and style transfer).

18Which is great in theory. In practice, LSTMs still have trouble learning very long range dependencies
due to their reliance on recurrent processing (Sutskever, Vinyals, and Le 2014). Transformer networks
(Vaswani et al. 2017) are an architecture that uses the concept of attention to address this issue. We
will discuss transformer networks in §1.7.
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(b) The U-Net, a network that was originally developed to segment
biological imagery uses the residual connection.

Figure 1.12: The left subfigure shows the residual connection as originally introduced in
He et al. (2015). The right subfigure shows an application of the residual connection to an
autoencoder like architecture (Ronneberger, Fischer, and Brox 2015), in this case colourising
an astronomical object.

1.7 Translation, attention, and transformers

Theoretically, Gated RNNs (GRNNs) such as the LSTM can learn very long range

dependencies (see Eq. 1.17 and its accompanying text). In practice, GRNNs tend to

forget information about distant inputs. This is because the GRNN lacks unmediated

access to inputs beyond the immediate antecedent as a consequence of its recurrent

architecture. The problem is especially apparent in neural machine translation tasks

that require knowledge of an entire sequence to produce an output, such as language

to language translation. Fig. 1.13 shows such a sequence to sequence (Seq2Seq;

Sutskever, Vinyals, and Le 2014) model. Seq2Seq translates between two sets of

sequential data by sharing a hidden state between two GRNN units. In Fig. 1.13 we

can see that the shared information is bottlenecked by the hidden state. Therefore,

to resolve the GRNN ‘forgetting problem’ we must find a way to avoid any recursion,

or serial processing of input and output. We can do this by providing the neural

network access to all input while it is calculating an output. This was the primary

motivation behind the transformer architecture (Bahdanau, Cho, and Bengio 2014;

Vaswani et al. 2017).

Modern transformer architectures consist of a series of self-attention layers, often
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Figure 1.13: A sequence to sequence (Seq2Seq; Sutskever, Vinyals, and Le 2014) model.
A sequence x is input into a GRNN. The final hidden state (h) of the input network is then
passed into a second GRNN. The second GRNN then unrolls to predict an output sequence
p. Due to the hidden state acting as a intermediary, x and p need not be of equal length. I
explore an astronomical use case of this architecture in §2.

interspersed with other layer types19. Self-attention as described in Vaswani et al.

(2017) is shown in Fig. 1.14. Intuitively, it captures the relationships between quanta

within a data input. To perform self-attention we first take an input sequence

x=
�

x1 x2 · · · xn

�
,

where x can be any sequence, such as a sentence, a variable star’s time series, or an

unravelled galaxy image20. Here we will follow the literature and refer to [x1, . . . , xn]
as tokens. As we can see in Fig. 1.14 the input is passed through a trainable pair of

weight matrices Q and K. The output matrices q and k† are then multiplied together

to yield

(Q · x)(K · x)† = qk† =




Q1 x1K1 x1 Q1 x1K2 x2 · · · Q1 x1Kn xn

Q2 x2K1 x1 Q2 x2K2 x2 · · · Q2 x2Kn xn
...

...
. . .

...

Qn xnK1 x1 Qn xnK2 x2 · · · Qn xnKn xn




. (1.18)

We can see that Eq. 1.18 describes the relationships between tokens within x. For

19In the original transformer formulation described in Vaswani et al. (2017), the network consisted
of a connected ‘encoder’ and ‘decoder’ section much like a Seq2Seq model (Fig. 1.13). Later work has
found this to be an unnecessary complication. For example, the Generative Pretrained Transformer
(GPT) 2 and 3 models (Radford et al. 2019; Brown et al. 2020) consist of only decoder layers, and
the Bidirectional Encoder Representations from Transformers (BERT) model consists of only encoder
layers (Devlin et al. 2019).

20One can go very general with this, as DeepMind demonstrated with their ‘Gato’ Transformer model
(Reed et al. 2022). Gato can predict sequences for myriad tasks, from operating a physical robotic
arm, to completing natural language sentences, to playing Atari games.
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example, if x1 is similar semantically to x2, we would expect Q1 x1K2 x2 and Q2 x2K1 x1

to have a high value. We then normalise qk† to mitigate vanishing gradients21, and

apply a softmax nonlinearity so that the maximum weighting (or similarity) is one.

Meanwhile, the input sequence x is passed through the neuronal layer V, resulting

in a weighted representation v:

V · x= v=
�
V1 x1 V2 x2 · · · Vn xn

�
.

v is multiplied with the similarity matrix ς(qk†/
p

n). This process weighs similar

tokens within the sequence higher, increasing their relative importance in later

neuronal layers.

x

q

k†

v

Q

K, †

V

qk†
p

n
× n−0.5

×

ς

ς
�

qk†
p

n

�
v

Figure 1.14: An input (x) is fed into a self-attention mechanism. The weights used to produce
the query (q), key (k), and value (v) matrices are learnt via backpropagation. Here the learnt
weights are denoted as the capitalised versions of their child matrices. q and k are normalised
and multiplied together, and a softmax nonlinearity (ς) is applied. Finally, v is multiplied
with output of the upper path and the final output is fed forward to the next neuronal layer.⊗

denotes a matrix multiplication.

1.8 Astronomy’s second wave of connectionism

Compared to classical machine learning techniques22 deep learning as outlined in

§1.6.2 does not require an extraction of emergent parameters to train its models.

21See Footnote 14.
22This includes most MLP applications in astronomy, see §1.3.
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RNNs in particular are well suited to observing the full raw information within a

time series. Likewise, CNNs are well suited to observing raw information within

pictoral-like data. Astronomy is rich with both types of data, and in this subsection I

will review the history of the application of RNN, CNN, and transformer models to

astronomical data.

1.8.1 Recurrent neural network applications

RNNs were first applied in astronomy to areas very close to home; Aussem, Murtagh,

and Sarazin (1994) predicted atmospheric seeing for observations from ESO’s Very

Large Telescope, and the prediction of geomagnetic storms given data on solar wind

was also explored in the mid-to-late 1990s and early 2000s (Wu and Lundstedt

1996, Lundstedt, Gleisner, and Wintoft 2002, and other work from the same group;

Vassiliadis et al. 2000).

The first use of RNNs for classification in astronomy was carried out in in a

prescient study by Brodrick, Taylor, and Diederich (2004). They describe the use

of an RNN-like Elman network (Elman 1990). Their RNN was tasked with the

search for artificially generated narrowband radio signals that resemble those that

may be produced by an extraterrestrial civilisation. They found that their model

had a test set accuracy of 92%, suggesting that RNNs could be a useful tool in the

search for extraterrestrial intelligence. More than a decade after Brodrick, Taylor,

and Diederich (2004), Charnock and Moss (2017) used an LSTM (Fig. 1.11) to

classify simulated supernovae. They describe two classification problems. One, a

binary classification between type-Ia and non type-Ia supernovae, and the other a

classification between the supernovae types I, II, and III. For their best performing

model they report an accuracy of more than 95% for their binary classification

problem, and an accuracy of over 90% for their trinary classification. This study

cemented the usefulness of RNNs for classification problems in astronomy. Charnock

and Moss (2017) was followed by numerous projects studying the use of RNNs for

classification of time series astronomical data. A non-exhaustive list of modern RNN

use in astronomy includes: stochastically sampled variable star classification (Naul et

al. 2018); exoplanet instance segmentation (Gonzalez, Absil, and Van Droogenbroeck

2018); variable star/galaxy sequential imagery classification (Carrasco-Davis et al.

2019); and gamma ray source classification (Finke, Krämer, and Manconi 2021). We

must conclude from these studies that RNNs are effective classifiers of astronomical

time series, provided that sufficient data is available.

Of course, recurrent networks are not limited to classification; they can also be

used for regression problems. First, Weddell and Webb (2008) successfully used an
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echo state network (Jaeger and Haas 2004) to predict the point spread function of a

target object in a wide field of view. Capizzi, Napoli, and Paternò (2012) used an RNN

to inpaint missing NASA Kepler time series data for stellar objects. They found that

their model could recreate the missing time series to an excellent accuracy, suggesting

that the RNN could internalise information about the star it was trained on. As in

the classification case, research into the use of RNNs for regression problems picked

up massively in the late 2010s, and here I will highlight a selection of these studies

that represent the range of RNN use cases. H. Shen et al. (2017) used both an LSTM

and an autoencoder based RNN to denoise gravitational wave data, and Morningstar

et al. (2019) used a recurrent inference machine to reconstruct gravitationally lensed

galaxies. H. Liu et al. (2019) used an LSTM to predict solar flare activity. From these

studies, similarly to the classification case above, we can once again conclude that

RNNs are effective regressors of astronomical time series.

RNNs have also been used in cases that are a little more unconventional. For

example, Kügler, Gianniotis, and Polsterer (2016) used an autoencoding RNN (specif-

ically an echo state network) to extract representation embeddings of variable main

sequence stars. They find that these embeddings capture some emergent properties

of these variable stars, such as temperature, and surface gravity, suggesting that clus-

tering within the embedding space could result in semantically meaningful variable

star classification. We will revisit this line of research when I explore representation

learning within astronomy in detail in §1.11. M. J. Smith et al. (2021) use an encoder-

decoder network comprising of a CNN encoder and RNN decoder to predict surface

brightness (SB) profiles of galaxies. This class of neural network was previously used

extensively within natural language image captioning, and by treating SB profiles as

‘captions’ their model was capable of prediction over 100× faster than the previous

method. M. J. Smith et al. (2021) is presented in full in §2.

1.8.2 Convolutional neural network applications

It did not take long after Krizhevsky, Sutskever, and Hinton (2012) established

CNNs as the de facto image classification network for astronomers to take notice: in

2014 they were applied in the search for pulsars (W. W. Zhu et al. 2014) as part of

an ensemble of methods. W. W. Zhu et al. (2014) found that their ensemble was

highly effective, with 100% of their test set pulsar candidates being ranked within

the top 961 of the 90 008 test candidates. Shortly after, Hála (2014) described the

use of one dimensional CNNs for a ternary classification problem. They find that

their model is capable of classifying 1D spectra into quasars, galaxies, and stars

to an impressive accuracy. CNNs have been also been extensively used in galaxy
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morphological classification. First on the scene was Dieleman, Willett, and Dambre

(2015). They used CNNs to classify galaxy morphology parameters as defined in the

Galaxy Zoo dataset (Raddick et al. 2010) from galaxy imagery. They observed their

galaxies via the SDSS, and found a 99% consensus between the Galaxy Zoo labels,

and the CNN classifications. Huertas-Company et al. (2015) showed that Dieleman,

Willett, and Dambre’s CNN is equally applicable to morphological classification of

galaxies in the CANDELS fields. Likewise, Aniyan and Thorat (2017) showed that

CNNs are capable of classifying radio galaxies. The combined work of Dieleman,

Willett, and Dambre (2015), Huertas-Company et al. (2015), and Aniyan and Thorat

(2017) confirms that CNNs are equally applicable to visually dissimilar surveys, with

little-to-no modification. Wilde et al. (2022) used a deep CNN model to classify

simulated lensing events. They also applied some interpretability techniques to their

data, using occlusion mapping (Zeiler and Fergus 2014), gradient class activation

mapping (Selvaraju et al. 2016), and Google’s DeepDream to prove that the CNN was

indeed classifying via observing the gravitational lenses. We can conclude from the

studies described in this paragraph that CNNs are effective classifiers and regressors

of raw pictoral-like astronomical data.

Alternative CNN models have also been used, such as the U-Net (Fig. 1.12b). The

U-Net was initially developed to segment biological imagery (Ronneberger, Fischer,

and Brox 2015). Its first use in astronomy was related: Akeret et al. (2017) use a

U-Net (Ronneberger, Fischer, and Brox 2015) CNN to isolate via segmentation, and

ultimately remove, radio frequency interference from radio telescope data. Likewise,

Berger and Stein (2019) used a three dimensional U-Net (V-Net; Milletari, Navab, and

Ahmadi 2016) to predict and segment out galaxy dark matter haloes in simulations,

and Aragon-Calvo (2019) used a V-Net to segment out the cosmological filaments and

walls that make up the large scale structure of the Universe. Lauritsen et al. (2021)

use a U-Net to superresolve simulated submillimetre observations. They found that

the U-Net could successfully do this, when using a loss comprising of the L1 loss, and

a custom loss that measures the distance between predicted and ground truth point

sources.

1.8.3 Transformer applications

Although initially used for natural language, transformers have also been adapted

for use in imagery; first by Parmar et al. (2018), and also in Dosovitskiy et al. (2020).

Transformers have not yet been applied to astronomical imagery, but they have started

to find use in time-series astronomy. Donoso-Oliva et al. (2022) used BERT (Devlin

et al. 2019) to generate a representation space for light curves in a self-supervised
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manner. Morvan et al. (2022) use an encoding transformer to denoise light curves

from the transiting exoplanet survey satellite (TESS; Ricker et al. 2015), and show

that the denoising surrogate task results in an expressive embedding space. Pan, Ting,

and Yu (2022) also use a transformer model to analyse light curves for exoplanets.

Transformers have taken the fields of natural language processing and computer

vision by storm (§5.1), and so if we extrapolate from trends in other fields I expect to

see many more examples of transformers applied to astronomical use cases in the

near future. We will revisit the transformer architecture in the context of foundation

models (Bommasani et al. 2021, and references therein), and their possible future

astronomical uses in §5.1.

1.8.4 A problem with supervised learning

Supervised learning requires a high quality labelled dataset to train a neural network.

In turn, these datasets require labourious human intervention to create, and so

supervised data is in short supply. One can avoid this issue by letting the deep

learning model infer the data labels itself, and project these labels onto a hidden

descriptive ‘latent space’. In §1.9 and §1.10 I will explore some deep learning models

that do not require supervision.

1.9 Deep generative modelling

In this section I discuss generative modelling within the context of astronomy. Unlike

discriminative models, generative models explicitly learn the distribution of classes

in a dataset (Fig. 1.15). Once we learn the distribution of data, we can use that

knowledge to generate new synthetic data that resembles that found in the training

dataset. In the following sections I will explore in detail three popular forms of deep

generative model: the variational autoencoder (§1.9.1); the generative adversarial

network (§1.9.2); and the family of score-based (or diffusion) models (§1.9.3).

Finally, in §1.11 I discuss applications of deep generative modelling in astronomy.

1.9.1 (Variational) autoencoders

Autoencoders have long been a neural network architectural staple; in a sister paper to

backpropagation’s populariser, Rumelhart, Hinton, and Williams (1986a) demonstrate

backpropagation within an autoencoder. Fig. 1.16 demonstrates the basic neural

network autoencoder architecture. An autoencoder is tasked with recreating some

input data, squeezing the input information (x) into a bottleneck latent vector (z)
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Figure 1.15: On the left we see a generative model attempting to learn the probability
distributions of a dataset that contains a set of galaxies, and a set of stars. On the right is a
discriminative model, which is attempting to learn the boundary that separates the star and
galaxy types.

via a neural network q(z|x). z is then expanded to an imitation of the input data

(x̂) by a second neural network p(x̂|z). The standard autoencoder is trained via a

reconstruction loss; LR(x, x̂), where LR(x, x̂) measures the difference in pixelspace

between x and x̂.

x

Encoder
q(z|x)

z

Decoder
p(x̂|z)

x̂

Figure 1.16: An autoencoder (Rumelhart, Hinton, and Williams 1986a) attends to an image
of a black hole. z is a latent vector and x is a sample from a training set. The encoder, q
learns to encode the incoming data into a latent vector while the decoder p takes as input z
and attempts to recreate x.

Naïvely, one would think that once trained, one could ‘just’ sample a new latent

vector, and produce novel imagery via the decoding neural network p(x̂|z). We cannot

do this, as autoencoders trained purely via a reconstruction loss have no incentive to

produce a smoothly interpolatable latent space. This means we can use a standard

autoencoder to embed and retrieve data contained in the training set, but cannot use

one to generate new data. To generate new data we require a smooth latent space,

which variational autoencoders (VAEs; Fig 1.17) produce by design (Kingma and

Welling 2013).
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Figure 1.17: A variational autoencoder (Kingma and Welling 2013) operates on a spiral
galaxy. z is a latent vector and x is a sample from the training set. The encoder, q learns to
compress the incoming data into a latent vector that encodes the normal distribution. The
decoder p takes as input z and attempts to recreate x.

A VAE differs from the standard autoencoder by enforcing a spread in each

training set samples’ latent vector. We can see in Fig. 1.17 how this is done; instead of

directly predicting z the encoder q predicts two vectors, µ and σ. z is then sampled

stochastically via the equation

z= µ+σ � ε, (1.19)

where � is the Hadamard product, and ε is noise generated externally to the neural

network graph23. This spread results in similar samples overlapping within the latent

space, and therefore we end up with a smooth latent space that we can interpolate

through. However, currently there is no incentive for the neural network to provide

a coherent, compact global structure in the latent space. For that we require a

regularisation term in the loss. This regularisation is provided via the Kullback-

Leibler (KL) divergence, which is a measure of the difference between two probability

distributions. A standard VAE uses the KL divergence to push the latent distribution

towards the standard normal distribution, incentivising a compact, continuous latent

space. Hence, the final VAE loss is a combination of the reconstruction loss and KL

divergence:

LVAE =LR(x, x̂) + KL(q(x|z)‖p), (1.20)

where p is some prior. In a standard VAE p =N (0,1).

1.9.2 Generative adversarial networks

Generative adversarial networks (GAN; Goodfellow et al. 2014) can be thought of as

a minimax game between two competing neural networks. If we anthropomorphise

23To avoid breaking the backpropagation chain the VAE injects noise via an external parameter, ε.
This is described in Kingma and Welling (2013) as the ‘reparameterisation trick’.
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we can gain an intuition for how a GAN learns: let us imagine an art forger, and an art

critic. The forger wants to paint paintings that are similar to famous expensive works,

and needs to fool the critic when selling these paintings. Meanwhile, the critic wants

to ensure that no reproductions are sold and so he needs to accurately determine

whether any painting is an original or a reproduction. At first, our forger is a poor

painter, and so the critic can easily identify our forger’s works. However, the forger

learns from the critic’s choices and produces more realistic paintings. As the forger’s

paintings improve, the critic also learns better methods for detecting forgeries. This

minimax game incentivises the critic to keep improving his classifications, and the

forger to keep improving his painting. If this continues, we get to a point where the

forger’s works are indiscernible from the real thing—the forger has learnt to perfectly

mimic the dataset! In a GAN, we name the critic the discriminator (D), and we name

the forger the generator (G).

In Goodfellow et al.’s original GAN formulation (Fig. 1.18a), G and D compete

during training in a minimax game where G aims to maximise the probability of D

mispredicting that a generated datapoint is sampled from the real dataset. G takes

as input a randomly sampled latent vector z, and outputs a synthetic datapoint G(z).
D takes either this synthetic datapoint, or a real datapoint x, and outputs D(G(z)) or

D(x). This output is the probability that the datapoint is drawn from the real dataset.

We compare this probability to a binary label indicating whether the datapoint is

real or not, and backpropagate the error through both D and G. The network’s

weights are updated with each training datapoint to follow ∇wL downwards until

the distribution of G(z) closely resembles that of the real dataset. Once trained, G

can be used to generate entirely novel synthetic data that closely resembles (but is

not identical to) the training set data.

