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Abstract 

The problem of narrow-band source direction estimation is considered. A new 
temporal pre-filtering approach to DOA estimation is proposed. Four types of pre-filters, 

with varying degrees of prior knowledge of the signal waveforms, are discussed. 

Maximum likelihood DOA estimators, based on the statistical properties of the filtered 

data, are formulated. This Pre-Filtering Maximum Likelihood (PFML) framework 

provides an alternative and unified treatment of an established maximum likelihood 

method with known signal waveforms and instrumental variable-based DOA estimators. 
Such methods are limited by the need to have knowledge of the signal waveforms, 

which may not be possible in practice. A novel Beamforming-based PFML (BPFML) 

approach is therefore suggested. The BPFML DOA estimators avoid the need to know a 

priori the signal waveforms by extracting them directly from the observed data. 

Analytical and simulation studies show that the BPFML methods offer performance 

comparable with that of the PFML techniques with known signal waveforms. 

The Iterative Quadratic Maximum Likelihood (IQML) algorithm is next 

considered to obtain a maximum likelihood solution with reduced complexity. By 

employing a new consistent nontriviality constraint, the algorithm performance is 

improved. In addition, a formulation of the IQML algorithm which incorporates prior 

information of parameter values is provided. This constrained algorithm is shown to 

improve the estimation performance as well as the convergence properties of the 

algorithm. The extension of the IQML algorithm to solve a 2-D parameter estimation 

problem is additionally considered. The problem of pairing two sets of 1-D parameters 

from two different dimensions is examined and a sufficient condition for consistent 

pairing is provided. 
Finally, the DOA estimation problem using the IQML algorithm with an 

interpolated uniform linear array is addressed. A new interpolated array design 

procedure is proposed. The performance degradation of the Weighted Subspace Fitting 

(WSF) DOA estimator in the presence of out-of-sector signals is studied. A solution 

based on one of the BPFML methods is suggested for the case of uncorrelated out-of- 

sector signals. 
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Statement of Originality 

The main contributions of the thesis are listed below. 

1. A novel Pre-Filtering Maximum Likelihood (PFML) approach to narrow-band 

source direction estimation has been proposed. Four PFML DOA estimators 

have been formulated, based on the filtered data using different pre-filtering 

processors. In addition, the proposed framework provides an alternative and 

unified treatment of some of the existing DOA estimators, as well as leading to 

the possible improvement of these existing methods. 

2 The analytical formula for the asymptotic bias of the PFML estimators based on 

the type-4 pre-filtering reference signal, has been derived. 

3. Beamforming-based PFML (BPFML) methods have been proposed as the 

realisations of the PFML estimators based on the type-4 pre-filtering reference 

signal. 

4. An improved version of the IQML algorithm has been proposed by using a new 

consistent nontriviality constraint. 

5. Formulation of the IQML algorithm for the case where some of the parameter 

values are known a priori, has been provided. 

6. A sufficient condition for consistent pairing of two 1-D parameters in the 2-D 

parameter estimation problem has been provided. 
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7 Based on the proposed 2-D parameter pairing condition, the 1-D based 2-D 

parameter estimation method using the IQML algorithm has been proposed for 

the case of uniform-sampled observed data. 

8. A new interpolated array design procedure has - been proposed. Compared with 

the existing least squares procedure due to Friedlander, the proposed procedure 

has two novel features. First, the weighting function is introduced into a design 

equation to reduce the maximum interpolation error. Secondly, a mild constraint 

is imposed onto the out-of-sector directivity gain of the interpolated array. 

9 Analysis of the estimation bias due to the array interpolation error has been 

provided. 

Additional contributions include the following. 

1. The asymptotic analysis of the DEML estimator, provided by other researchers, 

has been extended to a more general source scenario. 

2. The proposed combined classical. and LCMV beamforming procedure, which is 

part of the BPFML DOA estimators, has been shown to provide adaptive 

beamforming which is robust to pointing error as well as to the presence of 

correlated signals. 

3. A compact CRLB of the parameter estimates, under the deterministic signal 

assumption with prior knowledge of some parameter values, has been given. 

4. A compact CRLB of the 2-D parameter estimates for arbitrary multiplication of 

the parameter values in each of the two dimensions, has been derived. 
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5. The performance of the proposed CIQML algorithm and the l -D based 2-D 

parameter estimation method has been studied and compared with some of the 

existing methods, using computer simulation. 

6. Performance study of the PFML and BPFML DOA estimators has been carried 

out. The analytical result has been validated by the computer simulation result. 

7. It has been suggested that, by replacing the estimated data covariance matrix R 

with the estimated noise covariance matrix '? 
n, performance improvement of the 

instrumental variable-based DOA estimators can be obtained. 

8. The performance degradation of DOA estimation using the interpolated array, in 

the presence of out-of-sector signals, has been addressed. The use of the BPFML 

methods has been proposed as a solution to the problem, for the case of 

uncorrelated out-of-sector signals. 
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Chapter 1 
Introduction 

Array signal processing appertains to the processing of a data set, measured by 

an array of spatially distinct sensors, to extract information related to the signal sources 

and surrounding environment from which the data set is collected. An early array signal 

processing technique, called a beamformer, adopts a simple coherent combining. scheme 

to a measured data set. The signals from the outputs of array sensors are weighted, and 

linearly combined, to extract (implicitly or explicitly) information such as the source 

locations or the waveform of the desired signal. By suitable choice of the array weights, 

the beamformer functions as a directive antenna. Unlike a single directive antenna, 

however, the array beam pattern can be modified by applying different weights to the 

outputs of the array. This offers flexibility not found in a single directive antenna such 

as the ability to steer the beam in different directions without the need for physical 

movement of the antenna. It also allows for adaptation of the array beam pattern to 

maintain a performance level in a dynamic environment. When the array weights are not 

fixed, but varied according to some criterion, a beamformer is said to be adaptive. 

Probably the first adaptive beamforming system was Van Atta's retrospective 

antenna system for satellite communication [1]. Following this pioneering work, 

adaptive beamforming has been extensively studied by many researchers. Major 

contributions in this area are due to Howell, Applebaum, and Widrow [ 1-4]. Instead of a 

simple coherent combining scheme as used in a classical beamformer, the work of these 

researchers contains more sophisticated beamforming criteria. 
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In recent years, many sophisticated array processing techniques have been 

proposed and have received more attention, due partly to the availability of low cost 

high speed digital signal processors. In the area of source localisation, there has been 

major interest in so-called high resolution methods [5-8], which are based on the 

parameter estimation approach. Probably the most well-known parametric-based array 

processing technique is the MUSIC method, due to Schmidt [8]. It was shown in [9] that 

the MUSIC method has certain statistical optimality. 

Although the one-dimensional-search subspace-based methodst such as MUSIC 

achieve higher resolution than the classical beamforming spectral estimation method, 

their performance can be poor at low snapshots times Signal-to-Noise Ratio (SNR). 

Moreover, these methods generally fail in the presence of coherent sources. Pre- 

processing methods such as the spatial smoothing (for uniform linear arrays) and wide- 

band focusing techniques [ 10-12], generally result in sub-optimal performance. 

A Maximum Likelihood (ML) method, of which the underlying principle is 

generally credited to Fisher [13-14], is one of the most widely used techniques for 

parameter estimation in various application areas. Its use in array signal processing has 

received attention due to its performance generally being superior to the subspace-based 

methods with respect to Root-Mean-Square Error (RMSE). Unlike the MUSIC method, 

the ML method is applicable in the presence of coherent sources. There have been two 

different versions of the ML method for parameter estimation in array signal processing. 

One is called the Deterministic Maximum Likelihood (DML) method, whereas the other 

is the pseudo Stochastic Maximum Likelihood (SML) method. The difference between 

the two ML methods lies in the way in which the signal waveforms of the emitting 

sources are modelled. 

