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Abstract 

Direction of Arrival (DOA) estimation is considered one of the most crucial 

problems in array signal processing, with considerable research efforts for developing 

efficient and effective direction-finding algorithms, especially in the transportation industry, 

where the demand for an effective, real-time, and accurate DOA algorithm is increasing. 

However, challenges must be addressed before real-world deployment can be realised. 

Firstly, there is the requirement for fast computational time for real-time detection. Secondly, 

there is a demand for high-resolution and accurate DOA estimation.  

In this thesis, two state-of-the-art DOA estimation algorithms are proposed and 

evaluated to address the challenges. Firstly, a novel covariance matrix reconstruction 

approach for single snapshot DOA estimation (CbSS) was proposed. CbSS was developed 

by exploiting the relationship between the theoretical and sample covariance matrices to 

reduce estimation error for a single snapshot scenario. CbSS can resolve accurate DOAs 

without requiring lengthy peak searching computational time by computationally changing 

the received sample covariance matrix. Simulation results have verified that the CbSS 

technique yields the highest DOA estimation accuracy by up to 25.5% compared to existing 

methods such as root-MUSIC and the Partial Relaxation approach. Furthermore, CbSS 

presents negligible bias when compared to the existing techniques in a wide range of 

scenarios, such as in multiple uncorrelated and coherent signal source environments. 

Secondly, an adaptive diagonal-loading technique was proposed to improve DOA 

estimation accuracy without requiring a high computational load by integrating a modified 

novel and adaptive diagonal-loading method (DLT-DOA) to further improve estimation 

accuracy. An in-depth simulation performance analysis was conducted to address the 

challenges, with a comparison against existing state-of-the-art DOA estimation techniques 

such as EPUMA and MODEX. Simulation results verify that the DLT-DOA technique 

performs up to 8.5% higher DOA estimation performance in terms of estimation accuracy 

compared to existing methods with significantly lower computational time.  

On this basis, the two novel DOA estimation techniques are recommended for usage 

in real-world scenarios where fast computational time and high estimation accuracy are 

expected. Further research is needed to identify other factors that could further optimize the 

algorithms to meet different demands.  
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1 Introduction 

Smart antenna techniques are well-known in wireless communication systems for 

mitigating air space congestion, overcoming wireless interference, and lowering the system 

deployment cost. The ever-increasing requirements for providing large bandwidth and 

efficient and seamless data access to commuters have prompted new challenges for wireless 

solution providers. Furthermore, the advancement in the hybrid beamforming technique and 

the adoption of commercially available components into the smart antenna system has been 

proven to drastically reduce operational costs. This has created a clear path for the smart 

antenna to expand its service into commercial and industrial applications such as the 

transportation sector, government, public service, and industrial applications. Amongst all, 

the transportation sector has benefited most from the advancement of smart antenna 

technology simply due to the nature of the application environments where the wireless 

infrastructures are expected to serve uncoordinated mobile clients such as commuters, 

vehicle to infrastructure and vehicle-to-vehicle communication. This has cultivated the 

continuous interests amongst which researchers continue to improve the smart antenna 

systems that best suit the transportation industry.   

Direction of Arrival (DOA) estimation plays a critical role in a smart antenna system 

and array signal processing. Estimation of DOA is especially important when coupled with 

an adaptive antenna array and in interference environments. However, some key challenges 

must be addressed before real-world implementation, mainly if it were to be used in the 

transportation industry. One key issue is finding the optimal tradeoff between computational 

time and DOA estimation accuracy. In short, due to the reliance on statistical data, 

computational time will linearly increase as the demand for DOA estimation accuracy 

increases. Furthermore, real-world environment is not considered in most past works of 

literature to highlight the performance of these past techniques in a best-case scenario.  

This thesis focuses on the DOA estimation aspect in an innovative antenna system, 

particularly in improving the computational time and estimation accuracy. In general, DOA 

estimation methods can be described in three basic steps. First, the acquisition of the data 

signal matrix is followed by the generation of the instantaneous correlation matrix for each 

data time step. Then, temporal data averaging is conducted over time, followed by a form of 

data correlation analysis. Finally, the DOA is derived. The key focus is on the improvement 

of efficiency in terms of estimation accuracy and computational load of the DOA algorithm. 
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Multiple novel DOA algorithms are presented in this thesis to investigate and overcome the 

challenges faced by existing techniques. The results are published in 2 journal papers [1, 2] 

and 5 conference papers [3-7].  

1.1 Research Motivation 

DOA estimation is essential, especially in real-world applications such as intelligent 

transportation systems and wireless communication. For example, a beamforming smart 

antenna system requires DOA estimation to estimate the location of the signal source for 

efficient signal beam reproduction [8]. Furthermore, DOAs of interest tend to change rapidly; 

thus, the DOAs must be determined quickly and accurately. Although there have been some 

past works on the problem of fast computational time and high-accuracy DOA estimation, it 

is typically a compromise between one or the other due to the heavy statistical reliance on 

received sample data. In the most basic form, the lower the received sample data, the lower 

the estimation accuracy. Otherwise, the higher the received sample data, the higher the 

estimation accuracy. For example, classical subspace-based techniques such as Multiple 

Signal Classification (MUSIC) [9] and the Enhanced Principal Singular-vector Utilization 

for Modal Analysis (EPUMA) [10] have been proposed to solve for outright DOA estimation 

accuracy but at the expense of computational time. 

In contrast, techniques such as a fully-trained machine-learning-based DOA 

estimation system were introduced to solve computational time but lacked estimation 

accuracy in a dynamic scenario [11]. Recent attempts have been made to solve these 

problems simultaneously [12, 13]. However, these techniques require constant back-end data 

training and are not feasible for mass deployment in a dynamic, real-world scenario as they 

can be costly and inefficient [14, 15].  

Furthermore, the lack of fast and accurate DOA estimation techniques for real-time 

application is a critical challenge that DOA estimation development faces. It has been 

previously established that a few antenna sensor elements and small temporal samples often 

limit DOA estimation performance. A smart antenna system coupled with a fast and efficient 

DOA estimator for a dynamic environment is required to be solved to address the challenges 

faced in real-world scenarios. Furthermore, there is a lack of research in aligning the needs 

of a real-world scenario for DOA estimation. In existing DOA systems, DOA estimation 

development has always been algorithm-focused instead of application-based. In many past 

research works, real-world models such as different operating frequencies and low 
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computational time requirements have not been considered to independently highlight the 

algorithm’s raw estimation and computational performance via a best-case scenario.  

The demand for real-time implementation has motivated research to improve the 

statistical efficiency of subspace-based DOA algorithms such as MUSIC [9] and the 

Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) [16, 17]. 

Many approaches to solving the DOA estimation problem have been proposed in past works 

of literature [10, 18, 19]. However, multiple challenges still have yet to be solved, especially 

in terms of computational time and DOA estimation accuracy. In general, a practical DOA 

algorithm must provide a real-time response solution that is computationally efficient and 

utilizes a minimal number of array snapshot samples. Currently, most of the suitable 

techniques for real-time implementation have explicitly aimed at reducing the computational 

load of subspace decomposition per refresh update, but not at the number of array snapshots 

necessary to attain a certain level of performance [10, 20, 21]. 

The problem here lies in the lack of development of real-time and fast DOA 

estimators for real-world dynamic scenarios, such as in applications in intelligent 

transportation systems and wireless communication networks. This thesis addresses this 

problem by developing single-time instant snapshot-based DOA estimation methods based 

on a modified subarray architecture and a modified correlation matrix computation while 

exploiting the spatial features of the fixed antenna array structure.  

1.2 Research Aims & Objectives 

The research in this thesis aims to enhance current DOA estimation techniques that 

are feasible for real-world applications such as transportation and wireless communication 

in a low-cost smart antenna system. The objective of this research is as follows: 

i) To assess the importance of DOA estimation algorithms and their development path 

trend, focusing on identifying the computational complexity and estimation accuracy 

limitations. 

ii) To identify the problems faced with current state-of-the-art DOA estimation algorithms. 

iii)  To investigate the complexity of current DOA estimation algorithms and identify trade-

offs in reducing the computational time required for rapid DOA changes common in 

real-world scenarios. 

iv) To develop a DOA estimation algorithm that can resolve multiple closely-spaced signals 

of interest with high-resolution and enhanced DOA estimation accuracy without 
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needing a significant computational time to reduce the need for expensive hardware 

costs and implementation. 

v) To analyse the performance of the proposed DOA estimation algorithms developed in 

this thesis and what could be done as part of future work.  

1.3 Key Contributions 

To address the unique challenge of DOA estimation in terms of computational time 

and estimation accuracy, efficient and accurate algorithms to calculate the DOAs are 

proposed in this thesis. A two-pronged strategy was adopted to address these challenges: 

1. Firstly, it is to reduce estimation time while maintaining DOA estimation 

accuracy that is equivalent to existing DOA estimation techniques 

2. Secondly, it is to improve DOA estimation efficiency, which will lead to 

developing a fast and high estimation accuracy DOA estimator. 

Based on these concepts, various novel DOA algorithms are proposed in this thesis: 

• Root-Transformation (Root-T) DOA estimation algorithm [3] utilizes 

polynomial rooting to solve and determine the estimated DOAs with reduced 

computational time. It has been shown that the root-T technique reduced the 

computational time by 49.5% against existing DOA techniques. Root-T is 

investigated and proposed in Section 3.1.  

• Cross-Cumulants MUSIC (CC-MUSIC) DOA estimator [6] that utilizes a 

unique hybrid higher-order statistical data coupled with polynomial rooting 

to improve DOA estimation accuracy by up to 83.3%. CC-MUSIC was 

proposed and presented in Section 3.2. 

• A Subspace-Averaging DOA Estimator (SADE) [7] was proposed as a hybrid 

system to improve DOA estimation accuracy with a Root-Mean Squared 

Error (RMSE) of 9.5% against the true DOAs of interest by using both signal 

and noise subspaces. The SADE technique is detailed and presented in 

Section 3.3. 

• Snapshot sample reduction in a perturbed array configuration for DOA 

estimators (SS-DOA) [5] to reduce computational time and improve DOA 

estimation accuracy. The proposed SS-DOA technique garnered a DOA 

estimation performance gain of up to 75.2% compared to a non-calibrated 

set-up. SS-DOA is investigated and presented in detail in Section 3.4. 
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• A covariance-based single snapshot (CbSS) DOA estimator aims to reduce 

computational load while maintaining high estimation accuracy in both single 

and multiple signal source environments with a single snapshot sample [1]. 

This work is presented in Chapter 4. 

• A hybrid diagonal-loading DOA estimation technique further enhances DOA 

estimation accuracy for antenna array sensors without needing a large 

computational load [2]. This work is presented in Chapter 5. 

The contribution of this thesis can be summarised in the following three points.  

• Firstly, the necessity for a fast and accurate DOA algorithm is identified by 

analyzing existing DOA estimation in scenarios such as in a transportation 

environment. 

• Secondly, a set of four novel DOA estimators is proposed to individually 

solve the computational time and estimation accuracy challenges faced in 

existing techniques in a real-world scenario. These techniques have been 

published as conference papers in [3-7]. 

• Thirdly, two novel DOA estimators are proposed based on the set of novel 

techniques presented in past conference papers. The main results of the two 

algorithms have been published in journal papers [1, 2]. 
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1.4 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 covers an overview of DOA estimation. Firstly, a literature review on 

various DOA estimation techniques of interest is presented. Next, the fundamental general 

data model for DOA estimation is derived, including the received signal data model and 

array covariance matrix. The evaluation criterion for DOA estimation is also defined, which 

will be used as the different environmental parameters and scenarios to compare the other 

developed techniques. Existing DOA estimators' performance evaluation and analysis are 

also presented as an initial benchmark for subsequent algorithm development and problem 

identification.  

Chapter 3 covers multiple novel and preliminary DOA techniques to overcome 

problems faced with existing DOA estimators that have been highlighted in Chapter 2. 

Multiple novel DOA estimators are presented here. Firstly, the Root-Transformation matrix 

DOA estimator is shown to reduce computational load. Next, a higher-order DOA estimation 

technique called the CC-MUSIC is introduced to attempt an enhanced DOA estimation 

performance of multiple closely-spaced signal sources. Then, SADE is introduced to reduce 

computational load without sacrificing DOA estimation accuracy. Lastly, a single snapshot 

DOA estimation is explored. Due to the sensitivity and lack of statistical information of 

single snapshot estimators, an auto-calibration technique was proposed to sustain good DOA 

estimation performance.  

Chapter 4 covers an in-depth analysis of a proposed recursive covariance matrix 

reconstruction approach for single snapshot DOA estimation based on the information 

gained from Chapter 3. The CbSS technique leverages the analytical information gained 

from the research on existing and proposed preliminary methods. A data model and problem 

formulation are presented, including defining the error terms in covariance matrices that are 

commonly overlooked in past DOA estimators. Then, a lower and upper bound is defined to 

determine accurate DOA estimation. The CbSS technique is then studied and analyzed in 

the simulation and discussion section with recommendations for further improvements.  

Chapter 5 then presents an adaptive diagonal loading technique to improve DOA 

estimation based on the recommendation for further improvements of the CbSS technique 

that has been demonstrated in Chapter 4. The diagonal loading technique is first introduced. 

Then, the data model of the proposed method is defined in detail. Simulation results are 

presented and discussed based on different scenarios, such as limited snapshot samples with 
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single and multiple signal sources. In addition, the single snapshot performance with a single 

signal source is also presented and analyzed. 

Chapter 6 concludes the thesis, including the future work section that proposes 

potential future research, such as hardware implementation and the real-world impact the 

proposed DOA estimation techniques have in different applications.  
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2 An Overview of Direction of Arrival 

Estimation  

2.1 Recent Trends in DOA Estimation – A Literature Review 

Over recent years, DOA estimation has been considered a crucial field in signal 

processing with applications such as mobile communication, marine communication, space 

communication & localization, radar surveillance, vehicle auto-navigation & avoidance, and 

medical diagnosis [20, 22-24]. Coupled with an antenna array and beamforming technology 

to form a smart antenna, these systems have gained a positive reputation due to their ability 

to have adaptive radiation patterns and high directivity gain compared to a conventional 

omnidirectional antenna and multipath signal attenuation [25]. 

With Wi-Fi systems in the IEEE 802.11 protocol enabling smart cities and 

infrastructures, there is a need to develop simplified smart antennas to cater to the exponential 

growth of wireless usage by improving wireless transmission efficiency, as discussed in [26] 

and [27].  Some wireless infrastructure examples are wireless hotspots in crowded areas such 

as in shopping malls and in public transportation networks such as trains and buses. To that 

end, a robust and accurate DOA technique must be employed to cater to the high usage of a 

wireless network to reduce wireless traffic congestion and improve efficiency without 

sacrificing the data bandwidth as much as possible. 

There has been an increase in demand for research for a DOA-enabled smart antenna 

system – typically in transportation and vehicular application [28-30]. One example would 

be in [31], where a measurement campaign was carried out in a high-speed train (HST) 

environment where the downlink (Access Point to Client) signals were deployed along an 

HST railway. The DOA was estimated based on the Space-Alternating Generalized 

Expectation-maximization (SAGE) principle by constructing a virtual antenna array based 

on the train speed knowledge by exploiting the Doppler frequency characteristics trajectory 

and least-square method. [31] only carried out the test in the third generation (3G) Universal 

Mobile Telecommunications System (UMTS) frequency band of 2-3 GHz Results 

 

This chapter is partially reproduced from paper #3 in the publication list on page iv, where 

the thesis author is the main author in the paper. 
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demonstrated reasonable estimation using the SAGE principle. However, this technique is 

deemed complex as it requires the parallel computation of geometrical parameters of the 

train, the formation of a virtual antenna array, and DOA algorithm application [32, 33].  

Another example would be in [34], which employs a 12-element Electronically 

Steerable Parasitic Array Radiator (ESPAR) antenna designed for DOA estimation as part 

of a railway control system. The DOA techniques used were the cross-correlation and 

MUSIC algorithm [34-36]. It was discovered in [34] that the method employed in 

combination with ESPAR is susceptible to residual in-band interference, resulting in a broad 

and less precise DOA estimation.  

Alternatively, newer techniques such as implementing Machine-Learning (ML) [37-

39] and Information Geometry (IG) [40-42] have recently been in active research for DOA 

estimation. In [11], an ML-based DOA estimator was proposed for vehicular applications, 

yielding excellent estimation accuracy. In [41], the implementation of IG with DOA estimation 

was conducted by exploiting the relationship between probability density and the differential 

geometry structure of the received data and geodesic distance. This IG technique, known as 

Scaling Transform-based Information Geometry (STRING), resulted in higher accuracy and 

DOA estimation resolution. 

However, these existing techniques have some significant drawbacks. First, these 

techniques yield high computational complexities and are impractical for real-world 

applications that differ in various environments [43]. 

 For example, a sensor array can be developed based on a 5500 MHz operating 

frequency band but loses signal and estimation performance when operating in other frequency 

bands [44]. In addition, ML-based techniques require elaborate and comprehensive offline 

data training for optimization and operational efficiency [45]. Moreover, although the IG-

based approach presents good DOA estimation accuracy but has significant statistical bias and 

results in poor robustness, especially at a high Signal-to-Noise Ratio (SNR) [46].  

In recent years, numerous state-of-the-art DOA estimation techniques have been 

proposed with increased accuracy and robustness.  In [10], the EPUMA DOA estimation 

approach was proposed. The EPUMA technique provides reliable performance when the 

number of snapshot samples is small, even when the number of samples is lower than the 

number of impinging signals. The simulation results in [10] indicate that the EPUMA approach 

outperforms many other subspace-based DOA estimators, especially for small sample 

scenarios [47]. In [48], an Eigenvalue-based DOA estimator named the Partial-Relaxation 

(PR) approach was proposed. The PR approach is based on the deterministic maximum 
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likelihood, weighted subspace fitting, and covariance fitting methods. Using an iterative 

rooting scheme based on the rational function approximation, the DOA is determined by first 

relaxing the manifold structure of the remaining interfering signals, resulting in a closed form 

estimation. Then, DOA is approximated by using a simplified peak spectral search. The 

simulation results of [48] shows that, irrespective of any structure of the sensor array, the 

performance of the PR approach is superior to the conventional methods in low SNR and 

snapshots while maintaining comparable computational costs to MUSIC [49].  

A simple technique to reduce complexities is by reducing the number of snapshots 

required for DOA estimation [50-53]. An algorithm requires little data processing to determine 

the covariance matrix if the number of snapshot sample data is reduced. There have been many 

attempts in past works of literature to use a single snapshot for DOA estimation, particularly 

in reducing the DOA estimation error in an exhausted statistical sample size [54-56]. In [57], 

a low complex single snapshot DOA estimation was proposed. This technique was conducted 

by first obtaining rough initial DOA estimates and searching for accurate estimates within a 

very small region. The proposed approach offered high accuracy with low complexity but 

required many antenna array elements for the best performance. Alternatively, [58] presented 

a novel method for recursively estimating the DOAs as measurements based on worst-case 

gain minimization to reduce estimation error with a single snapshot. The simulations in [58] 

presented good DOA estimation results but required significantly high SNR levels of up to 35 

dB, which is impractical in real-world scenarios.  