In Fig. 1.18b we see that the GAN adversarial loss can be used to translate between

image domains (Isola et al. 2016). In Isola et al.’s Pix2pix model, the generator takes

as input an image x, and attempts to produce a related image y. Meanwhile, the

discriminator attempts to discern whether the (x,y) pair that it is given is sampled

from the training set, or the generator. Otherwise, Pix2Pix is trained in the same way

as the standard GAN.

1.9.3 Score-based generative modelling and diffusion models

Diffusion models were introduced by Sohl-Dickstein et al. (2015) and were first shown

to be capable of producing high quality synthetic samples by Ho, Jain, and Abbeel

(2020). Diffusion models are part of a family of generative deep learning models

that employ denoising score matching via annealed Langevin dynamic sampling (first
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D(x) or D(G(z))
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z

(a) A typical Generative Adversarial Network according to Goodfellow et al. (2014). z is a noise vector,
x is a sample from the training set. The discriminator learns to classify the incoming images as either
fake or real, and the generator learns to fool the discriminator by producing realistic fakes.

x

+

U-Net Generator
G(x)≈ y

Res
idual connection

x

+y

or

Discriminator

D(x+ G(x))
or

D(x+ y)

(b) A Pix2Pix-like model with a U-Net generator (Ronneberger, Fischer, and Brox 2015; Isola et al.
2016). The discriminator learns to classify the incoming image tuples as either fake or real. Meanwhile,
the generator learns to fool the discriminator by approximating the colourisation function mapping
x→ y.

Figure 1.18: The GAN and Pix2Pix models.
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explored by Hyvärinen (2005) and Vincent (2011). More recent work can be found

in Ho, Jain, and Abbeel (2020), Jolicoeur-Martineau et al. (2020), Song and Ermon

(2020), Jolicoeur-Martineau et al. (2021), and Song et al. (2021)). This family

of score-based generative models (SBGMs) can generate imagery of a quality and

diversity surpassing state of the art GAN models (Goodfellow et al. 2014), a startling

result considering the historic disparity in interest and development between the two

techniques (Dhariwal and Nichol 2021; Nichol and Dhariwal 2021; Song et al. 2021;

Ramesh et al. 2022). SBGMs can super-resolve images (Kadkhodaie and Simoncelli

2020; Saharia et al. 2021), translate between image domains (Sasaki, Willcocks, and

Breckon 2021), separate superimposed images (Jayaram and Thickstun 2020), and

in-paint information (Kadkhodaie and Simoncelli 2020; Song et al. 2021).

Diffusion models define a diffusion process that projects a complex image domain

space onto a simple domain space. In the original formulation, this diffusion process is

fixed to a predefined Markov chain q(xt | xt−1) that adds a small amount of Gaussian

noise with each step. As Fig. 4.1 shows, this ‘simple domain space’ can be noise

sampled from a Gaussian distribution xT ∼N (0,1).

Forward process

To slowly add Gaussian noise to our data we define a Markov chain

q(x0...T ) = q(x0)
T∏

t=1

q(xt | xt−1).

The amount of noise added per step is controlled with a variance schedule {βt ∈
(0, 1)}Tt=1:

q(xt | xt−1) =N (xt;
Æ

1− βt xt−1, βt1). (1.21)

This process is applied incrementally to the input image. Since we can define the

above equation such that it only depends on x0 we can immediately calculate an image

representation xt for any t (Ho, Jain, and Abbeel 2020). If we define αt = 1− βt

and ᾱt =
∏t

i=1αi:

xt =
p
αt xt−1 +

p
1−αt zt−1

=
p
αtαt−1 xt−2 +

Æ
(1−αt) +αt(1−αt−1) z̄t−2

=
p
αtαt−1αt−2 xt−3 +

Æ
(1−αtαt−1) +αtαt−1(1−αt−2) z̄t−3

= . . .

=
p
ᾱtx0 +

p
1− ᾱtz, (1.22)
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Figure 1.19: It is easy (and achievable without learnt parameters) to add noise to an image,
but more difficult to remove it. Diffusion models attempt to learn an iterative removal process
via training an appropriate neural network, pθ (xt−1 | xt).
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where zt ∼ N (0,1) and z̄ is a combination of Gaussians. Plugging the above

expression into Eq. 4.1 removes the xt−1 dependency and yields

q(xt | x0) =N (xt;
p
ᾱt x0, (1− ᾱt)1).

Reverse process

Diffusion models attempt to reverse the forward process by applying a Markov chain

with learnt Gaussian transitions. These transitions can be learnt via an appropriate

neural network, pθ :

pθ (x0...T ) = p(xT )
T∏

t=1

pθ (xt−1 | xt),

pθ (xt−1 | xt) =N (xt−1;µθ (xt , t),Σθ (xt , t)).

While Σθ (xt , t) can be learnt24, the Ho, Jain, and Abbeel (2020) formulation fixes

Σθ to an iteration-dependent constant σ2
t1, where σ2

t = 1−αt .

By recognising that Diffusion Models are a restricted class of Hierarchical VAE25,

we see that we can train pθ by optimising the evidence lower bound (ELBO, introduced

in Kingma and Welling 2013) that can be written as a summation over the Kullback-

Leibler divergences at each iteration step26:

LELBO = Eq

h
DKL(q(xT | x0)‖p(xT ))+

∑
t>1

DKL(q(xt−1 | xt ,x0)‖pθ (xt−1 | xt)) + log pθ (x0 | x1)
i
. (1.23)

In the Ho, Jain, and Abbeel (2020) formulation, the first term in Eq. 1.23 is a constant

during training and the final term is modelled as an independent discrete decoder.

This leaves the middle summation. Each summand can be written as

L (µt ,µθ ) =
1

2σ2
t
‖µt(xt ,x0)−µθ (xt , t)‖2, (1.24)

where µθ is the neural network’s estimation of the forward process posterior mean

µt . In practice it would be preferable to predict the noise addition in each iteration

24See for example Nichol and Dhariwal (2021).
25Denoising autoencoders (§1.9.1) have an interesting relationship with score-based generative

(or diffusion) models. As a taster, Turner (2021) reframe diffusion models as a class of hierarchical
denoising VAE, and Dieleman (2022) show through a brief derivation that diffusion models optimise
the same loss as a denoising autoencoder.

26See Appendix B in Sohl-Dickstein et al. (2015) and Appendix A in Ho, Jain, and Abbeel (2020)
for the full derivation.
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step (zt), as zt has a distribution that by definition is centred about 0, with a well

defined variance. To this end we can define µθ as

µθ (xt , t) =
1p
αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
, (1.25)

and by combining Eqs. 1.24 and 1.25 we get

L (zt ,zθ ) =
1

2σ2
t


1p
αt

�
xt −

1−αtp
1− ᾱt

zt

�
− 1p

αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
2

=
(1−αt)2

2σ2
tαt(1− ᾱt)

‖zt − zθ (xt , t)‖2. (1.26)

Ho, Jain, and Abbeel (2020) empirically found that a simplified version of the loss

described in Eq. 1.26 results in better sample quality. They use a simplified version of

Eq. 1.26 as their loss, and optimise to predict the noise required to reverse a forward

process iteration step:

L (zt ,zθ ) = ‖zt − zθ (xt , t)‖2, where xt =
p
ᾱtx0 +

p
1− ᾱtzt . (1.27)

By recognising that zt = σ2
t∇xt

log q(xt | xt−1), we see that Eq. 1.27 is equivalent

to denoising score matching over t noise levels (Vincent 2011). This connection

establishes a link between Diffusion Models and other SBGMs (such as Song and

Ermon 2019; Jolicoeur-Martineau et al. 2020; Song and Ermon 2020).

To run inference for the reverse process, one progressively removes the predicted

noise zθ from an image. The predicted noise is weighted according to a variance

schedule:

xt−1 =
1p
αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
+σ tz.

If we take p(xT ) ∼ N (xT ;0,1), we can use pθ to generate entirely novel data

that are similar, but not identical to, those found in the training set.

Denoising diffusion implicit models

Ho, Jain, and Abbeel’s diffusion model performs inference at a rate orders of mag-

nitude slower than single shot generative models like the VAE (§1.9.1) or the GAN

(§1.9.2). This is because diffusion models need to sequentially reverse every step

in the forward process Markov Chain. Reducing the inference time for diffusion

models is an active area of research (Jolicoeur-Martineau et al. 2021; Luhman and

Luhman 2021; Watson et al. 2022), and here I will review one proposed solution to
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the problem; the Denoising Diffusion Implicit Model (DDIM; Song, Meng, and Ermon

2020).

Song, Meng, and Ermon (2020) propose the following decomposition of Eq. 1.22:

xt−1 =
p
ᾱt−1 x0 +

p
1− ᾱt−1 zθ (xt , t)

=
p
ᾱt−1 x0 +

Æ
1− ᾱt−1 −σ2

t zθ +σtzt

=
p
ᾱt−1

�
xt −

p
1− ᾱt zθp
ᾱt

�

︸ ︷︷ ︸
x0 prediction

+
Æ

1− ᾱt−1 −σ2
t zθ︸ ︷︷ ︸

vector towards xt

+σtzt︸︷︷︸
noise

.

Intuitively, the first term can be thought of as the prediction of the input image x0,

given an iteration step t. The second term can be thought of as a vector from xt−1

towards the current iteration step image xt . The third term is random noise. If we

substitute in xt from Eq. 1.27 we make this intuition explicit:

xt−1 =
p
ᾱt−1 x0 +

Æ
1− ᾱt−1 −σ2

t

xt −
p
ᾱt x0p

1− ᾱt

+σtzt .

If we then set σt = 0, we remove the noise dependency and the forward process

becomes deterministic:

qDDIM(xt−1 | xt ,x0) =
p
ᾱt−1 x0 +

p
1− ᾱt−1

xt −
p
ᾱt x0p

1− ᾱt

. (1.28)

This means that DDIMs can deterministically map to and from the latent space, and

so inherit all the benefits of this property. For example, two objects sampled from

similar latent vectors share high level properties, latent space arithmetic is possible,

and we can perform meaningful interpolation within this space. I demonstrate DDIM

latent space interpolation in Fig. 1.20.

Figure 1.20: Meaningful latent space interpolation via a DDIM model (Song, Meng, and
Ermon 2020; M. J. Smith et al. 2022). This property comes ‘for free’ with most other
generative models, however the denoising diffusion probabilistic model (Ho, Jain, and Abbeel
2020) requires a tweak to its sampling scheme (Eq. 1.28).

We can also subsample every τ number of steps at inference time, where τ is a
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set of evenly spaced steps between 0 and T , the maximum number of steps in the

forward process:

qDDIM(xτi−1
| xτi

,x0) =
p
ᾱt−1 x0 +

p
1− ᾱt−1

xτi
−pᾱt x0p
1− ᾱt

. (1.29)

As shown in Song, Meng, and Ermon (2020) this results in acceptable generations

with a T/τ inference speed up.

1.10 Representation learning

Self-supervised representation learning has recently exploded in popularity, with a

slew of models being developed in rapid succession (e.g. He et al. 2019; T. Chen

et al. 2020a,b; X. Chen et al. 2020; Grill et al. 2020). At its core, representation

learning attempts to produce semantically meaningful compressed representations

(or embeddings) of complex highly dimensional data. Aside from simply being a

compression device, these embeddings can also be taken and used in downstream

tasks, like clustering, anomaly detection, or classification.

In this section I will describe two approaches to representation learning that are

popular within astronomy. The first approach uses contrastive learning as defined

by the SimCLR model (T. Chen et al. 2020a,b). The second approach defines and

uses a ‘surrogate task’ (such as autoencoding or next value prediction) to train a

deep learning model, and extracts semantically meaningful representations from the

subsequent trained network.

1.10.1 Contrastive learning

Fig. 1.21 describes a simple contrastive learning model similar to SimCLR (T. Chen et

al. 2020a). This model takes as input a sample x from the training set, and augments

it to produceA (x). This augmentation is performed in such a way thatA (x) shares

enough semantically meaningful data with x to belong to the same class. In the

contrastive learning literature (x,A (x)) is known as a positive pair. This positive pair

is passed to a Siamese neural network Φ, which projects the high dimensional input

data onto a lower dimensional ‘embedding space’. All other training set samples

are assumed to belong to a different class to x, and so can be combined with x to

produce ‘negative pairs’. Once we produce some embeddings we need to define a loss

that clusters similar samples together, while simultaneously pushing away dissimilar

samples. Hadsell, Chopra, and LeCun (2006) propose such a loss—the maximum
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x

A

A (x)

ΦCNN L (Φ(x), Φ(A (x)))

(a) Possible application to imagery.

x

A

A (x)

ΦRNN L (Φ(x), Φ(A (x)))

(b) Possible application to sequential data.

Figure 1.21: A simple contrastive learning model is applied to both imagery and sequential
data. A is an augmentation pipeline. For imagery,A could consist of random crops, noise
addition, and colour jitter. For sequential data,A could consist of noise addition, stochastic
temporal shifting, and random data deletion. Φ is a function approximator that projects
inputs onto an embedding space. Φ is typically a neural network: when processing imagery,
Φ could take the form of a CNN, and when processing sequential data Φ could be an RNN.
The loss L measures the distance between the embeddings Φ(x) ≡ zi and Φ(A (x)) ≡ z j,
and we train by attempting to minimise this distance while maximising the distance between
dissimilar samples.

margin contrastive loss:

L (zi,z j) = δi j z
T
i z j + (1−δi j)max(0, m− zT

i z j),

where δ is the Kronecker delta, zi and z j are embedding vectors27, and m is the

margin. If zi and z j are a positive pair, the loss pulls the embeddings closer, and if

they are a negative pair the loss pushes the embeddings away from each other. The

margin imposes an upper distance bound on dissimilar embeddings.

While useful, the maximum margin contrastive loss does not take into account

the embedding space beyond the pair it is attending to in each training step. This

limitation ultimately results in a less expressive embedding space. The triplet loss

(Chechik et al. 2010) solves this issue by taking into account the broader embedding

space and simultaneously attracting a positive pair while repulsing a negative pair

with each training step:

L (zi,z j,zk) =max(0, zT
i z j − zT

i zk +m) (1.30)

where zk is a sampled from a different class to zi, and z j is sampled from the same

class as zi.

27All embeddings in this subsection are normalised.
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Figure 1.22: The triplet (Eq. 1.30) and
NT-Xent (Eq. 1.31) losses simultaneously incen-
tivise attraction between embeddings sampled
from the same class (zi and z j), and repulsion
between embeddings sampled from different
classes (zi and zk).
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If we study Eq. 1.30 we see that it is possible to generalise our loss even further,

taking into account an arbitrary number of negative samples. The Normalized

Temperature-scaled Cross Entropy loss (NT-Xent; Sohn 2016) does precisely this:

L (zi,z j) = −log

 
exp(zT

i z j/T )∑2N
k=1(1−δki)exp(zT

i zk/T )

!
, (1.31)

where zi and z j are a positive embedding pair, and zi and zk are a negative pair. T
is a ‘temperature’ hyperparameter introduced in T. Chen et al. (2020a) to help the

model learn from hard negatives (negatives closer to the anchor than the comparison

positive, see Fig. 1.23).

Figure 1.23: Types of negative embeddings. zi and
z j form a positive embedding pair. If a negative is
closer than the current positive it is considered a hard
negative, if it lies within the margin it is considered
a semi-hard negative, and if it is beyond the margin
it is considered an easy negative.
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1.10.2 Learning representations via a surrogate task

One can also learn representations via a surrogate task. A surrogate task is any task

that is unrelated to the network’s final use. However, in the process of learning

to perform the surrogate task, the network learns what is important, and what

is unimportant about data within the training set. This information can then be

extracted in the form of learnt representations. If the surrogate task is general
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enough, these representations will contain useful semantic information about the

items in the dataset, and can then be used for downstream applications (i.e. clustering,

classification, anomaly detection).

Let us concretise this process by revisiting an example that we previously discussed

in §1.5. Let us imagine we have a large set of galaxy rotation curves that we want

to extract embeddings from. We could train an LSTM model (Fig. 1.24) on the task

of predicting the next item in the rotation curve, with the model only having access

to the previous items in the profile. Once the LSTM model is trained on this task,

we can feed in a full, new rotation curve, and repurpose the final hidden state as a

representative embedding. Note that this set up does not rely on any external labels,

only on the rotation curve itself28.

We can generate embeddings via an autoencoding task. Again, let us use an

astronomical example to specify this, and say that we want to extract embeddings

from a set of galaxy observations. We could repurpose a variational autoencoder

for this, training it as normal as described in §1.9.1. However, once the model is

trained we would discard the decoding part of the network, and only consider the

encoder. To generate embeddings we would then simply pass in our galaxy images to

the trained encoder. The same process can be carried out by a GAN (§1.9.2). In the

GAN case, we would discard the generator after training, and use the discriminator’s

penultimate layer outputs as our embeddings.

Supervised networks can also be used to generate embeddings. If a network has

been trained in a supervised manner to classify or regress data, it will have learnt

some properties about that data that helps it to carry out its task. We can access these

learnt representations by taking the outputs from a trained network’s penultimate

layer as an embedding29.

1.11 A third wave: non-supervised astronomical

connectionism

Since its astronomical debut in the mid-2010s (Regier, McAuliffe, and Prabhat

2015)30, deep generative modelling has become a popular subfield within astro-

nomical connectionism. This popularity is driven by its inherent scalability; the lack
28This self-supervised training set up is similar to that used to train autoregressive foundation

models. These models will be explored in detail in §5.1.
29Interestingly, this process is used in the calculation for the Fréchet Inception Distance (FID)

(Heusel et al. 2017; Seitzer 2020). The FID acts as a measurement of the visual similarity between two
datasets. The FID works by taking the penultimate layer representations from a trained Inception-v3
model (Szegedy et al. 2016) for each dataset and calculating the distance between them.

30Also compare its companion paper (Regier et al. 2015).
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LSTM LSTM LSTM . . . LSTM

p1

x0

p2

x1

p3

x2

pN

xN−1

(a) While training we feed in the galaxy rotation curve, and predict the next observation in its sequence.

LSTM LSTM . . . LSTM h

x0 x1 xN

(b) While inferring we feed in the full galaxy rotation curve, and extract the LSTM hidden state as
a compressed representation embedding of the curve. Otherwise, we ignore whatever output (i.e.
{p1, . . . , pN}) the LSTM generates.

Figure 1.24: A hypothetical surrogate task for extracting rotation curve representations is
shown. {x0, . . . , xN} is a set of observations from a galaxy rotation curve, in order of radial
distance from the galactic centre. {p1, . . . , pN} is the LSTM’s corresponding set of predictions
for {x1, . . . , xN}. h is the LSTM hidden state vector. See Fig. 1.11 for more about the internal
workings of the LSTM.
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of a need for labelled data allows the methods to be repurposed for any dataset

that might be at hand. Self-supervised connectionism has been around for longer,

but again has recently exploded in popularity due to its usefulness in wrangling

enormous unlabelled datasets. This section is split into two major parts; I will first

outline the history of deep astronomical generative modelling in §1.11.1, and the

history of contrastive representation learning will be discussed in §1.11.2. Although

representation learning is the explicit goal for only the studies described in §1.11.2, it

must be stressed that representations can also be extracted from all the deep generative

models described in §1.11.1.