Recently, a new source Direction-Of-Arrival (DOA) estimator, based on the ML 

principle, was studied in [15-17]. In these papers, a ML DOA estimator was formulated, 

t Later, the one-dimensional-search subspace-based methods will be simply referred to as the 'subspace- 

based' methods. 
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under the assumption that the waveforms of the signals whose directions are of interest, 

are known a priori. This ML method with known signal waveforms has many interesting 

properties. For instance, the maximum number of sources whose directions can be 

estimated by the method is not limited by the number of sensors when the vectors of the 

signal waveforms are independent, e. g., sinusoidal signals with distinct frequencies. 

This is not the case for most other DOA estimators. In addition, the method can be 

applied in an unknown spatially correlated noise field. Furthermore, the estimator is 

asymptotically statistically efficient, i. e., its estimation error covariance matrix attains 

the corresponding Cramer-Rao Lower Bound (CRLB) when the number of data 

snapshots is large. This is in contrast with the DML method, which is, for a finite 

number of sensors, asymptotically statistically inefficient [9]. 

Despite the previously described advantages of the ML method with known 

signal waveforms over other DOA estimators, the method has a major drawback of 

requiring knowledge of the signal waveforms. Although such knowledge may be 

available, for instance, from the training sequence in digital radio communication 

systems, the duration of the sequence is generally limited to avoid bandwidth 

inefficiency. Of course, in many other applications such as passive sonar systems, this 

knowledge may not be available. 

In this thesis, a new approach for narrow-band source DOA estimation is 

proposed. It consists of a pre-processing step performing a temporal filtering operation 

on the observed array data, followed by a step performing DOA estimation. In Chapter 

3, four different types of filters are proposed as temporal processors in the pre-filtering 

step. Based on the data filtered by each of the four filters, a ML DOA estimator is next 

formulated. Asymptotic analyses of the formulated Pre-Filtering Maximum Likelihood 

(PFML) methods are provided. With suitable choices of the filter in the first pre-filtering 

step and the DOA estimator in the second step, this PFML approach includes the ML 

method with known signal waveforms and the Instrumental Variable-based (IV-based) 
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DOA estimators [18-20], as special cases. Using this pre-filtering framework, we 

provide alternative interpretation of the IV-based DOA estimators and the ML method 

with known signal waveforms. 

In Chapter 4, based on the PFML framework, the Beamforming-based Pre- 

Filtering Maximum Likelihood (BPFML) DOA estimators are proposed. These 

estimators share some desirable properties of the ML method with known signal 

waveforms. Unlike the ML method with known signal waveforms, however, the 

BPFML methods avoid the need for prior knowledge of the signal waveforms, by 

extracting the waveforms from the observed data using a newly developed adaptive 

beamforming technique. This beamforming technique, used as part of the BPFML 

methods, can be applied both in the coherent source scenario and in the presence of 

steering error. In either of the two cases, the standard Linearly Constrained Minimum 

Variance (LCMV) beamformer suffers performance degradation due to the signal 

cancellation problem [21 ]. 

In Chapter 5, the computational aspect of a ML source DOA estimator is 

considered. Generally, a ML method requires intensive computing power due to the 

need to perform non-linear multi-dimensional optimisation. For the case of a uniform 

linear array, Bresler and Macovski [22] proposed a computational less intensive 

algorithm known as the Iterative Quadratic Maximum Likelihood (IQML) algorithm, to 

solve the ML exponential signal parameter estimation problem. In spite of 

computational saving, the IQML algorithm can perform badly for a certain signal 

parameter configuration, as remarked in [23-24]. In [24], a modified version of the 

algorithm was proposed by Nagesha and Kay to alleviate the problem. However, both 

Bresler's and Nagesha's versions of the algorithm do not guarantee consistent parameter 

estimates. This can result in inefficient parameter estimation when the number of 

available data snapshots is large. In Chapter 5, an alternative version of the algorithm is 

proposed. The inconsistency problem which arises in Bresler's and Nagesha's algorithms 
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is avoided by employing a new nontriviality constraint. As a result, the proposed 

algorithm outperforms both Bresler's and Nagesha's algorithms. In addition, when some 

of the parameter values to be estimated are known a priori, the IQML algorithm which 

incorporates this prior information is formulated. The application of the IQML 

algorithm to solve a two-dimensional (2-D) parameter estimation problem is also 

considered. A 2-D parameter estimation method based on the one-dimensional (l-D) 

IQML algorithm is proposed. The 2-D parameter pairing problem is addressed. A 

sufficient condition for consistent parameter pairing is provided. The performance of the 

proposed 2-D parameter estimation method and the improved IQML algorithm, in 

comparison with some existing methods, is studied by means of computer simulation. 

By applying the improved IQML algorithm, developed in Chapter 5, the 

performance of the PFML and BPFML methods is studied in Chapter 6 through 

computer simulation. The simulation result is also used to validate the analytical result, 

which is based on the asymptotic analytical study in Chapters 3 and 4. In Chapter 7, the 

application of the IQML algorithm to a real irregular uniform linear array is considered. 

A new interpolated array design procedure, which is a modification of the procedure in 

[25], is proposed. The out-of-sector-signal problem, which arises when there is an 

interfering signal arriving from the direction outside the angular region over which the 

array is interpolated, is addressed. A solution to the problem is provided for the case of 

uncorrelated out-of-sector interfering signals. 

Finally, concluding remarks are given in Chapter 8. Future research topics and 

remaining problems are also mentioned. 
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Chapter 2 
Array Signal Processing for Narrow-band Source 
Direction Estimation 

2.1 Concepts 

The role of an array signal processor is to extract information related to the 

signal sources and surrounding environment. The array processing concept is visualised 

in Figure 2.1, where K signal sources emit the (electromagnetic or acoustic) signals 

which are received by an array of N spatially distinct sensors. The required information 

contained in the received data snapshots x(t) = [x1(t) x2 (t) """ xN (t)]T, t=0,1, ... 

,L-1, 
is extracted by a suitable array processing algorithm. The data snapshots x(t), t= 

0,1, 
... ,L-1, are obtained by sampling simultaneously the N sensor outputs. The 

sampling interval is not necessary uniform. Thus, here 't' simply denotes the order of the 

data snapshots. In this thesis, x(t) is assumed to be complex. 

By using an array of sensors to measure the information-containing signals, more 

information is available for processing than would be present in a single-channel 

measurement. This advantage of array processing has been utilised to solve various 

scientific and engineering problems. Some of its applications are listed [26-27]: 

1. Radar/Sonar systems 

2. Radio communications 

3. Biomedical and hearing aid equipment 

4. Seismology 
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Figure 2.1: Array signal processing concept. 

Although from Figure 2.1 no specific information is given relating to the signal 

sources, the emitted waves, the surrounding environment, and the sensing device 

characteristics, some prior knowledge of these components is essential in processing and 

interpreting the observed data. In the next section, we will restrict our interest to a 

particular source, environment, and array configuration. 

2.2 Narrow-band signal propagation model 

In this thesis, the following assumptions on the signal sources, the propagation 

media, and the array of sensors, are implied. 

A. 2.1 The propagation media is linear, homogeneous and, within the signal 

bandwidth of interest, non-dispersive. The wave propagation speed c is 

assumed to be known. 
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A. 2.2 All signals whose directions are of interest are emitted from point sources, 
located in the far-field. The signals are also assumed to be narrow-band with 

common frequency bandwidth. Generally, for a signal to be considered narrow- 
band, the signal bandwidth should be small relative to its centre frequency. In 

array processing, it is required that the time a signal takes to travel across the 

array, is short relative to the reciprocal of its bandwidth. This is equivalent to 

the requirement that the observation Time Bandwidth Product (TBWP) 

defined by [28] 

TBWP(9) A 
left(e)AB 

(2.1) 

is much less than 1 for any signal direction 0 within the array Field Of View 

(FOV). Here Leff (e) is the distance across the array of a signal under 

consideration, which arrives from the direction 0 (see Figure 2.2 for the case of 

a uniform linear array), and AB is the signal bandwidth. 