In more recent years, Diagonal Loading (DL) of the sample covariance matrix has been 

a popular technique to improve DOA estimation efficacy and beamforming capabilities while 

reducing computational costs in a limited sample situation [59, 60]. The DL algorithms can be 

considered an auxiliary subsystem into the primary DOA technique by correcting all the 

sample eigenvalues with the same parametric value to increase the resolution for improved 

beamforming and signal direction selection [61]. More precisely, the DL method addresses the 

problem of optimally selecting suitable loading values along the diagonals of a covariance 

matrix to maximize the SNR in the presence of steering vector errors [62]. In [21], a DOA 

estimation method was proposed by integrating a modified orthogonal propagator technique 

with spline interpolation, a form of DL. This was done by restoring the noise-free diagonal 

elements through an interpolation procedure while the propagator can be directly extracted 

from the denoised sample covariance matrix. The proposed method offers a unique approach 

to reducing the noise impact and DOA mismatch. However, this method is solely based on the 

pseudo-spectrum DOA estimation technique, which is still considered computationally 

expensive with an inherently slow DOA estimation detection. The complexity of their 
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proposed approach increases exponentially as the number of signal sources increases. It only 

presents good estimation in a significantly high SNR environment and weak estimation 

performance in low SNR of < 0 dB. In addition, operating frequency mismatch was not taken 

into consideration in the development of their proposed technique. 

In another example, [63] presented a similar DL-based approach – a robust 

quadratically constrained beamformer against DOA mismatch. A DL method was used to 

force magnitude responses at the arrival angles between two steering vectors that exceed unity 

in the pseudo-spectrum. This method causes the gains at a desired range of angles to exceed a 

constant level while suppressing the interferences and noise with numerical results that have 

excellent estimation performance. However, the critical drawback of the proposed technique 

in [63] is that the complexity depends on the number of iterations wholly dependent on the 

SNR. The higher the SNR, the higher the iteration, which leads to higher computational costs. 

Furthermore, there is an additional iteration that was not mentioned. The condition  

presented in [63] is based on granular angle values (i.e., 0°, 30°, 80°). The computational 

complexity increases exponentially when a high-resolution estimation is required.  

In this chapter, the general data model for DOA estimation is derived, which will be 

the basis of the formulation of all subsequent algorithm development, such as the received 

signal data model and the crucial array covariance matrix. Then, some existing DOA 

estimation techniques are highlighted, such as root-MUSIC, root-Weighted Subspace Fitting 

(root-WSF), and the beamspace-ESPRIT algorithm. Then, a standard evaluation criterion, 

such as varying operating frequency, signal source separation, identification capability, and 

coherent signal sources, is presented, which will be used to compare and analyze the existing 

and proposed DOA estimation techniques.  Lastly, a performance analysis is conducted to 

show and highlight the usage of the evaluation criterion for the various DOA estimation 

techniques, which allows for the identification of some problems and research gaps such as a 

lack of estimation accuracy and computational time that needs to be solved and rectified which 

will be presented in subsequent chapters.  
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2.2 General Data Model for DOA Estimation 

 
Figure 2.1 Sensor Array Model 

2.2.1 Received Signal Data Model Formulation 

With reference to Figure 2.1, consider an array of 𝑀𝑀 sensors receiving the signals 

emitted by 𝐿𝐿 narrowband far-field sources with unknown DOAs {𝜃𝜃1, … , 𝜃𝜃𝐷𝐷} with inter-

element spacing 𝑑𝑑 being no greater than 𝜆𝜆/2. The number of 𝐿𝐿 incident signals is assumed to 

be available where the wavelength of incident signals, 𝜆𝜆 = 𝑐𝑐/𝑓𝑓𝑐𝑐, where 𝑓𝑓𝑐𝑐 is the signal carrier 

frequency and 𝑐𝑐 is the speed of light in a vacuum. The 𝑘𝑘th array snapshot of the received signal 

is expressed as [20, 22] 

𝐱𝐱(𝑘𝑘) = 𝐀𝐀𝐀𝐀(𝑘𝑘) + 𝐧𝐧(𝑘𝑘), (2. 1) 

where 𝐀𝐀 = [𝐚𝐚(𝜃𝜃1),𝐚𝐚(𝜃𝜃2),⋯ ,𝐚𝐚(𝜃𝜃𝐷𝐷)]  is the steering matrix of size 𝑀𝑀 × 𝐿𝐿 , 𝐀𝐀(𝑘𝑘) =

[𝑠𝑠1(𝑘𝑘) . . . 𝑠𝑠𝐷𝐷(𝑘𝑘)]T is the source signal vector with (∙)T being the transpose, 𝐾𝐾 is the total 

number of snapshots, and 𝐚𝐚(𝜃𝜃𝐷𝐷) is the steering vector of the Lth signal source, which can be 

expressed as 

𝐚𝐚(𝜃𝜃𝐷𝐷) = �1 𝑒𝑒𝑗𝑗
2𝜋𝜋
𝜆𝜆 sin𝑑𝑑2(𝜃𝜃𝐿𝐿) . . . 𝑒𝑒𝑗𝑗

2𝜋𝜋
𝜆𝜆 sin𝑑𝑑𝑀𝑀(𝜃𝜃𝐿𝐿)�

T
(2. 2) 
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where 𝑓𝑓𝑚𝑚(𝜃𝜃) is a known operating frequency function with respect to 𝜃𝜃 for given coordinates 

of the mth sensor and 𝑗𝑗  is a complex number, and −90 ≥ 𝜃𝜃 < 90  with half-wavelength 

Uniformed Linear Array (ULA) with inter-element spacing, where 𝑓𝑓𝑚𝑚(𝜃𝜃) = 𝜋𝜋(𝑚𝑚− 1)sin 𝜃𝜃. 

2.2.2 Array Covariance Matrix 

 In (2.1), 𝐀𝐀(𝑘𝑘) = [𝑠𝑠1(𝑘𝑘), 𝑠𝑠2(𝑘𝑘) … , 𝑠𝑠𝐷𝐷(𝑘𝑘)]𝑇𝑇  and 𝐧𝐧(𝑘𝑘) = [𝑛𝑛1(𝑘𝑘),𝑛𝑛2(𝑘𝑘),⋯ , 𝑛𝑛𝑀𝑀(𝑘𝑘)]𝑇𝑇 

denote the signal and noise vectors, respectively which are assumed to be uncorrelated. The 

noise parameter 𝐧𝐧(𝑘𝑘) is considered to be zero-mean with variance 𝜎𝜎2𝐈𝐈𝐌𝐌 white Gaussian noise 

vector independent of 𝐀𝐀(𝑘𝑘) while 𝐈𝐈𝐌𝐌 is an 𝑀𝑀 × 𝑀𝑀 identity matrix. Then, the theoretical array 

is defined as a covariance matrix as [9, 64] 

𝐑𝐑𝐱𝐱𝐱𝐱 = 𝔼𝔼{𝐗𝐗𝐗𝐗H} = 𝐀𝐀𝐄𝐄s𝐀𝐀H + 𝐄𝐄N, (2. 3) 

where 𝐑𝐑𝐱𝐱𝐱𝐱 is the theoretical covariance matrix of size 𝑀𝑀 × 𝑀𝑀  while 𝔼𝔼{⋅} and (⋅)H represents 

the mathematical expectation and Hermitian transpose, respectively while 𝐄𝐄s =

𝔼𝔼{𝐀𝐀(𝑘𝑘)𝐀𝐀H(𝑘𝑘)} is the signal subspace, and 𝐄𝐄N = 𝔼𝔼{𝐧𝐧(𝑘𝑘)𝐧𝐧H(𝑘𝑘)} is the noise subspace.  

 In practice, however, the exact covariance matrix of 𝐑𝐑𝐱𝐱𝐱𝐱 is challenging to obtain due 

to the limited number of data sets received and processed by a sensor array system. Thus, an 

estimation is made using limited, finite snapshot samples in an instantaneous time to overcome 

this limitation. Assuming that all underlying random noise processes are ergodic, the statistical 

expectation in (2.3) can be replaced by a time average. An estimate of the data covariance 

matrix 𝐑𝐑𝐱𝐱𝐱𝐱 can be presented as a sample covariance matrix, which is expressed as 

𝐑𝐑𝐱𝐱𝐱𝐱 ≈ 𝐑𝐑�𝐱𝐱𝐱𝐱 =
1
𝐾𝐾
�𝐱𝐱(k)𝐱𝐱H(k)
𝐾𝐾

𝑘𝑘=1

=
1
𝐾𝐾
𝐗𝐗𝐗𝐗H, (2. 4) 

where 𝐑𝐑�𝐱𝐱𝐱𝐱 is the sample covariance matrix, 𝐗𝐗 is the input data matrix of size 𝑀𝑀 × 𝐾𝐾, and 𝐾𝐾 is 

the number of snapshot samples.  

2.3 Common DOA Estimation Methods 

The primary objective of the DOA algorithms is to collect the incoming signal source 

data received from the antenna array and estimate the direction of the signal source relative 

to the array's location. Many state-state-of-the-art DOA estimation methods are rooted in time 

series analysis, spectrum analysis, periodograms, eigenstructure, parametric, linear 

prediction, beamforming, array processing, and adaptive array methods [65]. This section 
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discusses and evaluates some of the existing DOA estimation methods commonly used as a 

benchmark and the basis for further development. 

2.3.1 Root-MUSIC 

The Root-MUSIC technique is a modification to the MUSIC algorithm proposed by 

Schmidt [66] and is based on polynomial rooting from the noise subspace, which provides 

higher angular resolution. However, it only applies to a uniform linear array [67]. The 

expression of the Root-MUSIC technique, as shown in [20], can be presented as, 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐(𝜃𝜃) =
1

|𝑎𝑎(𝜃𝜃)𝐻𝐻𝑪𝑪𝑎𝑎(𝜃𝜃)| (2. 5) 

where 𝑎𝑎(𝜃𝜃) is the steering vector, and C is a Hermitian matrix given as, 

𝑪𝑪 = 𝐄𝐄N𝐄𝐄NH (2. 6) 

The poles of the MUSIC pseudo-spectrum are the corresponding polynomial roots 

that lie closest to the unit circle.  

With reference to [20], DOA is calculated by: 

𝜃𝜃𝑟𝑟 =  sin−1 �
𝐼𝐼𝑚𝑚(𝑙𝑙𝑙𝑙𝑙𝑙𝑧𝑧𝑟𝑟)

𝑘𝑘𝑑𝑑
�  (2. 7) 

Where, 𝑧𝑧𝑟𝑟 = 𝑒𝑒𝑗𝑗
2𝜋𝜋
𝜆𝜆 𝑑𝑑 sin𝜃𝜃 and 𝑘𝑘 = 2𝜋𝜋

𝜆𝜆
. 

2.3.2 Root-Weighted Subspace Fitting 

Another technique employed for DOA estimation is the Root-WSF algorithm [68]. 

With the capability to detect coherent signals, such as in a multipath environment, this is one 

of the most sought out techniques, especially in a Wi-Fi environment where the multipath 

environment is common. However, it is essential to note that this technique is iterative to 

obtain its accuracy and differentiate coherent signal sources. Therefore, it is demanding in 

terms of computational complexity leading to a longer computational time. Additional 

analytical details of the Root-WSF algorithm can be found in [69, 70]. This technique has 

been chosen for this chapter as past works of literature have proven that it provides good 

angular resolution and multipath attenuation. As analyzed by [71], it has been shown that 

the root-WSF technique provides good resolution performance according to the simulation 

results. 
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2.3.3 Beamspace-ESPRIT Algorithm 

The beamspace-ESPRIT algorithm presents reduced computational complexity, 

which derives from the ESPRIT algorithm [72]. This approach solves a subspace DOA 

estimation problem with reduced dimensions in beamspace. 

The main drawback of this technique is that it always requires a priori knowledge of 

the sector where the signals are located to position the center of the output beam fan [73-76]. 

More details regarding the Beamspace-ESPRIT algorithm can be found in [77]. This 

technique was chosen for the analysis as it has been shown in past works of literature, such 

as [72] presenting significant computational savings and performance.  

2.4 Performance Analysis of Common DOA Methods 

To evaluate the performance of the DOA algorithms, the following standard model 

is assumed, which is based on [78]: 

• Number of elements: 4 

• Element spacing: 27.25mm 

• Number of samples: 1024 

• Noise Power: -20dBW/0.01W 

 

For the number of the signal source, it is assumed that this value is known a priori 

(number of clients does not change per detection). As for the array element spacing, it is 

considered fixed in real-world applications and can perform across multiple Wi-Fi channels. 

In this case, the element-spacing half wavelength of 5500 MHz operating frequency. Noise 

is assumed to be an Additive White Gaussian Noise (AWGN) at 0.01W/-20dBW power, 

considering propagation and cable loss. All simulations ran for 500 times and tabulated as 

mean values across all iterations unless otherwise stated. The simulation for this section was 

performed using MATLAB R2018b.  

2.4.1 Low-Frequency Against High-Frequency Operating Performance 

Typically, in a 5 GHz Wi-Fi scenario, a list of channels can be selected per the 

802.11ac wave 2 protocol. The different channels will have different performance levels. 

For example, one channel may be noisier and/or congested than another. The frequency of a 

signal directly influences the DOA performance. At low frequency, it was proven that good 
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coherence and well-correlated signals are achievable while having poor coherence and 

uncorrelated signals at high frequency. 

This section presents an evaluation of DOA algorithms with varying operating 

frequencies. For the simulation, the 5 GHz Wi-Fi band regulated in Singapore is used, 

ranging from 5160 MHz to 5845 MHz. The results of the simulation can be found in Table 

2.1. The 3 DOAs of interest were tested at -45◦, 10◦, and 45◦. 

Table 2.1 Varying Operating Frequency Performance 

 Root-MUSIC Root-WSF Beamspace-ESPRIT 
True 
DOA 

(degree) -45 10 45 -45 10 45 -45 10 45 
5160 
MHz -45.01 10.01 45.141 -45.01 10.01 45.138 -45.1 9.98 45.115 
5500 
MHz -45.01 10.01 45.115 -45.001 10.01 45.112 

-
45.06 9.997 45.103 

5845 
MHz -45.001 10.007 45.09 

-
45.0004 10.02 45.09 

-
45.04 9.991 45.0942 

 

Based on the simulation results in Table 2.1, all three techniques can estimate the 

actual direction of arrival. The Root-MUSIC and Root-WSF algorithms perform similarly at 

the lowest operating frequency. Both algorithms perform much better than the Beamspace-

ESPRIT technique in terms of their resolution accuracy.  

However, at higher operating frequency, the results deviate slightly between Root-

MUSIC and Root-WSF. The Root-WSF technique performs much better at high frequency 

than Root-MUSIC and BS-ESPRIT.  

2.4.2 Closely-Sourced Signals 
In a real-world wireless communication environment, sources can be close to each 

other. For example, a user may be connected via Wi-Fi with their phone and laptop at the 

same time within a short distance away from each other. If a DOA estimator cannot resolve 

the signal source, it will cause erratic signal behaviour in a practical scenario [79, 80]. 

Therefore, this evaluation criterion is necessary to determine the DOA algorithm with high 

precision and accuracy. For this part, the variance of each sample is taken, which is expressed 

as, 

𝑉𝑉 =
1

𝑄𝑄 − 1
�|𝐵𝐵𝑟𝑟 − 𝜇𝜇|2
𝑄𝑄

𝑟𝑟=1

 (2. 8) 
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where 𝑉𝑉 is the variance value, Q is the number of observation samples, B is the estimated 

DOA data, and 𝜇𝜇 is the mean of A, which is expressed as: 

𝜇𝜇 =
1
𝑄𝑄
�𝐴𝐴𝑟𝑟

𝑄𝑄

𝑟𝑟=1

 (2. 9) 

 

Consider a scenario where the signal sources are closely spaced with one another. For 

this section, the same standard model parameters are assumed. The operating frequency is 

fixed at 5500 MHz. In addition, the array receives two signal sources at the same time. The 

two sources are spaced and simulated at 8◦ and 4◦ apart. 

 

 

Figure 2.2 Variance level of 8 degrees spacing 
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Figure 2.3 Variance level of 4 degrees spacing 

Table 2.2: 8 Degree Signal Source Separation Performance 

 Root-MUSIC Root-WSF 
Beamspace-

Esprit 

True DOA (Degrees) 37 45 37 45 37 45 

Spaced 8 degrees 37.349 44.934 37.342 44.942 37.279 44.879 

Variance 0.025 0.0281 0.0249 0.028 0.0324 0.038 
 

Table 2.3: 4 Degree Signal Source Separation Performance 

 Root-MUSIC Root-WSF 
Beamspace-

Esprit 

True DOA (Degree) 41 45 41 45 41 45 

Spaced 4 degrees 41.912 45.016 41.875 45.051 41.772 44.872 

Variance 0.126 0.148 0.127 0.149 0.182 0.224 
 

 Based on the simulation results, it is observed that all techniques can estimate sources 

that are closely spaced apart. Based on the variance results, the Root-WSF method performs 

slightly better at 8 degrees spacing, while the Root-MUSIC technique performs better at 4-

degree spacing at a small margin.  The BS-ESPRIT technique performs worst in both cases 

compared to Root-MUSIC and Root-WSF.  
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2.4.3 Computational Time Performance 

Computational time taken is crucial, especially in real-world wireless 

communication scenarios, especially when fast-tracking of the signal source is required. 

Theoretically, faster computational time is preferred without sacrificing angular resolution 

accuracy. However, in practice, this may not be the case as most of the time, DOA techniques 

are either accurate or fast – hardly at the same time. This criterion will allow us to observe 

which method is the quickest and correlate the results to accuracy to select the best one for 

real-world application. 

This section evaluates the computational time performance across the 3 DOA 

techniques. This scenario assumes the same standard model with an operating frequency of 

5500 MHz. In addition, the array is only receiving one signal source. 

Table 2.4: Computation Time Performance 

 Root-MUSIC Root-WSF 
Beamspace-

Esprit 
Computational Time 

(ms) 22.5 36.7 29.4 
 

 Based on the simulation results tabulated in Table 2.4, Root-MUSIC is the fastest in 

terms of computational time, followed by the BS-ESPRIT and the Root-WSF technique. This 

is in line with the theory that accuracy comes at the expense of computational time. The Root-

WSF method is iterative in obtaining the DOA and, therefore, the most computationally 

complex. However, in almost all cases, the Root-WSF technique provides the best overall 

performance in terms of accuracy. 

2.4.4 Coherent Signal Source Performance 

Suppose several sources are coherent such as in terms of a multipath scenario. In that 

case, the spatial covariance matrix will become rank deficient and cause the subspace-based 

DOA estimation technique to fail [81-83]. To ensure robustness, DOA techniques must be 

able to perform in a coherent environment to maintain estimation robustness in a wide 

variety of scenarios. 