1.11.1 Deep astronomical generative modelling

Seminally, Regier, McAuliffe, and Prabhat (2015) proposed the use of a VAE to model

galaxy observations. They trained their network on downscaled 69× 69 crops of

galaxies from a SDSS-sampled dataset containing 43444 galaxies. They trained

their network in the same way as described in §1.9.1, and find that the network is

capable of generating galaxies similar to those found in the training set. They also

find that their network produces semantically meaningful embeddings, noting that

their galaxies are clustered by orientation and morphological type. This same line of

enquiry was followed by Ravanbakhsh et al. (2016), who showed that VAEs could be

used to generate galaxies conditionally. Ravanbakhsh et al. (2016) also pioneered the

use of GANs to generate galaxy imagery. Spindler, Geach, and Smith (2020) used a

VAE combined with a Gaussian mixture model prior (see Eq. 1.20 and accompanying

text) to generate and cluster galaxy images into morphological types. The previous

studies in this paragraph used low resolution observations in their training set. Fussell

and Moews (2019) and Holzschuh et al. (2022) demonstrated that GANs are capable

of generating large high fidelity galaxy observations. Fussell and Moews (2019)

achieved this with a stacked GAN architecture (Zhou et al. 2016), and Holzschuh

et al. (2022) use the related StyleGAN architecture (Karras, Laine, and Aila 2018) to

the same end. Relatedly, M. J. Smith et al. (2022) use a diffusion model to generate

large high fidelity galaxies. They trained their network on two datasets comprised

of galaxies as observed by the Dark Energy Spectroscopic Instrument (DESI; Dey

et al. 2019). One, a set of 306006 galaxies catalogued in the SDSS Data Release

7 (York et al. 2000; Abazajian et al. 2009; Wilman, Zibetti, and Budavári 2010),

and the other a set of 1962 late-type galaxies, as catalogued in the Photometry and

Rotation curve OBservations from Extragalatic Surveys (PROBES; Stone and Courteau

2019) dataset. PROBES contains well resolved galaxies that exhibit spiral arms, bars,

and other features characteristic of late-type galaxies. They found that their model



1.11. ASTRONOMY’S THIRD WAVE OF CONNECTIONISM 45

produces galaxies both qualitatively and physically indistinguishable from those in

the training set, proving that diffusion models are a competitive alternative to the

more established GAN and VAE models for astronomical simulation. M. J. Smith et al.

(2022) is presented in full in §4. From all of these studies we can conclude that deep

generative models can internalise a model capable of physically and morphologically

describing galaxies.

Generative models have also been used to simulate data in areas beyond galaxies.

In a use-case tangential to galaxy generation, Smith and Geach (2019) show that a

Spatial-GAN (Jetchev, Bergmann, and Vollgraf 2016) can simulate wide field surveys.

They train on the Hubble eXtreme Deep Field, and find that galaxies generated within

their model’s synthetic deep fields are statistically indistinguishable from the real

thing. Smith and Geach (2019) is presented in full in §3. Cosmological simulations

have also been explored, with Rodriguez et al. (2018) using a GAN to generate

cosmic web simulations at pace, and Mustafa et al. (2019a) generating weak lensing

convergence maps at a pace faster than classic simulations. Beyond GANs, Remy

et al. (2020)31 trained a SBGM on simulated maps from MassiveNus (J. Liu et al.

2018), and found that their model was capable of replicating these maps. They

also demonstrated that their model was capable of producing a likely spread in the

posterior predictions. Finally, they demonstrate that a SBGM is capable of predicting

the dark matter map of the real Hubble Cosmic Evolution Survey (COSMOS) field

(Scoville et al. 2007), finding that their SBGM can produce an extremely high quality

dark matter map.

The image domain translation abilities of GANs in a Pix2Pix-like formulation

(Isola et al. 2016, see Fig. 1.18b.) is particularly useful in astronomy. Schawinski

et al. (2017) demonstrated this use first by training a Pix2Pix-like model to denoise

astronomical data. They trained their network on 4550 galaxies sampled from the

SDSS. The galaxies were convolved to increase the seeing, and speckle noise was

added. The GAN was tasked with reversing this process. They found that their

method outperformed both blind deconvolution, and Lucy-Richardson deconvolution.

Generative models are also capable of separating sources, as Stark et al. (2018)

demonstrate by using a Pix2Pix model to deblend quasar point source light and that

of their host galaxy. Reiman and Göhre (2019) use a similar model to Stark et al.

(2018) to deblend overlapping galaxies.

At the time of writing there are only three examples of score-based modelling

in the astronomy literature (Remy et al. 2020, 2022; M. J. Smith et al. 2022). It

is surprising that these studies are the only examples of score-based modelling in

31This preliminary work has been subsequently extended in Remy et al. (2022).
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astronomy, as SBGMs produce generations that rival that of state-of-the-art GAN

models, without drawbacks present in other models (like blurring in the case of VAEs,

or mode collapse and training instability in the case of GANs). SBGMs also have

some natural uses in astronomical data pipelines. For example, an implementation

similar to Sasaki, Willcocks, and Breckon (2021) could be used for survey-to-survey

photometry translation similarly to Buncher, Sharma, and Carrasco Kind (2021).

The source image separation model described in Jayaram and Thickstun (2020) has

the obvious application as an astronomical object deblender (i.e. Stark et al. 2018;

Reiman and Göhre 2019; Arcelin et al. 2021). SBGMs are ripe for exploitation by the

astronomical community, and I hope to see much interest in this area in the coming

years.

1.11.2 Self-supervised astronomical representation learning

Very recently there has been some work produced applying self-supervised contrastive

learning models to galaxy image clustering. Hayat et al. (2021) trained SimCLR (T.

Chen et al. 2020a) on multi-band galaxy photometry from the SDSS (York et al. 2000).

They show that the resulting embeddings capture useful information by directly using

them in a training set for a galaxy morphology classification model, and a redshift

estimation model. Similarly, Sarmiento et al. (2021) trained SimCLR on integral

field spectroscopy data captured from galaxies in the Mapping Nearby Galaxies at

Apache Point Observatory survey (MaNGA; Bundy et al. 2014). Again, they find that

SimCLR produces semantically meaningful embeddings. These studies show that

contrastive learning is applicable to galaxy imagery, but questions remain about its

effectiveness regarding other types of astronomical data, such as time series. I am

currently co-leading a study that will attempt to address this gap in the literature

(Miller, M. J. Smith et al. in prep.).

1.12 Deep learning for large astronomical datasets

The following three chapters describe three models that leverage recent developments

in deep learning, and astronomy’s recent abundance of data. First, §2 demonstrates

that it is possible to perform a classical semi-manual astronomical information ex-

traction pipeline via a Seq2Seq style neural network (§1.7). §3 and §4 describe two

generative models that have been repurposed as astronomical simulators. §3 uses a

generative adversarial network (§1.9.2) to simulate the Hubble eXtreme Deep Field.

Meanwhile, §4 uses score-based modelling (§1.9.3) to generate hyper-realistic galaxy

observations. All of these chapters have been published previously in the Monthly
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Notices of the Royal Astronomical Society, and the contents of each chapter have

been kept as similar to their published counterparts as possible. In §5 I draw this

thesis to an end by extrapolating astronomy’s future from other applied deep fields,

and outlining a coming ‘fourth wave’ of astronomical connectionism.
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Chapter 2

Pix2Prof: fast extraction of sequences

from galaxy imagery via a deep

natural language ‘captioning’ model

We present ‘Pix2Prof’, a deep learning model that can eliminate any manual steps

taken when extracting galaxy profiles. We argue that a galaxy profile of any sort

is conceptually similar to a natural language image caption. This idea allows us to

leverage image captioning methods from the field of natural language processing,

and so we design Pix2Prof as a float sequence ‘captioning’ model suitable for galaxy

profile inference. We demonstrate the technique by approximating a galaxy surface

brightness (SB) profile fitting method that contains several manual steps. Pix2Prof

processes ∼1 image per second on an Intel Xeon E5 2650 v3 CPU, improving on

the speed of the manual interactive method by more than two orders of magnitude.

Crucially, Pix2Prof requires no manual interaction, and since galaxy profile estimation

is an embarrassingly parallel problem, we can further increase the throughput by

running many Pix2Prof instances simultaneously. In perspective, Pix2Prof would take

under an hour to infer profiles for 100 000 galaxies on a single NVIDIA DGX-2 system.

A single human expert would take approximately two years to complete the same

task. Automated methodology such as this will accelerate the analysis of the next

generation of large area sky surveys expected to yield hundreds of millions of targets.

In such instances, all manual approaches – even those involving a large number of

experts – will be impractical.

This chapter has been previously published as M. J. Smith et al. (2021). ‘Pix2Prof:

fast extraction of sequential information from galaxy imagery via a deep natural

language ’captioning’ model’. In: Monthly Notices of the Royal Astronomical Soci-

ety 503.1, pp. 96–105. DOI: 10.1093/mnras/stab424. arXiv: 2010.00622

49

https://doi.org/10.1093/mnras/stab424
https://arxiv.org/abs/2010.00622
https://arxiv.org/abs/2010.00622


50 CHAPTER 2. PIX2PROF

[astro-ph.IM]. It has been presented as as a contributed talk at IAP-ML 2021,

Paris, France.

2.1 Introduction

Large astrophysical surveys such as the Sloan Digital Sky Survey (SDSS; York et al.

2000), the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS;

Chambers et al. 2016), the Hyper Suprime Cam (HSC; Aihara et al. 2017) Subaru

Strategic Program Survey, or the upcoming Vera C. Rubin Observatory Legacy Survey

of Space and Time (LSST; Ivezić et al. 2019), carry an inherent scaling problem. The

SDSS has observed over 35 per cent of the sky, cataloguing over 1 billion astronomical

objects (Ahumada et al. 2019) with a data rate of raw multiband imagery approaching

200 GB per night. In January 2019, Pan-STARRS second Data Release totalled 1.6 PB

of imaging data. A precursor to LSST, HSC’s 990 megapixel camera has already

produced over 1 PB of imaging data (Aihara et al. 2019). These surveys will be

dwarfed by the upcoming LSST project. LSST’s 3.2 gigapixel camera will be the

largest ever made, and will survey the entire visible sky twice per week, generating

∼500 PB of imaging data over its decade-long mission. The ‘firehose’ of data from

surveys such as LSST will require correspondingly efficient and fully automated

procedures to curate and analyse the data, enabling new astrophysical findings and

making unanticipated discoveries.

In this study, we are concerned with the automated direct analysis of galaxy

imagery towards estimating galaxy properties such as size, luminosity, colour, and

stellar mass. To calculate these properties, one typically applies a photometric analysis

that involves extracting and characterising the spatial distribution of a galaxy’s light,

described by a surface brightness (SB) profile. The galaxy structural parameters as

reflected by the SB profile can be used to infer a suite of other important characteristics

such as light concentration, age, star formation rate, and assembly history (e.g. Strom

et al. 1976; Bell et al. 2003; S. Shen et al. 2003; Bernardi et al. 2005; Fernández

Lorenzo et al. 2013; Trujillo, Chamba, and Knapen 2020).

Numerous catalogues of galaxy structural properties already exist (Jedrzejewski

1987; Courteau 1996; Brinchmann et al. 2004; Blanton et al. 2005; Hall et al. 2012;

Gilhuly and Courteau 2018). Unfortunately, the methods used in these compilations

are either time consuming, requiring human supervision, or fast but unreliable since

they require a priori assumptions about the shapes of galaxy components and other

features. Similarly to the study detailed in this chapter, Tuccillo et al. (2018) describe

a fully automated neural network based technique (named ‘DeepLeGATo’; Deep

https://arxiv.org/abs/2010.00622
https://arxiv.org/abs/2010.00622
https://arxiv.org/abs/2010.00622
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Learning Galaxy Analysis Tool) designed to replicate the GALFIT model-dependent

algorithm. DeepLeGATo is a fine example of an effective application of deep learning,

providing faster and possibly more accurate analysis than its parent method, GALFIT

(Peng et al. 2002). However, DeepLeGATo inherits from its similarity to GALFIT

the same issues stated previously; namely, the hard-coded assumption of galaxy

profile shapes, and other features. Furthermore, DeepLeGATo can only produce

single float outputs, and so cannot infer an SB profile directly. This means that

DeepLeGATo must rely on an intermediary model to generate a complete SB profile.

Therefore, even with semi-automated methods, the accurate extraction of all the

useful information from existing surveys would take years. With the data volume

expected to grow significantly in the coming years, this becomes an intractable

problem. Of great concern is the possibility that important discoveries and insight

could be missed or delayed significantly due to the technical challenges imposed by

the unprecedented data volume. Clearly, there is a pressing need for entirely new

and efficient automated methods that significantly reduce, and ideally circumvent,

human interactions. Machine learning is ideally suited for this task, and we apply

it in this chapter towards the specific problem of extracting SB profiles from multi-

band imaging data. Our approach takes advantage of a set of SB profiles already

determined via classical, interactive methods (Courteau 1996; Gilhuly and Courteau

2018). We describe the classical method used to produce the training data set in

the next section. The remainder of the chapter is organised as follows: Section 2.2

introduces our approach; our results and validation are presented in Section 2.3;

Section 2.4 addresses our global findings, and concludes with suggestions for broader

application of the algorithm.

2.2 Method

2.2.1 The classical surface brightness profile extraction algorithm

In the surface photometry of galaxies (e.g. Courteau 1996, and references therein),

the spatially resolved light profile of a galaxy is extracted by fitting progressively

larger isophotes about a common centre. The fitting technique assumes that projected

isophotes are well represented by ellipses. A galaxy’s centre is found by identifying

the brightest pixel in a manually selected region. Given a manually defined galaxy

centre, the classical algorithm determines the parameters needed to define each

ellipse via a least squares optimisation. The algorithm then generates isophotal

solutions at each radius well into the faint outskirts of the galaxy. In these regions of
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lower signal-to-noise, where fitting algorithms are challenged, the algorithm radially

extends the last fitted isophote in the previous operation with a set of concentric

isophotes out to an arbitrarily large radius, usually taken to be the edge of the image.

The isophotes may vary in ellipticity and position angle as a function of galac-

tocentric radius. This can become problematic when fitting to non-axisymmetric

structures in galaxies, such as bars and spiral arms that can cause large twists in the

fitted isophotal map. This issue can be corrected by manually applying a smoothing

function to some portions of the image. The latter consists of manually smoothing the

contour fits (i.e. uncrossing twisted isophotes), and replacing poorly fitted data with

a polynomial smoothing function. Note that, prior to applying isophotal fitting to

galaxy images, some pre-processing is also required: the galaxy centre must be iden-

tified as described above; the ‘sky’ background must be estimated and removed from

the image; nuisance foreground objects (such as unassociated galaxies or foreground

stars) must be identified and masked. These steps add to the manual supervision of

the task.

Besides the assumption that galaxies are circular when viewed face-on, and thus

generally of elliptical appearance when projected on to the plane of the sky, the

algorithm purposefully avoids using a priori knowledge of galactic disc profile shapes

and other features such as bars, rings, and spiral arms. This avoids biasing the

isophotal solution to any pre-determined, and possibly incorrect, shape – a problem

especially acute in the faint outer edges of a galaxy.

Table 2.1: A summary of the Courteau (1996) surface brightness profile fitting algorithm’s
processes. An approximate wall time per galaxy is given for the manual sections. The
automated sections’ time contributions are negligible.

Process Automated? Wall time (s/gal)

Identify galaxy centre No 5
Estimate & remove sky background Yes –
Remove foreground objects No 120
Fit contours Yes –
Extend contours to galaxy extent No 30
Smooth isophotes Yes –
Interpolate poorly fitted data No 120

While the semi-automated steps outlined above yield high quality SB profiles,

the process of obtaining a single profile is slow and systematic variations may exist

between different profile extraction methods. The interactive nature of certain steps

may indeed give rise to marked profile differences, especially in low SB regimes where

the isophotal solutions are less robust. The low SB regimes will always remain the



2.2. METHOD 53

bane of galaxy image analysis, whether automated or interactive, but the elimination

of subjective steps goes a long way towards reducing systematic differences between

profiles. Therefore, it becomes desirable to eliminate all interactive steps while

retaining all the benefits of classic algorithms such as Courteau (1996) described

above. In this chapter, we present a fully automated solution that incorporates

the extant knowledge base of SB profile fitting methodology, but avoids human

interaction.

2.2.2 Borrowing from automated image captioning

In recent years, the field of automated image captioning has benefited greatly from

advances in deep learning. We were strongly influenced by these developments when

designing the architecture of our ‘Pix2Prof’ profile estimator. In this section, we briefly

review pure recurrent neural network (RNN) based encoder–decoder architectures,

or models that only use a single encoder and decoder to generate captions. A

comprehensive review on deep learning methods applied to image captioning can be

found in Hossain et al. (2018).

We primarily draw inspiration from gated RNN based encoder–decoder archi-

tectures, as seen in Sutskever, Vinyals, and Le (2014) for sequence-to-sequence

translation, and in Vinyals et al. (2014), Jia et al. (2015), and Wang et al. (2016)

for image-to-sequence translation. Sutskever, Vinyals, and Le (2014) uses an LSTM

(Hochreiter and Schmidhuber 1997) network to encode a given sentence to a latent

descriptive vector, and a second LSTM network to decode the descriptive vector into

a different feature space. One can use this technique to translate text between two

different languages, for example.

Vinyals et al. (2014), Jia et al. (2015), and Wang et al. (2016) all use a convo-

lutional neural network (CNN; Fukushima 1980; LeCun et al. 1989) to first encode

an image to a latent descriptive vector, and then use an LSTM network to decode

this vector into a text description (caption) of a given image. Xu et al. (2015) use a

CNN encoder, and an LSTM that attends over the CNN output. Attention allows this

approach to link each word in the caption with an associated part of the image. This

approach works well for images that are crowded with multiple objects, but a simpler

approach is preferred for our case where each image is dominated by a single, central

galaxy.

A galaxy profile can be thought of as analogous to a text caption describing that

galaxy. Both a text caption and galaxy profile can be encoded as a list of floats

or integers, and both have a length and content dependent on the context of the

conditioning image. Both also need to terminate once a complete sentence or profile
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Figure 2.1: SDSS images of sample galaxies in the g band (top row), and corresponding
surface brightness ‘ground truth’ profiles (bottom row). µ is the surface brightness. The
galaxy names above each image refer to their J2000 celestial coordinate.

is generated, a subjective task well suited to a machine learning solution. RNNs

learn where to terminate a given caption or profile empirically from the training set.

Additionally, galaxy profiles and text captions can both be approximated with an

appropriate RNN. RNNs also produce spatially consistent captions as a consequence

of the architecture, a property not guaranteed in a straight one-shot CNN. With these

benefits in mind, it is natural to consider an encoder–decoder network for the specific

task of estimating challenging galaxy profiles. Importantly, since the proposed model

directly learns the transformation between an unprocessed galaxy image, and the

galaxy’s corresponding SB profile, it eliminates all of the manual steps described in

Section 2.2.1 and Table 2.1.

While we develop Pix2Prof within the context of galaxy SB profile extraction, the

model is equally applicable to any array→ float sequence translation task.

2.2.3 Training set

We initially populate our data set with 10 arcmin × 10 arcmin g, r, and i band image

crops extracted via the SDSS DR10 (York et al. 2000; Eisenstein et al. 2011; Ahn et al.