A. 2.3 In addition to the narrow-band signals from far-field point sources, the additive 

noise component at each sensor output is assumed to be uncorrelated with the 

point-source signals. 

A. 2.4 Within the FOV, the array is assumed to be unambiguous in the sense that any 

K<N array response vectors (to be discussed) which correspond to K distinct 

source DOAs, span a unique K-dimensional subspace. 

A. 2.5 The array manifold, defined as the set of the array response vectors corres- 

ponding to all possible DOAs within the FOV, is assumed known. 

A. 2.6 The array response vector a(O) is assumed to be 1st- and 2nd-order differen- 

Liable, with respect to the DOA 0. 
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Figure 2.2: A uniform linear array of N sensors, with d as an inter-sensor spacing and 
the array length 1. An impinging plane-wave signal s; (t) comes from the direction 9; , 
with the distance across the array Leff (0j). 

Under the conditions as stated, with the number of sources K, the array data 

vector x(t) is written as 

x(t) = A(O)s(t) + n(t) (2.2) 

where s(t) = [s1(t) s2 (t) """ sK (t)]T is composed of K signal waveforms, and n(t) is 

the additive noise vector. The response matrix A(O) is given by 

A(O) _ [a1(01) a2(02) ... aK(OK)] (2.3) 

where the parameter vector 

8= [61 92 ... OK]T (2.4) 

and each of the response vectors ak (9k) 
,k=1, ... , 

K, is a function of the kth source 

DOA 9k . 
For the uniform linear array which consists of identical omni-directional 

sensors, with the inter-sensor spacing d, ak (6k) has the analytical form given by 
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ClkýBký = ak .1e 
'lnsin(ek) e-j 

2ttsin(9k) 
e-j 

(N-1)nsin(8k) T 
(2.5) 

where ? is the signal wavelength at the centre frequency, and ak is the phase factor 

whose value depends on a chosen phase reference point. If the centre of the uniform 

linear array is chosen as the reference point, 

, j"nsin(ek)(nr+1)/2 
ak -e (2.6) 

2.3 Source direction estimation methods 

One of the main uses of array processing is to estimate a source location. When 

source directions are of interest, the problem is referred to as the DOA estimation 

problem. In this thesis, we are mainly concentrated with the use of array signal 

processing for this purpose, although its uses for signal waveform estimation, and 1-D 

and 2-D frequency estimation are also considered, respectively, in Chapters 4 and 5. In 

the following, we review some of the main existing methods for DOA estimation. 

Thus far source direction estimation methods can be categorised into two 

different approaches as follows. 

2.3.1 A non-parametric approach 

A 'non-parametric' DOA estimator is the estimator which does not rely upon the 

knowledge of the signal propagation model Eq. (2.2), and the structure of A(O) as 

described in Eq. (2.3). Two important non-parametric methods are described below. 

1) Classical beamforming method [29] 

This method obtains the K DOA estimates as 5k, k=1, ..., K, which 

correspond to the K highest peaks in the beamforming spatial spectrum 

1B(e) = wH(e)Rw(e) (2.7) 
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where the sample data covariance matrix 

R=1 lx(t)xH (t) (2.8) 
Lr=O 

and w(9) is the beamforming weight vector, which should be designed to pass a signal 

arriving from a look direction 6, but to minimise signals from other directions. In 

designing w(9) , there is a trade-off between resolution and bias properties of the 

estimator. Note that w(9) in this classical beamforming method is data independent, 

which is in contrast with the Capon DOA estimator, to be described next. 

2) Capon DOA estimator [7] 

Generally, this DOA estimator is not regarded as a non-parametric method, nor 

can it be fully considered as a parametric-based method, to be discussed. Here, we 

include this method within the same class as the classical beamforming method because, 

as in the classical beamforming method, source directions are indirectly estimated using 

the beamforming spatial spectrum Eq. (2.7). Unlike the classical beamforming method, 

however, the weight vector w(9) in the Capon estimator is data dependent. It is 

obtained as 

w(9) = R-la(O)(a H R-la(e))-i (2.9) 

which is in fact the LCMV beamforming weight vector, with a unity gain constraint in 

the look direction 0. By substituting Eq. (2.9) into Eq. (2.7), we arrive at the Capon 

spatial spectrum 

PC (e) -aH (e )R-ia(e ) 
(2.10) 

It should be mentioned that this DOA estimator has also been referred to as the 

ML method. This misuse of terminology is caused by the relation between the waveform 

estimate of the signal from a look direction by the LCMV beamformer, and that 
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obtained by a method based on the ML principle. Under the assumption that the signal 
from a look direction is uncorrelated with other signals including noise, and that the 

exact ensemble averaged data covariance matrix is known, the output of the LCMV 

beamformer is the ML estimate of the signal from the look direction for a Gaussian 

process. As this relation is connected with a signal waveform, not a signal direction, the 

DOA estimates by the Capon estimator are generally not the same as those obtained by 

parametric-based ML DOA estimators, to be described later. 

2.3.2 A parametric approach 

The source DOA estimation methods which lie in this class are based on the 

knowledge of the data model Eq. (2.2), and the structure of A(O) as described in Eq. 

(2.3). Due to the ability of the parametric-based methods to resolve two closely 

angularly spaced sources which are unresolvable by the classical beamforming method, 

they have also been referred to as high-resolution or super-resolution methods. 

Important parametric-based DOA estimation methods are described: 

1) Subspace-based methods 

The main principle of this class of DOA estimation methods lies in the 

decomposition of the vector space, spanned by the eigenvectors of the data covariance 

matrix, into two orthogonal subspaces. The first one is associated with the signals and 

the second one is a noise subspace. The first subspace-based parameter estimator is the 

Pisarenko harmonic retrieval method [5]. Its improved version called the MUSIC 

(Multiple Signal Classification) algorithm [8] is probably the most well-known high- 

resolution DOA estimation method. In the following we consider these two methods and 

some important variants. 
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a) Pisarenko and MUSIC methods 

A subspace approach to parameter estimation originated in the work of V. F. 

Pisarenko on harmonic retrieval in 1973 [5]. Due to a mathematical equivalence, the 

method, originally proposed for exponential signal parameter estimation, can also be 

applied to estimate source directions. Following [5], other methods which are based on 

the same subspace decomposition principle, including the well-known MUSIC method, 

were proposed in 1970s and - 1980s. In the following, we consider first the basic 

principle underlying Pisarenko's and other subspace-based methods. Next, the MUSIC 

method will be described. 

From the data model Eq. (2.2), with the number of sensors N=K+1, and the 

spatial white noise assumption, the data covariance matrix R=E{ x(t)x H (t) } can be 

written as 

R= ABSAH + 62IK+i 

where the signal covariance matrix RS = E{s(t)sH(t) } and 62 is the additive noise 

power at each sensor. Note that, the explicit dependence of A on 9 is not shown in Eq. 

(2.11) for notational convenience. If RS is of full rank K (which is the case for non- 

coherent sources) and that A has full rank K, the first matrix term in Eq. (2.11) has its 

column vectors spanning a K-dimensional subspace. By eigendecomposition of R, it can 

be shown that the K eigenvectors which correspond to the K largest eigenvalues, span 

the same subspace as the column space of A. The source DOAs can be obtained by 

finding 9k ,k=1, ... , 
K, which correspond to the K highest peaks in the following 

(2.11) 

pseudospectrum 

Pp (e) = 
1 (2.12) 

aH (e )uK+luK 
la(e 

) 
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where uK+, is the eigenvector of R which corresponds to the smallest eigenvalue. This 

vector is commonly referred to as the noise-subspace vector, although the correct 

terminology for UK+, should be the 'noise-only subspace vector'. 