In this coherent signal source scenario, there are two signal sources with a true DOA 

of 20◦ and 45◦. The same standard model is applied as before with an operating frequency of 

5500 MHz. To simulate a multipath environment, one of the two signals is the first source's 

multipath reflection with a magnitude of ¼ of that first source. 
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Figure 2.4 DOA Detection in Coherent Signal Environment 

Table 2.5: Coherent Signal Source Performance 

 Root-MUSIC Root-WSF 
Beamspace-

ESPRIT 
True DOA (degree) 20 45 20 45 20 45 

Coherent Signal 
Source 23.636 -21.476 20.011 45.175 19.374 42.152 

 

With reference to Figure 2.4 and Table 2.5, the results show that the Root-WSF 

algorithm performs the best compared to the Root-MUSIC and BS-ESPRIT techniques, with 

a mean accuracy of 99.78% compared to 64.77% and 95.27%, respectively. It can be 

observed that in the context of correlated signals, Root-MUSIC will fail. This is because, for 

the Root-MUSIC and all the derivatives of the MUSIC algorithm, it can only estimate if 

sources are uncorrelated, which is true in accordance with literature studies. 

2.5 Performance Summary of Existing DOA Estimation 

Techniques 

The main objective of this chapter is to identify the problems faced by existing DOA 

estimators and formulate standard performance criterion metrics. According to the 

performance analysis and evaluation, it can conclude that the best overall performing DOA 

estimation algorithm would be the Root-WSF algorithm with respect to the performance 
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criterion. It can detect signals accurately in a multipath environment, perform optimally 

across a range of frequency bands, and perform well in a close-source signal environment. 

Although the computational time is longer as compared to the Root-MUSIC and BS-

ESPRIT algorithms, the benefit outweighs the disadvantage of having a slightly longer 

computational time. This can be resolved by adaptively changing the iteration with just 

enough cycles to obtain the most accurate DOA estimation.  

Clearly, there is room for improvements based on existing techniques' DOA 

estimation performance results and the computational load. The next chapter introduces 

multiple novel DOA estimation techniques to solve the identified problems.  
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3 Innovative Techniques to Independently 

Overcome Problems with Existing DOA 

Estimators 

Sub-space techniques such as the classical MUSIC [66] and ESPRIT [17] have been 

some of the most sought-after DOA estimation methods in many past works of literature due 

to their consistent estimation performance, reliability and ease of understanding for 

implementation. Although these subspace methods like MUSIC are old techniques that were 

proposed decades ago, these techniques are still being improved on or used as a platform to 

further develop state-of-the-art DOA methods such as the integration of MUSIC with 

machine-learning [25, 37] and many other techniques that can trace their roots back to the 

MUSIC and many other subspace-based DOA estimation techniques [84, 85]. 

Past literature has presented modifications to the MUSIC DOA algorithm called 

improved-MUSIC to improve performance in a coherent signal environment with high 

resolution compared to the classical MUSIC algorithm [22, 86, 87]. The problem with 

improved-MUSIC and many existing DOA estimation techniques is computationally 

intensive. It requires a scan of all possible angles to obtain pseudo-spectrum peaks to 

determine the signal’s DOAs. Based on the literature review, there is clear evidence that fast 

computational time with high DOA estimation accuracy is yet to be met.  

In this chapter, various proposed designs of DOA estimators are presented to solve 

the problems of computational time and estimation accuracy faced by existing estimators 

individually. First, the Root-T technique is introduced to reduce the computational load while 

conserving DOA estimation accuracy [3]. Next, higher-order DOA estimators called the CC-

MUSIC [6] are introduced to improve the DOA estimation accuracy in a closely-spaced 

signal source scenario. Then, the SADE is introduced further to enhance the DOA estimation 

performance [7]. Lastly, single snapshot DOA estimation is investigated with a novel 

technique to ensure high estimation accuracy using auto-calibration of sensor data [5].  

 

This chapter is reproduced from paper #4 - #7 in the publication list on page iv, where the 

thesis author is the main author in the paper. 
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3.1 Root-Transformation Method for DOA Estimation 

A simple technique is presented here by introducing a polynomial-solving algorithm 

called the Root-T technique by obtaining the roots of the improved MUSIC algorithm to 

obtain the DOAs, a similar technique employed for root-MUSIC [5] for a ULA antenna 

structure. This conserves the performance of the improved-MUSIC technique while reducing 

computational complexity. Its performance in low SNR, closely-spaced signals and 

computational efficiency will be observed. In theory, this enables localization applications 

such as low-cost beamforming smart antennas and Internet-of-Things (IoT) devices. 

Although [6] presented a comprehensive study on various state-of-the-art DOA techniques 

based on a similar 4-ULA structure as presented in this section, it can be too complex for 

lightweight implementation. 

3.1.1 Algorithm for Root-Transformation DOA Estimator 

 Figure 3.1 presents the algorithm flowchart for the root-T technique.  

 

Figure 3.1 Root-T Algorithm Flowchart 

 In stage 1, the transformation-based correlation matrix, RRR as derived in [22, 86, 87], 

is obtained, where A denotes the array steering matrix, I is the transformation diagonal 

identity matrix, RSS is the signal correlation matrix, and RNN is the noise correlation matrix as 

derived in [86]. RRR here is different from the correlation matrix used for root-MUSIC as it 

allows the detection of signals in a coherent environment [87]. Assuming an ergodic 

estimation process,  RSS and RNN can be approximated by using time-averaged correlation as 

derived in [87]. Stages 2 and 3 perform the eigendecomposition of RRR to obtain the noise 

subspace and subsequently multiply it by its Hermitian to obtain C. The algorithm is modified 

from stage 4 onwards by employing a polynomial solving technique, unlike the improved-

MUSIC process, which uses a pseudo-spectrum scan method. Stage 4 evaluates the sum 

across the diagonal of C and obtain the polynomial roots with length (-M+1) to (M-1), where 

M is the number of ULA antenna elements which significantly reduces computational costs. 
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Roots closest to the unit circle corresponds to the DOAs of interest. Thus, stage 5 processes 

the estimated roots and converts it into DOAs as in [88]. 

3.1.2 Performance Analysis for Root-T DOA Estimator 

For the simulation, there are two narrowband signals impinging on a 4-element ULA of 10° 

and 10° at an operating carrier frequency of 5500 MHz. the antenna element spacing was set 

to half-wavelength, and the number of K samples is 1024. Noise is assumed to be of an ideal 

AWGN. For simplicity, only DOA in the azimuth plane and assumed elevation is 0° is 

obtained. 500 independent simulations with different noise processes are used to obtain the 

mean and RMSE values. For all simulation study, all poles and thus, potential DOA solutions, 

will be shown in the plotted graphs. There are a total of (X+1) roots, where X represents the 

total number of potential DOA solutions where (X+1) = (-M+1):(M-1). Therefore, in the 

case of M = 4, then X = 6, where a total of 6 DOA solutions are expected. However, as the 

DOA range of interest falls from -30 to 30 degrees, any roots that fall outside of this range 

is omitted. 

3.1.2.1 Low SNR Performance (SNR = -30 dB) 

 

Figure 3.2 Low SNR Performance for Root-T DOA Estimator 

Figure 3.2 presents mean performance in low SNR. At -30 dB, it can be observed 

that root-T achieves closer to the true DOA at -10.27° and 10.27°, whereas root-MUSIC 

achieves -8.34° and 7.61°, respectively. This presents an RMSE of 0.27 and 2.025 for 
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root-T and root-MUSIC, respectively. This shows an 86.7% performance increase over 

the root-MUSIC technique.  

3.1.2.2 Closely-Spaced Signals (SNR = -20 dB) 

 

Figure 3.3 Closely-Spaced Signal Performance for Root-T 

Figure 3.3 presents the mean performance of closely-spaced signals at -5° and 5°. 

It can be observed that the root-T performs better with a DOA estimation of -4.89° and 

4.9°, whereas root-MUSIC estimated the DOA at -4.73° and 11.29°, respectively. This 

presents an RMSE of 0.105 and 3.28 for root-T and root-MUSIC, respectively, which is 

a 96.8% performance increase for root-T. It can also observe an asymmetrical detection 

for MUSIC because as signals converge towards each other, it leads to a coherency of 

signals. When signals are coherent, RRR becomes singular as the rows are linear 

combinations of each other. Unlike an uncorrelated environment where RRR is a diagonal 

matrix, its off-diagonal elements do not correlate. A singular RRR causes a significant 

error and degradation in statistical estimation [88]. Thus, [22, 86, 87] solves this problem 

by introducing the I matrix to decorrelate the incoming signals.  

3.1.2.3 Computational Runtime 

Both MUSIC and improved-MUSIC employ a spectral scan of all possible angles. 

For example, if the sweeping scan is from -90° to 90° with a resolution of 1° in the 
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azimuth plane, there is a need to compute 181 iterations to determine the peaks in the 

pseudo-spectrum. At the same time, the root-MUSIC and Root-T techniques solve for 

polynomial roots along the diagonal with a maximum iteration of range -M+1:M-1 of the 

C matrix. 

The mean computational time is also observed for the various DOA techniques. 

With reference to Table 3.1 for a 1° resolution step, it is observed that root-T is 49.5% 

faster than improved-MUSIC due to significantly lower computational iterations. 

Although root-T is 0.2 ms slower over root-MUSIC, it is a trade-off to obtain better 

performance in low SNR and coherent signal situations. 

Table 3.1 Algorithms Computational Runtime Comparison  

Technique MUSIC Improved-

MUSIC 

Root-

MUSIC 

Root-T 

Mean Runtime 

(milliseconds) 

2.69 3.03 1.29 1.5 

 

3.1.3 Root-T DOA Estimator Performance Summary 

From the simulation results and comparison, root-T maintains improved-MUSIC 

performance with lower computational complexity by 49.5% while superseding the 

estimation performance of root-MUSIC. However, one of the critical drawbacks of root-T 

is the lacklustre DOA estimation accuracy in a low SNR scenario. In the following sub-

section, a hybrid system combining higher-order spatial cross cumulants and root-MUSIC 

improves DOA estimation performance in low SNR scenarios.  

3.2 DOA Estimation using Hybrid Higher-Order Spatial Cross-

Cumulants and Root-MUSIC  

The fourth-order covariance matrix contains more information, such as the phase 

difference at the reference element, than that of the second-order covariance matrix [89]. This 

is calculated via the Kronecker product of the received data and its conjugate value. In other 

words, by introducing a phase difference to the reference antenna array element, a virtual 

array element is introduced by extending the antenna array element by (𝑀𝑀 + 1) [89]. This 

method would theoretically allow efficient noise suppression and higher resolution accuracy, 

especially in a multi-signal source scenario. It has also been demonstrated that by using 

higher-order statistics applied to the classical MUSIC algorithm, as in [90], the effectiveness 
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of the cumulant-based MUSIC can restrain efficiently in the effect of coloured noise when 

compared to the equivalent second-order covariance-based version with higher resolution 

probability and in low SNR scenario for DOA estimation.  

While the classical MUSIC has been deemed a high-resolution DOA estimator, as 

demonstrated in [47, 48], the computational load of executing a spectral scan of all possible 

angles is still needed to determine the DOAs. One such technique to solve for the high 

computational load was the introduction of the root-MUSIC [88] technique which 

encompasses the polynomial solving method to solve for the DOAs. Regarding 

computational time, root-MUSIC reduces the computational time by half compared to the 

classical MUSIC technique [87]. In addition, as the fourth-order cross cumulant has the same 

matrix size as the second-order covariance matrix, implementation and realization for real-

world applications are relatively simple. To that end, it is desirable to develop an algorithm 

that has the benefits of using a fourth-order cumulant-based covariance matrix on its excellent 

performance in low SNR scenarios as well as root-MUSIC’s computational efficiency.  

This technique improves a DOA estimator's resolution and accuracy, particularly in a 

low SNR scenario. A hybrid fourth-order cross cumulant-based technique is proposed to 

determine a higher-order sample covariance matrix coupled with the root-MUSIC algorithm 

and solve the polynomial roots to assess the respective DOAs. The root-MUSIC estimator is 

also chosen as the base algorithm. It retains high-resolution accuracy and is relatively easy to 

implement in real-world scenarios, as demonstrated in [91, 92]. 

3.2.1 Higher-Order Spatial Cross Cumulants 

 It has also been demonstrated that cross cumulants-based covariance matrix has 

higher resolution probability, especially in low SNR scenarios for DOA estimation [90, 93]. 

The second-order complex-valued cross cumulant for two generic variables 𝑋𝑋 and 𝑌𝑌 is the 

cross-power spectrum which is expressed as [89]: 

𝐶𝐶2(𝑋𝑋,𝑌𝑌∗) = 𝔼𝔼[𝑋𝑋𝑌𝑌∗] − 𝔼𝔼[𝑋𝑋]𝐸𝐸[𝑌𝑌∗] (3. 1) 

 A fourth-order complex-valued cross cumulant for two generic zero-mean processes 

𝑋𝑋 and 𝑌𝑌 can be extended from (3.1) and is expressed as [89]: 

𝐶𝐶4(𝑋𝑋,𝑋𝑋,𝑌𝑌∗,𝑌𝑌∗) = 𝔼𝔼[𝑋𝑋2𝑌𝑌∗2] − 𝔼𝔼[𝑋𝑋2]𝔼𝔼∗[𝑌𝑌2] − 2𝔼𝔼[𝑋𝑋𝑌𝑌∗]2 (3. 2) 

To that end, it should be noted that there are many variants of cross cumulants 

techniques for complex-valued random processes. Generally, for a complex-valued cross 

cumulant of order 𝑁𝑁, there are 2𝑁𝑁 ways to configure the complex conjugate on the parameters 

to 𝐶𝐶𝑁𝑁 which results in different definitions.  
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The fourth-order covariance matrix 𝐑𝐑𝟒𝟒𝐗𝐗 based on the received signal data matrix can 

be extended with reference from (3.2) and is expressed as follows: 

𝐑𝐑𝟒𝟒𝐗𝐗 = 𝔼𝔼{(𝐗𝐗⊗ 𝐗𝐗∗)(𝐗𝐗⊗ 𝐗𝐗∗)H} 

−𝔼𝔼{𝐗𝐗⊗ 𝐗𝐗∗}𝔼𝔼{𝐗𝐗⊗ 𝐗𝐗∗}H 

−𝔼𝔼{𝐗𝐗𝐗𝐗H} ⊗𝔼𝔼{(𝐗𝐗𝐗𝐗H)∗}  (3. 3) 

Where (∙)∗  denotes the complex conjugate, 𝔼𝔼{⋅} denotes the Expectation operator and ⊗ 

denotes the Kronecker product. 

3.2.2 Cross Cumulants-MUSIC (CC-MUSIC) DOA Estimator 

Instead of using the second-order sample covariance matrix to determine the noise 

subspace and the polynomial roots to obtain the DOAs, a modified fourth-order cross 

cumulant matrix is proposed, derived from the incoming received signal data. It has been 

shown in past literature, such as in [90], that using cross cumulants can resolve multiple 

closely spaced sources in a noisy environment. The proposed method consists of 10 stages, 

illustrated in Figure 3.4.  

 

Figure 3.4 CC-MUSIC DOA Estimator Algorithm Flow 

Stage 1 is to obtain the received signal data matrix of size K-by-N. Stage 2 is to 

detrend 𝑿𝑿𝒓𝒓𝒓𝒓𝒓𝒓 by removing the mean values of the data. By removing the mean values of the 

data, an analysis is performed based on the fluctuation in the data. Stage 3 is to determine 

the fourth-order moment, which is expressed as [92]: 

𝐙𝐙 = 𝐗𝐗⊙ 𝐗𝐗(𝐗𝐗∗) (3. 4) 
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 Where ⊙ denotes the element-wise multiplication or Hadamard product. Stage 4 evaluates 

the fourth-order cross moments, which are expressed as [92]: 

𝐂𝐂𝟒𝟒𝐌𝐌 =
1
K
�(𝐙𝐙H𝐗𝐗(k))∗
K

k=1

 (3. 5) 

Then, stage 5 & 6 evaluates the correlation and moment matrix, respectively, which 

is presented as: 

𝐑𝐑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 =  
1
K
�(𝐗𝐗H𝐗𝐗(k))∗
K

k=1

 (3. 6) 

𝐑𝐑𝐦𝐦𝐜𝐜𝐦𝐦 =
1
K
�𝐗𝐗H(k)𝐗𝐗∗(k)
K

k=1

(3. 7) 

Next, stage 7 evaluates the cross-cumulant matrix, which is expressed as [92]: 

𝐑𝐑𝟒𝟒𝐗𝐗 = 𝐂𝐂𝟒𝟒𝐌𝐌 − 2diag�diag(𝐑𝐑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜)�𝐑𝐑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

−diag�(diag(𝐑𝐑𝐦𝐦𝐜𝐜𝐦𝐦
∗)�𝐑𝐑𝐦𝐦𝐜𝐜𝐦𝐦 (3. 8)

 

Where diag(∙) represents the diagonal elements of the matrix. Finally, stages 8-10 evaluate 

the polynomial roots to determine the respective DOAs.  

3.2.3 Performance Analysis of CC-MUSIC DOA Estimator 

The proposed technique for DOA estimation, CC-MUSIC, is evaluated, and the 

performance is compared to the root-MUSIC and ESPRIT algorithms. This is mainly to 

present the benefits of using fourth-order cross cumulants for the sample covariance matrix 

compared to the one utilizing the second-order sample covariance matrix technique, such as 

those typically employed for root-MUSIC and ESPRIT. The root-MUSIC and ESPRIT are 

chosen as the comparison because it all uses the same polynomial approach to determine the 

DOAs [16].   

To evaluate the performance of the DOA algorithms, a simple single-user Wi-Fi 

antenna configuration is modelled that is employed typically between vehicular clients and 

access points for wireless communication [44, 78]: 

• Carrier Frequency: 5500MHz 

• Number of elements: 4 

• Element spacing: λ/2  
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There are many algorithms and statistical techniques that can predict the number of 

signal sources, such as the Akaike Information Criterion (AIC) and Minimum Description 

Length (MDL), such as in [94, 95]. However, this prediction of the number of signal sources 

is beyond the scope of this research, and the number of narrowband signal sources is assumed 

to be known a priori for simplicity. 

3.2.3.1 Single Source SNR-RMSE Performance 

 

Figure 3.5 Single-Source SNR-RMSE Performance for CC-MUSIC 

With reference to Figure 3.5, at low SNR (<15dB), CC-MUSIC outperforms root-

MUSIC and ESPRIT by a minimum average of 10.99%, 39.64%, and 46.33% in terms of 

RMSE for K = 10, 100 and 1000 respectively. It was also observed that at higher SNR 

(>15dB) for low K snapshot values, root-MUSIC and ESPRIT outperform CC-MUSIC. At 

high 𝐾𝐾 values, CC-MUSIC performs similarly compared to root-MUSIC and ESPRIT, with 

an average RMSE difference of 10%. One of the reasons as to why high SNR affects the 

performance of CC-MUSIC is due to the fluctuations and over-saturation of phase 

information in the moment matrix, 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎. However, as it is unlikely that in a real-world 

application that, SNR will be as high as >15dB, it can be considered as a compromise – 

especially if there is a need to perform statistically well in low SNR scenarios.  
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3.2.3.2 Multi-Source SNR-RMSE Performance 

 

Figure 3.6 Multi-Source SNR-RMSE Performance for CC-MUSIC 

Figure 3.6 presents the SNR-RMSE performance for a multi-signal source scenario. 