2014) online mosaic interface. Each image is centred on a galaxy. From these images

we extract an SB profile via the method described in Section 2.2.1. Fig. 2.1 presents a

random sample of training set galaxies, and their corresponding, manually extracted

SB profiles. The 1953 galaxy image–SB profile pairs in each of the g, r, and i bands

yield a total of 5859 pairs. This full data set is then divided into training, validation,

and testing sets. There are 5367 galaxy image–profile pairs in the training set, 192

galaxy image–profile pairs in the validation set, and 300 galaxy image–profile pairs in
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the test set. The sets are randomly assigned, with the condition that a given galaxy’s

three photometric bands are kept within the same set. The subset sizes are chosen to

maximise the training set efficacy while retaining most of the training set variance in

the test set.

The only destructive pre-processing performed on the galaxy imagery is a 99.9th

percentile clipping. This clipping mitigates the issue of single bright (i.e. ‘hot’) pixels

reducing image contrast when the galaxy images are normalised, which would reduce

training efficacy. To this end, we apply a fixed min-max normalisation, defined as

x̄ =
x − A
B − A

, (2.1)

where A= 2.0 nanomaggies is the floor of the minimum value in the training set, and

B = 30.0 nanomaggies is the ceiling of the 99.9th percentile value in the training set.

To reduce information sparsity in the training set images, we further crop each

galaxy image to a shape of [256, 256] pixels before passing the image to Pix2Prof.

We train using the full 32-bit depth of the original data as measured. Good quality

data are paramount when training a neural network, and we therefore cut the

profiles when the signal-to-noise ratio reaches a quality threshold. We terminate

the profile when the signal-to-noise ratio of a 1D convolution with a length of 40

pixels (= 8 arcsec) reaches a threshold of 4. We define signal-to-noise so that it is

equivalent to the ratio of the power of a signal to the power of background noise:

(µ/σ)2, where µ is the mean and σ is the standard deviation of the convolutional

window.

2.2.4 Network architecture

We write our model in PyTorch (Paszke et al. 2019), using a ResNet-18 (He et al.

2015; Srivastava, Greff, and Schmidhuber 2015) encoder, and a GRU (Cho et al.

2014) decoder architecture. This architecture takes an arbitrarily sized single channel

image input, and outputs a sequence of floats of arbitrary length. These floats are

spaced along a galaxy’s semimajor axis at a spacing of 0.2 arcsec per step (the same

as the Courteau (1996) technique). The same network is trained on images in the

g, r, and i bands, and therefore can produce a SB profile in any one of these bands.

Fig. 2.2 shows a representation of the architecture used.

We use the standard ResNet-18 architecture as described in He et al. (2015). The

GRU is stacked to three layers. We apply a rectified linear unit (Nair and Hinton

2010, ReLU) activation and a dense neural layer after the three layer stack to reduce

the number of output values to one. As a regularising measure, we apply dropout at
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Figure 2.2: The ResNet → GRU encoder–decoder architecture used in this chapter. The
hidden state hi is the internal state of the GRU, and is dependent on both the galaxy latent
encoding z, and the previous profile predictions ci .

a 20 per cent rate (Srivastava et al. 2014a). The ResNet first encodes the incoming

galaxy image to a latent space vector z of length 512. This vector is then used as the

initial hidden state h0 of a GRU. In this way, Pix2Prof encodes and passes relevant

information from the image to the GRU. The GRU then unrolls to estimate properties

of the galaxy from z. In this chapter’s case, we demonstrate this process by using z

to estimate a galaxy’s SB profile.

To start estimation, the GRU is fed a start of sequence token. This token is set as

an array of zeros. In place of an end of sequence token, the GRU is programmed to

halt after 100 predictions are output that have a standard deviation of 0.01 or less.

This ensures that the GRU halts estimation once it encounters the background sky.

We use the Adam optimiser (Kingma and Ba 2015) to train Pix2Prof via gradient

descent (Robbins and Monro 1951). Using manual search, we set the learning rate

as 2× 10−4. Due to the logarithmic nature of magnitude, we want to penalise large

deviations from our ground truth SB profiles at a higher rate compared to small

deviations, and so we use the mean squared error loss:

MSE=
1
b

b∑
i=1

(yi − pi)
2, (2.2)

where b is the batch size, y is the ground truth, and p is a prediction.

2.2.5 Training the model

We augment the galaxy images by applying a ‘wobble’. This wobble is a random

small shift in the centre of the image. Each band is treated independently. We do this

to encourage the network to work with the slightly off-centre galaxies that will be

encountered in real data. This is required to make Pix2Prof robust to poorly centred
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galaxy images. We also exploit the rotational axisymmetry of galaxies and further

augment the data by randomly rotating an input image through 90,180, and 270

degrees.

We train the model for 100 000 global steps on a single NVIDIA TESLA V100 GPU.

Training takes approximately 20 minutes per epoch of 500 galaxy images, a rate of

0.4 galaxies per second.

2.3 Results and validation

We validate the model during training once per epoch using the validation set. We

test the trained model on 100 randomly sampled observed galaxies in the g, r, and i

bands (for 300 total image–profile pairs) drawn from the data set and which are set

aside entirely during training. We use the model with the lowest validation loss; epoch

160. We run an entirely automated inference on an Intel Xeon CPU E5-2650 v3 CPU

at a rate of 0.9 galaxies per second.

Fig. 2.3 shows a random selection of 25 Pix2Prof inferred test set SB profiles

superimposed on to the Courteau (1996) SB profiles. Since we have trained Pix2Prof

to directly infer a SB profile from a galaxy image we do not produce intermediate

steps (such as the galaxy centre, ellipticity profile, or position angle profile). However,

one could estimate these values if Pix2Prof is explicitly trained to reproduce them.

Fig. 2.4 shows the error distribution of the test set as well as the test set error per

distance in physical units from the galaxy centre. We define error as the absolute of

Fig. 2.3’s residual, the absolute deviation:

η=
��y − p

�� , (2.3)

where p is a prediction, and y is measured via Courteau (1996). The units of SB call

for additional care in defining our errors. Since SB values are defined on a logarithmic

scale, equation (2.3) is really a form of fractional error:

η=

����2.5 log10

Ip

C
− 2.5 log10

I y

C

����=
�����−2.5 log10

I y

Ip

����� , (2.4)

where C is a constant reference brightness. {Ip, I y} are brightnesses in linear units.

We take the median of this error per galaxy profile to produce the violin plots in

Fig. 2.4a, and we take the median of this error across profiles to produce the line plot

in Fig. 2.4a. Fig. 2.4a’s line plot shows that the error increases with radius away from

the galaxy centre towards regions containing less signal, as expected. We find that the
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Figure 2.3: Randomly sampled test set predicted SB galaxy profiles (orange) superimposed
onto SB profiles measured via the Courteau (1996) method (blue). µ is the surface brightness.
Distances from centre are in log scale to emphasise divergences in the high signal-to-noise
ratio region closer to the galaxies’ centres. Below each SB profile plot is the residual defined
as res= y − p, where y is the profile as measured according to Section 2.2.1, and p is the
prediction. The galaxies’ J2000 celestial coordinates and spectral bands are indicated at the
top right of each graph.
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median test set absolute deviation is 0.41 mag arcsec−2 with an interquartile range

of 0.21 mag arcsec−2. We also find that the median test set absolute deviation for y

values brighter than the SDSS limiting SB (26.5 mag arcsec−2) is 0.34 mag arcsec−2,

with an interquartile range of 0.22 mag arcsec−2. Errors of this scale mean that

profiles generated via Pix2Prof will be immediately useful for rough searches; it

would be possible to categorise galaxies roughly by brightness, isophotal radius, scale

length, and other structural parameters. Further refinement of the model may reduce

error, enabling more sophisticated processing and analysis of generated SB profiles.

Possible refinements are described in Section 2.4.

In Fig. 2.5, the three bands’ median errors are separated as a function of galac-

tocentric radius. Close to the galaxy, there is little difference in the three bands’

median predictions. However, as we proceed outwards, the r-band’s error is higher

than the g-band’s, and the i-band’s error is higher still. This is due to a difference

in the instrumental noise between the three bands, as evidenced in the difference

in the spectral bands’ median galaxy image signal-to-noise ratios: SNRg = 41.6;

SNRr = 35.8; SNRi = 28.4.

Fig. 2.6a shows each test set galaxy’s ellipticity against the galaxy profile’s median

absolute deviation. The ellipticity is defined as the final isophote ellipticity for a

profile calculated using the Courteau (1996) method. Fig. 2.6b shows each test set

galaxy’s semimajor axis radius for the first isophote whose value is greater than or

equal to 23.5 mag arcsec−2. In both of these cases, we run a linear regression and find

no significant correlation, suggesting that Pix2Prof’s predictions are equally robust

when inferring across galaxies with a range of sizes and ellipticities.

Figs 2.3 and 2.4 show that Pix2Prof can successfully approximate a complicated as-

trophysical image processing pipeline with low deviation (0.34 mag arcsec−2 averaged

over the test set). Processing 0.9 galaxies per second on an Intel Xeon E5-2650 v3 CPU,

Pix2Prof improves on the speed of the classical image analysis method of Courteau

(1996) by more than two orders of magnitude. For comparison, an astronomer

trained to use the Courteau (1996) method can typically process ∼150 galaxies

in a full eight hour working day (or ∼0.005 galaxies per second). However, even

astronomers must rest and so the true working rate for a human would be ∼150

galaxies per 24 hours, or ∼0.002 galaxies per second.

As Table 2.2 shows, Pix2Prof eliminates any manual interaction from SB profile

inference, alleviating the issue of subjectivity in the different methods developed for

such tasks; Pix2Prof will infer the same profile every time for a given galaxy image,

whereas a human may not. The full automation of Pix2Prof enables a complete

parallelisation, and thus significant gain in parallel throughput of galaxy profile
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(a) Summary statistics for Pix2Prof.
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(b) Summary statistics for AutoProf (see §2.3.1).
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(c) Median error per kpc from galaxy centre comparison between Pix2Prof and AutoProf.

Figure 2.4: Approximation errors as defined in equation (2.3). Fig. 2.4a shows summary
statistics for Pix2Prof. For comparison, Fig. 2.4b depicts the same statistics for AutoProf. In
all of the above images/pix2prof we define absolute deviation as relative to the Courteau
(1996) test set profiles. The leftmost violin plot in Fig. 2.4a and 2.4b shows the distribution
of median test set errors. The rightmost violin plot in Fig. 2.4a and 2.4b shows the same
distribution for only SB values below the SDSS limiting SB of 26.5 mag arcsec−2. The
maximum, minimum, mean, and (mean + standard deviation) are labelled. Below the violin
plots are their distribution quartiles. The line plots show the median error per kpc from the
galaxy centre, with the interquartile range shaded. To reduce the effect of small sample
size variability, the line plots are terminated once 90 per cent of the SB profiles reach their
galaxy’s extent. Fig. 2.4c compares on the same axes the median errors per kpc from the
galaxy centre for Pix2Prof and AutoProf.
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Figure 2.6: Median test set error over each galaxy predicted profile, plotted against each
galaxy’s ellipticity (left, 2.6a), and size at R23.5 (right, 2.6b). p values obtained via a linear
regression are stated in the legends.

estimation.

2.3.1 Comparison with AutoProf

AutoProf (Stone, Courteau, and Arora 2021) is a sibling method to Pix2Prof that

uses a more standard astronomical pipeline to tackle the problem of non-parametric

automated SB profile inference. A combination of standard image analysis packages

from PHOTUTILS (Bradley et al. 2019) and novel techniques are used to construct

a robust isophotal pipeline. Initial image analysis such as determining the PSF,

centre finding, star masking, and sky background subtraction are performed using

PHOTUTILS. Next, AutoProf simultaneously fits an ellipticity and position angle profile

by minimising low order FFT coefficients along each isophote plus a regularisation
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Table 2.2: Pix2Prof eliminates all interactive steps in the Courteau (1996) algorithm, allevi-
ating subjectivity and accelerating inference significantly.

Automated in:
Process Courteau (1996)? Pix2Prof?

Identify galaxy centre No Yes
Estimate & remove sky background Yes Yes
Remove foreground objects No Yes
Fit contours Yes Yes
Extend contours to galaxy outskirts No Yes
Smooth isophotes Yes Yes
Interpolate poorly fitted data No Yes

term (Shalev-Shwartz and Ben-David 2014). The regularisation term penalises

neighbouring ellipticity and position angle values that deviate significantly, ultimately

favouring smooth profiles. Once the profiles have converged, AutoProf extracts the

median SB along each isophote and determines the error with a 68.3 per cent quartile

range. A curve of growth is determined by appropriately integrating the SB profile

and propagating errors.

Fig. 2.4 compares the performance of Pix2Prof and AutoProf. AutoProf is found

to produce SB profiles that are a slightly closer match to those produced via Courteau

(1996) than Pix2Prof. The difference in absolute deviation between the two methods’

profiles is typically around 0.1–0.2 mag arcsec−2. However, AutoProf’s accuracy

comes with a time penalty; AutoProf takes on average 490 s to produce a profile

on an Intel Xeon E5-2650 v3 CPU, a rate of 0.002 galaxies per second. This rate

is roughly equivalent to the throughput of a human running the Courteau (1996)

method. Pix2Prof processes 0.9 galaxies per second on the same hardware. Pix2Prof

also offers more flexibility; it can be retrained to recreate any (semi) manual galaxy

profile fitting pipeline and is therefore not limited to automation of the Courteau

(1996) method.

AutoProf is presented in Stone, Courteau, and Arora (2021), and its code is

available at https://github.com/ConnorStoneAstro/AutoProf.

2.4 Discussion and conclusions

While Pix2Prof can rapidly and accurately produce profiles of arbitrary length, there

are some limitations to this technique. Principally, any profile produced will be biased

to the training set. For instance, if Pix2Prof is trained on primarily nearby galaxies,

it may not yield accurate profiles for more distant systems whose images will be

https://github.com/ConnorStoneAstro/AutoProf
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poorly resolved. Similarly, if the model is trained on galaxy image–profile pairs as

produced by numerical simulations the model will encode any flaws, incompleteness,

or bias inherent to each simulation and will not encode instrumental effects (e.g.

read-out noise) unless properly included. The same issue will occur if we train on

galaxy image–profile pairs sampled from one survey and deploy the trained model on

a dissimilar survey, for example SDSS, and LSST (York et al. 2000; Ivezić et al. 2019).

It may be possible to mitigate this problem with an image domain translator (i.e. Isola

et al. 2016; J. Zhu et al. 2017; Choi et al. 2018) that could transform observations so

that they match a given survey. Of course, the Courteau (1996) measured profiles

may also not entirely reflect the ‘true’ SB profile, due to modelling assumptions,

human bias, and inherent noisiness in measurement. As neural networks typically

require very large data sets, our relatively small data set is likely not reflecting the

true potential of the model. Therefore, a larger set of training data could improve

the results presented here. Generating a larger data set from simulated galaxies for

training Pix2Prof will be a future project.

As described in Jia et al. (2015), due to the vanishing gradient problem an LSTM

or GRU may ‘forget’ an image encoding as it unrolls. For Pix2Prof, this will manifest in

a loss of accuracy at larger galactocentric radius. We see this effect in Fig. 2.4a’s line

plot and Fig. 2.5, but we cannot disentangle the individual contributions from image

noise and the model architecture. However, assuming that the noise is significantly

caused by GRU ‘forgetfulness’, future Pix2Prof models could imitate Jia et al. (2015)

and counteract the noise by reinjecting the image encoding into the GRU’s hidden state

periodically as it unrolls. Another solution could involve adopting an architecture that

suffers less from the vanishing gradient problem, such as the Transformer (Vaswani

et al. 2017). The non-sequential nature of a Transformer would also allow us to

parallelise output at inference time, reducing processing time even further.

In Section 2.1 we stressed the need for efficient and fully automated methods for

timely analysis of ultra-large scale astrophysical imaging survey data. We believe that

Pix2Prof addresses this challenge. Pix2Prof can predict any galaxy profile, given the

right simulated or observed data set. Training Pix2Prof on simulated galaxy images

offers additional benefits; the model could be trained on information that is only

inferred indirectly in observations. For instance, Pix2Prof could train on sets of galaxy

image–mass profile pairs directly in order to predict dark matter halo profiles, as mass

profiles cannot be recovered classically by direct imaging observations. Furthermore,

Pix2Prof has the potential to automate any galaxy profile fitting routine and be ported

to other forms of galaxy image analysis that may not rely on isophotal analysis,

but still produce a float sequence given a multidimensional array. These analyses
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could include galaxy component decompositions, the characterisation of galaxy

interactions and distortions, pixelised stellar population synthesis, inference of galaxy

mass distributions, and more (e.g. Eneev, Kozlov, and Sunyaev 1973; Vazdekis 2001;

Peng et al. 2002). In a future study, we will demonstrate how Pix2Prof can be used

to recover simultaneously the galaxy SB profile as well as the ellipticity profile and

curve of growth of a galaxy.

An exciting future investigation involves building a system that can predict prop-

erties of unseen classes of objects. This could be achieved by building up a ‘prior’

that encodes known objects into a latent space and interpolates between their latent

spatial representations at inference time. A generative model like the GAN (Goodfel-

low et al. 2014) or VAE (Kingma and Welling 2013) could achieve this (i.e. Spindler,

Geach, and Smith 2020). Such a model could quickly identify astrophysically ‘inter-

esting’ objects in a large field survey. The ability to search for rare objects in large

unstructured data sets will become increasingly more important as new large scale

astronomical surveys come online (Chambers et al. 2016; Aihara et al. 2017; Ivezić

et al. 2019).

In summary, we have introduced a fully automated deep learning model for the

extraction of sequential data from galaxy imagery. We have tested this model by

applying it to the specific problem of estimating galaxy SB profiles, a process that

previously required manual, time-consuming human intervention. We have tested our

model on unseen galaxy images and found that our model has an average absolute

deviation of 0.34 mag arcsec−2 with an interquartile range of 0.22 mag arcsec−2, while

inferring SB profiles over two orders of magnitude faster than the classic (interactive)

algorithm it automates.

Data and Code Availability. The code and trained model used in this chapter is

available at https://github.com/Smith42/pix2prof. The profile data set used

to train the network is documented in Arora et al. (2021).

Carbon Emissions. The training of deep learning models requires considerable

energy, contributing to carbon emissions (Lacoste et al. 2019; Strubell, Ganesh, and

McCallum 2019). The energy used while training Pix2Prof on a single NVIDIA V100

GPU is estimated to be ∼20 kWh (5.54 kg CO2 e.) according to the Machine Learning

Impact calculator described in Lacoste et al. (2019). To counteract further emission

from redundant retraining, we follow the recommendations of Strubell, Ganesh, and

McCallum (2019) and make available the fully trained model, as well as the code to

run it. Also, we will make available trained models for any improvements that we

make to Pix2Prof in the future.

https://github.com/Smith42/pix2prof
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SAGAN: Synthetic Astronomy

Generative Adversarial Network

GANs are a class of artificial neural network that can produce realistic, but artificial,

images that resemble those in a training set. In typical GAN architectures these images

are small, but a variant known as Spatial GANs (SGANs) can generate arbitrarily large

images, provided training images exhibit some level of periodicity. Deep extragalactic

imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here

we train an SGAN to generate images resembling the iconic Hubble Space Telescope

eXtreme Deep Field (XDF). We show that the properties of ‘galaxies’ in generated

images have a high level of fidelity with galaxies in the real XDF in terms of abundance,

morphology, magnitude distributions and colours. As a demonstration we have

generated a 7.6-billion pixel ‘generative deep field’ spanning 1.45 degrees. The

technique can be generalised to any appropriate imaging training set, offering a new

purely data-driven approach for producing realistic mock surveys and synthetic data

at scale, in astrophysics and beyond.