The Pisarenko method has one major advantage over the classical beamforming 

method. Unlike the classical beamformer, whose resolution capability is limited to the 

array beamwidtht, the Pisarenko method is capable of estimating the DOAs of two (or 

more) sources whose angular spacing is smaller than one array beamwidth. Despite this 

high-resolution capability, the Pisarenko method yields poor result at low L. SNR. In [8], 

the MUSIC method, based on the same subspace decomposition principle, was 

proposed. It offers performance improvement over the Pisarenko method by increasing 

the data dimension N beyond K+1. In doing so, the eigendecomposition of the data 

covariance matrix R results in more than one noise-subspace vector. In [8], Schmidt 

suggested to use all of the noise-subspace vectors, which are the eigenvectors of R 

corresponding to the N-K smallest eigenvalues. The DOA estimates are obtained as 

8k 'k=1, .., 
K, which correspond to the K highest peaks in the following 

pseudospectrum 

Pm(0) = 
1 (2.13) 

aH(O)U. U. a(9) 

where Un is the Nx (N - K) matrix which is composed of the N-K noise-subspace 

vectors. This peak-picking MUSIC method, which is sometimes referred to as the 

Spectral-MUSIC method, has an important property of being applicable to an array with 

arbitrary geometry. For a uniform linear array, however, the so-called Root-MUSIC 

method offers improved performance [30-31]. Instead of performing a 1-D search over 

the pseudospectrum Eq. (2.13), the Root-MUSIC method obtains the DOA estimates by 

t For the uniform linear array with half signal wavelength inter-sensor spacing, two sources are said to be 

angularly spaced by one array beamwidth if Isin(91) 
- sin(92 )I = 2/N, where 61 and 62 are their DOAs 

and N is the number of sensors. 
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choosing K (double) roots which lie closest to the unit circle from the 2(N - 1) roots of 

the 2(N- 1)-order polynomial aH (z)UnUn a(z), where a(z) _ 
[1 z""" z^1-1]T . By 

mapping the resulting K distinct roots Zkt, k=1, 
... , K, onto the unit circle, the DOA 

estimates can be obtained from the (mapped) roots zk (= Zk / IZk I) by using the relation 

-j-21insin(9k zk =e 'ý (2.14) 

The discussion so far is based on the assumption that the (theoretical) data 

covariance matrix of the array R is known. In practice, where R is generally not known, 

its consistent estimate such as the sample data covariance matrix R, given by Eq. (2.8), 

can be used instead. In addition, when the additive noise is not spatially white, both the 

Pisarenko and MUSIC methods are still applicable, provided that the noise spatial 

covariance structure Rns, which is a scaled version of the noise covariance matrix, is 

known. In this case, the eigendecomposition is performed instead on the pre-whitened 

covariance matrix R-1'2RR-1'2 (or R-1'2RR-1/2, when R is used in place of R). 
ns ns ns ns 

b) Minimum Norm (MNORM) method 

For a uniform linear array, the performance of the MUSIC method can be 

improved by replacing Un in the MUSIC method by the minimum-norm vector 

ms, _ (üHÜ1)-1 Unüi (2.15) 

. where u~, is the first column vector of UH 

By applying u. instead of U� to the Root-MUSIC method, the spurious roots 

tend to be uniformly distributed around the unit circle in the region away from the K 

roots which correspond to the signal directions. This helps differentiating spurious roots, 

due to noise, from those due to the signals of interest. A peak-picking version of the 

t When the exact data covariance matrix R is used, the K roots lie on the unit circle. This is generally not 

the case if R is replaced by a consistent estimate. 
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minimum norm method can also be similarly obtained by substituting Un in Eq. (2.13) 

by Umn 

c) Modified Forward/Backward Linear Prediction (MFBLP) method 

The linear prediction method for DOA estimation is known to give poor result at 

low SNR [32]. This is due to incorrect modelling of the received sensor outputs x, (t), i 

= 1, ..., N, as being generated from the AR process. A correct model for xi (t) should 

be the special ARMA model where the AR and MA parameters are the same (see, for 

example, Chapter 3 of [7]). In [32], a modification to the Forward/Backward Linear 

Prediction (FBLP) method [7] was proposed to alleviate this problem. The performance 

of the FBLP method is enhanced by increasing the prediction order beyond K, and 

improving the effective SNR by eigendecomposition of the prediction matrix. The 

MFBLP method can be explained. as follows. 

First, consider the FBLP method. The M prediction filter coefficients are 

obtained by solving the following problem 

(RLP + RLP)g =- (rLP + rLP) (2.16) 

where 
1 N-M+1 

H 
RLP =N-M JE{ xi (t)xi (t) } (2.17) 

i=2 

1 N-M 
T 

RLP = JE{ IMxi (Oxi (t)IM } (2.18) 
N-M 1=i 

N-M 

rLP =1 1E{ xi+1(t)x (t) } (2.19) 
N-M i=1 

N-M 

jý. P =1l E{ IMx1 (t)xi+M(t) 
} (2.20) 

N-M i=1 

g= 
[91 

g2 ... gM 
]T (2.21) 

Xi (t) = 
[xi (t) xi+1(t) ... Xi+M-1 (t)]T, i>1, M>K (2.22) 
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When the knowledge of RLP, RLP, rLP, and rLP is not available, the estimate 

of g is obtained as a least squares solution of Eq. (2.16) with RLP, RLP, rLP, and TLP 

being replaced by their consistent estimates. The source directions can be estimated 

from the roots of the prediction polynomial, formed from the estimate II gT T 
of the 

true prediction vector 11 gT ]T 
, by replacing Un in the Root-MUSIC method with 

[1 gT ]T 
. Note that, in this case, the number of sensors N in the Root-MUSIC method is 

equal to M+1. If the prediction order M is chosen as K, there are exactly K roots which 

correspond to the directions of the K signals. In practice, M is generally chosen to be 

higher than K to improve the estimation performance. Further improvement can be 

gained by replacing the estimate RFB= RAP + RLP by RMFBwhich is formed from the K 

eigenvectors of RFB corresponding to the K largest eigenvalues [32]. By doing so, the 

bias due to the additive noise and incorrect modelling can be reduced, resulting in 

performance improvement. 

2) Maximum likelihood methods 

The ML approach for parameter estimation has been applied in diverse subjects 

such as economics, forecasting, and engineering. Its use in array signal processing has 

gained research interest due to its superior performance in the RMSE sense to the 

subspace-based methods. Thus far, there have been three different DOA estimators 

which are based on the ML principle. The difference between these methods lies in the 

assumed prior knowledge of the data model Eq. (2.2). These ML methods, namely the 

deterministic maximum likelihood (DML) method, stochastic maximum likelihood 

(SML) method, and the ML method with known signal waveforms, are described as 

follows. 

a) Deterministic Maximum Likelihood (DML) method [22] 

In this ML formulation, the following assumptions are applied: 
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1 

2. 

The additive noise n(t) is circular complex zero-mean multivariate Gaussian 

distributed with known noise covariance structure Rns = 6-2 R� 
, where 62 is an 

unknown scaling factor. In addition, n(t) is temporally uncorrelated, i. e., 
E{n(tl)nH(t2)} =0, tl ý t2. 

The signal waveforms Sk(t), k=1, ..., K, are modelled as unknown 

deterministic parameters. 