In this scenario, two narrowband signals are impinging onto the array set 5° apart at 40° and 

45°. The simulation results confirm that in a multi-source scenario, the use of the cross 

cumulants in CC-MUSIC outperforms the classical second-order covariance-based DOA 

estimators across the SNR range and in varying snapshot values. On average, across the 

whole range of SNR values, CC-MUSIC outperforms root-MUSIC and ESPRIT by 48.1%, 

20.37%, and 4.5% for K = 10, 100, and 1000 respectively. However, one thing to note is that 

CC-MUSIC significantly outperforms root-MUSIC and ESPRIT at lower SNR values. If the 

range from 1dB to 15dB is observed, it is determined that the average SNR-RMSE for CC-

MUSIC compared against root-MUSIC and ESPRIT is 39.1%, 79.1%, and 83.8% for K = 

10,100 and 1000 respectively. To that end, the introduction of an extended virtual array 

element allows improved resolution accuracy and noise suppression which has been 

demonstrated in this simulation scenario.  

3.2.4 CC-MUSIC Summary 

The proposed novel DOA estimation technique, CC-MUSIC, used fourth-order 

cross-cumulant statistics to significantly improve the estimator's performance, particularly 

in low SNR scenarios, without the expense of computational cost based on the RMSE 
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performance. It is best to determine the DOAs using second order-based sample covariance 

techniques at high SNR scenarios for a single signal source based on the simulation results. 

However, in a multi-signal source scenario, it is best to use higher-order statistics to resolve 

multiple signals, mainly if the sources are closely related, as demonstrated from the 

simulation results. 

One way to overcome this is by implementing a detect and switch algorithm that 

allows automatic switching of the sample covariance matrix from fourth-order to second-

order based on either the SNR threshold if the noise power is known or the Received Signal 

Strength Indicator (RSSI) values if noise power from the emitter is unknown. To achieve 

this, a correlation between known RSSI and noise values can be determined by mapping the 

two variables together. This would allow a threshold to be set and determine when the 

switching can occur upon reaching a specific level of RSSI which can be estimated. However, 

using this switching technique may result in higher computational complexity. In terms of 

computational costs, CC-MUSIC has the same complexity as compared to ESPRIT and root-

MUSIC. In the next section, another DOA estimation technique is introduced by using 

multiple subspace information to determine the DOAs of interest with the purpose of 

reducing the computational load while preserving the DOA estimation accuracy. 

3.3 Subspace-Averaging DOA Estimator (SADE) 

This section aims at a preliminary attempt to develop a novel DOA estimation method 

for narrowband and short-range signal source environments called SADE. This is carried out 

by utilizing and averaging both the noise and signal subspaces concurrently to form a new 

covariance matrix which is a crucial data point for DOA estimation. The proposed DOA 

technique estimates exact DOA points at a range of SNR values (> 10 dB) while maintaining 

low computational complexity. The receiver is configured to process multiple DOA 

information impinging from different DOA positions in space. The simulation results verify 

the proposed method and supersede existing DOA estimation techniques as an asymptotically 

unbiased estimator under static AWGN conditions.  

3.3.1 SADE Data Model 

The proposed method identifies and modifies the signal and noise subspaces within 

the received data. Then, the DOA is estimated using a polynomial solving technique to 

reduce computational complexity.  

Firstly, the modified received data signal, 𝐘𝐘 is defined as: 
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𝐘𝐘 = 𝐈𝐈M𝐗𝐗∗ (3. 9) 

Where 𝐗𝐗∗ is defined as the complex conjugate of the received data signal 𝐗𝐗 and 𝐈𝐈M is an anti-

diagonal identity matrix of size M × M represented as: 

𝐈𝐈𝐌𝐌 = �
0 … 1
⋮ ⋱ ⋮

1(MxM) ⋯ 0
�  (3. 10) 

Next, the reformulated secondary sample covariance matrix 𝐑𝐑�𝐲𝐲𝐲𝐲 is expressed as: 

𝐑𝐑�𝐲𝐲𝐲𝐲 =
1
K
�𝐘𝐘𝐘𝐘H
K

𝑟𝑟=1

 (3. 11) 

To that end, the resultant sample covariance matrix 𝐑𝐑 is obtained as follows: 

𝐑𝐑 =
�𝐑𝐑�𝐱𝐱𝐱𝐱 + 𝐑𝐑�𝐲𝐲𝐲𝐲�

2
 (3. 12) 

From the equation, it can be observed that the noise components of both covariance 

matrices have equal values. This can be proven using the Expectation Value formula 

represented as [96]: 

𝐑𝐑yy = E[𝐘𝐘𝐘𝐘H] (3. 13) 

𝐑𝐑yy = 𝐈𝐈M𝐀𝐀∗𝐑𝐑𝐀𝐀
∗(𝐀𝐀∗)H𝐈𝐈M + 𝐑𝐑𝐧𝐧 (3. 14) 

𝐑𝐑yy = 𝐈𝐈M𝐑𝐑𝐀𝐀
∗𝐈𝐈M (3. 15) 

Thus, both the noise and signal subspaces are utilized to determine the DOA. Lastly, 

a simple root polynomial technique is employed to determine the DOAs with the purpose and 

benefit of lower computational complexity. This essentially means that scanning the entire 

span of possible DOA angles is not required – significantly reducing the costs. The poles of 

the pseudo-spectrum are the corresponding roots that lie closest to the unit circle. For 

example, an M-element ULA covariance matrix is of dimension M × M  and will have 

2(M − 1) diagonals. Thus, each root can be written as [4]: 

𝑧𝑧𝑟𝑟 = |𝑧𝑧𝑟𝑟|𝑒𝑒𝑗𝑗arg(𝑧𝑧𝑖𝑖)   𝑖𝑖 = 1,2, … ,2(M − 1) (3. 16) 

where 𝑧𝑧 = 𝑒𝑒𝑗𝑗
2𝜋𝜋
𝜆𝜆 𝑑𝑑 sin𝜃𝜃𝑖𝑖  and arg(𝑧𝑧𝑟𝑟) is the phase angle of 𝑧𝑧𝑟𝑟.  

By comparing 𝑒𝑒𝑗𝑗arg(𝑧𝑧𝑖𝑖)  and 𝑒𝑒𝑗𝑗
2𝜋𝜋
𝜆𝜆 𝑑𝑑 sin𝜃𝜃𝑖𝑖 The pth roots closest to the unit circle are 

mapped and converted into the estimated DOAs of interest by: 

𝜃𝜃𝑟𝑟(𝑝𝑝) =  𝑠𝑠𝑖𝑖𝑛𝑛−1 �
𝜆𝜆

2𝜋𝜋𝑑𝑑
arg �𝑧𝑧𝑟𝑟(𝑝𝑝)��  (3. 17) 

where 𝜃𝜃𝑟𝑟(𝑝𝑝) are the estimated DOAs of interest.  
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Note that the range of 𝑖𝑖 values depends on the number of signal sources. For example, 

if there are two signal sources, then the two roots closest to the unit circle are the estimated 

DOAs of interest and so forth. It is assumed that the number of signal sources is known. In 

summary, the proposed SADE algorithm is summed up in Figure 3.7.   

 

Figure 3.7 Proposed SADE Algorithm 

3.3.2 SADE Performance Analysis  

The proposed SADE technique was implemented using MATLAB R2020b. It is 

assumed that the signal source is uncorrelated, and only AWGN was considered for 

simplicity. The SADE algorithm is compared to ESPRIT and Root-MUSIC – a relatively 

similar but simple subspace DOA estimation technique for demonstrating comparison and 

presenting the key benefits of using a subspace-averaging-based technique as the sample 

covariance matrix by leveraging on both the signal and noise subspaces instead of just the 

latter. The element spacing is half the operating frequency’s wavelength. In this section, some 

key factors will be observed and discussed.  

To evaluate the performance of the proposed technique, a simple scenario is modelled 

where only a single far-field signal source is impinging onto the antenna array at 50° for ease 

of comparison. This study focuses on the performance of varying antenna array elements and 

snapshot values across SNR values. 

3.3.2.1 Varying the Number of Snapshots  

This section observes the proposed SADE technique under varying snapshots against 

Root-MUSIC and ESPRIT. In this scenario, the number of the antenna array element is 

assumed to be 𝑀𝑀 = 4. The Cramer-Rao Bound (CRB) is also provided as an indicator of the 

statistical performance of the estimators. With reference from Figure 3.8 to Figure 3.10, 
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there is a clear indication and consistency across any snapshot value. At a low SNR value (< 

15dB), the RMSE for SADE is approximately 23.01% higher than that of Root-MUSIC and 

ESPRIT, respectively. However, as the SNR value approached >15dB, SADE presents a 

significantly lower RMSE when compared to the latter. At 30 dB SNR, SADE can attain 

closer to the CRB with an RMSE of approximately 99.84% accuracy compared to Root-

MUSIC and ESPRIT against the CRB value. Since the number of elements in this 

performance study is relatively small, the noise and signal subspace eigenvalues are 

inherently significant at high SNR. Furthermore, as SADE utilizes both the noise and 

subspace subspaces, the eigenvalues from both subspace components allow higher 

estimation resolution. As discussed in the next section, this effect has an inversely 

proportional impact when the number of elements increases.  

 

Figure 3.8 SNR-RMSE for K Number of Snapshots = 10 
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Figure 3.9 SNR-RMSE for K Number of Snapshots = 100 

 

Figure 3.10 SNR-RMSE for K Number of Snapshots = 1000 
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3.3.2.2 Varying the Number of Array Elements 

This section observes the DOA estimation performance of the SADE algorithm 

under varying antenna array elements. For simplicity, the CRB is omitted and observed 

closely and precisely on the SNR-RMSE performance among the three estimators. A fixed 

snapshot value is fixed at K = 1000 for consistent comparison. In the case where M = 4 is 

demonstrated in Figure 3.10, SADE's RMSE is significantly lower than the other DOA 

techniques across the wide range of SNR values. Figure 3.10 shows that RMSE for SADE 

obtains lower RMSE compared to root-MUSIC and ESPRIT as the SNR increases. However, 

as the number of elements increases, SADE's performance decays compared to root-MUSIC. 

This is because the signal subspace 𝐸𝐸𝑟𝑟 as the number of antenna arrays increases, the noise 

subspace, 𝐸𝐸𝑛𝑛 are significantly higher in value when compared to the signal subspace (𝐄𝐄𝐧𝐧 ≫

𝐄𝐄𝐀𝐀).  Therefore, the averaging technique loses estimation performance as the eigenvalues in 

the signal subspace approach nominal values. Thus, conducting a subspace-averaging 

method would result in poorer performance. This trend is observed in Figure 3.11 and Figure 

3.12, where SADE performs slightly worse than Root-MUSIC but has higher accuracy when 

compared to ESPRIT. When the number of elements is less than 8, the SADE has an average 

RMSE of 9.5% when compared to root-MUSIC and ESPRIT at 15.6% and 16.7%, 

respectively, when compared to the actual signal source DOA. 

 

Figure 3.11 SNR-RMSE for Antenna Elements M = 6 
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Figure 3.12 SNR-RMSE for Antenna Elements M = 16 

3.3.3 SADE Performance Summary 

The proposed subspace-averaging DOA estimation technique, SADE, was presented 

to significantly improve the performance of an estimator without the expense of 

computational costs and improve estimation accuracy based on the RMSE results. From the 

simulation results of varying snapshot values and under AWGN, the SADE technique 

manages to attain 99.84% of the CRB at >15dB SNR. In addition, from the simulation of 

varying antenna array elements, when the number of elements is less than 8, the SADE 

technique performs with an RMSE of 9.5% of the actual direction compared to 15.6% and 

16.7% of the root-MUSIC and ESPRIT techniques. In addition, there is also room for 

improvement for DOA estimation with a lower RMSE that is closer to the CRB. Furthermore, 

as the number of snapshots reduces, the estimation performance will also diminish. In the 

following sub-section, an alternative approach is proposed to reduce the computational load 

via the number of snapshots without impacting the DOA estimation accuracy. 

3.4 Snapshot Sample Reduction for Lower Computational Load 

This section proposes and studies a snapshot sample reduction for DOA estimation. 

Many methods have been proposed in [97] for a single snapshot scenario by exploiting the 
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spatial properties of a ULA to estimate its covariance matrix with potential application in 

automotive radar where the snapshot sampling frequency is low [98] or in any low-cost 

situation where hardware performance is limited without compromising accuracy. The main 

drawback in [98] is that because it depends on the spatial properties of the ULA, precision is 

required when it comes to the position of the array elements. Any measurement uncertainties 

or miscalibration can lead to a degradation of estimation performance for the DOA estimator 

in [98]. [99] presented a self-calibration technique by iterating between direction estimation 

and gain/phase estimation via minimizing a cost function until convergence. However, this 

technique still requires a high number of snapshots to obtain reasonable convergence to its 

cost function.  

To that end, this method aims to enable a single snapshot technique by introducing a 

Sequential Quadratic Programming (SQP) optimization technique enabling auto-calibration 

of the antenna array positioning that allows a higher accuracy when deriving the covariance 

matrix. 

3.4.1 Single Snapshot DOA Estimation Signal Model 

To reiterate, a typical approach for estimating the covariance matrix is denoted as 𝐑𝐑�𝐱𝐱𝐱𝐱 

is by using 𝐾𝐾 temporal snapshots 𝑥𝑥(𝑘𝑘),𝑘𝑘 = 1, … ,𝐾𝐾 as follows [98, 100]: 

𝐑𝐑�𝐱𝐱𝐱𝐱 =
1
K
�𝐱𝐱(k)𝐱𝐱𝐇𝐇(k)
K

k=1

=
1
𝐾𝐾
𝐗𝐗𝐗𝐗𝐇𝐇 (3. 18) 

where 𝐗𝐗 is composed of 𝐾𝐾 temporal snapshots.  

Alternatively, a single spatial snapshot approach can be realized by exploiting the 

spatial properties of the ULA. Thus, if only one spatial snapshot of a received signal vector-

matrix 𝑥𝑥 is used, the covariance matrix can be estimated as [98]: 

𝐑𝐑�𝐱𝐱𝐱𝐱(𝐀𝐀𝐀𝐀) =
1
M
𝐗𝐗𝐭𝐭𝐜𝐜𝐭𝐭𝐭𝐭𝐇𝐇𝐗𝐗𝐭𝐭𝐜𝐜𝐭𝐭𝐭𝐭 (3. 19) 

where 𝐗𝐗𝐭𝐭𝐜𝐜𝐭𝐭𝐭𝐭  contains a single signal vector 𝐱𝐱 = [𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑀𝑀]𝑇𝑇  in a sparse Toeplitz 

geometry.  

Thus, a finite data record of length 𝑀𝑀 array elements is used to estimate the covariance 

matrix when compared to (3.18), where only one temporal data is acquired.  

3.4.2 Auto-calibration of Antenna Positioning & Proposed Technique 

A cost function is proposed to measure the estimation error and the best-case 

relationship between (3.19) and the signal source. (3.20), which is dependent on the 
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covariance matrix 𝑹𝑹�𝒙𝒙(𝒔𝒔𝒔𝒔) , the initial element position,𝑑𝑑𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟  and estimates of the source 

locations,𝜃𝜃𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 as an initialization criterion which is defined as follows: 

xcf = f�𝐑𝐑�𝐱𝐱𝐱𝐱(𝐀𝐀𝐀𝐀), dinit,θinit� = log10�diag�𝐀𝐀𝐇𝐇𝐄𝐄𝐍𝐍𝐄𝐄𝐍𝐍𝐇𝐇𝐀𝐀��  (3. 20) 

where 𝑨𝑨 and 𝑬𝑬𝑵𝑵 denotes the estimated array steering vector and Eigen-decomposed noise 

subspace, respectively, from 𝑹𝑹�𝒙𝒙𝒙𝒙(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)which are dependent on the array positions.  

Observing the auto-calibration as a constrained optimization problem, a state-of-the-

art constraint optimizer SQP is employed coupled with an SS-DOA estimation cost function. 

The SQP algorithm can be referred to in [101]. Figure 3.13 presents an algorithmic flowchart 

of the proposed technique. The cost function in (3.20) alongside an SQP optimizer is used. 

The iteration ends when the step size goes below the step, angle, and location tolerance 

which are the convergence properties. The cost function in (3.20) is minimized when (3.19) 

corresponds to its smallest eigenvalue. The auto-calibration will iterate between estimating 

the source position and updating the calibration parameters within the user-defined tolerance. 

 

Figure 3.13 Auto-Calibrating SS-DOA Estimator Flowchart 
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3.4.3 Simulation Results for SS-DOA 

Consider a 4-element ULA operating at 5500 MHz center frequency spaced at half-

wavelength. Next, assume the perturbed first reference sensor and the direction to the second 

sensor are known with two narrowband signal sources impinging on the array at 10° and 

35° with a Signal-to-Noise Ratio of -30dB. 300 independent simulations were run to obtain 

the RMSE. In this simulation, a non-calibrated SS-DOA derived in (3.19) was compared 

against the proposed auto-calibrating SS-DOA technique to demonstrate a single snapshot 

performance. Table 3.2 presents the array coordinates measured from the geometric center 

for the designed, perturbed, and calibrated positions and the difference between perturbed 

and calibrated positions. From ∆d, it can see that the calibrated array closely resembles the 

perturbed array after auto-calibration with an average standard deviation of 21mm. The 

calibrated positions will have an estimation impact, as demonstrated via the results in Table 

3.2. 

Table 3.2 Averaged Array Sensor Coordinates 
Array Position: 1  

(reference) 

2 3 4 

Designed/Perfect (mm): -40.9 -13.6 13.6 40.9 

Perturbed (mm): -40.9 -12.8 12.3 41.2 

Calibrated (mm +/- 5%): -40.9 -3.6 21.0 30.9 

∆d of Perturbed & 

Calibrated (mm +/- 5%): 

0 -9.2 8.7 10.3 

 

Fig. 3.14 presents a normalized polar plot of the auto-calibrating and non-calibrated 

SS-DOA, respectively, where each result's magnitude has been normalized to unity for 

comparison. It can be observed that the calibrated estimator achieves a closer estimate to the 

actual directions when compared to the non-calibrated results. The calibrated and non-

calibrated DOA estimators presented an average RMSE of 2.915° and 11.767°, respectively. 

This is a 75.22% average DOA estimation performance gain for the auto-calibrating SS-

DOA. As the steering vector and Eigen-decomposed subspaces are dependent variables of 

the array positions, a calibrated ULA would provide an accurate estimation as opposed to a 
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non-calibrated SS-DOA. In addition, the proposed technique has RMSE DOA estimation 

performance that is similarly comparable when compared to [99] without the need for high 

snapshot values.  