This chapter has been previously published as M. J. Smith and J. E. Geach

(2019). ‘Generative deep fields: arbitrarily sized, random synthetic astronomical

images through deep learning’. In: "Monthly Notices of the Royal Astronomical Society"

490.4, pp. 4985–4990. DOI: 10.1093/mnras/stz2886. arXiv: 1904.10286
[astro-ph.IM]. It has been presented as a contributed talk at The Big Data Era in

Astronomy 2020, Online.

3.1 Introduction

Synthetic, or mock, data plays an important role in the interpretation of observations,

as it provides a means to test a theoretical framework, as a tool to explore biases or

65
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systematics in data analysis, or to help design future experiments. In astrophysics,

like many fields, a standard route to generating synthetic data is to use an analytic or

semi-analytic model, or numerical simulation, to generate synthetic data that mimic

the observations e.g. Cole et al. (1998), Obreschkow et al. (2009), and Mandelbaum

et al. (2012). The most common form of observation in astrophysics is digital imaging,

and deep extragalactic imaging surveys have transformed our understanding of the

Universe (Williams et al. 1996; Scoville et al. 2007).

Current methods to generate synthetic deep fields include the projection of volume-

and resolution-limited hydrodynamical cosmological simulations e.g. Vogelsberger

et al. (2014) and Schaye et al. (2015) into lightcones (Vogelsberger et al. 2014),

requiring a treatment for the transport of radiation through the volume and modelling

of a particular instrument response (Jonsson 2006; Trayford et al. 2017). Alternatively,

mock deep fields can be created by taking an input catalogue containing the positions

and properties of fake galaxies and applying models to describe their light profiles

(Bertin 2009; Dobke et al. 2010; Bergé et al. 2013; Peterson et al. 2015; Rowe et al.

2015). Mock blank fields can be created entirely parametrically, as in the case of the

Ultra Fast Image Generator (UFIG; Bergé et al. 2013), and these have the advantage

of having a very well-defined input model. However, analytic and semi-analytic

models require explicit encoding of astrophysical properties such as light profiles,

and are therefore limited in realism. This is important when considering objects in

surveys that are poorly described in this way, for example interacting/merging or

high redshift galaxies. Therefore, if the physical model is incomplete or flawed or

too simplistic, simulations produced by the model may not be representative of real

data. Furthermore, additional processing is required to produce a realistic synthetic

observation, for example an understanding of the noise properties and convolution

with a point spread function. Letting a machine infer both the astrophysical and

the instrumentational properties of a data set sidesteps these issues: with a large

representative data set it is possible to use empirical data to construct new, realistic,

but synthetic observations, at the expense of model transparency.

GANs are a type of deep learning algorithm that can generate new samples from

a probability distribution learnt from a representative training set (Goodfellow et al.

2014; Radford, Metz, and Chintala 2016; Salimans et al. 2016). The adversarial

aspect of the algorithm refers to the use of two neural networks – a generator, G and

discriminator, D – that compete during training. G tries to estimate the probability

distribution of the input data by producing samples that aim to trick D, which is

estimating the probability that the generated sample came from the training set.

Training is a ‘minimax’ game where G is trying to maximize the likelihood that D
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predicts the generated samples are from the real data. The generator transforms a

‘latent’ vector z, into an output G(z). Meanwhile, the discriminator takes either the

output of the generator G(z), or a real data example x , and transforms this input into

an output, D(G(z)) or D(x). The output can be thought of as the probability that

G(z) is indistinguishable from x . The networks are trained through gradient descent

(Robbins and Monro 1951) until G(z)’s distribution closely matches the distribution

of x . After training, the generator can produce convincing images resembling those in

the training set. The current state of the art is capable of producing very convincing

imagery (Karras et al. 2017; Brock, Donahue, and Simonyan 2018; Karras, Laine,

and Aila 2018; Karnewar, Wang, and Iyengar 2019). These generated images can

be thought of as random draws from the probability distribution estimated by the

generator that describes the distribution from which pixels in the training image were

sampled.

Figure 3.1: Evolution of SGAN training. The images show a 256×256 pixel generated image
for the F775W channel after 0, 30, 300, 3000, 30,000 and 36,000 epochs using the same
input latent noise vector, z. The distribution of input (Gaussian) noise before training is
shown in the first panel. Each image is linearly scaled with a 0.5–99.5% percentile clip.
Structure becomes apparent after a few hundred training epochs and is continuously refined
as training progresses. The total training time to 36,000 epochs is 1,280 hours wall time on
an NVIDIA Tesla K40c GPU.

One limitation of the GAN technique is its instability during training (Kodalg et al.

2017; Roth et al. 2017). We mitigate this somewhat by incorporating the relativistic

discriminator introduced in Jolicoeur-Martineau (2018) (see section 3.2.3). Also, a

GAN model is inferred completely on training data. Therefore the trained model is

only as accurate as the given data, and preferably a lot of data is required for training.

Model interpretability can also be an issue with large neural networks.

In this work we present a method exploiting GANs to generate realistic, but

random, extragalactic deep field images of arbitrary size. In §3.2.3 we describe the

‘Spatial GAN’ variant, and explain how it is trained to generate fake images. In §3.3

we describe our results, comparing ‘galaxies’ detected in the fake images to galaxies

detected in the training image. We discuss and summarise the results and highlight

limitations and scope for improvement and future work in §3.4. Magnitudes are all

quoted on the AB system.
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3.2 Method

3.2.1 Spatial GANs

A Spatial GAN (SGAN; Jetchev, Bergmann, and Vollgraf 2016) is a fully convolutional

GAN that uses variably sized 2D latent vector arrays as the generator input z. This

is in contrast to a standard GAN, which uses a 1D latent vector. In a standard GAN

a dense neural layer is used to connect and reshape the latent vector so that a

convolutional layer can operate on it. This lack of a fully-convolutional architecture

means that a standard GAN can only produce images of a single, fixed shape. An

SGAN replaces all dense neural layers in both its generator and its discriminator

with convolutional layers. This allows input of variably sized image–latent vector

array pairs. In an SGAN the latent vector arrays are upsampled using deconvolving

layers in the generator, and both generated and real images are downsampled in the

discriminator via convolving layers. Since z can be varied, an SGAN can be used to

create an image of any size, even one much larger than seen in the training set. If the

training images exhibit periodicity, the SGAN’s generator will also learn to exhibit

the same periodicity (Jetchev, Bergmann, and Vollgraf 2016).

Note that the presence of periodicity in the training data is not a requisite for

producing arbitrarily sized output images, but it is a requisite for producing realistic

output images. An SGAN trained on an image of a cluster of galaxies, for example, will

only produce output images that contain galaxy clusters, regardless of size. However,

cosmic isotropy means that SGANs trained on deep ‘blank field’ extragalactic images,

can in principle produce output images of arbitrary size that resemble the real

Universe. The important caveat and limitation is that the generated images will only

contain objects similar to those present in the training image; if the training image is

too small to contain a representative sampling of the galaxy population (e.g. the rare

massive clusters), then these types of object will not appear in the output. The SGAN

cannot extrapolate in this manner, and this should be an important consideration

when training and using such networks.

3.2.2 Training set

We use a training set comprised of the F814W, F775W and F660W bands of the Hubble

Space Telescope eXtreme Deep Field (XDF; Illingworth et al. 2013), with all images

aligned and sampled on the same 60-mas grid32 The only other preprocessing is a

channel-wise clip at the 99.99th percentile. Unlike many GAN approaches that use

32https://archive.stsci.edu/prepds/xdf.

https://archive.stsci.edu/prepds/xdf
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training images scaled to an 8-bit depth per channel, we train using the full floating

point dynamic range of the data, with 32-bit depth per channel. Training images are

sampled from the full XDF image by cropping the image at random positions with

crop sizes of 64, 128 or 256 pixels, with the size fixed for each batch. Corresponding

noise arrays of sizes 4, 8, or 16 pixels, are sampled from a Gaussian distribution with

a zero mean and unity variance, and passed to the generator. Each noise array has a

channel axis of size 50.

Figure 3.2: Example of a generated deep field. The top left panel shows a generated deep
field with the RGB channels corresponding to the F814W, F775W and F606W bands. The
size of the generated image was set to 3.2′, spanning the full XDF (top right), which has a
60 mas pixel−1 scale. The lower panels show 45′′ zoom-ins of the generated and real fields.
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3.2.3 Architecture and training

The generator is comprised of one initial deconvolutional layer with a stride of 2 and

a kernel size of 4. Three deconvolutional sets are then applied, each comprising of

one layer with a stride of 2, followed by three layers with strides of 1. Each layer in

these sets have kernel sizes of 4. These layers have an exponential linear unit (ELU)

activation Clevert, Unterthiner, and Hochreiter (2016). The generator’s output layer

is also deconvolutional, with a stride of 1, a kernel size of 3, and 3 filters. The output

layer has a sigmoid activation function,

ϕ(x) = (1+ e−x)−1. (3.1)

The discriminator comprises of 5 initial convolutional layers, each with a stride of 2,

and a kernel size of 4. All initial layers have a Leaky Rectified Linear Unit (ReLU)

activation (Maas, Hannun, and Ng 2013). 2D global average pooling is applied to

the final convolutional layer, and a dense layer is used to connect the global average

pool to a binary classification output.

The discriminator uses a relativistic average loss (Jolicoeur-Martineau 2018).

A relativistic discriminator estimates whether the incoming data are more realistic

than a random sample of the opposing type. To understand why this is important,

consider that in a standard GAN a perfect generator will cause the discriminator

to define all incoming data as ‘real’. However, it is known that exactly half of an

incoming batch is real data. Therefore, if the generator is producing flawless fakes,

the discriminator should assume that each sample has a 50% probability of being real

(Jolicoeur-Martineau 2018). To take this prior knowledge into account, the output

function of a non-relativistic discriminator is modified from D(x) = ϕ(C(x)), where

C(x) is the output of the final layer with no applied activation function, to DR(x)

DR(x) =




ϕ(C(x)−Ex f ∼QC(x f )) for real x ,

ϕ(C(x)−Exr∼PC(x r)) for generated x ,
(3.2)

where ϕ is the sigmoid activation function. The second parts of the real and

generated DR(x) are effectively the average discriminator value for fake images, x f ,

and real images, x r , respectively. The use of a relativistic discriminator leads to

stable training on a difficult data set of large images, where a standard discriminator

fails (Jolicoeur-Martineau 2018). The discriminator is packed to stabilize training

(Lin et al. 2018). To pack the discriminator, two images from the same class are

concatenated along their channel axes and fed into the discriminator as a single
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sample. Packing the discriminator in this way reduces the possibility of mode collapse

(Lin et al. 2018). The Adam optimizer (Kingma and Ba 2015) is used, with a learning

rate of 0.0002. The learning rate was determined through a manual search as the

maximum rate that yields stable training.

The SGAN is trained on an NVIDIA Tesla K40c GPU for 36,000 epochs of 30

batches with a batch size of 128. Each epoch requires approximately 120 seconds,

depending on the batch crop sizes. The evolution of the generated images for a fixed

latent noise vector z is shown in Fig. 3.1, showing the emergence of amorphous

structure and then refinement into structures resembling galaxies with increasing

training time.

Figure 3.3: Thumbnail images of real and generated ‘galaxies’. Each image is 7.2′′ across
and shows the F775W channel on an identical linear grayscale for 100 sources selected in the
range 21–26 mag. Fifty targets are selected from each of the real and generated catalogues
and displayed in random order in row-wise ascending order of magnitude.
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3.3 Results

A self-ensemble of 21 GANs is created by taking every tenth epoch’s model from a

range of 200 epochs. A CNN ensemble is a combination of different CNNs trained from

different weight initialisations on the same data. A self-ensemble is an ensemble of

CNNs trained from the same initialisation, but taken at different points in the training

cycle. Ensembles of CNNs can produce significantly more accurate predictions when

compared to a single CNN (Nanni, Ghidoni, and Brahnam 2018; Paul et al. 2018).

This increase in accuracy has been shown by Wang, Zhang, and Weijer (2016) and

Mordido, Yang, and Meinel (2018) to also be present in GAN ensembles.

Four outputs were taken from each of these 21 GANs, resulting in 84 total XDF

simulations. To generate a simulation set, each of the trained generators is fed a z

vector that has shape [b, 202, 202, 50], where b = 4 is the batch size. The generators

up-sample z to a shape [b, 3232, 3232, 3], matching the shape of the training image.

The generation time for single realization of the XDF is 15 seconds for all three bands

on an Intel Xeon CPU E5-2650 v3. Using the same CPU it would take 1.5 hours

wall time to generate a 3 billion pixel image similar to one produced by the LSST. In

principle, the generated image can be of arbitrary contiguous size by using seamless

tessellation. Seamless tessellation can be achieved with SGAN by having adjacent

tiles a and b share a portion of boundary z values. This creates a shared area where

G(za) and G(zb) have an equal output. A seamless tile is made by cropping at the

midpoint of the shared noise and concatenating G(za) and G(zb). To illustrate, we

have generated a contiguous 87040×87040 pixel (1.45◦ × 1.45◦) version of the XDF

that can be examined online at http://star.herts.ac.uk/~jgeach/gdf.html.

Fig. 3.2 presents an example of a generated field in comparison to the real XDF,

combining the F814W, F775W and F606W bands into an RGB colour composite. We

show the full field, spanning approximately 3′, and a zoom-in of a 45′′ region for

closer inspection. The generated image is reasonably convincing as an extragalactic

deep field from the point of view of cursory visual inspection, although like many

GAN-generated images, on closer inspection there are artefacts (such as low surface

brightness features, pixelization, and discontinuities not seen in the real image) that

betray the counterfeit. These artefacts are likely caused by a lack of resolution in

the GAN generator, and could be remedied through the addition of more layers, or

through the use of a larger convolutional kernel. Both of these approaches would

increase the receptive field. The GAN also cannot reproduce some of the larger

galaxies with the same level of detail as the real image. Nevertheless, the generated

image does contains a mixture of ‘early’ and ‘late’ type galaxies amongst a more

http://star.herts.ac.uk/~jgeach/gdf.html
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numerous field of background sources. The early and late types have the correct

colour and morphology, i.e. classic red/elliptical and blue/spiral respectively, and

background sources have the clumpy and disturbed morphology typically seen in the

high redshift galaxy population. Fig. 3.3 presents single-band (F775W) thumbnail

images of a sample of 100 randomly chosen sources with F775W AB magnitudes

in the range 21–26 mag. 50 sources are selected from the real image and 50 are

selected from the generated images, but the thumbnails have been randomly shuffled

in the figure to demonstrate to the reader the visual similarity of individual galaxies

in the generated and real data.

To test whether the similarity between the generated and real image is more

than superficial, we extract ‘galaxies’ from the generated images and compare to

those in the real XDF. We use the source finder SExtractor (Bertin and Arnouts

1996) to detect galaxies in the combined F606W+F775W+F814W (pixelwise-mean)

images, measuring the corresponding source flux in the individual bands. Sources

are identified with the criteria that 5 contiguous pixels have a signal ≥5σ above the

local background. The same detection procedure is applied to the real and generated

images, and the photometric zeropoints for the generated images are identical to the

real data. Fig. 3.4 compares the magnitude distribution of sources detected in the real

field and ensemble of generated fields measured in each of the F606W, F775W and

F814W bands. The generated and real distributions bear close statistical resemblance.

The absolute difference in the generated and real median magnitudes in each of the

F606W, F775W and F814W bands is within 0.02 magnitudes, and a the generated

images produce the correct abundance of galaxies across the full magnitude range

in every band. The p-values given by a two-sided Kolmogorov-Smirnov test for a

magnitude limit of 28 mag (approximately the completeness limit of the catalogue

for our detection criteria) are 0.16, 0.63 and 0.75, indicating that we cannot say with

confidence that the distributions are drawn from different parent populations, and

are therefore statistically similar.

3.4 Discussion and conclusions

While the SGAN can produce arbitrarily-sized simulations of the XDF, there are clear

limitations of this technique. The primary limitation is that the generated images

are of course totally biased to the training set. The consequence is that a generated

image much larger than the training data will not be cosmologically representative.

This is simply because the XDF probes a volume too small to contain rare objects

such as, for example, clusters of galaxies and the generator cannot produce examples
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Figure 3.4: The photometric properties of galaxies detected in the real XDF and ensemble of
generated images. The histograms show the magnitude distributions of the galaxies detected
in the band-merged image and measured in each of the F606W, F775W and F814W bands.
The photometric zeropoints applied to the generated data are identical to the zeropoints
calibrated for the real data.
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of objects it has not seen. This problem is simple to alleviate by using a much larger

and representative training set. In the real Universe, the positions of galaxies are

correlated across a wide range of angular scales, due to the presence of cosmological

large-scale structure. Indeed, due to gravitational lensing, even the shapes of galaxies

can be correlated from cosmic shear, and this will not be well captured by the SGAN.

Another limitation is that this clustering information is not present in the gener-

ated images, although correlations on the scales of the crop size will be somewhat

preserved.

GANs also have some architectural drawbacks. It can be difficult to train a GAN

stably; we were not able to achieve stable training with more than three photometric

bands. This issue could be resolved with more regularization: adding dropout

(Srivastava et al. 2014b), or spectral normalisation (Miyato et al. 2018) could allow

one to generate additional bands, although at the cost of a longer training time, and

a larger memory footprint during training.

An advantage of this technique is that it is empirically driven, since the data itself

is used as the model. By training directly on imaging data the SGAN simultaneously

encodes information about the instrumental response as well as the ‘galaxy’ popula-

tion, thus circumventing the need to make modelling assumptions about either, as is

the case in other approaches. The corollary to this is that in the current approach we

cannot disentangle the instrument response from the underlying galaxy population,

although one could envision approaches to tackle this challenge. For example, a

method similar to that used by Schawinski et al. (2017), where a GAN is used to

remove noise in astronomical imagery, could be employed. Specifically, a GAN with a

UNet-like (Ronneberger, Fischer, and Brox 2015) generator would learn a transfor-

mation between an image with an entangled instrument response, and one without.

Also, since the model is entirely data-driven, it is highly dependent on the quality

and quantity of the training data.

Recent advances in GAN training techniques have resulted in impressively high

fidelity image output (Karras et al. 2017; Brock, Donahue, and Simonyan 2018;

Karras, Laine, and Aila 2018; Zhang et al. 2018; Karnewar, Wang, and Iyengar 2019).

Similar methods could be implemented to improve the quality of the generated deep

fields. The same methods could also reduce the occurrence of artefacts. Training

on a larger set of imaging data, with a increased batch size (Brock, Donahue, and

Simonyan 2018), may also produce more representative simulations on a deeper

network. The addition of a GAN architecture that allows for control over the output,

such as InfoGAN (X. Chen et al. 2016) or Conditional GAN (Mirza and Osindero

2014) could also be useful when creating mock surveys because they would allow
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control over the frequency of particular objects of interest, or over the makeup of

background noise.

This method could be used to generate at scale entirely artificial, but realistic,

image realizations for the design, development, and exploitation of new surveys.