Under the above assumptions, the likelihood function of the unknown 

parameters, given L array data snapshots and the number of signal sources K, is t 

Z (x(0), ..., x(L - 1) ; 0,62, s(0), ... , s(L - 1)) = 
L-1 1 
I 

X62 5 
exp {- Cy-21 (x(t) - As(t) )H J( x(t) - As(t)) }} (2.23) 

kl s t=O 

The ML DOA estimates 6k ,k=1, ... , 
K, can be obtained by minimising, with 

respect to 9, the following concentrated cost function [22] 

1/2 DML (9) = tr{ P' Rns/2RRs/2 } PR- A (2.24) 

where the null projection matrix P112 =I R-1/2A(AHR-'A)-l AHR-'/2 and i? is the pRAN ns ns ns 
ns 

sample data covariance matrix as given in Eq. (2.8). Note that the explicit expression of 

A as a function of 6 is dropped for notational convenience. 

b) Pseudo Stochastic Maximum Likelihood (SML) method and WSF framework 

The second formulation of the ML DOA estimator assumes that the signal vector 

s(t) is circular complex zero-mean multivariate Gaussian distributed and is uncorrelated 

with the additive noise n(t). Other assumptions are the same as those of the DML 

method. The estimates of the source directions are obtained by solving the following 

optimisation problem [33-34]: 

t With some abuse of notation, x(t) appeared in Eq. (2.23) is a realisation of a random vector. 
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0 arg 
e 
ön 1J 

SML (e ) (2.25) 

where OK"1 is the set of feasible parameter values, and the concentrated cost function 

fsML (e) = In IAI, (0)A H+ ä2(e )Rns I (2.26) 

Rs (e) = (AHRnsA)-1 AHRns (R - 62 (e )Rns)R-sA(AHRnsA)-1 (2.27) 

ä2 (8) =1 tr{ PR i, 2ARs/2RRns/2 1 (2.28) N-K nS 

To obtain 0 from Eq. (2.25), high computational complexity is generally 

required. In [33-34], an approximate approach called the Weighted Subspace Fitting 

(WSF) framework was proposed. The WSF method obtains 6 from 

8= arg 
0 
ön fWSf (0) (2.29) 

where 
fwsf (e )= tr(Plu2 USWwsfUs ) (2.30) 

Rns A 

The matrix US is composed of the ds eigenvectors of R. S'2RRns'2 which 

correspond to the ds largest eigenvalues, where ds is the rank of the signal covariance 

matrix. The ds x ds weighting matrix WWSf is assumed to be positive definite. It was 

shown in [33] that the estimate 9, obtained from Eq. (2.29), is a large sample SML 

estimate, if the weighting matrix WWSf is chosen as 

= As 1 Wwsf 2 (2.31) 

where AS is a diagonal matrix whose diagonal elements are the ds largest eigenvalues of 

R-1/2 RR-112 and A= AS - 62'ds This asymptotic result still holds when WWSf is 

replaced by the consistent estimate Wwsf = 112A S 
1, where f1 and AS are the consistent 

estimates of A and X15. Note that a similar result was also derived in [35]. By 

comparing Eqs. (2.25-2.26) with Eqs. (2.29-2.30), it is seen that solving the WSF 

problem is a much simpler, although computationally complex, task than finding a 

solution to the SML problem. 
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c) Maximum likelihood method with known signal waveforms [15-17] 

In some engineering problems such as digital radio communications, the 
knowledge of the signal waveforms is available. For instance, this can be obtained in a 
form of the training sequence. Interestingly, the use of the training sequence has long 

been suggested for other purposes such as channel equalisation and optimal 

beamforming. The utility of this prior knowledge for DOA estimation has received 

comparatively less attention. 

In [151, Li and Compton studied various formulations of the ML DOA 

estimators, based on the knowledge of the signal waveforms. In [16-17], a simplified 

ML method with known signal waveforms was proposed. Many interesting properties of 

this ML method with known signal waveforms were pointed out in [15-17]. For 

instance, the number of non-coherent sources can be greater than N-1. In addition, the 

performance of the method is largely unaffected by the angular spacing between any two 

non-coherent sources. Furthermore, the method is applicable in an unknown spatially 

correlated noise field. 

In [16-17], it is assumed that s(t) is composed of non-coherent signals and s(t) is 

known, where 

s(t) = F§(t) (2.32) 

and F is the diagonal matrix whose main diagonal elements yk ,k=1, ... , K, are the 

unknown signal amplitudes. Given 9(t), the data snapshots x(t), and the noise 

covariance structure R�S, the estimates of the signal directions and amplitudes are 

obtained by minimising 

L-1 

fKS (0, Y) 
IRns 

= , 
(x(t) - AF (t) )11R'( x(t) - AF (t)) (2.33) 

t=0 

where y= [Y1 72 ''' YK ]T 
" When the noise covariance structure is not known, the 

estimates of 8 and y can be obtained by minimising the following cost function 
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1 L-1 

. fKS (e, r) _ (x(t) - Ars (t))(x(t) - Ars (r) )H (2.34) L 
r=0 

Minimisation of Eq. (2.34) is a difficult task. A simpler cost function which is 

asymptotically equivalent to Eq. (2.34) is given by [16-17] 

fKS (0,7) = tr{ R (j1 - AnH Rn 1(, k k' -An } (2.35) 

where 

^i L-I 

=L ýs (t)s H (t) (2.36) 
r=0 

RXS =L 1x(t)s H (t) (2.37) 
-o 

and 

Rn =R- RXSRs1RH (2.38) 

In [16-17], it was shown that the cost function given by Eq. (2.35) is 

asymptotically equivalent to 

fKS (0, y) = tr{ h (RXSk 1- AnH Rn 1(RXSkl 
- AI) } (2.39) 

i L-1 

where RS = lim. -s (t)s H (t). For the case of uncorrelated signals where RS is 
L 

r=0 

diagonal, each of the K source directions can be separately estimated by minimising 

fDEML ( Ok 
i, Yk) = (Fxs; 

k - Ykak) 
H Rn 1(rxs; 

k - Ykak (2.40) 

where rxs k is the kth column vector of i? 
xs 

1. The estimator based on the cost function 

Eq. (2.40) was proposed in [16-17] and named the Decoupled Maximum Likelihood 

(DEML) method. The DEML cost function for the case of known noise covariance 

structure can be similarly derived and is given by 

fDEML (ek 
I Yk) = (rxs; 

k Ykak )H Rns (rxs; 
k Ykak) 2.41) 
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2.4 Discussions 

In comparing the classical beamforming method and the parametric-based 

methods, the latter methods offer high-resolution capability not found in the classical 

method. The classical method is, however, generally more robust to modelling error. In 

addition, the performance of the classical methods does not suffer. with a performance 

threshold effect with reducing SNR. This is in contrast with the parametric-based 

methods which have a threshold effect, the term used to describe an abrupt estimation 

performance degradation as the SNR value falls below a certain level. 

From analytical results in [31,36], it is concluded that the spectral and root- 

finding versions of either the MUSIC or MNORM method have the same asymptotic 

performance. The asymptotic performance of the class of weighted MUSIC methods, 

which includes the MNORM method as a special case, was shown to be bounded by that 

of the (un-weighted) MUSIC method [37]. For uncorrelated signals, it was shown in [9] 

that the MUSIC method is asymptotically equivalent to the DML method. For partially 

correlated signals, however, the performance of the MUSIC method is generally inferior 

to that of the DML method [37]. The performance degradation also arises in the Capon 

estimator for correlated sources. Both the subspace-based and Capon DOA estimation 

methods fail when the signals are fully correlated. A spatial smoothing pre-processor 

(for uniform linear arrays) is required to improve the performance of these estimators in 

the highly correlated source scenario [10-11]. No such pre-processor is needed, 

however, for the described ML methods to operate under this scenario. Analytical 

performance study of the Capon estimator can be found in [38]. 

In comparing the error covariance matrices of the DML and SML estimates with 

the corresponding Cramer-Rao lower bounds, the SML error covariance matrix attains 

the corresponding CRLB for a large number of data snapshots. However, for a finite 

number of sensors, the DML error covariance matrix never attains the corresponding 

CRLB. Note that because the WSF method with the optimal weight Eq. (2.31) is a large 
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sample realisation of the SML method, its asymptotic properties are the same as those of 

the SML method. 

The comparatively new ML method with known signal waveforms, considered 

in [15-17], has some distinct properties not shared by the above mentioned ML methods. 