 
Fig. 3.14 Averaged DOA Estimation Results in Normalized Polar Plot 

3.4.4 Auto-Calibration of Single Snapshot Estimator Performance 

Summary 

The simulation results show that the proposed auto-calibration SS-DOA technique 

has a DOA estimation performance gain of 75.22% and a calibrated array position standard 

deviation of 21mm against non-calibrated algorithms. Compared to other state-of-the-art 

methods, similar averaged DOA estimation performance was obtained without requiring high 

snapshot values. This work verifies single snapshot DOA estimation when the correct cost 

function for the iterative-based solution is selected. Clearly, there is potential to utilize single 

snapshot DOA estimation without sacrificing estimation accuracy.  
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3.5 Overall Summary of Proposed Novel DOA Estimation 

Techniques 

Multiple preliminary DOA estimation techniques were proposed to reduce 

computational time and increase estimation accuracy in mind. Firstly, the root-T DOA 

estimation technique was introduced with the primary objective of conserving good 

estimation performance compared to root-MUSIC and improved-MUSIC while reducing the 

computational time. The key advantages of root-T are the improved DOA estimation 

performance of up to 96% while reducing the computational time by 49.5%. However, 

compared to existing state-of-the-art techniques, the root-T method does not perform 

relatively well in estimation accuracy. 

The CC-MUSIC DOA estimation technique was proposed to improve the DOA 

estimation performance compared to root-T by jointly utilizing higher-order cumulant 

statistics and root-MUSIC to perform high-resolution DOA estimation in low SNR scenarios. 

It has been demonstrated that CC-MUSIC outperforms techniques such as the standard root-

MUSIC and ESPRIT methods by up to 46%, where the SNR is < 15 dB for a single signal 

source and up to 83% in a multi-signal source scenario. However, CC-MUSIC has 

significantly high computational complexity, leading to a longer computational time. The 

long computational time is clearly undesirable in real-world scenarios where the DOAs are 

rapidly changing. 

The SADE DOA estimator was introduced to improve the DOA estimation accuracy 

further while lowering the computational time for efficient tracking. The SADE technique 

was proposed by exploiting the common noise subspace properties with a modified 

covariance matrix. Then, to further reduce the computational time, a simple polynomial root-

solving technique was employed to determine the DOA as compared to the costly pseudo-

spectrum search methods. Simulation results have shown that the SADE technique manages 

to attain up to 99% of the CRB where the SNR is > 15dB. Furthermore, the estimation 

accuracy of SADE is 9.5% closer to the true DOA than root-MUSIC and ESPRIT, coming in 

at 15.6% and 16.7%, respectively. However, the SADE technique has the drawback of 

insufficient DOA estimation accuracy compared to CC-MUSIC, although it has lower 

computational time with similar performance to that of root-T.  

Lastly, single snapshot DOA estimation was explored and analysed with the primary 

objective of reducing computational time. This work was carried out by first considering the 

antenna array positioning that may not be perfect in real-world scenarios, leading to 
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estimation performance degradation – mainly when the number of snapshots is minimal. 

Then, by combining the auto-calibration of array position for accurate covariance matrix 

derivation and a single snapshot DOA estimation method, the proposed joint technique 

presented an estimation gain of up to 75% compared to a non-calibrated estimator. It has also 

been shown that the proposed approach gave similar average DOA estimation performance 

compared to existing methods without requiring high snapshot values.  

To summarise, in terms of DOA estimation accuracy, CC-MUSIC outperforms root-T, 

SADE, and the single snapshot DOA estimator by a significant margin. Alternatively, in 

terms of computational time, root-T and the single snapshot methods presented the best 

results as compared to CC-MUSIC and SADE. Furthermore, single snapshot-based DOA 

estimators present promising results with low computational time without lengthy 

computational time, which has the potential for real-world applications that require fast and 

accurate estimation. Clearly, there is a potential to develop a DOA estimation method that 

can provide good DOA estimation performance without the expense of computational time.  

In the next chapter, a covariance matrix reconstruction approach for single snapshot 

DOA estimation is presented that combines the effectiveness of single snapshot methods 

while maintaining relatively high DOA estimation accuracy that outperforms existing and 

state-of-the-art techniques such as root-MUSIC and the Partial Relaxation (PR) approach.  
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4 A Covariance Matrix Reconstruction 

Approach for Single Snapshot DOA 

Estimation 

This chapter aims to develop a computationally efficient and accurate 1-D DOA 

estimation algorithm with a ULA antenna array geometry by exploiting the steering vector 

feedback and covariance matrix structure in the estimation and assuming the relationship 

between the number of sensors 𝑀𝑀  and signal source, 𝐿𝐿  is 𝐿𝐿 < 𝑀𝑀 . The fundamental 

characteristic of the proposed technique enables DOA estimation in many applications with 

cost, size, and hardware limitations, such as but not limited to the field of transportation and 

vehicular signal localization and high-bandwidth connectivity, especially in the current 

uprising of wireless communication [44] and the demand for accurate DOA estimation with 

fast computational time. A simple approach is proposed consisting of a pre-processing 

covariance matrix reconstruction to determine a comparative steering vector by 

manipulating the structural information of the covariance matrix to improve DOA estimation 

performance. The proposed algorithm achieves computational efficiency using a single 

snapshot instead of multiple snapshots to reduce data collection time while improving DOA 

estimation accuracy in a full range of SNR environments. Efficiency is achieved by using a 

predetermined DOA estimation stage using a root-MUSIC-like algorithm [3]. The derived 

DOA from the first stage is then used to determine the DOA initial estimates. This value is 

then used as feedback to determine the new steering vector. Finally, the final DOA 

estimation is computationally retrieved via the reformulated covariance matrix. With a focus 

on lightweight design philosophy, the proposed method presents key features that compacts 

a single snapshot and high DOA estimation accuracy with low computational complexity in 

a wide SNR range. To that end, the critical advantage of the proposed method presents 

efficient covariance matrix data collection with a single snapshot coupled with good DOA 

estimation performance.  

 

This chapter is reproduced from paper #1 in the publication list on page iv, where the thesis 

author is the main author in the paper. 
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The key issues that need to be solved are the overall computational load time and the 

DOA estimation accuracy, which are yet to be addressed clearly, particularly in varying SNR 

environments [64]. The problem faced in a low SNR environment is challenging to 

distinguish the different subspaces and signal information. This proposed technique 

addresses this issue, especially when faced with an array size limitation without sacrificing 

DOA estimation accuracy. In addition, the single snapshot limitations of DOA estimation 

will be addressed by introducing a robust, high-resolution DOA estimator called the CbSS 

technique. The CbSS estimator is an all-encompassing DOA estimation algorithm robust in 

performance across a wide range of SNR with good functionality in estimation performance 

and computational time. 

4.1 Covariance-based Single Snapshot DOA Estimator 

This section introduces the Cb DOA estimator. First, a detailed theoretical estimation 

model based on the theoretical covariance matrix to identify the root cause of estimation error. 

Then, the determination of the lower and upper bound of an optimum diagonal-loading factor 

value is presented for error minimization. Lastly, error minimization and noise suppression are 

shown for a practical single snapshot DOA estimation implementation based on the theoretical 

model estimation.  

4.1.1 Defining the Error Terms in Covariance Matrices 

Firstly, it is worth highlighting an apparent disparity in data information between the 

theoretical covariance matrix in (2.3) and the sample covariance matrix in (2.4) that eventually 

leads to DOA estimation performance degradation. As the number of snapshot samples is 

limited, the sample covariance matrix in (2.4) has inherent errors. Thus, (2.3) and (2.4) have a 

simple additive error mathematical relationship that can be written as 

𝐑𝐑�𝐱𝐱𝐱𝐱 = 𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜇𝜇𝐃𝐃 (4. 1) 

where 𝐑𝐑𝐱𝐱𝐱𝐱 is the theoretical covariance matrix in (2.3),  𝐃𝐃, is a zero-mean random matrix with 

unit variance, and 𝜇𝜇 is a constant that indicates the estimation error of the estimated covariance 

matrix.  

In (4.1), the term 𝜇𝜇𝐃𝐃 represents the additive inherent error by the sample covariance 

matrix. The errors are the numerical differences between the theoretical and sample covariance 

matrices. Evidently, the larger the estimation error, the worst the DOA estimation performance 

will be as 𝐑𝐑�𝐱𝐱𝐱𝐱  is numerically further away from the theoretical covariance matrix, 𝐑𝐑𝐱𝐱𝐱𝐱 . 

Clearly, 𝜇𝜇𝐃𝐃  is the leading cause of estimation performance degradation in the sample 

covariance matrix relative to the theoretical covariance matrix.  
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In past research studies, the diagonal loading method is a simple and efficient method 

for improving the robustness of an estimator that conducts matrix decomposition [102]. Thus, 

a data-dependent approach is introduced to determine an optimal diagonal loading factor. 

From (4.1), the sample covariance matrix is combined with a diagonal loading value and the 

estimation error. Therefore, the diagonal loading parameter is included in the sample 

covariance matrix in (4.1), which is defined as 

𝐑𝐑𝐃𝐃𝐃𝐃 = 𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜇𝜇𝐃𝐃 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈 (4. 2) 

where 𝜀𝜀𝐷𝐷𝐷𝐷 is the additive diagonal loading factor of interest to improve the DOA estimation 

accuracy.  

4.1.2 Determining the Lower & Upper Bounds of the Diagonal-Loading 

Factor for Error Minimization 

 Assuming that, at sufficiently high SNR values or a high number of snapshot samples, 

the theoretical covariance matrix and diagonal loading term combined are much larger than 

the inherent error, ‖𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈‖ ≫ 𝜇𝜇‖𝐃𝐃‖. Then, the orthogonal properties of (2.4) and (4.2) 

can be exploited to identify the cause of error by taking the inverse of the diagonally loaded 

covariance matrix in (4.6). Considering the inverse matrix approximation properties, the 

inverse of (4.2) can be expressed as 

𝐑𝐑𝐃𝐃𝐃𝐃
−1 = (𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)−1[𝐈𝐈 + 𝜇𝜇𝐃𝐃(𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)−1]−1

≈ (𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)−1[𝐈𝐈+ 𝜇𝜇𝐃𝐃(𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)−1] 

= (𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)−1 �𝐈𝐈 −
𝜇𝜇

𝜀𝜀𝐷𝐷𝐷𝐷 + 𝜎𝜎𝑛𝑛2
𝐃𝐃 �𝐈𝐈 − 𝐀𝐀�𝐀𝐀H𝐀𝐀 + (𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈)𝐄𝐄𝐀𝐀−1�

−1
𝐀𝐀H�� . (4. 3) 

 The sample and theoretical covariance matrix are equal in a perfect scenario. However, 

due to the existing error terms in real-world scenarios where the sample covariance matrix is 

used, it is impractical to achieve zero error. Thus, the diagonal-loading factor is introduced to 

minimize error and noise terms. However, it is crucial to determine the lower and upper 

boundary values to not statistically skew the covariance matrix estimation, which is directly 

linked to the estimation of the DOAs of interest. If the diagonal loading factor lies beyond the 

boundary, it will result in poor estimation results, which is undesirable.  

Therefore, based on the hypothesis, from (4.3), the terms inside the first brackets 

should ideally be a close non-zero value to the theoretical covariance matrix, which can be 

given as 𝐑𝐑𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈 ≅ 𝐑𝐑𝐱𝐱𝐱𝐱. If 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈 is set to zero, then no diagonal loading factor is used, 

particularly inside the curly brackets, and would result in the exact error-prone covariance 
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matrix estimation. Due to the existing 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈 and other error terms in the curly brackets, only a 

relative value would be achievable for either a sufficiently high SNR or snapshots samples. 

Therefore, the diagonal loading value should be much smaller than the diagonal element value 

of the theoretical covariance matrix. This ideal assumption and a diagonal loading factor upper 

bound can be expressed as 

𝜀𝜀𝐷𝐷𝐷𝐷 ≪ 𝐑𝐑𝐱𝐱𝐱𝐱(𝑖𝑖, 𝑖𝑖), 𝜀𝜀𝐷𝐷𝐷𝐷 ≠ 0. (4. 4) 

where 𝑖𝑖 represents values from 1 to 𝑀𝑀. 

 Next, the lower bound must be determined to decide the optimal diagonal loading 

factor. It can be observed that the leading cause of performance degradation by the second 

term is in the curly brackets in (4.3). Optimal performance is achieved if the second term 

equates to zero, minimising the estimation error in an ideal scenario. Therefore, to achieve 

minimal error, it is ideal to have the following hypothetical constraint, 
𝜇𝜇

𝜀𝜀𝐷𝐷𝐷𝐷 + 𝜎𝜎𝑛𝑛2
≪ 1. (4. 5) 

Then, the parameters of (4.9) are rearranged, which should then result in the following 

inequality, 

𝜀𝜀𝐷𝐷𝐷𝐷 + 𝜎𝜎𝑛𝑛2 ≫ 𝜇𝜇, (4. 6) 

where (4.6) effectively limits the sample covariance matrix to within the theoretical covariance 

matrix by minimizing the error terms while effectively reducing the dependency on snapshot 

values and noise level variability. 

4.1.3 Practical Implementation for DOA Estimation Error Minimization 

Using Sample Covariance Matrix 

The diagonal element values of the theoretical covariance matrix can be estimated by 

the average of the estimated covariance matrix diagonal elements denoted as 𝐑𝐑�𝐱𝐱𝐱𝐱(𝑖𝑖, 𝑖𝑖) and is 

defined as 

𝐑𝐑�𝐱𝐱𝐱𝐱(𝑖𝑖, 𝑖𝑖) =
tr�𝐑𝐑�𝐱𝐱𝐱𝐱�
𝑀𝑀

 , (4. 7) 

where tr(𝐑𝐑�𝐱𝐱𝐱𝐱) denotes the trace of the sample covariance matrix, 𝐑𝐑�𝐱𝐱𝐱𝐱.  

Note that the trace of the matrix 𝐑𝐑�𝐱𝐱𝐱𝐱 is the sum of its complex eigenvalues, and it is 

invariant to a change of basis. Note that, unlike standard diagonal-loading utilization, where 

the factor is always generalized and static, the proposed method in (4.7) is adaptive to its 
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application needs and environmental scenarios, such as the SNR, the number of snapshots 

used, and antenna array geometry. 

Using the same observation, the standard deviation of the diagonal elements can also 

indicate the covariance matrix estimation error. The standard deviation method to approximate 

the estimation error has been used in many past covariance matrix reformulations, such as in 

[103, 104]. In an error-induced scenario, the higher the standard deviation, the higher the 

variability along the matrix diagonal within that estimated sample, leading to a higher DOA 

estimation error. Therefore, this assumption can be expressed as 

∅ = SD �diag�𝐑𝐑�𝐱𝐱𝐱𝐱�� , (4. 8) 

where SD(∙) means the standard deviation and diag(∙) is the diagonal element of the matrix. 

Therefore, the error term, 𝜇𝜇, which is an unknown value, is replaced with the standard 

deviation error identifier ∅. From (4.8), an ideal and optimal diagonal loading value to improve 

DOA estimation via the modified sample covariance matrix should satisfy the following 

constraint 

∅ ≥ 𝜀𝜀𝐷𝐷𝐷𝐷 ≪ 𝐑𝐑�𝐱𝐱𝐱𝐱(𝑖𝑖, 𝑖𝑖), (4. 9) 

where 𝜀𝜀𝐷𝐷𝐷𝐷 = ∅ is set as an initialization value. 

Finally, the constraints in (4.9) are combined onto the sample covariance matrix 

equation in (4.6), considering the assumption in (4.7), which is presented as 

𝐑𝐑�𝐃𝐃𝐃𝐃 = 𝐑𝐑�𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈. (4. 10) 

To that end, as the steering vector, 𝐚𝐚�(𝜃𝜃) is embedded into the received signal matrix, 

there is a need to extrapolate 𝐚𝐚�(𝜃𝜃) before applying (4.10). Therefore, a broad initial DOA 

estimate is necessary to estimate obtain 𝐚𝐚�(𝜃𝜃). This can be done by initiating a rough estimation 

of the DOA using well-known subspace-based techniques such as root-MUSIC [88]. Then, 

the first steering matrix, 𝐚𝐚�(𝜃𝜃) , is estimated as the initial bound estimates. A benefit of 

extrapolating the steering  vector is enabling sufficient system robustness from undesired 

noise, assuming that the DOA does not deviate and remain static at an instantaneous snapshot 

that amplifies the steering vector parameter [105]. Furthermore, in a real-world application, 

the only prior information required to perform good DOA estimation is the knowledge of the 

antenna array geometry and the angular sector in which the actual steering vector lies [105]. If 

the incident angle of the signal remains static, then the last (M − L) eigenvalues and their 

corresponding eigenvectors of the new covariance matrix are invariant. Given the hypothesis, 
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(4.10) is expanded further with the inclusion of the steering vector estimates, which can be 

represented as 

𝐑𝐑�𝐃𝐃𝐃𝐃 = �𝐑𝐑�𝐱𝐱𝐱𝐱 + 𝜀𝜀𝐷𝐷𝐷𝐷𝐈𝐈 � + 𝒓𝒓(𝜃𝜃)𝒓𝒓(𝜃𝜃)H. (4. 11) 

Next, a set tolerance value, 𝛿𝛿, is defined, where the expected DOA does not deviate 

between +/- 5 degrees. However, this can be scenario-dependent based on the application and 

the effective beamwidth of the antenna used. For example, a wide-beamwidth antenna may 

have a high tolerance for DOA estimation, whereas a narrow-beamwidth-based antenna 

requires a small tolerance for practical DOA estimation. Then, a mathematical constraint is set 

between the initial DOA, 𝜃𝜃𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 and estimated DOA, 𝜃𝜃𝑒𝑒𝑟𝑟𝑟𝑟 with the tolerance value, 𝛿𝛿, which 

can be interpreted as 

‖𝜃𝜃𝑒𝑒𝑟𝑟𝑟𝑟 − 𝜃𝜃𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟‖ < 𝛿𝛿. (4. 12) 

Figure 4.1 presents a flowchart summary of the proposed algorithm, the CbSS DOA 

estimation technique. The signal, X, as in (2.1), is obtained in matrix form. Next, the initial 

sample-based covariance matrix is formed as in (2.4). Then, the root-MUSIC is the initial 

DOA estimation method for the steering vector to be used in (4.11). In parallel, a 

predetermined tolerance range that does not overflow the angular expectation of the expected 

DOA is defined with reference to the initial estimates determined in the previous stage. 