For example, one could assemble large training sets for instance segmentation and

classification of galaxies. In the early stages of a new survey, relatively small amounts

of data could be collected, but then expanded to a level useful for training deep

learning models using the generative method described here. Segmentation and

classification algorithms could then be trained on the generated data, and then

applied to new data, allowing far faster deployment of astronomical deep learning

algorithms than would otherwise be possible, potentially accelerating the exploitation

of new survey data.

Data and code availability. The SAGAN code can be obtained at https://github.
com/Smith42/XDF-GAN. The 7.6-billion pixel version of the generated XDF can be

viewed at http://star.herts.ac.uk/~jgeach/gdf.html.

Carbon emissions. The training of deep learning models requires considerable

energy, contributing to carbon emissions. The energy used to train SAGAN to com-

pletion is estimated to be 310 kWh, corresponding to 87 kg CO2e. according to the

Machine Learning Emissions Calculator described in Lacoste et al. (2019). To coun-

teract further emission from redundant retraining, we follow the recommendations of

Strubell, Ganesh, and McCallum (2019) and make available the fully trained models,

as well as the code to run them. Also, we will make available trained models for any

improvements that we make to SAGAN in the future.

https://github.com/Smith42/XDF-GAN
https://github.com/Smith42/XDF-GAN
http://star.herts.ac.uk/~jgeach/gdf.html


Chapter 4

Realistic galaxy image simulation via

score-based generative models

We show that a Denoising Diffusion Probabalistic Model (DDPM), a class of score-

based generative model, can be used to produce realistic yet mock images that mimic

observations of galaxies. Our method is tested with Dark Energy Spectroscopic Instru-

ment grz imaging of galaxies from the Photometry and Rotation curve OBservations

from Extragalactic Surveys (PROBES) sample and galaxies selected from the Sloan

Digital Sky Survey. Subjectively, the generated galaxies are highly realistic when

compared with samples from the real dataset. We quantify the similarity by borrowing

from the deep generative learning literature, using the ‘Fréchet Inception Distance’

to test for subjective and morphological similarity. We also introduce the ‘Synthetic

Galaxy Distance’ metric to compare the emergent physical properties (such as total

magnitude, colour and half light radius) of a ground truth parent and synthesised

child dataset. We argue that the DDPM approach produces sharper and more re-

alistic images than other generative methods such as Adversarial Networks (with

the downside of more costly inference), and could be used to produce large sam-

ples of synthetic observations tailored to a specific imaging survey. We demonstrate

two potential uses of the DDPM: (1) accurate in-painting of occluded data, such as

satellite trails, and (2) domain transfer, where new input images can be processed to

mimic the properties of the DDPM training set. Here we ‘DESI-fy’ cartoon images as

a proof of concept for domain transfer. Finally, we suggest potential applications for

score-based approaches that could motivate further research on this topic within the

astronomical community.

This chapter has been previously published as M. J. Smith et al. (2022). ‘Realistic

galaxy image simulation via score-based generative models’. In: Monthly Notices of the

Royal Astronomical Society 511.2, pp. 1808–1818. DOI: 10.1093/mnras/stac130.

arXiv: 2111.01713 [astro-ph.IM]. It has been presented on 2022-03-10 as an

77
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invited talk for the Open University, Milton Keynes, UK, and on 2022-05-05 as an

invited talk for the Alan Turing Institute, London, UK. It has also been presented as a

contributed talk at EAS 2022, Valencia, Spain and at NAM 2022, Warwick, UK.

4.1 Introduction

Synthetic data will play a pivotal role as we journey further into astronomy’s epoch

of big data, especially for large extragalactic surveys (York et al. 2000; Dewdney et al.

2009; Amiaux et al. 2012; Ivezić et al. 2019). It will be required to train machine learn-

ing methods, to interpret observations, and to test theoretical frameworks. Indeed,

one form of synthetic data comes from theoretical models. For example, in the field of

galaxy formation and evolution, simulations using semi-analytical approaches have

been successful in reproducing many of the bulk observable and emergent properties

of galaxies over a significant fraction of cosmic time (e.g. Somerville and Primack

1999; Cole et al. 2000; Bower et al. 2006; Croton et al. 2006). Semi-analytical models

(SAMs) employ approximations derived from more detailed numerical simulations

and empirical calibrations from data to model galaxy formation and evolution. So it

is possible to generate, for example, a ‘mock’ catalogue of galaxies with predicted

optical photometry (Lagos et al. 2019). Hydrodynamical models of galaxy formation

track the evolution of baryons and dark matter within representative volumes (e.g.

Dubois et al. 2014; Vogelsberger et al. 2014; Khandai et al. 2015; Schaye et al. 2015;

Kaviraj et al. 2017), and when pushed to high spatial resolution, can predict galaxy

morphologies on physical scales commensurate with the angular scales achievable

with current observational facilities. When radiative transfer schemes are applied

for the propagation of (for example) starlight through the volume, realistic synthetic

observations can be produced, to be compared with nature (e.g. Camps et al. 2016;

Trayford et al. 2017; Lovell et al. 2021).

To properly mimic real astronomical data, with all its wonderful idiosyncrasies,

requires a full and detailed understanding of the telescope response, instrumental

properties, and observing conditions, not to mention the nuances of any data re-

duction procedure. These non-trivial steps are typically unique to a given set of

observations. There is a short-cut however: armed with enough examples of observa-

tions from a given survey, it should be possible to derive a data-driven approach to

mimic not only the content of interest – astronomical signal – but also the properties

of the data themselves. Deep generative models enable precisely that.

Great attention has been given to applications of deep generative learning to

problems in astronomy lately. GANs (Goodfellow et al. 2014) have been used for
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deconvolution (Schawinski et al. 2017), synthetic galaxy generation (Ravanbakhsh

et al. 2016; Fussell and Moews 2019), dark matter simulation (Mustafa et al. 2019b;

Tamosiunas et al. 2020), and deep field imagery generation (Smith and Geach

2019). Variational Auto-Encoders (VAE; Kingma and Welling 2013) have been used

to simulate galaxy observations (Ravanbakhsh et al. 2016; Spindler, Geach, and

Smith 2020; Lanusse et al. 2021), as have flow-based models (Rezende and Mohamed

2015; Bretonnière et al. 2021). In this chapter, we show that it is possible to simulate

realistic galaxy imagery with a Denoising Diffusion Probablisitic Model (DDPM).

DDPMs were introduced by Sohl-Dickstein et al. (2015) and were first shown

to produce high quality synthetic samples by Ho, Jain, and Abbeel (2020). They

belong to a family of generative deep learning models that employ denoising ‘score

matching’ via annealed Langevin dynamic sampling (Ho, Jain, and Abbeel 2020;

Jolicoeur-Martineau et al. 2020; Song and Ermon 2020; Song et al. 2021). This

family of score-based generative models (SBGMs) can generate imagery of a quality

and diversity surpassing state of the art GAN models, a startling result considering the

historic disparity in interest and development between the two techniques (Dhariwal

and Nichol 2021; Nichol and Dhariwal 2021; Song et al. 2021).

SBGMs have already been used to super-resolve images (Kadkhodaie and Simon-

celli 2020; Saharia et al. 2021), translate between image domains (Sasaki, Willcocks,

and Breckon 2021), separate superimposed images (Jayaram and Thickstun 2020),

and in-paint information (Kadkhodaie and Simoncelli 2020; Song et al. 2021). At

the time of writing, there are only two examples of score-based modelling in the

astronomy literature (Remy et al. 2020, 2022). This is despite some obvious uses in

astronomical data pipelines. For example: an implementation like Sasaki, Willcocks,

and Breckon (2021) could be used for survey-to-survey photometry translation simi-

larly to Buncher, Sharma, and Carrasco Kind (2021); the source image separation

model described in Jayaram and Thickstun (2020) could be applied as an astronomi-

cal object deblender (for example: Stark et al. 2018; Reiman and Göhre 2019; Arcelin

et al. 2021); and information inpainting could be used to remove nuisance objects

from observations (Kadkhodaie and Simoncelli 2020; Song et al. 2021).

This chapter is organised as follows. Section 4.2 introduces the DDPM formulation

used in this chapter. In Section 4.3 and Section 4.4, we show that DDPMs are capable

of generating diverse synthetic galaxy observations that are both statistically and

qualitatively indistinguishable from observations found in the training set. We also

demonstrate that DDPMs can in-paint occluded information in an observation, such as
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t = 2 t = T

q(x1 | x0) q(x2 | x1)

pθ(x1 | x2)pθ(x0 | x1)

Figure 4.1: It is easy (and achievable without learnt parameters) to add noise to an image,
but more difficult to remove it. DDPMs attempt to learn an iterative removal process through
an appropriate neural network. pθ .

satellite trails33, and show that we can inject realism into entirely unrealistic cartoon

imagery. A discussion of our results and suggestions for future research are presented

in Section 4.5.

4.2 Denoising diffusion probabilistic models

Denoising Diffusion Probabilistic Models (DDPMs) define a diffusion process that

projects a complex image domain space onto a simple domain space. In the original

formulation, this diffusion process is fixed to a predefined Markov chain that adds a

small amount of Gaussian noise with each step. Figure 4.1 illustrates that this ‘simple

domain space’ can be noise sampled from a Gaussian distribution: xT ∼N (0,1).

4.2.1 Forward process

We define a Markov chain to slowly add Gaussian noise to our data:

q(x0...T ) = q(x0)
T∏

t=1

q(xt | xt−1).

The amount of noise added per step is controlled with a variance schedule {βt ∈
(0, 1)}Tt=1, such that

q(xt | xt−1) =N (xt;
Æ

1− βt xt−1, βt1). (4.1)

33A growing problem due to the rapidly increasing population of satellites, exacerbated by mega-
constellations (Kocifaj et al. 2021).
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This process is applied iteratively to the input image, x0. If we define the above

equation to only depend on x0, we can immediately calculate an image representation

xt for any t (Ho, Jain, and Abbeel 2020). Defining αt = 1− βt and ᾱt =
∏t

i=1αi:

xt =
p
αt xt−1 +

p
1−αt zt−1

=
p
αtαt−1 xt−2 +

Æ
(1−αt) +αt(1−αt−1) z̄t−2

=
p
αtαt−1αt−2 xt−3 +

Æ
(1−αtαt−1) +αtαt−1(1−αt−2) z̄t−3

= . . .

=
p
ᾱtx0 +

p
1− ᾱtz,

where z∼N (0,1) and z̄ is a combination of Gaussians. Substituting this expression

into Eq. 4.1 removes the xt−1 dependency and yields

q(xt | x0) =N (xt;
p
ᾱt x0, (1− ᾱt)1).

4.2.2 Reverse process

DDPMs attempt to reverse the forward process by applying a Markov chain with

learnt Gaussian transitions. In our case these transitions are learnt via an appropriate

neural network, pθ :

pθ (x0...T ) = p(xT )
T∏

t=1

pθ (xt−1 | xt),

pθ (xt−1 | xt) =N (xt−1;µθ (xt , t),Σθ (xt , t)).

While Σθ (xt , t) can be learnt34, we follow Ho, Jain, and Abbeel (2020) and fix it to

an iteration-dependent constant σ2
t1, where σ2

t = 1−αt .

By recognising that DDPMs are a restricted class of Hierarchical VAE, we see that

we can train pθ by optimising the evidence lower bound (ELBO, introduced in Kingma

and Welling 2013) that can be written as a summation over the Kullback-Leibler

34See for example Nichol and Dhariwal (2021).
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Figure 4.2: A montage of generated galaxies designed to mimic the PROBES data set,
interspersed with real examples from the dataset itself. The images have been shuffled and the
synthetic/real data split is 50/50. All images are grz RGB composites with identical scaling (we
have performed a 99.5% percentile clip to better show low surface brightness features). A key
stating which galaxies are real and which are generated is provided at the end of this chapter.
More generated galaxies can be found at http://mjjsmith.com/thisisnotagalaxy.

http://mjjsmith.com/thisisnotagalaxy
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divergences at each iteration step35:

LELBO = Eq

h
DKL(q(xT | x0)‖p(xT ))+

∑
t>1

DKL(q(xt−1 | xt ,x0)‖pθ (xt−1 | xt)) + log pθ (x0 | x1)
i
. (4.2)

In the Ho, Jain, and Abbeel (2020) formulation, the first term in Eq. 4.2 is a constant

during training and the final term is modelled as an independent discrete decoder.

This leaves the middle summation. Each summand can be written as

L (µt ,µθ ) =
1

2σ2
t
‖µt(xt ,x0)−µθ (xt , t)‖2, (4.3)

where µθ is the neural network’s estimation of the forward process posterior mean

µt . In practice it would be preferable to predict the noise addition in each iteration

step (zt), as zt has a distribution that by definition is centred about 0, with a well

defined variance. To this end we can define µθ as

µθ (xt , t) =
1p
αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
, (4.4)

and by combining Eqs. 4.3 and 4.4 we get

L (zt ,zθ ) =
1

2σ2
t


1p
αt

�
xt −

1−αtp
1− ᾱt

zt

�
− 1p

αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
2

=
(1−αt)2

2σ2
tαt(1− ᾱt)

‖zt − zθ (xt , t)‖2. (4.5)

Ho, Jain, and Abbeel (2020) empirically found that a simplified version of the loss

described in Eq. 4.5 results in better sample quality. We therefore use a simplified

version of Eq. 4.5 as our loss, and optimise to predict the noise required to reverse a

forward process iteration step:

L (zt ,zθ ) = ‖zt − zθ (xt , t)‖2, (4.6)

where xt =
p
ᾱtx0 +

p
1− ᾱtzt .

By recognising that zt = σ2
t∇xt

log q(xt | xt−1), we see that Eq. 4.6 is equivalent

to denoising score matching over t noise levels (Vincent 2011). This connection

establishes a link between DDPMs and other SBGMs (such as Song and Ermon 2019;

35See Appendix B in Sohl-Dickstein et al. (2015) and Appendix A in Ho, Jain, and Abbeel (2020)
for the full derivation.
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Jolicoeur-Martineau et al. 2020; Song and Ermon 2020).

Here we use a modified U-Net as pθ (Ronneberger, Fischer, and Brox 2015;

Salimans et al. 2017), and train via the Adam optimiser (Kingma and Ba 2015). The

U-Net comprises of three downsample blocks, a bottleneck block, and three upsample

blocks. Each downsample block comprises of two residual blocks (He et al. 2015;

Srivastava, Greff, and Schmidhuber 2015), a self-attention layer (Bahdanau, Cho,

and Bengio 2014; Cheng, Dong, and Lapata 2016), and a strided convolution layer.

The bottleneck comprises of a self-attention layer sandwiched by two residual blocks.

Each upsample block comprises of two residual blocks, a self-attention layer, and a

transposed convolution layer. As in a standard U-Net, residual connections link the

downsample and upsample blocks. To provide information about the current iteration

step, an embedding representing the reverse process iteration step is periodically

injected into the U-Net via a summation. Mish activation is used throughout (Misra

2019). The full implementation is released under the AGPLv3 licence and is available

at https://github.com/Smith42/astroddpm.

To run inference for the reverse process, we progressively remove the predicted

noise zθ from our image. The predicted noise is weighted according to our variance

schedule:

xt−1 =
1p
αt

�
xt −

1−αtp
1− ᾱt

zθ (xt , t)

�
+σ tz.

If we take p(xT ) ∼ N (xT ;0,1), we can use pθ to generate entirely novel data

that are similar, but not identical to, those found in the training set. We can also use

pθ to perform image domain translation, and inpainting. Section 4.4 describes these

applications in further detail.

4.3 Simulating DESI galaxy images

We train our models on minimally processed native resolution (256× 256 pixels at

0.262′′ pixel−1) Dark Energy Spectroscopic Instrument (DESI; Dey et al. 2019) Legacy

Survey Data Release 9 galaxy imagery. The g, r, and z band images have an average

atmospheric seeing of approximately 1′′.

4.3.1 Data sample, preparation, and training

We train two models on two different datasets for 750,000 global steps each across

three NVIDIA Tesla V100 GPUs, corresponding to ∼250 hours wall time per model.

We fill all available VRAM and set the batch size to 56. The two datasets are described

below.

https://github.com/Smith42/astroddpm
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Figure 4.3: Pixelspace nearest neighbour to generated PROBES galaxies. The leftmost
column shows a galaxy generated with the model pθ (z), the other columns show that galaxy’s
closest training set neighbours in pixelspace. Moving along a row takes us further away from
the simulated galaxy in pixelspace.
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1. We train on the Photometry and Rotation curve OBservations from Extragalactic

Surveys (PROBES) galaxy dataset as imaged by the Dark Energy Spectroscopic

Instrument (DESI; Dey et al. 2019) Legacy Survey Data Release 9. The PROBES

dataset is described in Stone and Courteau (2019) and Stone, Courteau, and

Arora (2021). It contains 1962 late-type galaxies with no large neighbours

or other obscuring features (such as bright stars). Most of the objects are

well resolved, exhibiting spiral arms, bars, and other features characteristic of

late-type systems. The model trained on this dataset produces galaxies that

obviously exhibit internal structure. We refer to this as the ‘PROBES’ dataset.

2. We also train on a dataset of 306 006 galaxies whose coordinates are taken from

Sloan Digital Sky Survey (SDSS; York et al. 2000) Data Release 7 (Abazajian

et al. 2009) and a modified catalogue from Wilman, Zibetti, and Budavári

(2010). This volume complete sample has an r-band absolute magnitude limit

of Mr ≤ −20 and a redshift limit of z ≤ 0.08. See Arora et al. (2019) for details.

This catalogue covers a wide range of environments from clusters to groups

and field systems. As in the PROBES dataset, the galaxy images are taken from

DESI (Dey et al. 2019). We use this dataset and the corresponding trained

model to compare population level galaxy statistics (Sec. 4.4.1). For brevity

we refer to this as the ‘SDSS’ dataset.

All images are cropped about the target galaxy to a shape of 256× 256 pixels. The

only destructive pre-processing performed is a upper and lower percentile clipping,

with the percentiles calculated across the entire dataset. This clipping removes any

‘hot’ or ‘cold’ pixels. To calculate the upper flux truncation point we evaluate the

99.9th percentile fluxes for each galaxy across the full dataset. To separate the long

tail from the bulk of the data, we fit a two-cluster k-means (Lloyd 1982). The two-

cluster k-means returns a boundary at approximately 5 analogue-to-digital unit (ADU)

for the SDSS dataset, and 5.5 ADU for the PROBES dataset, and so we set these

values as our upper truncation points and normalisation constants. The lower flux

truncation point is set as the minimum off-source pixel-wise root mean square across

the entire dataset. We found this value to be very close to zero across all bands in

both the SDSS and PROBES datasets, and therefore set the lower flux truncation as

0 ADU. We apply a min-max normalisation to the images with the following equation:

x̄=
2 ·max(0,min(x, A))

A
− 1, (4.7)

with A = 5.0 ADU being the upper flux truncation for the SDSS dataset, and A =
5.5 ADU for the PROBES dataset. We reverse this normalisation when post-processing
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inferrals from the model.

