294 research outputs found

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Towards the Next Generation of Location-Aware Communications

    Get PDF
    This thesis is motivated by the expected implementation of the next generation mobile networks (5G) from 2020, which is being designed with a radical paradigm shift towards millimeter-wave technology (mmWave). Operating in 30--300 GHz frequency band (1--10 mm wavelengths), massive antenna arrays that provide a high angular resolution, while being packed on a small area will be used. Moreover, since the abundant mmWave spectrum is barely occupied, large bandwidth allocation is possible and will enable low-error time estimation. With this high spatiotemporal resolution, mmWave technology readily lends itself to extremely accurate localization that can be harnessed in the network design and optimization, as well as utilized in many modern applications. Localization in 5G is still in early stages, and very little is known about its performance and feasibility. In this thesis, we contribute to the understanding of 5G mmWave localization by focusing on challenges pertaining to this emerging technology. Towards that, we start by considering a conventional cellular system and propose a positioning method under outdoor LOS/NLOS conditions that, although approaches the Cram\'er-Rao lower bound (CRLB), provides accuracy in the order of meters. This shows that conventional systems have limited range of location-aware applications. Next, we focus on mmWave localization in three stages. Firstly, we tackle the initial access (IA) problem, whereby user equipment (UE) attempts to establish a link with a base station (BS). The challenge in this problem stems from the high directivity of mmWave. We investigate two beamforming schemes: directional and random. Subsequently, we address 3D localization beyond IA phase. Devices nowadays have higher computational capabilities and may perform localization in the downlink. However, beamforming on the UE side is sensitive to the device orientation. Thus, we study localization in both the uplink and downlink under multipath propagation and derive the position (PEB) and orientation error bounds (OEB). We also investigate the impact of the number of antennas and the number of beams on these bounds. Finally, the above components assume that the system is synchronized. However, synchronization in communication systems is not usually tight enough for localization. Therefore, we study two-way localization as a means to alleviate the synchronization requirement and investigate two protocols: distributed (DLP) and centralized (CLP). Our results show that random-phase beamforming is more appropriate IA approach in the studied scenarios. We also observe that the uplink and downlink are not equivalent, in that the error bounds scale differently with the number of antennas, and that uplink localization is sensitive to the UE orientation, while downlink is not. Furthermore, we find that NLOS paths generally boost localization. The investigation of the two-way protocols shows that CLP outperforms DLP by a significant margin. We also observe that mmWave localization is mainly limited by angular rather than temporal estimation. In conclusion, we show that mmWave systems are capable of localizing a UE with sub-meter position error, and sub-degree orientation error, which asserts that mmWave will play a central role in communication network optimization and unlock opportunities that were not available in the previous generation