Moreover, the tolerance factor plays a crucial role in the final DOA output because it 

determines the initial and estimated DOAs. The tolerance factor is vital as it governs the final 

DOA estimates. For example, the delta has a linear relationship between estimation accuracy 

and computational time. When delta is low, it leads to higher estimation accuracy but the 

computational time expense of determining the final DOA. Alternatively, when the delta value 

is high, it leads to a significantly faster computational time while sacrificing the DOA 

estimation accuracy. This will be studied further in the simulation section. Depending on the 

use case of the proposed algorithm, the end-user can set the appropriate delta values that suit 

the environment and criticality of the different factors. The DOA estimation, as presented in 

[21], is conducted to determine the estimated steering vector. DOA estimation is then 

calculated using a modified polynomial root-solving technique that is efficient and with high 

estimation accuracy. A preliminary analysis of this technique has been demonstrated in [21] 

for reference. In addition, the CbSS technique allows the flexibility of both multiple and single 

snapshot scenarios by adapting and manipulating the snapshot variable, 𝐾𝐾. The following 

section will present the estimation performance of varying the snapshots and SNR. 
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Figure 4.1 CbSS Algorithm Flow 

4.2 Simulation Results and Discussion of CbSS 

In this section, numerical examples are provided to substantiate the effectiveness of 

the proposed method. The comparisons are carried out in different performance metrics, 

such as estimation accuracy, computational efficiency, and adaptability to various 

scenarios. As highlighted before, a compacted-size antenna array is needed to ease real-

world implementation [44]. Thus, a small-scale ULA with half-wavelength inter-element 

spacing is considered [44], and the number of antenna array element sensors is 𝑀𝑀 = 4 

unless otherwise stated. A narrowband signal is assumed to be impinging onto the array 

from a far-field source. In addition, for simplicity, the signal source is considered static in 

space. It does not change with time for all simulation scenarios, with only an AWGN 

interference in the simulation environment within line of sight. The simulation 

environment is based on a downlink, Line-of-Sight (LOS) channel model between the 

receiver and transmitter. The noise data was formed using a normally distributed random 

number generator in MATLAB that complies with the AWGN model. In the signal model, 

the signal matrix, 𝐒𝐒 is assumed to be a normalized random power, while 𝐍𝐍 is modelled as an 

AWGN interference. In summary, only the received data 𝐗𝐗 is known, whereas the individual 
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parameters 𝐀𝐀, 𝐒𝐒, and 𝐍𝐍 are unknown to the DOA estimator because it is randomized in the 

simulation. Without loss of generality and simplicity, the impinging signal source has a 

plane-wave characteristic.  

The SNR which is used in the simulation is defined as 

SNR =
1
𝑀𝑀
�

𝑝𝑝
𝑞𝑞𝑚𝑚

𝑀𝑀

𝑚𝑚=1

, (4. 13) 

where 𝑝𝑝  and 𝑞𝑞𝑚𝑚  represent the signal and noise power at the 𝑚𝑚𝑟𝑟ℎ  array element, 

respectively. 

The SNR equation in (4.13) corresponds to all sensors' averaged SNRs and 

generalizes the definition for uniformed noise levels upon reception at the linear antenna 

array system. To further examine the performance of the proposed estimator, the standard 

deviation performance is observed against a range of SNR values and the CRB [100]. The 

CRB is a useful statistical comparison tool for the accuracy of parametric methods as it 

provides a lower bound on the accuracy of any unbiased estimator.  

Lastly, all the covariance matrices were simulated using MATLAB 2020b on a 

Windows 10 PC with a quad-core i7 CPU with 16GB RAM. A total of 1000 randomized 

Monte-Carlo simulation trials were used to determine the simulation results. In addition, 

as it is beyond the scope of this research work, it is assumed that the number of signals is 

known a priori. For consistency, the proposed CbSS estimator will be evaluated against 

root-MUSIC [89] and the state-of-the-art PR [48] approach in all simulation scenarios. 

Table 4.1 provides a summary of the crucial parameters used in the simulation. In addition, 

all Root Mean Square Error (RMSE) is calculated up to 2 significant figures per simulation 

cycle to highlight the high-resolution performance across all demonstrated techniques. The 

RMSE equation is defined as: 

Root Mean Square Error (RMSE) = �1
𝑄𝑄
��

�𝜃𝜃𝑟𝑟1 − 𝜃𝜃�𝑟𝑟1�
2 + ⋯+ �𝜃𝜃𝑟𝑟𝐿𝐿 − 𝜃𝜃�𝑟𝑟𝐿𝐿�

2

𝐿𝐿
�

𝑄𝑄

𝑟𝑟=1

, (4. 14) 

where 𝐿𝐿 is the number of signal sources as before, 𝑄𝑄 is the number of simulation data 

points, 𝜃𝜃𝑟𝑟 is the actual DOA, and 𝜃𝜃�𝑟𝑟 is the estimated DOA. 
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Table 4.1. Common Simulation Parameters 

Carrier Frequency, 𝒇𝒇𝒄𝒄 5500 MHz 

Antenna Geometry Uniformed Linear Array 

Array Inter-Element Spacing 𝜆𝜆/2, where 𝜆𝜆 is the wavelength of 𝑓𝑓𝑐𝑐 in 

meters 

No. of Array Elements, M 4, 8 

Simulation Sample 1000 

Angle of Interest 35 Degrees (Single Signal Source) 

35 ± 10 Degrees (Double Signal Source) 

SNR Range -20 dB to 10 dB 

Tolerance, 𝜹𝜹 +/- 0.01 
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4.2.1 DOA Estimation Accuracy for Single Signal Source and Multiple 

Finite Snapshots 

 

Figure 4.2 SNR-RMSE performance for M = 4 and M = 8 where the number of 
snapshots K = 100 

 

Figure 4.3 Bias comparison for M = 4 and M = 8 where the number of 
snapshots K = 100 with varying SNR 
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Figure 4.4 Standard deviation where M = 4 and M = 8 against the number of 
snapshots K ranging from 1-100 

 

Figure 4.5 Bias performance comparison where M = 4 and M = 8 against the 
number of snapshots K ranging from 1 to 100 

Figure 4.2 presents the RMSE of the DOA estimation against varying SNR ranging 

from 0 to 5 dB for root-MUSIC, PR, and the proposed CbSS technique where the number 
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of snapshot samples, 𝐾𝐾 = 100, and the number of sensor array elements 𝑀𝑀 = 4 and 𝑀𝑀 =

8. It is worth highlighting that the proposed technique is chosen to be compared against 

root-MUSIC due to the likeliness of algorithm steps with improved estimation 

performance and the PR approach with its excellent and fast estimation performance.  

As depicted in Figure 4.2, the proposed CbSS technique exhibits superior 

performance than root-MUSIC and PR, particularly in lower SNR threshold due to the 

noise and error suppressing factor in (4.11) and the array steering vector's optimal accuracy 

defined in (4.12).  

To discuss the finding of the current state-of-the-art performance of the PR 

approach, at higher SNR (>2 dB), PR outperforms root-MUSIC, albeit slightly 

insignificant, with a small performance margin difference. Focusing on M = 4, when SNR 

= 5 dB, the root-MUSIC, PR and CbSS presented an absolute RMSE of 0.084°, 0.079° 

and 0.028°  respectively. This yields a relative estimation performance gain of the 

proposed CbSS technique of 66.7% and 64.6% compared to root-MUSIC and PR, 

respectively.  At the lowest SNR (0 dB), the three techniques present an RMSE DOA 

estimation of 0.59°, 0.62°, and 0.12°. These results yield a 79.7% and 80.6% relative 

estimation performance difference compared to root-MUSIC and PR.  

Next, the performance when the number of antenna array elements, M = 8, is 

observed. When SNR = 0 dB, the root-MUSIC, PR, and CbSS have an RMSE performance 

of 0.21°, 0.15°, and 0.042°, respectively. This yields a relative estimation performance 

percentage difference of 80% and 72% when compared between CbSS and root-MUSIC 

and PR. When SNR = 5 dB, the RMSE difference presents 0.034°, 0.048°, and 0.011° for 

the three techniques. These results also yield a relative estimation performance difference 

of 67.6% and 77.1% between CbSS and root-MUSIC and PR.  

To supplement Figure 4.2, Figure 4.3 presents the statistical bias performance of the 

three DOA estimation techniques with the same simulation parameters to investigate the 

underlying quantitative parameter. Focusing on M = 4, it can be observed that CbSS has a 

minor variation of bias across the SNR range while approaching minimal bias at a lower 

SNR of 1.8 dB compared to root-MUSIC and PR. In a worst-case scenario, when SNR = 

0 dB, root-MUSIC, PR, and CbSS present 0.017°, −0.014°, and −0.00014°, respectively. 

Note that when SNR = 5 dB, the bias approaches negligible levels. Looking at the 

comparison when M = 8, when SNR = 0 dB, root-MUSIC, PR, and CbSS presents a bias 

of 0.014° , −0.0049°,  and 0.0031° , respectively. Root-MUSIC shows a significantly 

lower bias when the number of sensor array elements doubles. The PR approach still has 

a considerably higher bias when the number of array elements is smaller. In addition, as 
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the PR approach only prioritizes the signal of interest and does not consider the sensor 

array number and noise environment [22], the PR performance in a low SNR environment 

is sub-optimal at best but performs significantly better at higher SNR. As the SNR 

increases, the noise and signal subspace separation is significant and easily differentiated 

for each method. In addition, as the number of sampling snapshot values increases, the 

bias starts to be negligible regardless of the methods. Overall, CbSS outperforms the other 

techniques in terms of statistical bias, proving that the estimation results are stable and 

predictable.  

Figure 4.4 and Figure 4.5 present the DOA estimation performance among the three 

techniques in terms of its standard deviation against varying snapshots and its statistical 

bias performance, respectively. The simulation parameters are identical; however, the SNR 

value remains fixed at 0 dB to observe the DOA estimation performance variation in 

different snapshot values. Overall, CbSS outperforms root-MUSIC and PR in the case of 

varying snapshots with similar performance. In the scenario depicted in Figure 4.4 and 

Figure 4.5, it is evident that the higher the number of snapshots, the lower the standard 

deviation and statistical bias.  

4.2.2 DOA Estimation Accuracy for Multiple Uncorrelated and Coherent 

Signal Sources  

The second experiment observes CbSS performance when multiple signal sources 

are impinging onto the antenna array to demonstrate high-resolution DOA estimation. This 

will explain the robustness of signal source separation and estimation accuracy. The 

presented technique has averaged RMSE and bias between the two signal sources, and the 

numerical results are presented. In addition, varying snapshot against standard deviation 

is also presented against a variable number of antenna elements. The first subsection 

presents an uncorrelated signal source scenario where the difference in performance for 

varying signal source separation and the number of antenna elements is observed. 

Likewise, in the second subsection, the same simulation scenario as demonstrated in the 

uncorrelated signal environment is presented but with coherent signal sources.  



A Covariance Matrix Reconstruction Approach for Single Snapshot DOA Estimation 

73 
 

4.2.2.1 DOA Estimation Accuracy for Multiple Uncorrelated Signal 

Sources  

 

Figure 4.6 SNR-RMSE estimation performance for M = 4 with a fixed number 
of snapshots K = 100 for uncorrelated signal source separation of 5 and 10 

degrees 

 

Figure 4.7 Bias performance comparison for M = 4 with a fixed number of 
snapshots K = 100 for uncorrelated signal source separation of 5 and 10 

degrees 
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Figure 4.8 Standard deviation of DOA estimation comparison against varying 
snapshots for M = 4 and M = 8, fixed SNR = 0 dB with uncorrelated signal 

source separation of 10 degrees 

 

Figure 4.9 Bias comparison against varying snapshots for M = 4 and M = 8, 
SNR = 0 dB with uncorrelated signal source separation of 10 degrees 
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Figure 4.6 and Figure 4.7 present the numerical results with multiple degrees of 

uncorrelated signal source separation and the statistical bias where the array elements M = 

4, respectively. The proposed CbSS estimation technique is consistent in performance 

compared to a single-source environment in a multiple signal source environment. An 

estimation performance decrease of cubic two degrees between a single source and 

multiple signal source scenarios is observed. It is consistent across all the techniques when 

the signal source separation is >10°. It is important to note that while the estimation accuracy 

is high, the algorithm still needs to abide by the 𝑀𝑀 > 𝐿𝐿 constraint. It is worth highlighting that 

in Figure 4.6, both root-MUSIC and PR has a significantly higher RMSE when the signal 

source separation is at 5° compared to 10°, even though the SNR is approaching higher values. 

This is mainly due to these methods' minimal spatial signal source separation limitation. The 

covariance matrix used by both PR and root-MUSIC cannot resolve the two signals due to the 

two signals' inherent correlation, which results in very poor RMSE. Thus, root-MUSIC and 

PR have poor high-resolution DOA estimation ability due to the correlated covariance matrix.  

It is noteworthy that the proposed CbSS technique still performs consistently with 10° 

signal source separation. However, there is a performance degradation of 25.5% when 

comparing 5° and 10° signal source separation, respectively. The inconsistent erratic DOA 

estimation performance is due to the correlation matrix binding with correlated matrix cell 

inputs. Erratic performance suppression presents the critical advantage of the proposed 

technique as it can differentiate and solve the two separate signal sources as they approach 

each other. 

Figure 4.8 and Figure 4.9 present the numerical standard deviation against a varying 

number of snapshots. In this scenario, the SNR remains fixed at 0 dB, and the uncorrelated 

signal source separation was set at 10° . Figure 4.8 shows that the higher the number of 

snapshots, the lower the standard deviation. From the results, CbSS presented the lowest 

standard deviation compared to root-MUSIC and PR, regardless of the number of antenna 

elements.  
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4.2.2.2 DOA Estimation Accuracy for Multiple Coherent Signal Sources  

 

Figure 4.10 SNR-RMSE estimation performance for M = 4 with a fixed 
number of snapshots K = 100 for coherent signal source separation of 5 and 

10 degrees 

 

Figure 4.11 Bias performance comparison for M = 4 with a fixed number of 
snapshots K = 100 for coherent signal source separation of 5 and 10 degrees 
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Figure 4.12 Standard deviation of DOA estimation comparison against 
varying snapshots for M = 4 and M = 8, fixed SNR = 0 dB with coherent signal 

source separation of 10 degrees 

 

Figure 4.13 Bias comparison against varying snapshots for M = 4 and M = 8, 
SNR = 0 dB with coherent signal source separation of 10 degrees 
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The scenario where the signal sources of equal power are coherent is observed. In other 

words, coherent signals of interest have the same phase and frequency and a linear relationship. 

The same simulation environment is reenacted in the coherent signal simulation scenario as 

presented in 0. In addition, the Forward-backward Spatial Smoothing (FBSS) is employed for 

the root-MUSIC technique as this technique is well known for identifying coherent signals 

relatively well [106]. In addition, the FBSS application onto root-MUSIC does not make a 

difference in performance when applied to a coherent signal environment.  

Figure 4.10 presents the SNR-RMSE DOA estimation performance for M = 4 with a 

fixed number of snapshots K = 100 for coherent signal source separation of 5 and 10 degrees. 

CbSS has the lowest RMSE compared to root-MUSIC and PR, with similar estimation 

performance compared to an uncorrelated scenario. However, all techniques have an 

estimation performance degradation of approximately 10% while sustaining a higher RMSE 

at higher SNR when compared to an uncorrelated signal scenario. This is expected due to the 

difficulty of accurately isolating and decomposing the signal and noise subspace. Figure 4.11 

presents the statistical bias with the same simulation parameters as presented in Figure 4.10. 

The proposed CbSS technique has an almost negligible bias DOA estimation performance 

compared to root-MUSIC with FBSS and PR techniques. The bias results support past 

literature that the root-MUSIC and PR technique, although accurate in terms of RMSE, is 

susceptible to high bias.  

Figure 4.12 presents the standard deviation of DOA estimation comparison against 

varying snapshots for M = 4 and M = 8, with a fixed SNR value of 0 dB and a coherent signal 

source separation of 10 degrees. Like Figure 4.9, it is evident that the higher the number of 

snapshots, the more accurate the DOA estimation is. Nevertheless, the proposed CbSS 

technique has the lowest standard deviation compared to root-MUSIC and PR, regardless of 

the number of elements. Figure 4.13 presents the statistical bias comparison for the same 

simulation environment, as demonstrated in Figure 4.8. Clearly, there are many bias jitters 

across the three techniques due to the coherent signal environment. Based on the results, CbSS 

presents almost negligible bias again than root-MUSIC and PR. However, compared to an 

uncorrelated scenario, as shown in Figure 4.4, it converges towards 0 at a much higher SNR 

level. At the same time, the root-MUSIC and PR techniques maintain undesirably high bias 

values.  

In summary, the PR method performs the worst in a coherent signal environment. This 

is because for the PR approach, instead of enforcing the entire structure on the steering vector 

when formulating the DOA estimation problem, only the construction of one source of interest 

is preserved while other additional sources are relaxed. In a situation where there are multiple 
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sources, PR can only be effective when the sources are uncorrelated [48].  This is evident from 

Figure 4.5, where PR performs the worst compared to CbSS and root-MUSIC across the wide 

range of SNR. 

Secondly, the root-MUSIC with FBSS performs relatively well in terms of bias 

performance due to spatial averaging. The difference between the estimated and actual DOA 

is much smaller in a coherent signal environment when FBSS is employed for root-MUSIC. 

The proposed CbSS technique outperforms the spatially smoothed root-MUSIC approach by 

presenting a significantly lower bias, especially at high SNR. When the coherent signal source 

separation is at its worst of 5 degrees, where SNR is -20 dB, the proposed CbSS technique has 

a bias of -2.2 degrees. The proposed method also approaches near 0 bias when SNR is > 0 dB 

in both signal source separation environments. The ability to resolve coherent signal here is 

possible due to the highly recursive updates and diagonal loading factor applied to the steering 

vector, as shown in (4.9) – (4.12). 

4.2.3 Estimation Accuracy for Single Signal Source and Single Snapshot 

The proposed technique estimation performance is observed in the third experiment 

under a single snapshot scenario where 𝑀𝑀 = 4 and 𝐾𝐾 = 1 as worst-case scenarios. All 

other parameters are the same and can be referred to in Table 4.1. Like the performance of 

a multiple finite snapshot sample scenario, the proposed CbSS technique outperforms the 

root-MUSIC and PR approaches. With reference to Figure 4.14, when SNR = 0 dB, the 

RMSE difference relative to the CRB in a single snapshot scenario is 7.7°, 19°, and 1.4° 

for the root-MUSIC and PR approach, and the proposed CbSS techniques, respectively. 

This yielded a performance percentage difference of 81.9% and 92.6% between CbSS and 

compared against root-MUSIC and PR. When the SNR = 5 dB, the RMSE difference is 

0.87°, 0.88°, and 0.32° for the three estimation techniques, respectively. This yields a 

performance percentage difference of 63.2% and 63.6%, respectively. The simulation 

results prove that the CbSS technique is robust even in a single snapshot scenario providing 

satisfactory DOA estimation accuracy with the help of the accurate array steering vector 

estimation and the noise and estimation error suppressing factor in (4.12). 

Figure 4.15 presents the statistical and focused biased plots for the proposed CbSS 

technique for 𝐾𝐾 = 1  and 𝑀𝑀 = 4 . CbSS trumps the bias difference comparison and 

performance in a single snapshot scenario compared to the root-MUSIC and PR approach 

with an absolute maximum bias estimation of 0.0018° at the lowest SNR of 0 dB. It is also 

worth highlighting that the proposed CbSS technique approaches an unbiased-like 

performance at a lower SNR of 3.5 dB under a single snapshot environment. An essential 
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factor to note about the PR approach is that although it has a very high bias at low SNR 

compared to the other techniques overall, the computational time of the PR approach is 

deficient, which will be addressed in the next section. In addition, since the PR approach 

does not fully consider the entire signal and noise subspaces at low SNR, this technique 

does not perform as well as CbSS and the root-MUSIC method to prioritize computational 

complexity and calculation time of the final DOA estimates.  