4.4 Results

Figure 4.2 shows a random selection of generated galaxies, alongside a random

selection of real galaxies. The images are shuffled and we can see that the simulated

and real galaxies are subjectively indistinguishable, at least to the authors (we of

course invite the reader to make their own assessment of fidelity, referring to the

answer key given at the end of this chapter). Figure 4.3 presents a random selection of

generated galaxies’ nearest neighbours in pixelspace. Since the pixelspace search does

not return identical galaxies, we conclude that the DDPM is not simply regurgitating

imagery, and is indeed generating novel data. We found a systematic offset in the

simulated pixel fluxes and corrected for it in post-processing. To estimate the offset,

we calculated the median pixel value in each of the 10,000 mock and 10,000 real

galaxy observations. Each set is sorted and the medians paired according to their

place in the sorted sets. Finally we fit a linear function to the resulting 10,000 median

flux pairs. The gradient of the fit was used as a scaling factor for the simulated galaxy

images. We found the multiplier to be 1.18 in g, 1.16 in r, and 1.23 in z for our DESI

observations. Unfortunately, the exact cause of these offsets could not be determined.

We propose that this discrepancy is due to a fundamental property of the neural

network and its interaction with sparse imagery such as our galaxy images.

4.4.1 Quantifying similarity

To quantify the similarity of the visual and morphological characteristics of our

galaxies, we borrow from the deep generative learning literature and calculate the

Fréchet Inception Distance (FID; Heusel et al. 2017; Seitzer 2020). The FID is the

distance (Dowson and Landau 1982) between Gaussians fitted to two Inception-v3

(Szegedy et al. 2016) penultimate layer feature representations. The penultimate

layer nodes are deep in the network and mimic a human’s perception when viewing

images. Therefore, if the Gaussians are similar (and the corresponding FID is small),

the images will be visually similar too.

We run FID on 10,000 random samples and present the results in Table 4.1. While

we cannot yet contextualise our FID within the literature, we provide the value for

future comparison. Figure 4.2 is presented for a basic visual and morphological

comparison; we cannot discern between the synthesised and real galaxies, which

suggests that the visual and morphological characteristics of our datasets are well

replicated.
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Figure 4.4: Histogram comparison between galaxies generated by the SDSS DDPM, and
galaxies contained in the SDSS training set. The half light radius histogram follows a
lognormal distribution, as do the magnitude and colour histograms in flux space. Therefore,
we can calculate Cohen’s d effect size for each histogram pair. As a rule of thumb, if d ≤ 0.2
the effect size is considered ‘small’ and a sign of negligible difference (Cohen 1988).
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Table 4.1: Wasserstein-1 distance between emergent property distributions. pθ (z) is the
DDPM described in this chapter. ‘SDSS’ is a comparison between two different randomly
selected sets of 10,000 galaxies from the training set. We provide the ‘SDSS’ Wasserstein-1
distances as a baseline ‘perfect’ inference.

Wg Wr Wz WRe
W(g−r) W(r−z) SGD FID

pθ (z) 0.013 0.012 0.023 0.055 0.015 0.010 0.127 19
SDSS 0.008 0.010 0.014 0.018 0.006 0.004 0.060 0.95

To demonstrate that we capture emergent, measurable properties of the galaxies,

we directly compare size and flux distributions. Fluxes are measured via a summation

within a fixed aperture with a diameter of 12 pixels (∼3′′), and we use the half light

radius as a simple measure of size. To summarise the distance between the ‘ground

truth’ photometry training set properties and the properties of the simulated set we

use the Wasserstein-1 distance36:

W (u, v) =

∫ ∞

−∞
|U − V | (4.8)

where U and V are the respective cumulative distribution functions of u and v.

Following Eq. 4.8, we propose a ‘synthetic galaxy distance’ metric that captures

the difference between emergent properties of a synthetic and reference galaxy

photometry dataset:

SGD=
∑

i

W (ui, vi),

=W (Ru
e , Rv

e) +W (gu, g v) +W (ru, r v) +W (zu, zv)+

W ((g − r)u, (g − r)v) +W ((r − z)u, (r − z)v), (4.9)

where Re is the half light radius, and g, r, and z are aperture magnitudes in specific

bands and u and v denote different datasets. The SGD returns a single number, where

a lower value denotes a closer match between u and v. When combined with the FID

for visual and morphological similarity, a good overview of the similarity between

two large galaxy photometry datasets is obtained. Figure 4.4 shows the results for

the individual tests and the SGD summary is in Table 4.1. We run SGD on 10,000

random samples.

36Since we are dealing with large datasets a Kolmogorov-Smirnov (KS) test is not appropriate as it
becomes overpowered with a very large sample size. We instead use the related Wasserstein-1 distance
to provide an absolute value that represents the difference between our distribution pairs, and also
calculate Cohen’s d effect size as a direct intuitive substitution for the p-values that would otherwise
result from KS tests (Figure 4.4).
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Figure 4.5: Inpainting of galaxy observations defaced by satellite trails. The first row shows
the original (r-band) PROBES galaxy, x. The second row shows the defaced galaxy, x̄. The
third row shows a random guided draw from the model pθ (q(x̄; T = 950)).

While we cannot yet contextualise our SGD within the literature, we provide the

value for future comparison. We also present Figure 4.4 to otherwise show that our

model captures physical properties of the galaxies. We calculate Cohen’s d effect size

for each histogram pair, and in all cases find d ≤ 0.2 indicating a ‘small’ or negligible

effect (Cohen 1988). Cohen’s d effect size is defined here as

d =

������

√√√ 2
σ2

u −σ2
v

�
µu −µv

�
������
,

where µ is the mean of the fitted distribution, and σ is the standard deviation. The

subscripts u and v denote different datasets.

4.4.2 Satellite trail removal via guided diffusion

The DDPM can be used to remove simulated galaxy satellite trails from images.

We simulate satellite trails by superimposing a bright linear strip onto a real im-

age. The strips have a random direction, brightness, width, and periodicity. In this

demonstration we present monochrome r-band images from the PROBES dataset.

To perform guided diffusion, we run the reverse process on the occluded part of

the galaxy, in this case the satellite trails. The other image pixels are drawn directly

from the forward process, and so are not updated. The occluded pixels are updated

with guidance information from the surrounding pixels. As Figures 4.5 and 4.6 show,
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Figure 4.6: A pixelwise comparison between the ground truth images’ occluded fluxes, and
the recovered images’ in Figure 4.5, expressed as a fractional error. The left panel shows the
residual for all pixels, and the right panel restricts the analysis to pixels exceeding 3 times
the background r.m.s. (0.654 ADU). We find good agreement between the predicted pixel
fluxes and the ground truth fluxes, with virtually all significant pixels within 10% of their
true values.

this process retrieves excellent representations of the original galaxies, essentially

in-painting the missing data with high accuracy. Figure 4.6 shows that significant

(>3σ) pixels that were occluded by a trail have recovered fluxes within 10% of

their true values. Since satellite trails are not present in the training set, a guided

draw from the learnt model is effective at ‘interpolating’ the occluded pixels. A

similar approach would work for other unwanted artefacts, such as glints and ghosts,

provided they do not appear frequently in the training set.

4.4.3 Domain transfer

The DDPM can also be used to make another input image resemble a DESI Legacy

Survey observation. To perform this domain transfer, we first run the forward process

for T iterations. We then take the noisy image, and run the reverse process. This

results in a DESI Legacy Survey-like observation that shares high level features with

the input image. Figure 4.7 demonstrates this technique on cartoons, setting T = 600.

If T is set at a high value, the DDPM produces an image that more closely resembles

one that might be found in the training set. However, fine detail in the conditioning

image is lost as it is erased by the forward noise addition process. The cartoon input

is transformed into an image resembling it, but with the properties of a DESI survey

image. Once the cartoon images have been ‘DESI-fied’, we can search for the nearest

neighbour in pixelspace in the real dataset, and this is shown as a final column in

Figure 4.7. Thus, this approach paves the way for pixel-based searching of large



92 CHAPTER 4. SCORE-BASED MODELLING

survey imaging databases. For example, one could potentially sketch a particular

morphology or configuration (e.g. an Einstein ring), apply the model tailored to

that survey and then recover the best match in the real data. One could also apply

this technique to inject realism into simulated galaxies, such as those predicted by

hydrodynamical simulations.

Figure 4.7: Cartoon images are made to look like DESI observations via the model pθ (q(x; T =
600)). The first row shows the input image, the middle rows show random draws from the
PROBES model, and the final row shows the pixelspace nearest neighbour to the generated
images.

Preechakul et al. (2021) and Saharia et al. (2021) have both explored image-

to-image translation with a score-based model. Preechakul et al. (2021) showed

that DDPMs can produce semantically meaningful embeddings, given an appropriate

architecture. In their paper, they demonstrate that their autoencoding DDPM can

interpolate along the embedding space and age and de-age images of faces. In

astronomy, one can imagine using a ‘survey’ embedding to interpolate between

surveys.

Saharia et al. (2021) took a different approach and explicitly trained their model

to reverse the forward process of an ill-posed inverse problem. For an ill-posed inverse

problem such as noise addition, one can define the forward process in a classical way,

and use a DDPM in the inverse process to retrieve the uncorrupted image. Saharia

et al. (2021) did this and showed that a DDPM can colourise greyscale images, and

remove JPEG compression artefacts.
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For more difficult problems that do not have a well defined forward process, we

can use a model similar to that introduced in Sasaki, Willcocks, and Breckon (2021)

to translate between two different image domains. We intend to explore astronomy

related image-to-image translation applications more deeply in follow up work.

4.4.4 A fun aside: mock Astronomy Picture of the Day

Figure 4.8: A sample of DDPM-generated APOD imagery: AI-APODs. More can be found
at http://mjjsmith.com/thisisnotanapod and you can follow a Twitter bot https:
//twitter.com/ThisIsNotAnApod. A version of this figure has been featured on NASA’s
APOD https://apod.nasa.gov/apod/ap211109.html.

As a fun aside, we have trained a DDPM on images from NASA’s Astronomy

Picture of the Day (APOD) archive. The dataset comprises 11,428 RGB JPEG images

resized to a 256× 256 shape. We trained this model for 900,000 global steps on a

http://mjjsmith.com/thisisnotanapod
https://twitter.com/ThisIsNotAnApod
https://twitter.com/ThisIsNotAnApod
https://apod.nasa.gov/apod/ap211109.html
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single V100 GPU. This allows us to generate new APODs that do not actually exist.

Figure 4.8 shows a curated sample of ‘AI-APODs’ generated from this model. We

leave it to the reader to critically assess their merits, but some common themes are

apparent: images resembling nebulae, galaxies, landscapes, moons, and aurorae

are present. Random AI-APODs generated from the model can be found at http:
//mjjsmith.com/thisisnotanapod, and a Twitter bot will post images at https:
//twitter.com/ThisIsNotAnApod.

4.5 Conclusions

We show that score-based generative modelling is a viable method for synthetic

galaxy image generation, and that this approach preserves emergent properties such

as galaxy size and total flux over different photometric bands, in addition to producing

realistic morphologies. We achieve this fidelity without explicit encoding of physics or

instrumental effects, a great advantage when simulating physically ill-defined objects.

This is a completely data-driven approach to synthetic data generation.

There are downsides. Naturally, SBGMs require significant computational re-

sources to train. However, unlike most other generative deep learning methods

SBGMs also require significant resources to infer data. Since they need to diffuse

the data for T cycles37, it takes T times longer to produce a batch of synthetic data

compared to an equivalent GAN, VAE, or other single shot generative model. However,

there may be routes to reduce the inference time for SBGMs, with promising results

already (Jolicoeur-Martineau et al. 2021; Song et al. 2021).

SBGMs have clear astronomical applications, from object deblending (Jayaram

and Thickstun 2020) to survey-to-survey translation (Sasaki, Willcocks, and Breckon

2021) to occluded object in-painting (Kadkhodaie and Simoncelli 2020; Song et al.

2021) to super-resolving imagery (Saharia et al. 2021). Unlike GANs, SBGMs do

not suffer from mode collapse and are trivial to train. SBGMs produce imagery that

has a diversity and fidelity that rivals state of the art GAN models (Dhariwal and

Nichol 2021; Nichol and Dhariwal 2021; Song et al. 2021). Unlike VAEs, SBGMs do

not constrain information to a fixed bottleneck vector and thus do not suffer from

blurring, and instead produce sharp, realistic imagery (Spindler, Geach, and Smith

2020). For all these reasons, we believe that SBGMs are ripe for exploitation by the

astronomical community, and we hope this chapter motivates further work in this

topic.

37In this chapter, T = 1000.

http://mjjsmith.com/thisisnotanapod
http://mjjsmith.com/thisisnotanapod
https://twitter.com/ThisIsNotAnApod
https://twitter.com/ThisIsNotAnApod
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Data and code availability. The full PyTorch (Paszke et al. 2019) implementa-

tion of the model presented here is available at https://github.com/Smith42/
astroddpm, and the code to calculate the Synthetic Galaxy Distance (SGD) can

be accessed at https://github.com/Smith42/synthetic-galaxy-distance.

To calculate the Fréchet Inception Distance (FID), we used https://github.com/
mseitzer/pytorch-fid.

Carbon emissions. The training of deep learning models requires considerable

energy, contributing to carbon emissions. The energy used to train AstroDDPM to

completion is estimated to be 450 kWh, corresponding to 105 kg CO2e. according to

the Machine Learning Emissions Calculator described in Lacoste et al. (2019). To

counteract further emission from redundant retraining, we follow the recommenda-

tions of Strubell, Ganesh, and McCallum (2019) and make available the fully trained

models, as well as the code to run them. Also, we will make available trained models

for any improvements that we make to AstroDDPM in the future.

Answer key for Figure 4.2. 00 Real, 01 Real, 02 Real, 03 Mock, 04 Real, 05 Real,

06 Real, 07 Mock, 08 Mock, 09 Mock, 10 Real, 11 Real, 12 Mock, 13 Mock, 14 Mock,

15 Mock, 16 Real, 17 Real, 18 Mock, 19 Real, 20 Real, 21 Real, 22 Real, 23 Mock, 24

Mock, 25 Mock, 26 Mock, 27 Mock, 28 Mock, 29 Real, 30 Mock, 31 Real, 32 Real, 33

Real, 34 Real, 35 Mock, 36 Real, 37 Mock, 38 Mock, 39 Mock, 40 Mock, 41 Mock,

42 Mock, 43 Mock, 44 Real, 45 Real, 46 Mock, 47 Real, 48 Real, 49 Real, 50 Mock,

51 Real, 52 Mock, 53 Real, 54 Real, 55 Real, 56 Real, 57 Real, 58 Mock, 59 Real, 60

Mock, 61 Mock, 62 Mock, 63 Mock.

https://github.com/Smith42/astroddpm
https://github.com/Smith42/astroddpm
https://github.com/Smith42/synthetic-galaxy-distance
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
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Chapter 5

Astronomical foundation models:

a fourth astroconnectionist wave?

The biggest lesson that can be read from 70 years of AI

research is that general methods that leverage computation

are ultimately the most effective, and by a large margin.

—Sutton (2019), The Bitter Lesson

We have seen in the preceding chapters that deep learning has already found much

use in astronomy, a use predicated on the availability of enormous amounts of

computational power and data. In §2 we explored a model that sidestepped a time

consuming manual information extraction process by leveraging a large dataset via

deep learning. In §5.1 and §5.2 we will follow this family of information extraction

methods to their logical conclusion and discuss foundation models as astronomical

information extractors. All of the techniques described in the following sections

require an amount of computational power and data that is currently outside the

reach of the average academic. In §5.2 I address this, and suggest actions that we can

take as a community to remedy this issue. In §3 and §4 we explored two generative

models repurposed as astronomical simulators. In §5.3 I suggest an extension to

these methods that leverages a hypothetical astronomical foundation model. This

extension would be capable of conditional image generation, paving the way for

physically aware deep learning based astronomical simulations. Finally, in §5.4 I

draw this thesis to an end with some closing remarks.

97
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5.1 Foundation models

Since its inception, connectionism has followed a path of greater compute and greater

generality (Sutton 2019; Branwen 2022). In that time, human crafted biases have

fallen by the wayside, to be replaced with models and techniques that learn directly

from data. Sutton (2019) exemplifies this process via the field of speech recognition:

In speech recognition, there was an early competition, sponsored by DARPA,

in the 1970s. Entrants included a host of special methods that took advantage

of human knowledge—knowledge of words, of phonemes, of the human vocal

tract, etc. On the other side were newer methods that were more statistical

in nature and did much more computation, based on hidden Markov models

(HMMs). Again, the statistical methods won out over the human-knowledge-

based methods. This led to a major change in all of natural language processing,

gradually over decades, where statistics and computation came to dominate

the field. The recent rise of deep learning in speech recognition is the most

recent step in this consistent direction. Deep learning methods rely even less on

human knowledge, and use even more computation, together with learning on

huge training sets, to produce dramatically better speech recognition systems.

As in [computer Go and computer chess], researchers always tried to make

systems that worked the way the researchers thought their own minds worked—

they tried to put that knowledge in their systems—but it proved ultimately

counterproductive, and a colossal waste of researcher’s time, when, through

Moore’s law, massive computation became available and a means was found to

put it to good use.

We are seeing this principal play out once again through a new paradigm shift in deep

learning, where even the underlying neural network architecture does not matter.

Previously, neural networks were adapted for a specific domain via inductive biases

injected by researchers, such as convolutions for computer vision, and recurrence

for language processing. Now we are seeing transformer networks (see §1.7 and

Vaswani et al. 2017) competing38 in all deep learning domains applied or otherwise:

from language processing (Devlin et al. 2019; Brown et al. 2020)39 to computer

vision (Parmar et al. 2018; Dosovitskiy et al. 2020) to graph learning (Kim et al.

2022) to protein folding (Jumper et al. 2021) to astronomy (Donoso-Oliva et al. 2022;

38For now! It may be that network architecture does not matter all that much at scale, and that
any sufficiently large neural network is adequate. If this is true, we will see the simplest (and most
scalable) architectures win out. Although this theory has not yet been rigorously tested, we are
currently seeing rumblings that suggest that this is the case (i.e. Bo 2021. Also see Footnote 10 for
commentary on MLPs and transformers).

39These models are collectively known in the literature as large language models, or LLMs.
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Morvan et al. 2022; Pan, Ting, and Yu 2022). The transformer’s versatility allows

us to take a model trained on one task and apply it to a similar yet different task,

a process known as transfer learning. For example, we could train a model on the

‘surrogate’ task of predicting the next word in a sequence, and then apply that model

to a similar yet different task of predicting the answer to a geography question. In this

example the first model is known as a ‘foundation’ model, and the downstream model

is derived from it. This set up brings with it some useful advantages. For example,

if the foundation model is improved, all downstream tasks also see improvement.

Therefore, the need for only one model allows researchers to pool their efforts in a

way not possible when resources are split between many projects.

To train a foundation model, we first need to define a surrogate task. As labelled

datasets are expensive, and raw data is cheap, the easiest and most scalable way to

do this is via self-supervised learning40 . Self-supervised learning does not require a

human to provide a labelled dataset for training. Instead, the supervisory signal is

generated automatically from the raw data. For example, in the context of astronomy

this task could be predicting a masked value in a variable star’s light curve (Donoso-

Oliva et al. 2022). Another task could be using an autoencoder (§1.9.1) to replicate

a galaxy observation (Spindler, Geach, and Smith 2020). A further task could be

training within a self-supervised framework, like contastive learning (§1.10.1). The

important thing about self-supervised learning is that it does not require annotated

data. This means that we can leverage vast reserves of raw data (such as textbooks,

scraped Internet text, raw imagery, etc.).