    Low cost antenna array based drone tracking device for outdoor environment

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2019.Aplicações para técnicas de Direção de Chegada (DoA) têm crescido drasticamente em várias áreas, desde os tradicionais sistemas de comunicação sem fio e operações de resgate até os sistemas GNSS e rastreamento de drones. Particularmente, as forças policiais e as empresas de segurança têm voltado sua atenção para os dispositivos de rastreamento de drones, devido ao número de acidentes e incidentes envolvendo estes Veículos Aéreos não Tripulados (VANTs). Agora, novos sistemas e dispositivos que fornecem segurança a cidadãos e clientes cresceram e ganharam espaço no mercado. Para detectar a presença de drones e rastreá-los existe uma variedade de soluções altamente caras no mercado. Porém, a estimativa da localização de um alvo pode ser obtida usando hardware barato, comprado facimente no mercado, e com técnicas de Direção de Chegada. Data esta estimativa, algumas ações podem ser tomadas pelo responsável pela segurança no local. Trabalhos anteriores na estimativa de direção de chegada usando arranjo de antenas foram propostos, mas sem uma abordagem prática. Nesta dissertação, propõe-se um dispositivo de rastreamento de drones baseado em arranjo de antenas de baixo custo para ambientes externos. A solução proposta é dividida em partes de hardware e software. A parte de hardware do dispositivo proposto é baseada em componentes fáceis de serem encontrados no mercado, como um arranjo de antena omnidirecional, uma plataforma SDR (Rádio Definido por Software) de 4 canais com frequência de portadora variando de 70 MHz a 6 GHz, uma placa-mãe FPGA e um laptop. A parte do software inclui algoritmos para calibração, seleção de ordem de modelo (MOS) e estimativa de DoA, incluindo etapas específicas de pré-processamento para aumentar a precisão dos cálculos para os métodos de DoA. Avaliamos o desempenho de nossa solução de baixo custo, proposta para ambientes externos, e de acordo com as medições de campo, mostra-se que, quando o transmissor está na posição frontal, ou seja, com um DoA variando de -60° a 60°, o máximo e a média dos erros de DoA são 6° e 1,6°, respectivamente.Applications of Direction of Arrival (DoA) techniques have dramatically increased in various areas ranging from the traditional wireless communication systems and rescue operations to GNSS systems and drone tracking. Particularly, police forces and security companies have drawn their attention to drone tracking devices, due to the number of accidents and incidents involving Unmanned Aerial Vehicles (UAVs). Now, new systems and devices that provide the safeness of citizens and clients, have grown and gained space on the market. In order to detect the presence of drones and to track them, there is a variety of highly expensive solutions in the market. In this way the estimation of a target’s location can be obtained using off-the-shelf hardware with Direction of Arrival techniques. Consequently some actions can be taken by the responsible for the security in that place. Previous works in DoA estimation using antenna arrays have been proposed but with no practical approach. In this dissertation, it is proposed a low cost antenna array based drone tracking device for outdoor environments. The proposed solution is divided into hardware and software parts. The hardware part of the proposed device is based on off-the-shelf components such as an omni-directional antenna array, a 4 channel Software Defined Radio (SDR) platform with carrier frequency ranging from 70 MHz to 6 GHz, a FPGA motherboard and a laptop. The software part includes algorithms for calibration, model order selection (MOS) and DoA estimation, including specific pre-processing steps to increase the DoA accuracy. The performance of our proposed low cost solution is evaluated in outdoor scenarios. According to our measurement campaigns, it is shown that, when the array is in the front fire position, i.e. with a DoA ranging from -60° to 60°, the maximum and the average DoA errors are 6° and 1,6°, respectively

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    High-resolution Direction-of-Arrival estimation

    Get PDF
    Direction of Arrival (DOA) estimation is considered one of the most crucial problems in array signal processing, with considerable research efforts for developing efficient and effective direction-finding algorithms, especially in the transportation industry, where the demand for an effective, real-time, and accurate DOA algorithm is increasing. However, challenges must be addressed before real-world deployment can be realised. Firstly, there is the requirement for fast computational time for real-time detection. Secondly, there is a demand for high-resolution and accurate DOA estimation. In this thesis, two state-of-the-art DOA estimation algorithms are proposed and evaluated to address the challenges. Firstly, a novel covariance matrix reconstruction approach for single snapshot DOA estimation (CbSS) was proposed. CbSS was developed by exploiting the relationship between the theoretical and sample covariance matrices to reduce estimation error for a single snapshot scenario. CbSS can resolve accurate DOAs without requiring lengthy peak searching computational time by computationally changing the received sample covariance matrix. Simulation results have verified that the CbSS technique yields the highest DOA estimation accuracy by up to 25.5% compared to existing methods such as root-MUSIC and the Partial Relaxation approach. Furthermore, CbSS presents negligible bias when compared to the existing techniques in a wide range of scenarios, such as in multiple uncorrelated and coherent signal source environments. Secondly, an adaptive diagonal-loading technique was proposed to improve DOA estimation accuracy without requiring a high computational load by integrating a modified novel and adaptive diagonal-loading method (DLT-DOA) to further improve estimation accuracy. An in-depth simulation performance analysis was conducted to address the challenges, with a comparison against existing state-of-the-art DOA estimation techniques such as EPUMA and MODEX. Simulation results verify that the DLT-DOA technique performs up to 8.5% higher DOA estimation performance in terms of estimation accuracy compared to existing methods with significantly lower computational time. On this basis, the two novel DOA estimation techniques are recommended for usage in real-world scenarios where fast computational time and high estimation accuracy are expected. Further research is needed to identify other factors that could further optimize the algorithms to meet different demands