 
Figure 4.14 SNR-RMSE for single snapshot comparison where the number of 

antenna array elements M = 4 and K = 1 

 
Figure 4.15 Statistical bias performance comparison across the demonstrated 

techniques for a single snapshot scenario 
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4.2.4 Parametric Performance Impact 

Table 4.2 Comparison of Varying Delta Values 

Delta, δ: 0.01 0.1 1 10 

Peak Accuracy 98.7% 91.2% 79.2% 60.5% 

Computational 

Time/cycle 

(millisecond) 

0.23 0.19 0.12 0.08 

Table 4.2 presents the performance comparison between peak DOA estimation 

accuracy and computational time for the CbSS technique. The simulation is based on a single 

source and single snapshot scenario with the same parameters in Table 4.1 based on the delta 

value in (16). As demonstrated in Table 4.2, the higher the delta value, the faster the DOA 

estimation sequence is completed, but this is at the expense of peak accuracy. Likewise, a 

lower delta value results in higher peak estimation accuracy but at the cost of computational 

time to completion. Depending on the application environment and priority, the end-user of 

CbSS has the flexibility to select the appropriate delta. For example, in a transportation 

application where high-speed targets are of concern, the user may choose delta values of ≥

0.5 where there is a need for quick DOA estimation. Alternatively, in a scenario with slow 

speed targets, such as congested traffic, the user may select delta values of ≤ 0.1 for higher 

DOA estimation accuracy.  

4.3 Performance Summary for CbSS DOA Estimator 

This chapter investigates the problem with DOA estimators in low SNR scenarios with 

uniformed linear arrays in the presence of noise and the practicality of using a single snapshot 

to reduce computational complexity and time. The proposed algorithm's simulation results are 

consistent and perform well in low SNR scenarios by utilizing a well-approximated steering 

vector to modify the input covariance matrix. The proposed method is robust in estimation 

stability and can offer satisfactory DOA estimation performance. The simulation results have 

demonstrated that the proposed CbSS technique performs best among the three presented 

methods (root-MUSIC, PR, CbSS). The simulation work has been shown for multiple and 

single snapshot scenarios with adequate overall computational time compared to an existing 

state-of-the-art method like the PR approach. In addition, the proposed CbSS technique 
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presented good estimation performance in a multi-signal scenario even with signal separation 

of < 5°. The essential advantage of the proposed CbSS technique is efficient covariance 

matrix data collection coupled with accurate DOA estimation. The results present improved 

DOA estimation accuracy at lower SNR than the geometric-based DOA estimators with more 

downward statistical bias. However, at higher SNR, the geometric-based approach still shows 

an improved signal resolution for multiple sources compared to the subspace-based technique.  

Nevertheless, the proposed method is applicable in scenarios where SNR is low and 

needs small-scale and lightweight antenna array localization applications and systems. One 

industry that urgently requires accurate DOA estimation would be the intelligent transportation 

system (ITS) network. As required in ITS applications, the proposed CbSS technique enables 

fast and precise network connectivity from stationary base stations and dynamically moving 

vehicular systems.  

In the next chapter, the CbSS technique is further improved by introducing a novel 

hybrid method of implementing DL and DOA estimation to improve estimation accuracy and 

reduce computational load.  
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5 An Alternative DOA Estimation Method 

by Using an Adaptive Diagonal Loading 

Technique 

This chapter aims to further develop an adaptive DL-based technique for DOA 

estimation applied to the sample covariance matrix to achieve high estimation accuracy for 

a wide range of operating frequencies and SNR without increasing computational 

complexity. Achieving a holistically predictable and accurate DOA estimator model 

complements multiple sensor applications regardless of the antenna sensor geometry and use 

cases. The proposed DL technique consists of a practical but straightforward adaptive DL 

estimator based on the steering vector’s error rate of change and changes in estimation 

parameters such as operating frequencies for a fixed antenna array sensor position. The 

simulation results show that the proposed method outperforms state-of-the-art and high-

performance DOA estimators such as EPUMA [10] and a modified Method of Direction 

Estimation (MODEX) [107]. The proposed method performs 9.5% better than the state-of-

the-art EPUMA [10] technique in a finite number of snapshots and a single signal source. In 

a scenario where there are multiple signals of interest, the proposed method performs 2.8% 

better than EPUMA and up to 5% at higher SNR of > 0 dB. In a single snapshot sample with 

a single signal source of interest, the proposed method performs 8.5% better than EPUMA 

and is significantly closer to the CRB limit when compared to the other demonstrated DOA 

estimators.  

5.1 Diagonal Loading 

 One of the easiest and most efficient methods to improve robustness against DOA 

mismatch and ensure the complete rank structure is to add constant values with the diagonal 

elements of the received signal correlation matrix. This is known as the fixed-diagonal loading 

method [59]. The diagonal loading technique is also commended for its effectiveness in 
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handling various errors, including steering vector estimation and finite-sample errors. In 

addition, it can equalize the least significant eigenvalues of the covariance matrix or constrain 

the white noise gain. One of the inherent drawbacks of using DL is that it induces considerable 

bias [59, 102, 108]. However, this can be overcome by using bias correction [61] before 

parsing the final DOA. To that end, the diagonally loaded covariance matrix is defined as [10] 

𝐑𝐑𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃 = 𝔼𝔼{𝐗𝐗𝐗𝐗H} + 𝐹𝐹𝐈𝐈, (5. 1) 

where I is an identity matrix of size 𝑀𝑀 × 𝑀𝑀. 

The scalar parameter of 𝐹𝐹 denotes the amount of diagonal loading into the covariance 

matrix. Therefore, assuming that 𝐹𝐹 = 0, no diagonal loading is present. In other words, it uses 

the standard covariance matrix, as shown in (2.4). Note that 𝐹𝐹 can be positive or negative, but 

𝐹𝐹 must be greater than −𝜎𝜎2  for the covariance matrix to be positive definite. In addition, 

values of 𝐹𝐹 close to −𝜎𝜎2 must be avoided to ensure numerical stability.  

Similarly, the additive diagonal loading in (5.1) can also be demonstrated in the sample 

covariance matrix in (2.4), which is given as [11] 

𝐑𝐑�𝐱𝐱𝐱𝐱 =
1
K
𝐗𝐗𝐗𝐗H +  𝐹𝐹𝐈𝐈. (5. 2) 

Before computing the weight vector, a diagonally loaded matrix is added to the sample 

covariance matrix in (5.2). This technique strengthens the noise components, which results in 

the input SNR reduction and suppression of the disturbance of small eigenvalues 

corresponding to the noise subspace. 𝐹𝐹 should be a large enough value to reduce the input 

SNR. However, the interference component proportion also decreases, which reduces null 

depth in a pseudo-spectrum. Therefore, 𝐹𝐹 should also be small enough to prevent the decline 

in null depth. There is always a trade-off between robustness, interference cancellation, and 

noise reduction. For example, for large 𝐹𝐹, the robustness against mismatch and replacement 

increases while interference cancellation and noise reduction capabilities decrease. 

Alternatively, for small 𝐹𝐹, the robustness is diminished. Therefore, the diagonal loading value 

should be appropriately selected to achieve performance improvement in a DOA estimation 

system.  

A key benefit of diagonal loading is to overcome the inversion of the sample 

covariance matrix. When the number of snapshots is small, K < L, the inverted covariance 

matrix is not full rank and thus irreversible. The practical robustness can be analyzed as 
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follows. Let 𝜇𝜇𝑙𝑙  and 𝐮𝐮𝑙𝑙  for 𝑙𝑙 = 1,2, … , 𝐿𝐿 be the subsequent eigenvalues and eigenvectors of 

𝐑𝐑�𝐱𝐱𝐱𝐱, respectively. Then, with reference to (2.4), it can be further decomposed as [12] 

𝐑𝐑�𝐱𝐱𝐱𝐱 = �𝜇𝜇𝑙𝑙

𝐷𝐷

𝑙𝑙=1

𝐮𝐮𝑙𝑙𝐮𝐮𝑙𝑙H, (5. 3) 

which leads to the following decomposition, 

𝐑𝐑�𝐱𝐱𝐱𝐱
−1𝐚𝐚�𝜃𝜃�0� = �

𝐮𝐮𝑙𝑙𝐻𝐻𝐚𝐚�𝜃𝜃�0�
𝜇𝜇𝑙𝑙

𝐷𝐷

𝑙𝑙=1

𝐮𝐮𝑙𝑙  . (5. 4) 

From (5.4), when 𝜇𝜇𝑙𝑙 is small, 𝐑𝐑�𝐱𝐱𝐱𝐱
−1𝐚𝐚�𝜃𝜃�0� tend towards a substantial value, leading to 

a high level of sidelobe errors and would result in the wrong signal direction of interest 

estimation. With the inclusion of diagonal loading, the decomposition becomes 

(𝐑𝐑�𝐱𝐱𝐱𝐱 + 𝐹𝐹𝐈𝐈 )−1𝐚𝐚�𝜃𝜃�0� = �
𝐮𝐮𝑙𝑙H𝐚𝐚�𝜃𝜃�0�
𝜇𝜇𝑙𝑙 + 𝐹𝐹

𝐷𝐷

𝑙𝑙=1

𝐮𝐮𝑙𝑙 . (5. 5) 

From (5.5), adding the diagonal loading enables inversion to solve the available small 

sample size. Another benefit is that the sidelobes are suppressed for efficient beamforming in 

an intelligent antenna sensor system. Furthermore, adding the diagonal loading can reduce the 

influence of small eigenvalues; thereby, the weight vector norm is not amplified erratically. 

However, it is worth reiterating that this comes with a trade-off between the robustness and 

the expense of interference cancellation and noise reduction.  

5.2 Proposed Traced Diagonal-Loading DOA Estimation Method 

Although the diagonal-loading method, as shown in (5.5), shows promising results in 

a broad spectrum of SNR values, the technique still must process the entire covariance matrix, 

which may not even be of a Toeplitz structure, especially in a practical sample-based 

covariance matrix. In addition, selecting the correct loading factor remains crucial for accurate 

DOA estimation. Thus, the performance can vary significantly, and finding an optimal loading 

factor derivation remains a significant research interest.  

This section shows how to further reduce and simplify the elements within the 

covariance matrix without sacrificing accuracy. To illustrate the proposed technique, the 

structure of the covariance matrix from (2.4) is observed as 
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𝐑𝐑𝐱𝐱𝐱𝐱 = �
𝑥𝑥𝑥𝑥1×1 ⋯ 𝑥𝑥𝑥𝑥1×𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚×1 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚×𝑚𝑚

�  . (5. 6) 

Then, the diagonal vector in 𝐑𝐑𝐱𝐱𝐱𝐱 of interest is partitioned and reformulated as a vector 

which can be represented as 

𝐜𝐜𝐱𝐱𝐱𝐱−𝐝𝐝𝐝𝐝𝐚𝐚𝐝𝐝 = [𝑥𝑥𝑥𝑥1×1 … 𝑥𝑥𝑥𝑥𝑚𝑚×𝑚𝑚] , (5. 7) 

where 𝐜𝐜𝐱𝐱𝐱𝐱−𝐝𝐝𝐝𝐝𝐚𝐚𝐝𝐝 is a vector of size 𝑀𝑀 × 1. 

From (5.7), the vector, 𝐜𝐜𝐱𝐱𝐱𝐱−𝐝𝐝𝐝𝐝𝐚𝐚𝐝𝐝, is reformed and partitioned into a Toeplitz Hermitian 

matrix which is represented as 

𝐑𝐑𝐱𝐱𝐱𝐱−𝐜𝐜𝐭𝐭𝐫𝐫𝐜𝐜𝐜𝐜𝐦𝐦 = �
𝑥𝑥𝑥𝑥1×1 … 𝑥𝑥𝑥𝑥𝑚𝑚×𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚×𝑚𝑚 … 𝑥𝑥𝑥𝑥𝑚𝑚×𝑚𝑚

�  , (5. 8) 

where 𝐑𝐑𝐱𝐱𝐱𝐱−𝐜𝐜𝐭𝐭𝐫𝐫𝐜𝐜𝐜𝐜𝐦𝐦 is of size 𝑀𝑀 × 𝑀𝑀 similar to (5.6). 

Note that the technique represented in (5.6) to (5.8) can be applied to the sample 

covariance matrix, 𝐑𝐑�𝐱𝐱𝐱𝐱 . Comparing (5.6) and (5.8), the critical difference is that the off-

diagonal elements replicate the elements along the diagonals for (5.8). One key advantage of 

this technique is that it reduces the computational load onto the system without calculating 

many different values of array elements.  

Next, to determine a suitable 𝐹𝐹  value for diagonal loading implementation, the 

following equation is defined and represented as 

𝐹𝐹 =
1
𝐾𝐾
‖𝛽𝛽H𝐑𝐑𝐱𝐱𝐱𝐱‖

2 (5. 9) 

where 𝛽𝛽 = 𝐚𝐚�𝜃𝜃�0�/�𝐚𝐚�𝜃𝜃�0�� is the normalized steering vector in the desired signal direction of 

interest.  

Note that this normalization does not change the primary direction of interest, only its 

magnitude. This idea removes the influence of low SNR impedance in any application or 

scenario. The trade-off of this technique is that although it will result in consistent bias, it does 

not necessarily mean that there will be negligible bias. The bias discrepancy will be 

demonstrated later in the simulation section.  

It is seen in (5.9) that the loading level depends on the signal and noise power. Finally, 

by combining (5.9) with (5.1) and (5.2), the following equations can be obtained, 
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𝐑𝐑𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃−𝐌𝐌𝐜𝐜𝐝𝐝 = 𝔼𝔼{𝐗𝐗𝐗𝐗H} + �
1
K
‖𝛽𝛽H𝐑𝐑𝐱𝐱𝐱𝐱‖

2� 𝐈𝐈 , (5. 10) 

𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃−𝐌𝐌𝐜𝐜𝐝𝐝 =
1
K
�𝐗𝐗𝐗𝐗H + �‖𝛽𝛽H𝐑𝐑𝐱𝐱𝐱𝐱‖

2� 𝐈𝐈� , (5. 11) 

where (5.10) and (5.11) represent the theoretical and sample diagonally loaded tracing 

covariance matrix, respectively.  

Lastly, before the decomposition to obtain the signal and noise subspace, and 

considering only the sampled covariance matrix, the diagonally loaded covariance matrix is 

modified as: 

𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃 = 𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃−𝐌𝐌𝐜𝐜𝐝𝐝 + tr�𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃−𝐌𝐌𝐜𝐜𝐝𝐝�, (5. 12) 

where tr(∙) is the trace of a matrix. 

After determining the first sample covariance matrix, 𝐑𝐑�𝐱𝐱𝐱𝐱  as in (2.1), from the 

incoming received signal data matrix, the diagonal elements are extracted and reformed into a 

new modified covariance matrix, 𝐑𝐑𝐱𝐱𝐱𝐱−𝐜𝐜𝐭𝐭𝐫𝐫𝐜𝐜𝐜𝐜𝐦𝐦 like in (5.8). Concurrently, the diagonal loading 

factor, 𝐹𝐹, is calculated, which leads to the reformulation of a new diagonally loaded sample 

covariance matrix, 𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃−𝐌𝐌𝐜𝐜𝐝𝐝 as in (5.11).  Finally, the traced sample covariance matrix, 

𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃 is reformulated for DOA estimation as described in (5.12). 

Then, the subspace decomposition of (5.12) can be presented as 

𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃 = 𝐔𝐔𝑟𝑟𝛀𝛀𝑟𝑟𝐕𝐕𝑟𝑟H + 𝐔𝐔𝑛𝑛𝛀𝛀𝑛𝑛𝐕𝐕𝑛𝑛H, (5. 13) 

where 𝐔𝐔𝑟𝑟 and 𝐕𝐕𝑟𝑟 span the column spaces of 𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃 and 𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃
H respectively, whereas 𝐔𝐔𝑛𝑛 

and 𝐕𝐕𝑛𝑛 span their orthogonal spaces and 𝛀𝛀𝑟𝑟 and 𝛀𝛀𝑛𝑛 are the corresponding diagonal matrices 

with eigenvalues or singular values on the diagonal, respectively.  

Figure 5.1 presents the algorithmic flowchart summary of the proposed technique for 

the sample covariance matrix reformulation. 
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Figure 5.1 DLT-DOA Estimation Algorithm Flow 

5.3 Simulation Results & Discussion of DL-DOA 

In this section, numerical examples are provided to study the stochastic effects of the 

proposed method. To illustrate the simulation setup, the value of 𝐹𝐹  has an impact 

corresponding to the input SNR and ULA with equally spaced half-wavelength geometry. The 

input SNR is varied to generate different 𝐑𝐑�𝐱𝐱𝐱𝐱−𝐃𝐃𝐃𝐃𝐃𝐃 with zero-mean AWGN against varying 

SNR ranging from -10 dB to 10 dB. To further illustrate the efficiency of the proposed method, 

the simulation study is presented in a different real-world-like environment that meets the 

challenges of estimation accuracy. Firstly, in a scenario where there is a minimal finite 

snapshot availability. Next, the proposed technique's estimation performance is provided, 

where multiple signal sources are of interest. Lastly, the performance of the proposed method 

is delivered where only a single snapshot is available, which can be considered a worst-case 

scenario.  

The technique against state-of-the-art techniques is compared, such as the EPUMA 

[10], Method of Direction of Arrival Estimation (MODE) [109], MODEX [107], and root-

MUSIC with Forward-backward Spatial Smoothing (FBSS) [88].  

The simulation was conducted using MATLAB 2021a on a Windows 10 PC with a 

quad-core i7 CPU with 16GB RAM and 1000 randomized Monte-Carlo simulation 

samples to evaluate the accuracy of DOA estimation. The standard parameters for the study 

are presented and summarized in Table 4.1. Typical parameters are selected that are aligned 

with the requirements in a modern transportation market, as referenced in [44]. It is 

noteworthy that although the EPUMA technique is used to demonstrate the proposed 

method in the simulation study, any subspace-based DOA estimation algorithm can be 

implemented. 
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Table 5.1 Common Simulation Parameters 
Parameters Settings 

Carrier Frequency 5500 MHz 

Antenna Geometry Uniformed Linear Array 

Array Inter-Element 

Spacing 

𝜆𝜆/2, where 𝜆𝜆 is the wavelength of 𝑓𝑓𝑐𝑐 in 

meters 

Simulation Samples 1000 

Angle of Interest 30 Degrees 

SNR Range -10 dB to 10 dB 

 

Lastly, the simulation study uses the RMSE as the primary criterion. The general 

RMSE equation is defined as 

RMSE = �1
𝑄𝑄
��

�𝜃𝜃𝑟𝑟1 − 𝜃𝜃�𝑟𝑟1�
2 + ⋯+ �𝜃𝜃𝑟𝑟𝐿𝐿 − 𝜃𝜃�𝑟𝑟𝐿𝐿�

2

𝐿𝐿
�

𝑄𝑄

𝑟𝑟=1

(5. 14) 

where 𝐿𝐿 is the number of signal sources, 𝑄𝑄 is the number of simulation data points, 𝜃𝜃𝑟𝑟 is 

the actual DOA, and 𝜃𝜃�𝑟𝑟 is the estimated DOA.  