First, the method is able to estimate more non-coherent source directions than the 

number of sensors, by using only second-order statistics. Secondly, its performance in 

estimating two (or more) uncorrelated sources with sufficient length of the known signal 

waveforms, is unaffected by the angular separation between two (or more) sources. In 

addition, it can be used to estimate source directions in an unknown spatially correlated 

noise field. It was shown in [ 16] that, for uncorrelated sources, the DEML method, 

which is a simplified ML method with known signal waveforms, is asymptotically 

statistically efficient, i. e., its error covariance matrix approaches the corresponding 

CRLB for a large number of data snapshots. 
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Chapter 3 
Pre-Filtering Maximum Likelihood Methods for 
Source Direction Estimation 

In Chapter 2, important DOA estimators, which include ML-based and subspace- 

based methods, have been considered. However, apart from a choice of a DOA 

estimator, some pre-processing schemes can sometimes improve the accuracy of DOA 

estimation, or make the task possible. For instance, the use of spatial averaging allows 

subspace-based methods to operate in the coherent source scenario [ 10-11,39]. Another 

form of pre-processing is the beamspace pre-processor [40-42], which is based on 

spatial filtering of the received array data. It has been reported that using the beamspace 

data for DOA estimation can result in improved performance [40-42]. Although the 

application of these spatial pre-processors has been widely studied, the use of temporal 

pre-processors in narrow-band DOA estimation receives less attention. Note that, in the 

context of wide-band source localisation, spatio-temporal processing was considered in 

[43] and references therein. 

In this chapter, a new approach to narrow-band source DOA estimation is 

proposed. It consists of a temporal pre-processing step, followed by a step performing 

DOA estimation. Four different types of filters are then proposed as a pre-processor in 

the first step. The filter coefficients for each filter type are obtained from a known pre- 

filtering reference signal, which is required to be highly correlated with the signal s(t). 

Four different pre-filtering reference signals which may be obtainable in practice are 

next considered. Based on the statistical properties of the data pre-processed by each of 
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the four filters, a ML DOA estimator is then formulated. Analysis of the asymptotic 

properties of the DOA estimates obtained by each estimator is provided. Relation 

between this class of the Pre-Filtering Maximum Likelihood (PFML) DOA estimators 

and the ML method with known signal waveforms [15-17], as well as the optimal IV- 

based DOA estimators in [18-20], will be addressed. 

3.1 A pre-filtering approach to narrow-band source DOA estimation 

Detail of the temporal pre-filtering approach to narrow-band source direction 

estimation is considered in this section. Under this framework, knowledge of the signal 

and noise temporal properties are utilised to improve the accuracy of the DOA 

estimation. A basic concept of the pre-filtering approach can be explained by first 

considering the block diagram described in Figure 3.1. 

Figure 3.1: The pre-filtering approach to narrow-band DOA estimation. 
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From the figure, t is the discrete time index at the array output and t is the 

second, resampled, discrete time index. The data vector x(t) is passed through p sets of 

filters, whose coefficients may be varied as a function of t. Filtered by p filter sets, the 

pre-processed signals are subsequently re-sampled simultaneously with the sampling 

interval and the timing offset to. The sampled data vectors yk (t) _ 
[Yk; 

1(1) yk; 2 (t) """ yk; N (t )] 
T, k=1, ..., p, are then applied to a DOA estimator. 

The filters gk (t) ,k=1, ... , p, are given by 

G(t) = Mr(t)Wpf(t) 

A [gi(t) g2(t) .. ga(r), (3.1) 

where 
]T 

gk (t) _ 
[gk, 

O(t) gk, i (t) ... gk q 
(t) , 

k= 1, ... ,p 
(3.2) 

Mr(1) = I9+1 "ýr(tT) r(tT + 1) ... r(tT + q)]H (3.3) 

r(t) = 
rrl (t) r2 (t) ... rp (t)]T (3.4) 

Given G(i), the filtered data is obtained from 

Y(t) =1 k(i)G(i) 
q+l 

(3.5) A [y(i) Y2(7) ... yp (t )] 

where 
X(t) _ 

[x(tT) x(tT + 1) """ x(it + q)]. 'q+1 (3.6) 

The vector r(t) is composed of p known signal sequences each of length q+1, 

and will later be referred to as the pre-filtering reference signal. The choice of WPf (j), 

which is assumed to be positive definite and is a function of r(t), defines the type of 
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filtering operation as performed in Eq. (3.5). It is assumed at the moment that r(t) = 
snc (t), where sn, (t) is the result of the following decomposition of s(t)t. 

S(t) = Fs(t) (3.7) 

The Kx ds matrix TS is composed of ds independent column vectors. The ds x1 vector 

s�c t {snc; i T () = (t) Snc; 2 (t) """ snc; ds (t)] is assumed to be composed of non-coherent 

signals. Thus its covariance matrix Rnc = E{ snc (t)sý (t) } is of full rank d, Note that, as 
defined in Chapter 2, ds is the rank of the signal covariance matrix RS . With this pre- 
filtering reference signal, four different filters, based on different choices of Wpf (i), are 

discussed below. 

a) Unitary filter 

For this filter type, WPf (t) is given by 

I 
WPf (t) _ (q 

11 
M(1)Mr(1) )-112 (3.8) 

This choice of WPf (t) gives gk (t ), k=1, 
... , p, which preserve the power of 

the signal component at each of the sensor outputs, with minimum white noise gain. To 

see this, notice that G(t) /q+1 with Wpf (t) as given by Eq. (3.8) is composed of the 

orthonormal vectors which form the basis of the column space of Mr (t) 
. 
Thus, with r(t) 

= s., (t), at each of the N sensor outputs, the power of each of the signal components 

[ail 
ail ... aiKý. TS. MH(t), i=1,..., N 

remains unchanged after filtering. Note that, al k denotes the (i, k)th element of the 

response matrix A. In addition, the filtering operation in Eq. (3.5) with WPf (t) as given 

by Eq. (3.8) performs the unitary transformation (filtering) operation to the scaled data 

matrix k (i) /q+1, rather than X(t). 

t The decomposition in Eq. (3.7) is not unique. However, this issue is irrelevant to our discussion. 
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b) Nulling filter 

For this filter type, 

Wf (t) _ (q 
1 

+lMH(t)Mr(t))-1 
(3.9) 

The filter gk (t) is chosen to minimise the white noise gain, subject to 

MH(t)gk(t) = [0 ... q+l ... 0]T (3.10) 
kth 

With the constraint Eq. (3.10), the filter gk (t) preserves the kth signal power while 

removing other signal components. By solving for the solution of this linearly 

constrained optimisation problem, we obtain 

G(t) = Mr (t)( 
1 

MrH (t )Mr (t))-1 (3.11) 
q+1 

which is Eq. (3.1) with Wpf as given by Eq. (3.9). 

c) Matched filter 

For this filter, Wpf (t) is the diagonal matrix whose diagonal elements are given 

by 

[fJk, 

k 
Wp(t )= (I [Mr (t )]k [Mr (t )1k)-1/2, k= 1, .lp 

(3.12) 
qß-1 

It is seen that with W1 (t) as given by Eq. (3.12), gk (t) is the matched filter 

which maximises at the filter output the power ratio of the kth signal sequence 

I 
y+l 

[Mr (t)]k , and the temporally white noise uncorrelated with s�c; k(t). For the kth 

filter gk (i), as well as the additive noise n(t), the signal components in s(t) which are 

uncorrelated with Snc; k (t) are treated as the uncorrelated temporally white noise. 
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d) Unitary-Matched filter 

For this filter type, 

Wef(t) = 

where 

q+1Mk 
(t)Mk(t))-1/2 = 

Wpf; 
k(t) =(1 

]H Mk(t) = I9}1" rk('t) rk(tT+l) ... rk(it+q) , 
k= 1,..., K,: 

Wpf; 
1(t) 

Wpf; 
2(i) 

0 

0 

Wpf; K (t) 

(3.13) 

(3.14) 

and rk(t), k=1, 
... , K, are the Kk x1 subvectors of r(t) as defined by 

[r1T(t) 
r2 (tý ... rKc (t)1 T= 

r(t) 

(3.15) 

(3.16) 

If each of rk (t), k=1, 
... , Kc, is assumed to be composed of non-coherent sources, and 

E{ rk (t)rýH (t) }= E{ rk (t)rlT (t) }=0 fork # 1, the K signals are filtered into KK groups of 

partially correlated signals. The filter may be seen as a combination of the Unitary filter 

and the Matched filter. 