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Sensor Array Signal Processing via Eigenanalysis of Matrix Pencils Composed of Data Derived from Translationally Invariant Subarrays

    Get PDF
    An algorithm is developed for estimating characteristic parameters associated with a scene of radiating sources given the data derived from a pair of translationally invariant arrays, the X and Y arrays, which are displaced relative to one another. The algorithm is referred to as PR O—E SPRIT and is predicated on invoking two recent mathematical developments: (1) the SVD based solution to the Procrustes problem of optimally approximating an invariant subspace rotation and (2) the Total Least Squares method for perturbing each of the two estimates of a common subspace in a minimal fashion until the two perturbed spaces are the same. For uniform linear array scenarios, the use of forward-backward averaging (FBAVG) in conjunction with PR O—E S PR IT is shown to effect a substantial reduction in the computational burden, a significant improvement in performance, a simple scheme for estimating the number of sources and source decorrelation. These gains may be attributed to FBAVG’s judicious exploitation of the diagonal invariance operator relating the Direction of Arrival matrix of the Y array to that associated with the X array. Similar gains may be achieved in the case where the X and Y arrays are either not linear or not uniformly spaced through the use of pseudo-forward-backward averaging (PFBAVG). However, the use of PFBAVG does not effect source decorrelation and reduces the maximum number of resolvable sources by a factor of two. Simulation studies and the results of applying PR O—E S PR IT to real data demonstrate the excellent performance of the method

    ARRAY PROCESSING TECHNIQUES FOR ESTIMATION AND TRACKING OF AN ICE-SHEET BOTTOM

    Get PDF
    Ice bottom topography layers are an important boundary condition required to model the flow dynamics of an ice sheet. In this work, using low frequency multichannel radar data, we locate the ice bottom using two types of automatic trackers. First, we use the multiple signal classification (MUSIC) beamformer to determine the pseudo-spectrum of the targets at each range-bin. The result is passed into a sequential tree-reweighted message passing belief-propagation algorithm to track the bottom of the ice in the 3D image. This technique is successfully applied to process data collected over the Canadian Arctic Archipelago ice caps in 2014, and produce digital elevation models (DEMs) for 102 data frames. We perform crossover analysis to self-assess the generated DEMs, where flight paths cross over each other and two measurements are made at the same location. Also, the tracked results are compared before and after manual corrections. We found that there is a good match between the overlapping DEMs, where the mean error of the crossover DEMs is 38±7 m, which is small relative to the average ice-thickness, while the average absolute mean error of the automatically tracked ice-bottom, relative to the manually corrected ice-bottom, is 10 range-bins. Second, a direction of arrival (DOA)-based tracker is used to estimate the DOA of the backscatter signals sequentially from range bin to range bin using two methods: a sequential maximum a posterior probability (S-MAP) estimator and one based on the particle filter (PF). A dynamic flat earth transition model is used to model the flow of information between range bins. A simulation study is performed to evaluate the performance of these two DOA trackers. The results show that the PF-based tracker can handle low-quality data better than S-MAP, but, unlike S-MAP, it saturates quickly with increasing numbers of snapshots. Also, S-MAP is successfully applied to track the ice-bottom of several data frames collected from over Russell glacier in 2011, and the results are compared against those generated by the beamformer-based tracker. The results of the DOA-based techniques are the final tracked surfaces, so there is no need for an additional tracking stage as there is with the beamformer technique
    • …
    corecore