The CRB [9] is also included as a performance benchmark, where the CRB is 

computed as  

CRB =
𝜎𝜎𝑛𝑛2

2𝐾𝐾
tr �Re�(𝐃𝐃H(𝐈𝐈𝑀𝑀 − 𝐀𝐀𝐀𝐀+)𝐃𝐃) ⊙𝐑𝐑T�

−1
� , (5. 15) 

with 𝐃𝐃 = [𝜕𝜕𝒓𝒓(𝜃𝜃1)/𝜕𝜕𝜃𝜃1 . . . 𝜕𝜕𝒓𝒓(𝜃𝜃𝑁𝑁)/𝜕𝜕𝜃𝜃𝑁𝑁] and 𝐑𝐑 = E[𝒙𝒙(𝑡𝑡)𝒙𝒙𝐻𝐻(𝑡𝑡)] = 𝐀𝐀𝐑𝐑𝐀𝐀𝐀𝐀𝐇𝐇 + 𝜎𝜎𝑛𝑛2𝐈𝐈𝑀𝑀. In 

this case, 𝐑𝐑𝐀𝐀 = 𝐄𝐄[𝒔𝒔(𝑡𝑡)𝒙𝒙𝐻𝐻(𝑡𝑡)] is the signal covariance matrix and ⊙ is the Hadamard matrix 

product.  

For root-MUSIC, the FBSS technique improves signal detection and estimation 

accuracy, where the number of forward-backward subarrays equals the number of desired 

signals. 
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5.3.1 Limited Finite Snapshot Sample Performance with Single Signal 

Source of Interest 

 

Figure 5.2 SNR-RMSE Performance for M = 4, N = 1, and K = 10 

 

Figure 5.3 SNR-RMSE Performance for M = 8, N= 1, and K = 10 
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This section presents a scenario with a limited, finite number of snapshot samples for a 

single-source signal of interest. Figure 5.2 and Figure 5.3 present the RMSE of the DOA 

estimation against varying SNR input received data matrix ranging from -10 to 10 dB, where 

the number of snapshot samples is 𝐾𝐾 = 10 and the number of sensor array elements 𝑀𝑀 = 4 

and 𝑀𝑀 = 8, respectively. It is also assumed that the number of impinging signals, 𝑁𝑁 = 1 

is static and does not deviate with time at the instant of data collection on the receiving 

end. In addition, Table 5.2 presents the RMSE results of all the proposed DOA techniques 

for comparison. 

It is seen in Figure 5.2 that the proposed technique outperforms MODE, root-

MUSIC, and EPUMA on average when SNR is < -5 dB. Furthermore, the RMSE of the 

proposed method retains the CRB when SNR is > 3.5 dB. As SNR increases, the RMSE 

curves of all techniques are tightly bound towards the CRB, and thus, their estimation 

performance attains the theoretical CRB lower bound curve. The MODE technique does 

not perform well due to the small number of antenna array elements and a highly limited 

number of snapshot samples, even though it utilizes the FBSS method to improve DOA 

estimation. These poor DOA estimation results can be seen generally throughout the entire 

SNR range. Furthermore, the proposed technique slightly outperforms EPUMA, MODE, 

and MODEX by 12%. As SNR increases, the proposed method still outperforms the other 

methods by an average of 7% in DOA estimation performance gain.  

Figure 5.3 presents a similar simulation environment but with a higher number of 

antenna array elements. Comparing this with Figure 5.2, the performance gained for the 

proposed method is slightly less compared to the other techniques. In addition, all DOA 

estimation techniques presented here approach the CRB limit at a much lower SNR due to 

the increase in antenna element number. It can observe that MODE performs among the 

compared techniques at low SNR. The proposed approach achieves the best DOA 

estimation performance when the SNR is high at > 3.5 dB. In addition, the proposed 

method performs the best at high SNR compared to the other demonstrated DOA estimator 

as it is much closer to the CRB limit. 
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Table 5.2 Summary of Simulation Results  
for Single Signal Source 

Scenario RMSE (Degrees) 

 EPUMA 
Root-

MUSIC 
MODEX MODE DLT-DOA 

M = 4,  

SNR = -10 dB 

29.9 32.1 36.6 48.5 30.6 

M = 4,  

SNR = 10 dB 

1.55 0.66 0.61 0.61 0.60 

M = 8,  

SNR = -10 dB 

25.8 24.4 29.8 50.34 26.8 

M = 8,  

SNR = 10 dB 

0.23 0.23 0.21 0.66 0.20 

 

5.3.2 Limited Finite Snapshot Sample with Multiple Signal Sources of 

Interest 

 

Figure 5.4 SNR-RMSE Performance for M = 8, N = 2, ∆θ=10°, and K = 10 
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Figure 5.5 SNR-RMSE Performance for M = 8, N = 2, ∆θ=5°, and K = 10 

 In this example, a simulation study is conducted with a limited number of snapshot 

samples with two signal sources of interest. Figure 5.4 presents a scenario where the signal 

sources of interest are of an angular separation of 10°. It is clear that the EPUMA technique 

generally has a better DOA estimation performance – particularly at low SNR of < -5 dB. It 

is worth highlighting that the MODE technique has a substantial estimation performance 

reduction compared to the other methods. This estimation deficit is because MODE is highly 

sensitive to the number of signal sources. One potential reason is the symmetric assumption 

used in the MODE solver algorithm. This reason is consistent across the wide range of 

scenarios, especially when comparing the results in Figure 5.2 and Figure 5.3. Nevertheless, 

the proposed technique performs relatively well across the spectrum of SNR. However, 

EPUMA and root-MUSIC are still outperforming it due to the spatial smoothing 

modification with an average DOA estimation performance deficit of 7%. At higher SNR 

of > 0 dB, the proposed method outperforms all the other techniques by 2.8% and is closely 

bounded by the theoretical CRB limit. 

 To highlight the DOA estimation resolution among closely spaced signal sources, 

Figure 5.5 presents a scenario where the angular separation is 5°. EPUMA performs best in 

this scenario in low SNR of < 0 dB and can robustly determine the two closely related signals 

of interest. Furthermore, root-MUSIC here serves the worse, even though it employs the 
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FBSS modification due to the sensitivity in the virtual array setup for spatial smoothing. This 

result is followed closely by the proposed method in terms of RMSE performance. When 

SNR is high at > 0 dB, all techniques approach the CRB limit but do not perform as well as 

in Figure 5.4 where the signal sources are separated further. Comparing the DOA estimation 

performance between Figure 5.4 and Figure 5.5, the performance difference on average is 

15%. In other words, the estimation performance difference results in a 3%/∆θ based on the 

simulation results. Table 5.3 presents a summary of the DOA estimators for multiple signal 

sources for both the lowest and highest SNR. 

Table 5.3 Summary of Simulation Results  
for Multiple Signal Sources 

Scenario RMSE (Degrees) 

 EPUMA 
Root-

MUSIC 
MODEX MODE 

DLT-

DOA 

∆𝜃𝜃 = 10°, 

SNR = -10 dB 

42.1 44.2 38.2 43.6 46.2 

∆𝜃𝜃 = 10°, 

SNR = 10 dB 

0.62 0.64 0.61 0.62 0.59 

∆θ=5°,  

SNR = -10 dB 

45.5 48.0 46.7 45.5 50.5 

∆θ=5°,  

SNR = 10 dB 

1.17 1.31 1.49 2.14 1.13 
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5.3.3 Single Snapshot Sample with a Single Signal Source of Interest 

 

Figure 5.6 SNR-RMSE Performance for M = 4, N = 1, and K = 1 

This section conducts a quantitative analysis of the proposed technique where the 

number of snapshot samples is 𝐾𝐾 = 1. This simulation parameter presents a worst-case 

scenario where only a single snapshot is available at the array sensor as a limitation, where 

the results are shown in Figure 5.6. All other parameters are the same as in the previous 

section, which can be referred to in Table 5.1, while Table 5.4 provides the summarized 

RMSE results of the DOA estimators.  

Similarly, the MODE technique performs worse across the wide range of SNR. 

Comparing the results in Figure 5.5 against a similar simulation environment as in Figure 

5.2, the DOA estimation only approaches the CRB limit at a much higher SNR. This result 

is consistent where the number of snapshots changes the raw performance of all the 

demonstrated DOA estimators. The proposed technique performs relatively well in a single 

snapshot scenario compared to EPUMA, root-MUSIC, and MODEX, although the DOA 

estimation performance difference is negligible at approximately 2%. This phenomenon 

may be within the margin of error, particularly in low SNR of < 0 dB. The performance 

difference across the different techniques at high SNR at > 0 dB is something that is worth 

highlighting. The proposed approach generally performs the best compared to the other 

methods. This RMSE result is followed closely behind with EPUMA. In general, the 
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proposed method achieves the best estimation performance across the wide range of SNR 

with an average DOA estimation performance gain of 8.5% compared to the following best 

estimator.  

The proposed technique performs better than the rest in a single snapshot 

environment mainly due to the optimized diagonal loading factor technique as 

demonstrated in (5.9) and its implementation in (5.11). The iterative nature of (5.9) proves 

that it is an efficient method in determining accurate DOA estimation as compared to a 

static diagonal loading factor.   

Table 5.4 Summary of Simulation Results  
for Single Snapshot Scenario 

Scenario RMSE (Degrees) 

 EPUMA Root-MUSIC MODEX MODE 
DLT-

DOA 

SNR = -10 dB 39.5 40.5 42.4 53.4 41.1 

SNR = 10 dB 3.54 2.18 2.05 2.13 1.92 

 

5.4 Performance Summary for DLT-DOA 

This chapter presents a reconstruction of the sample covariance matrix with uniformed 

linear arrays in the presence of noise. By effectively utilizing a suitable diagonally loaded 

value to modify the incoming covariance matrix, the need for high snapshots is reduced in a 

wide range of SNR environments. Using a modified diagonal loading technique to the sample 

covariance matrix, the proposed method performs best in a scenario with a minimal number 

of snapshot samples. This allows the utilization of the algorithm in an environment where the 

sensors are used small and lightweight without costly hardware for real-world implementation. 

In addition, high power transmission is not required for accurate DOA estimation for a sensor 

device emitting a signal due to the excellent performance in low SNR scenarios. It allows fast 

and precise network directivity and localization in an electronic device like a position sensor 

for transportation, vehicular systems, or motorsports applications to sense location and 

orientation in a relatively wide range of SNR and sampling numbers. 
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5.5 A Comparison between CbSS and DLT-DOA 

This research introduced two novel DOA algorithms that meet real-world application. 

Both these methods complement each other, with enhanced accuracy and estimation time, 

that can adapt to different scenarios. For example, CbSS provides the user with 

configurability between estimation time and DOA estimation accuracy. At the same time, 

DLT-DOA offers a fixed and straightforward DOA estimator with fast and accurate DOA 

estimation.  

The table below presents a performance comparison of the two proposed methods. 

The comparison is based on the same 4-element ULA and simulation parameters conducted 

in previous chapters. The results are based on an averaged performance across a range of 

SNR from 0 – 5 dB.  

Table 5.5 Features Comparison Between CbSS and DLT-DOA 

Features CbSS, δ = 0.01 CbSS, δ = 10 DLT-DOA 
User Configurability Configurable Fixed 
Single Source, Single 
Snapshot DOA 
Estimation Accuracy 

98.7% 60.5% 81.2% 

Average Single 
Snapshot Estimation 
Time (ms) 

0.23 0.08 0.12 

With reference to Table 5.5, the critical difference between CbSS and DLT-DOA is 

the option to have configurability, dependent on the application. CbSS allows the algorithm 

user to prioritise computational time or DOA estimation accuracy. Alternatively, DLT-DOA 

offers a fixed configuration without a significant and detrimental impact on the DOA 

estimation accuracy and estimation time which is a trade-off compared to CbSS.  

Some key factors must be considered for a user to pick which algorithm to choose. 

One example would be the cost of implementation. For example, as CbSS is iterative due to 

the delta parameter, the hardware platform, and thus cost, must be considered as CbSS is 

relatively more computationally expensive than DLT-DOA. However, CbSS offers the 

flexibility to configure to any specific scenarios it has to perform. For example, in an HSR 

environment where computational time is a concern [110] or V2V applications, both base 

stations and targets are not moving as fast and require higher DOA estimation accuracy [111]. 
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6 Conclusion and Future Work 

6.1 Conclusion 

The research presented in this thesis was aimed to identify and solve the critical 

challenge faced by existing DOA estimators that are aligned with the unique demands of real-

world scenarios.  There are two crucial issues with existing DOA estimators. Firstly, it is due 

to the lack of estimation accuracy when the snapshot samples are reduced. Secondly, the long 

computational time due to high complexities and snapshot sample data load is undesirable in 

a scenario where real-time computations are required. 

State-of-the-art DOA estimation algorithms, CbSS and DLT-DOA, were proposed and 

investigated in this thesis to address the challenges. Based on a quantitative and qualitative 

analysis of the proposed algorithms, it can be concluded that the proposed techniques have 

met the requirements for real-time applications, such as in the transportation industry.  

A novel CbSS DOA estimator that meets both the requirements of fast computational 

time and high estimation accuracy was proposed in Chapter 4. The numerical simulation 

results confirm its effectiveness in multiple environmental scenarios, such as single and 

multiple signal sources of interest. The benefit of the CbSS method is that the DOA is derived 

based on defining the root cause of errors that existing DOA estimators have often overlooked. 

Furthermore, CbSS has been proven effective using a single snapshot data sample, yielding up 

to 25.5% lower DOA estimation degradation in multiple uncorrelated and coherent signal 

source environments. Furthermore, the CbSS technique also offers fast computational time by 

up to 0.08 milliseconds without compromising estimation accuracy. Compared to existing 

techniques, such as the PR approach and other subspace-based methods, the CbSS technique 

is more suitable for real-time wireless communication where the environment tends to have 

low SNR with rapid changes to the DOAs. 

An improved and novel DOA estimation method, DLT-DOA, further enhancing the 

CbSS technique, has also been proposed and presented in Chapter 5. DLT-DOA employs an 

adaptive diagonal loading technique to further improve DOA estimation accuracy. Similarly, 

simulation scenarios consist of single and multiple signal sources of interest as well as single 

snapshot-based DOA estimation. The simulation results proved the effectiveness and were 

validated against the existing state-of-the-art DOA estimation techniques such as EPUMA and 

MODEX. In a finite number of snapshots with a single signal source, DLT-DOA performs 
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9.5% better than EPUMA and MODEX, 2.8% in multiple signal sources and 8.5% in a single 

snapshot environment in terms of DOA estimation accuracy.  

In summary, this thesis has presented two state-of-the-art DOA estimation algorithms 

suitable for transportation applications that meet the demand for fast computational time and 

high estimation accuracy: CbSS and DLT-DOA.  

 

6.2 Future Work 

The research and DOA estimation algorithms derived from this thesis could be further 

enhanced in the following aspects: 

1. To implement and validate via hardware for proposed DOA algorithms, 

2. To extend the proposed algorithms into other antenna array structures, 

3. To validate the performance of the proposed algorithms in a dynamic scenario, 

4. To experiment and evaluate the proposed DOA estimators in a specific real-world 

application. 

 

6.2.1 Hardware Implementation for Proposed DOA Algorithms 

As the research conducted in this thesis was only based on simulation, hardware 

implementation for real-world scenarios is required for further validation. One of the critical 

assumptions that were made in the development of the work of this thesis is that the antenna 

array is assumed to be a perfect geometry. In reality, the array spacing in an antenna system 

tends to have deviation due to manufacturing defects and tolerances. The antenna array's 

misalignment may pose a challenge for accurate DOA estimation, affecting the covariance 

matrix formulation, which is a crucial data point for DOA algorithms. The calibration error 

is expected to cause some form of perturbation and may lack estimation accuracy. Hardware 

implementation and validation can be carried out using a Field Programmable Gate Array  

(FPGA), such as in [112], or by using modular software-defined radio hardware such as in 

[113, 114] before being implemented into a complete end-to-end system such as a smart 

antenna with beamforming such as in [44, 78] [115].  

6.2.2 Extension of CbSS and DL-DOA Technique to Other Antenna 

Array Structures 

In this thesis, only the ULA antenna array structure was considered to develop the 

proposed DOA estimation techniques to ensure simplicity in the development stage. 
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Furthermore, only the azimuth angle of the impinging signal was considered due to the ULA 

structure limitation. Nevertheless,  the proposed CbSS and diagonal-loading method for DOA 

estimation could be further extended to cover other antenna array geometry such as a Uniform 

Circular Array (UCA) or a Uniform Rectangular Array (URA) to validate the robustness in 

different scenarios such as in [116, 117] which would increase the DOA estimation accuracy 

for an increased number of signal sources of interest concurrently.  

The proposed DOA techniques can be expanded to consider the elevation angle of the 

signal of interest by extending the antenna array steering matrix. Some examples of DOA 

estimations with both azimuth and elevation angle derivation in the steering matrix can be 

found in [52, 118, 119]. For instance, in [120], an L-shaped antenna array structure is first 

considered. Then, by utilizing a sub-array system, the horizontal elements of the array can be 

used to determine the azimuth angle. At the same time, the vertical elements along the array 

can be used to determine the elevation angle for accurate, independent DOA estimation.  

6.2.3 Extended Performance Validation of Proposed Techniques into a 

Dynamic Scenario 

The work done in this thesis is solely based on assumptions and simulation work 

with models based on real-world scenarios. Furthermore, it is assumed to be a static scenario 

with only an AWGN noise perturbation for a more straightforward estimation performance 

analysis. The proposed DOA estimation techniques in this thesis could be further tested and 

developed for scenarios such as in a dynamic system where the signal source of interest is 

constantly moving with respect to the antenna array. Some dynamic strategies that have been 

carried out can be referred to in [121]. In addition, real-world scenarios tend to have a variety 

of noise interference. The estimation performance of the proposed techniques could then be 

further verified in different real-world scenarios.  

6.2.4 Real-world Impact & Potential of the Proposed DOA Estimation 

Techniques 

Many real-world scenarios utilize DOA estimation – particularly as a sub-system of a 

smart antenna beamforming system. For example, [122] highlights the importance and the 

challenges required for a suitable smart antenna system for a modern transportation market 

with real-world implementation, such as enabling smart city networks, closed-circuit 

television (CCTV) monitoring, and many other public operations and services. Furthermore, 
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[122] highlighted that the critical challenges faced in the transportation market are high capital 

and operational expenses. With the help of a suitably designed smart antenna system with 

beamforming, the number of field equipment can be reduced due to smaller deployment and 

maintenance costs. Furthermore, wireless interference such as mutual coupling and 

environmental factors such as noise can be reduced by having a beam steering system such as 

a good beamformer and DOA estimation algorithm between a wireless transmitter and a 

receiver that are always pointing to each other with narrow beam and nulls in all other 

direction. Therefore, the transportation application aspect would be one of many suitable 

platforms to apply the proposed DOA estimation technique proposed in this thesis.  
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