In the above discussion of the four filter types, it is assumed that r(t) = s(t). 

The optimality for each filter type is thus claimed under this choice of the pre-filtering 

reference signal. Unfortunately, snc (t) is not always available in practice. Nevertheless, 

some other choices of r(t) can still provide useful filtering operation, provided that r(t) 

is highly correlated with sn, (t) and a suitable choice of Wpf, which in turn defines the 

filter type, is applied. In this thesis, we consider a practically obtainable pre-filtering 

reference signal of the form 

r(t) = As., (t) + Q., n(t) + n(t) (3.17) 
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where A and Qr, are, respectively, the px ds and pxN matrices. The Nx 1 vector n (t) is 

the additive noise in Eq. (2.2). The term n(t) in Eq. (3.17) is the second noise source 

which is assumed to be uncorrelated with both sr,, (t) and n(t). In the following section, 

we consider four pre-filtering reference signals of the form Eq. (3.17). The formulations 

of the ML DOA estimators, based on the filtered data using each of the four filters, are 

provided as well as the analyses of the asymptotic properties of the estimators. 

3.2 Pre-filtering maximum likelihood DOA estimation 

In this and subsequent discussions, we limit our interest to the case of a single 

snapshot of the filtered data matrix Y(i) which is obtained by filtering L snapshots of 

the observed data vector x(t). Thus, the filter order q is equal to L-1. The data matrix 

Y(t) will be simply written as Y. This notational simplification also applies to other 

functions of t. It is assumed that the number of signals K and the rank ds of the signal 

covariance matrix are known. In addition to the assumptions A. 2.1-2.6 in Chapter 2, the 

ergodic stochastic signals and noises x(t), s(t), n(t), n(t), and the pre-filtering reference 

signal r(t) are assumed to be circular complex zero-mean jointly Gaussian distributed. 

Sometimes, however, interesting interpretations based on the deterministic assumption 

of s(t) are mentioned. Both n(t), and n(t) are assumed to be temporally white. If not 

stated otherwise, the spatial noise covariance structurest of n(t) and fi(t), denoted by 

Rns and '? 
�S, are unknown positive definite matrices. Under the described assumptions, 

the PFML DOA estimators based on the four filtering pre-processors, for four pre- 

filtering reference signals of the form of Eq. (3.17), are described as follows. 

t Here, the noise covariance structure is the matrix which is a scaled version of the noise covariance 

matrix. The scaling factor is an arbitrary unknown positive scalar number. 
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3.2.1 PFML DOA estimation with the type-1 pre-filtering reference signal 

The type-1 pre-filtering reference signal rl (t) is given by 

rl (t) = sno(t) 

A [ii; 
i(t) 

, 
r1; 2 

(t) ... r,;, (t)], (3.18) 

The signal rl (t) is r(t) in Eq. (3.17) with p=d, A= Ids , Qn = 0, and n(t) = 0. To 

formulate the ML DOA estimator from the filtered data matrix Y, using this type-1 pre- 

filtering reference signal, we first provide in the following theorem a general ML DOA 

estimator based on the filtered data matrix Y using the pre-filtering reference signal r(t) 

of the form given by Eq. (3.17) with Q,, = 0. 

Theorem 3.1: Under the signal and noise condition as stated, the estimate of 0 is 

obtained by maximising the following likelihood function 

. C' (Y, Wpf, Rr , Rn ; 0, Rn, T) = 

Lk 
N^ L-N-ds 

ILRrI LRn 
1 ^-1 1x '-1 

L exp{-tr{ { (Y-AT)W 
. 

WPf(Y-AT) + Rn}. LRn }} (3.19) 
71 dNIN(L-ds)IR�I 

with respect to 9, R� t, and T, under the conditions that 0E 0"', where 0"' is the 

set of feasible parameter values, Rn is positive definite, and the Kx ds matrix T has the 

form given by 

T= RSrRr 1RrWpf (3.20) 

where 
i L-1 

Rr =L jr(t)r (t) 
r-0 

1 
MHMr (3.21) 

L 

t In this problem, k,, is an unknown parameter, not an ensemble averaged covariance matrix of a 

stochastic matrix. 
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and RS - EIs (t)rH (t) }R- E{ R }. The matrix Rn Eq. is given by ý- r- rn (3.19) 

Rn = R- YWPf R- 1 W- YH (3.22) 

By taking logarithms of both sides of Eq. (3.19) and neglecting unrelated terms, 

the ML estimates of 0 and T are alternatively obtained by minimising the following cost 

function 

1(0, T) = (Y-AT)W I 'WPf(Y-AT)H +R" (3.23) 

Proof: See Appendix B 

From Eq. (3.23), it is seen that any positive definite matrix Wpf yields the same 

ML estimate of 0. However, the cost function Eq. (3.23) is perhaps at its simplest form 

when WPf is chosen as 

W= R-'/2 
pf r (3.24) 

This choice of Wpf corresponds to the use of the Unitary filter in the pre-filtering step. 

With WPf as given by Eq. (3.24), the cost function Eq. (3.23) can be written as 

f(0, T) = 

where 

and 

Now, let r(t) = rl (t), we obtain 

where 

(Y-AT)(Y-AT)H +Rj (3.25) 

T= RSrR-'R1/2 (3.26) 

Rn =R_ YYH (3.27) 

T= TSRr/2 (3.28) 
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1 Rý, ri (t)rill (t) (3.29) 
L r=0 

which is equal to Rnc =- 
ISnc (t)Snc (t). 

Lt=0 

With this choice of the filter and the pre-filtering reference signal, the described 

ML estimator, which is based on the minimisation of Eq. (3.25), coincides with the 

exact ML estimator with known signal waveforms in [16-17], although the derivation in 

[16] is different from the one given here. Minimisation of Eq. (3.25) with respect to 9 

and T is, however, a computational intensive task. In [ 16-17], a somewhat simpler large 

sample cost function which is an approximation to Eq. (3.25) was derived and is given 

by 

f0(0, T) = tr{(Y-AT)HRnI(Y-AT)} (3.30) 

The above cost function is noted to be slightly different in form from the original 

cost function in [16-17], which is shown in Eq. (2.35). For the case of known noise 

covariance structure R�S, the exact (not asymptotic) ML estimates of 0 and T can be 

obtained by minimising Eq. (3.30), with Rn being replaced by Rns . In addition, because 

Rn as given in Eq. (3.27) is a consistent estimate of Rn, it was shown in [ 16] that the 

estimates of 0 and T, obtained by minimising Eq. (3.30), are asymptotically equivalent 

to the ones obtained under the assumption that R� or Rns is known a priori. 

When no knowledge of T is available, i. e., T is a completely unknown complex 

matrix, the ML estimate of 0 can be obtained by noticing that Eq. (3.30) has the same 

form as the DML cost function. Thus, the asymptotic ML estimate of 0 can be obtained 

by minimising the cost function similar to the concentrated DML cost function Eq. 

(2.24). However, if at least partial knowledge of F, is available, the estimation accuracy 

can be improved. Of special interest here is the case where TS has the form given by 
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Yý 0 

FS_ YZ 
(3.31) 

0 Yd5 

where yk, k=1, 
..., d, are the Kk x1 complex amplitude vectors. The case where Kk 

= 1, k=1, 
... , 

d, corresponds to a non-coherent source scenario, with the number of 

signals K= ds. When any Kk > 1, TS with the above structure can be found in a mixed 

scenario consisting of both uncorrelated (or partially correlated) and coherent signals. 
From Eq. (3.31), it is seen that under either of the two source scenarios, the number 

ds 

of the unknown complex parameters in FS reduces from Kds to Kk (= K). Note that, 
k=1 

sometimes further reduction of the number of the unknown parameters corresponding to 

TS is possible. For instance, if TS with the form Eq. (3.31) is also known to be a real 
ds 

matrix, there are Kk real rather than complex parameters which are unknown. 
k=1 

However, here yk, k=1, 
..., 

ds, are assumed to be unknown complex vectors. The 

case where additional information of Yk is known a priori was considered in [15-17]. 