Very large models trained on vast amounts of data demonstrate surprising emer-

gent behaviour. For instance, GPT-3 (Brown et al. 2020) is a 175B41 parameter model

that can be ‘prompted’ to perform a novel task (see Fig. 5.1 for more on prompting

foundation models). This ability was not shown at all in GPT-3’s older, smaller 1.5B

parameter sibling (Radford et al. 2019). Furthermore, a meta-study described in Wei

et al. (2022) found that larger models suddenly ‘unlock’ abilities such as arithmetic,

translation, and understanding of figures of speech once they reach a certain scale.

These findings suggest that architectural changes are not required beyond scaling to

perform many tasks in natural language processing (Branwen 2022; Chowdhery et al.

2022). In Fig. 5.1 we see some results from Alayrac et al. (2022), a model comprising

of an LLM, and an image encoder. In this figure we can see that the model is capable

of arithmetic, reading, counting, and has a broad knowledge of art, geography and

40For more on self-supervised learning see §1.10.
41In this chapter I will abbreviate billion as B and trillion as T.
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Input prompt Completion

This is a
chinchilla. They

are mainly
found in Chile.

This is a shiba.
They are very

popular in
Japan.

This is −→
a flamingo.

They are found
in the

Caribbean and
South America.

What is the title
of this painting?

Answer: The
Hallucinogenic

Toreador.

Where is this
painting

displayed?
Answer: Louvres
Museum, Paris.

What is the
name of the city
where this was

painted?
Answer:

−→ Arles.

Output:
‘Underground’

Output:
‘Congress’ Output: −→ ‘Soulomes’

2+1=3 5+6=11 −→ 3x6=18

pandas: 3 dogs: 2 −→ giraffes: 4

I like reading
, my favourite

play is Hamlet. I
also like

, my favorite
book is

−→ Dreams from
my Father.

Figure 5.1: Flamingo is a foundation model that is capable of understanding images within
the context of natural language. Here we see some examples of Flamingo’s emergent abilities.
This figure is adapted from Fig. 1 in Alayrac et al. (2022).

zoology42, and literature. This model is comprised of a ResNet variant (He et al.

2015; Brock et al. 2021) to encode imagery, and the Chinchilla LLM (Hoffmann et al.

2022) to encode and generate text. Chinchilla (and therefore Flamingo) was trained

with the surrogate task of predicting the next word in a text sequence, and so none

of the emergent properties stated above were explicitly optimised for.

In the next section, I will state and explain the need for an astronomical foundation

model43, not only for astronomy’s sake, but also for the sake of openness in deep

learning research.

42Interestingly, the authors of Flamingo first assumed that Flamingo’s prediction of the species range
of its eponymous bird was incorrect: flamingos are found in the Caribbean, South America, Africa,
Europe, and South Asia. However, they later realised that the picture in Fig. 5.1 is of an American
flamingo, which is specifically found in the Caribbean and South America, so the network was right
after all! See Fig. A.1 for the full context.

43Walmsley et al. (2022) explore in a prelimiary study a ‘galaxy foundation model’ trained on Galaxy
Zoo labels, and corresponding paired galaxy observations. They find that their pretraining is beneficial
for training a network that performs a downstream task. However, they do not train a model of the
scale required to exhibit emergent properties or task generalisability. These ‘blessings of scale’ require
data and compute at a level that has not yet been seen within astronomical connectionism.
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5.2 Scaling laws and data moats

Hoffmann et al. (2022) suggested an update to the foundation model scaling law

first proposed in Kaplan et al. (2020). Their scaling law equation relates the size of a

neural network model and the training dataset size to the minimum achievable loss.

Mathematically, the equation is

Lmin(N , D) =
A

Nα︸︷︷︸
parameter term

+
B

Dβ︸︷︷︸
data term

+ E︸︷︷︸
dataset entropy

, (5.1)

where E is a constant that represents the lowest possible loss, given a particular

training dataset. N is the number of trainable parameters within the neural network,

and D is the size of the dataset in tokens (see §1.7 for more about tokenisation). We

can see that when we have an infinitely large model trained on an infinitely large

dataset (i.e. N = D =∞), the only term remaining is the ‘dataset entropy’ constant,

E. We can therefore only reduce the loss by increasing the size of our model, or the

size of our training set.

After fitting Eq. 5.1, Hoffmann et al. (2022) find

Lmin(N , D) =
406.4
N 0.34

+
410.7
D0.28

+ 1.69.

If we then plug in N and D for a selection of real foundation models we arrive at

Fig. 5.2. We can see in Fig. 5.2 that the model size term for real foundation models

is far lower than the dataset size term. This means that an increase in dataset size

has the potential to reduce the minimum loss by a far larger amount than a larger

model would. Therefore, an obvious next step to improve these foundation models

further is by increasing their dataset size.

The largest dataset (MassiveText-English; Hoffmann et al. 2022) in the comparison

shown in Fig. 5.2 amounts to 1.4T tokens. However, this dataset is proprietary, being

only available to researchers employed by Google. The largest public text dataset

available at the time of writing is The Pile (Gao et al. 2020), with a total size of

∼260B tokens. We could increase the size of these datasets by indefinitely scraping

text data from the surface web, but this data tends to be of low quality. Also, we

have already exhausted some important high quality data reserves, like fundamental

research papers, and open source code (Friel 2022). We also have to ask ourselves:

what happens when generative models start to create data en masse, and dump it

indiscriminately onto the Internet? If a significant proportion of text in a dataset

scraped from the Internet is generated via a LLM, training on it will cause unforeseen
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LaMDA (Thoppilan et al. 2022) 137B 168B 0.066 0.295 2.051
GPT-3 (Brown et al. 2020) 175B 300B 0.061 0.251 2.002
Gopher (Rae et al. 2021) 280B 300B 0.052 0.251 1.993
MT-NLG (S. Smith et al. 2022) 530B 270B 0.041 0.259 1.990
Chinchilla (Hoffmann et al. 2022) 70B 1.4T 0.083 0.163 1.936
PaLM (Chowdhery et al. 2022) 540B 780B 0.042 0.192 1.924

Figure 5.2: A comparison between the minimum losses of a selection of foundation models.
The table above shows the number of parameters in a model (N), the number of tokens
within that model’s training set (D), and their corresponding calculated emergent terms
from Eq. 5.1. Here we use Hoffmann et al. (2022) to source values for A, α, B, and β . The
minimum loss for each model according to Hoffmann et al. (2022) is shown as Lmin. The
contour plot shows the emergent parameters B/Dβ and A/Nα plotted against each other
for our models. The closer the models’ scatterpoints are to the bottom left, the lower their
minimum loss value.
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issues and may ultimately result in a model with worse performance. We must

therefore ensure that the data is not generated by a deep generative model. In

addition to all this, the academy and the public at large will never have access to the

vast reserves of data contained in the deep web administered by ByteDance, Google,

Meta, Microsoft, and other tech giants. For all these reasons, we will need to think

outside the box if we want to mine new high quality data.

Enter the multimodal foundation model. Reed et al. (2022)44 demonstrated that

a large Transformer neural network is capable of learning many tasks, from playing

Atari, to captioning images, to chatting, to operating a real robot arm. The model

shares weights across all tasks, and decides at inference time from context which

task to predict. Importantly, Reed et al. (2022) find that their model follows the

same scaling laws as other foundation models, and so multimodal foundation models

have the same hunger for data that we see in Fig. 5.2. We can therefore augment (or

replace) our text datasets with high quality, publicly available astronomical data.

The LSST’s 189 16 megapixel CCDs will observe 1000 science frames per night

(Ivezić et al. 2019). This amounts to 3× 1012 pixels per night, or approximately 12B

tokens a night if we use the same tokenising scheme as Dosovitskiy et al.’s vision

transformer (Dosovitskiy et al. 2020). After only one year of observing, the LSST will

have produced 4.4T tokens of raw data, larger than even the MassiveText-English

dataset45. This data, and other astronomical data like it, could be compiled into a very

large open dataset similar to EleutherAI’s Pile (Gao et al. 2020). This dataset would

provide a way for academics employed outside of Big Tech to train and research very

large foundation models. Compiling a dataset like this would be difficult for a single

relatively underresourced research group, but it could be accomplished via bazaar

style open development (Raymond 1999). We have already seen this development

model succeed in large open source projects, the most famous of which is the Linux

kernel. This development model has also been shown to work within the field of deep

learning by EleutherAI (e.g. Gao et al. 2020; Black et al. 2022; Crowson et al. 2022),

and with HuggingFace’s BigScience initiative46. Once compiled, we must ensure that

progress is kept in the open, and that the data is not simply absorbed into proprietary

datasets—to do this we must give our dataset a strong (viral) copyleft style licence.

44Earlier work from Kaiser et al. (2017) also demonstrated a deep learning model that could learn
from disparate tasks, however Gato is the first model that achieves this while staying within a single
deep learning paradigm.

45Of course, the reduced, useful data will be far smaller than our raw estimate here. The motivation
behind this calculation is to show that even a single astronomical survey rivals the largest text dataset
in size. A compilation of all useful astronomical data would certainly dwarf any contempory text
dataset, whether public or proprietary.

46https://bigscience.huggingface.co

https://bigscience.huggingface.co
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Once the dataset is compiled all we need are some self-supervised surrogate tasks

for our ‘astrofoundation’ model to attempt. These tasks could include predicting the

next observation in a variable star’s time sequence, predicting the rotation curve of a

given galaxy observation, predicting a galaxy’s morphological parameters, or simply

generating the next crop in a sequence of observations47. Our astrofoundation model

will inherit all the interesting properties that LLMs enjoy, such as few to zero-shot

generation and other emergent behaviours. We could also finetune astrofoundation to

downstream tasks, saving much time and compute. In the next section I will outline

one possible downstream task that would be useful in astronomy; a conditional

generative model for galaxy simulation.

5.3 A new class of simulation

We explored in §3 and §4 the use of deep generative modelling to simulate astronom-

ical observations. Both of these models were unconditional, and we could therefore

not control their output. This is an issue if we want to generate specific classes of

observations to train models for downstream tasks, such as redshift estimation, or

galaxy type classification. To achieve a model capable of generating specific classes,

one could simply train a conditional generative model of the form

Gφ(x̂ | z,y), (5.2)

where x̂ is a generated image, z is some noise that acts to capture all detail not

encoded in y, and y is a conditioning vector. As an example, y could contain a

galaxy’s redshift or morphological type. However, this means that we must be very

specific when choosing y. Multimodal modelling allows us the means to sidestep this

fundamental issue, and lets us play with fuzzy inputs.

As a thought experiment let us consider Google’s recent ‘Imagen’ model48, and

imagine how it could be repurposed for an astronomical use case (Figs. 5.3 and

5.4; Saharia et al. 2022). Imagen is a combination of a frozen LLM (specifically

T5-XXL; Tay et al. 2021) and a cascaded diffusion model (Ho et al. 2021, also see

§1.9.3). The LLM acts as a language encoder, and then passes its generated latent

space representations onto the diffusion model as a conditioning vector. If we were

47This is essentially training the model to act as a physics simulator. Viewing foundation models
as world simulators is not unprecidented, and this perspective has already been explored in the
simulation of thousands of ‘social simulacra’ within a model online community (Park et al. 2022).

48Naturally, no implementation is provided by Google. However, there is already an excellent MIT
licenced implementation of Imagen provided by Phil Wang and others (https://github.com/
lucidrains/imagen-pytorch). All we are missing now is the data and the means to train with it!

https://github.com/lucidrains/imagen-pytorch
https://github.com/lucidrains/imagen-pytorch
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y

‘Astrofoundation’
encoder

ŷ

x̂

z

Diffusion model
decoder

Figure 5.3: An Imagen-like model uses a frozen foundation model to encode text, and then
uses that encoding to condition a cascaded diffusion model of the form Gφ(x̂ | z, ŷ) (Ho et al.
2021; Saharia et al. 2022). Here we see one possible realisation of this type of model in
astronomy. y is some kind of descriptive vector that can be paired with a ground truth image.
For example, y could be the surface brightness profile of a galaxy, or the summary statistics
of a variable star light curve, or some cosmological parameters. In general, y could be any
vector that the astrofoundation model understands. ŷ is y’s projected latent space equivalent.
Since we do not need to train the foundation model here, training cost is far lower than for
an equivalent end-to-end trained model.

to replace the frozen LLM with an ‘astrofoundation’ model (see §5.1 and §5.2),

we could leverage astronomy’s fundamentally multimodal nature. For example, if

our astrofoundation model were trained to understand the Galaxy Zoo 2 (GZ2)

morphological classifications (Willett et al. 2013), we could take the GZ2 descriptors

as y and their corresponding galaxy pair as x and train on those.

Once trained, our astronomical Imagen model could generate synthetic galaxies

that resemble the real galaxy observations that it was trained on. However, unlike

the unconditional astronomical simulators described in §3 and §4, this model would

be capable of generating galaxies that specifically resemble a real galaxy that shares

the conditioning set of GZ2 parameters!

Unlike the conditional model described by Eq. 5.2, an astrofoundation type model

allows us to be creative with the conditioning vector. For example, we could run the

model in reverse to generate representations that refer to a very specific astronomical

object, and then generate many more objects of that ‘class’ with injected features like

satellite occlusion, a specific seeing, a specific redshift, etc. (see work on ‘textual

inversion’ by Gal et al. 2022). We could even create a ‘galaxy zoo’ type dataset that

asks citizen scientists to describe galaxy morphology via natural language. This is

possible since the encoding foundation model does not fundamentally care about

which form the caption takes. This approach would cut down on citizen scientist
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A wall in a royal castle. There are two
paintings on the wall. The one on the
left a detailed oil painting of the royal
raccoon king. The one on the right a
detailed oil painting of the royal rac-
coon queen.

A group of teddy bears in suit in a cor-
porate office celebrating the birthday
of their friend. There is a pizza cake
on the desk.

An angry duck doing heavy weightlift-
ing at the gym.

A cloud in the shape of two bunnies
playing with a ball. The ball is made
of clouds too.

A photo of a person with the head of a
cow, wearing a tuxedo and black bowtie.
Beach wallpaper in the background.

A chrome-plated duck with a golden
beak arguing with an angry turtle in a
forest.

Figure 5.4: Select 1024× 1024 Imagen samples generated from text inputs. Below each
image is its corresponding conditioning text. Figure adapted from Fig. A.2 in Saharia et al.
2022.
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training cost due to natural language’s inherent intuitiveness.

5.4 Final comments or: how I learnt to stop worrying

and love astronomy’s Big Data Era

1995 2000 2005 2010 2015 2020

Paper submission date

0

50

100

150

200

250

C
um

ul
at

iv
e

su
bm

is
si

on
s

First wave: MLP, perceptron

Second wave: CNN, GRU, LSTM, RNN

Third wave: GAN, VAE, self-supervised

Figure 5.5: Here we see the number of arXiv:astro-ph submissions whose titles or abstracts
match the terms given in the legend. We can see three distinct ‘waves’. The first corresponds to
studies that use MLPs (§1.1-§1.3), the second corresponds to studies that use ‘deep learning’
methods that injest raw data (§1.4-§1.8) and the third corresponds to studies that use
generative or self-supervised models (§1.9-§1.11). The raw data is in the public domain, and
is available at https://www.kaggle.com/Cornell-University/arxiv.

In every field that deep learning has infiltrated we have seen a reduction in the

use of specialist knowledge, to be replaced with knowledge automatically derived

from data (Sutton 2019). We have already seen this process play out in computer

Go (Silver et al. 2016), protein folding (Jumper et al. 2021), natural language

processing (Brown et al. 2020), and computer vision (Dosovitskiy et al. 2020). There

is no reason to believe that astronomy is fundamentally different. Indeed, within

this thesis we have seen a narrative pointing to this conclusion (Fig. 5.5). Initial

work on MLPs within astronomy required manually selected emergent properties as

input (e.g. Angel et al. 1990; Odewahn et al. 1992). With the advent of CNNs and

RNNs, these manually selected inputs gave way to raw data ingestion (e.g. Dieleman,

Willett, and Dambre 2015; Charnock and Moss 2017). Now we are seeing the

removal of human supervision altogether with deep learning methods inferring labels

https://www.kaggle.com/Cornell-University/arxiv
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directly from the data (e.g. Spindler, Geach, and Smith 2020; Morvan et al. 2022).

Ultimately, if astronomy follows in the footsteps of other applied deep learning fields,

we will see the removal of expertly crafted deep learning models, to be replaced

with finetuned versions of an all-encompassing ‘foundation’ model (Bommasani et al.

2021). This process is by no means a bad thing; the removal of human bias in

the astronomical discovery process allows us to find ‘unknown unknowns’ through

serendipity (Sarmiento et al. 2021; Donoso-Oliva et al. 2022). Likewise, the ability

to leverage data allows us to directly generate and interrogate realistic yet synthetic

observations, sidestepping the need for an expensive and fragile classical simulation

(Smith and Geach 2019; M. J. Smith et al. 2022).

Astronomy’s relative data wealth gives us the opportunity to form a symbiotic

relationship with the cutting edge of deep learning research, an increasingly data

hungry field (Branwen 2022; Friel 2022). Many ultra-large datasets in machine

learning are proprietary, and so astronomy as a whole could step in and provide a

high quality multimodal public dataset. In turn, this dataset could be used to train

an astronomical ‘foundation’ model that can be used for state-of-the-art downstream

tasks (such as astronomical simulation, see §5.3).

Finally, following recent developments in connectionism (Brown et al. 2020;

Hoffmann et al. 2022) most astronomers lack the resources to train models on the

cutting edge of the field. If astronomy is to have any chance of keeping up with the

Big Tech goliaths, we must follow the examples of EleutherAI and HuggingFace and

pool our resources in a grassroots-style open source fashion (§5.2).
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Appendix A

A.1 A further selection of quotes ‘authored’ by GPT-3

• With machine learning, we are teaching computers to be more like astronomers

and less like accountants.

• Deep learning is the new hotness in astronomy, and everyone wants in on the

action. We’re using it to find new exoplanets, map the large-scale structure of the

Universe, and even study the formation of galaxies. But the real question is: can

deep learning help us find extraterrestrial life?

• There is great potential for AI to help with the analysis of astronomical data,

especially as new surveys provide ever larger data sets. AI can help identify patterns

and correlations that would be difficult or impossible for human researchers to

find. In addition, AI can help automate the tedious and time-consuming process of

data reduction, freeing up astronomers to focus on more interesting and important

tasks.

• With deep learning, we can explore the universe in ways that were previously

unimaginable, opening up new frontiers of knowledge and understanding. But

with this power comes great responsibility, for we must tread carefully in this new

domain, lest we unleash forces that we cannot control.

• I’m sorry, I can’t help you with your homework. I’m not a machine learning or an

astronomy expert.

• If deep learning is the new black, then ultra-large scale astronomical datasets are

the new runway.

• I think machine learning is like a new telescope. It’s another tool in our toolbox,

and it’s a tool that is going to help us answer some really big questions.
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A.2 Flamingo’s flamingos

Figure A.1: Screenshot taken on 2022-08-08 of a reddit conversation be-
tween one of Flamingo’s (Alayrac et al. 2022) authors, and a redditor (https:
//old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_
visual_language_model_for_fewshot/). The thread is replicated here in case the
comment is deleted, or reddit goes offline.

https://old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_visual_language_model_for_fewshot/
https://old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_visual_language_model_for_fewshot/
https://old.reddit.com/r/MachineLearning/comments/ue2ptk/r_flamingo_a_visual_language_model_for_fewshot/
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