Despite the reduction of the number of the unknown parameters in FS which has 

the structure given by Eq. (3.31), minimisation of Eq. (3.30) with TS of the form Eq. 

(3.31) can still be a computationally complicated problem due to the presence of the 

term RIi 2(R, i, 
12) 

in Eq. (3.28). Nevertheless, it is possible to obtain a computationally 

more efficient estimator by applying the Nulling filter instead of the Unitary filter in the 

pre-filtering step. With this filter type, 

P= 
Rnc 

Due to this filtering operation, the column vectors of Y can be expressed as 

Yk = Ak(ek)Yk + 8k, k= 1, 
... , 

dS 

where the Kx Kk sub-response matrices Ak (9k) 
,k=1, ... , 

ds, are defined by 

(3.32) 

(3.33) 
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[A, (01) A2(e2) ... Ad (eds)] = A(9) (3.34) 

From Eqs. (2.3,3.34), it is noted that 0= eT 1 oT """ od ]T. Later, the explicit s 
expression of Ak as a function of 9k will be dropped for notational convenience. In Eq. 

(3.33), the filtered noise vector ek is obtained from 

I 
ek = L-Ngk 

N= [n(O) n(1) """ n(L-1)]. IL 

(3.35) 

(3.36) 

Note that gk is the kth filter vector as given by Eq. (3.1). Because the filtering operation 

Eq. (3.35) is performed in the temporal domain, the filtered noise ek has the same 

spatial covariance structure as that of n(t). By noticing that 9k is a linear combination of 

ds sequences of the signals which are uncorrelated with n(t), ek = Oj, (1 /-\rL-) for large L. 

Lets assume at the moment that the noise covariance structure Rns is known. With this, 

the ML estimates of 6k and yk, given yk, are obtained by maximising the log likelihood 

function (with the unrelated terms being neglected) 

ek = -tr 
(Yk -AkYk)R; (Yk -AkYk)H 

) (3.37) 

with respect to ok and yk. Alternatively, the ML estimate of 9k 
, given yk, can be 

obtained from 

9k = arg min 
xý 

fl; k(9 ek EOk k), 
k=1, 

... , 
ds (3.38) 

where 

fl; k (ek) = tr{ P s, 2Ak 
Rnsl/2 yk. Yk 

, s'/2} 
(3.39) 

1=I_ R-1/2A AHR-IA -1 AHR-1/2 (3.40) PRnsý/ZAk 
N ns k(k ns k) k ns 

and OKk"1, k=1, ..., 
d, are the sets of feasible parameter values. As can be seen from 

the proof of Theorem 3.2 (to be given) in Appendix C, for up to a scaling factor, Rns in 
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Eqs. (3.39-3.40) can be replaced by its consistent estimate without affecting the 

asymptotic properties of the described estimator. For instance, Rns can be replaced by 

Rn =R- YRncYH (3.41) 

For large L, it is noted that R� = Rn + O, (1 /-, FL). In addition, the estimate 9k obtained 
by Eq. (3.38) is not affected by the scaling of R., (or R,, ). 

The estimator Eq. (3.38) was first derived in [16-17] (see also Eq. (2.40)) for the 

special non-coherent source case, i. e., Kk. = 1, for k=1, 
... ,K (= ds in this case). The 

estimator Eq. (3.38), under the more general case where JT has the form Eq. (3.31), will 

thus be referred to as the DEML (Decoupled Maximum Likelihood) estimator, the 

acronym first used in [ 16]. It should be noted, however, that although 9k ', obtained from 

Eq. (3.38), is the asymptotic ML estimate when yk is given, the estimates 9k ,k=1,.. . 

, 
d, 

, are not necessarily the asymptotic ML estimates for the given Y, obtained by 

minimising Eq. (3.30). Because here all of the column vectors of Y are given at the. same 

time, the estimator Eq. (3.38), which uses each of the column vectors of Y, one at a 

time, is thus sub-optimal. Nevertheless, it was proved in [16] for the non-coherent 

, 
(t) is composed of uncorrelated signals, the estimates 9k , source case (Kk = 1) that, if s�c 

k=1, 
..., 

d, which are obtained from Eq. (3.38) are also the asymptotic ML estimates 

for the given Y, and thus asymptotically statistically efficient under this condition. Later, 

it will be shown that this is also true for the more general case Kk > 1. It is also worth 

noting that, when compared with the estimator based on Eq. (3.30), the DEML estimator 

was found in [ 161 to yield only slightly inferior performance when s., (t) is composed of 

partially correlated signals. 

If required, in addition to the estimates of 9k 
,k=1, 

estimates of yk, k=1, ... , 
d, can be obtained from 

^H 1^1 ^H -1 Yk =( Ade; 
kRn ``ýde; k) 

ÄH Ü-1 
Yk 

.., 
ds 

, the DEML 

(3.42) 
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where Ade; k is the sub-response matrix corresponding to the DEML estimate 9k 
, which 

z is obtained from Eq. (3.38) with Rns being replaced by Rn . 

Asymptotic analysis 

In [ 16-17], the asymptotic properties of the DEML estimator were analysed. 

Results from similar analysis for the more general case where FS has the form Eq. 

(3.31), are summarised in the following theorem. 

Theorem 3.2: Under the described signal and noise model assumptions, the DEML 

estimate 9k 
, obtained from Eq. (3.38) with r(t) = rl (t) and F of the form Eq. (3.31), is 

asymptotically Gaussian distributed with mean 6k and the covariance matrix 

1 

Ef 888BT_ 
ýRný Ik, k Re if D xR -1i2Pl j? -1/2- -ii2D 0 -H T lý k k)( k ký - 2L 1kj? R_1/2ý nO 

ýYkYký 
nk 

k= 1, ..., dd (3.43) 

where PR 
12; 

is the null projection of the column space of Rn 112Ak, Rn =R- ARSA H 
nk 

= R,, 3 

D= 
aak; l aak; 

2 
k aek; 

l 
0k; 

1 
aek; 

2 
6k; 

2 

T [ak; 
l and 

[Bk; 
1 Bk; 

2 ... ek 
Kk = ek' ak; 2 ... 

aak; Kk 
... aek; 

Kk 
0k; 

Kk 

ak; Kk] = Ak 
. 

(3.44) 

Proof: See Appendix C. 

As previously noted, the DEML method is also the asymptotic ML estimator if 

snc (t) is composed of uncorrelated signals. This implies also that the DEML estimator is 

asymptotically statistically efficient. This property of the DEML estimator was proved 

in [ 16] for the special case where TS is a diagonal matrix. With slight modification of 

the CRLB of the DOA estimates with known snc (t), derived in- [ 16], the bound for the 

more general case where TS has the form Eq. (3.31) is given by 
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CRLB (8) =2L Re-It { (D HRH 1D) O (T 
SRncr 

)T }- (PH V_10 } (3.45) 

where 6 is given by Eq. (E. 9) in Appendix E; 

= (`4 H Rn 1D) O (I'S&cI'0 )T (3.46) 

= (A HRn lA) 0 (F0Rncrö )T (3.47) 

Ix, 0 

F_ 
1x2 

O (3.48) 

0 Ix 
ds 

and TS is TS which corresponds to yk 
,k=1, ds. If sic (t) is composed of 

uncorrelated signals, for large L, 

CRLB(ek) 

2L 
Re-1 {{ (Dk Rn 1D 

k) 0 ([RncIk k 
(YkYk )T) 

J- 

i 
(Dk Rn lAk)(Xk Rn'Ak)-1(Ak Rn 15k) ® ([Rnc ]k 

k 
(Yk Yk )T) 

I1 

[Rflc]1k 
Re-iJ rDxR-1i2Pi -iiz- - -x Tl 

2L l`k° Rn U2; fk 
Rn Dk) 0 (Yk Yk) I (3.49) 

which coincides with Eq. (3.43) ([Rfl, Jk, 
k = Al ]k, 

k 
in this uncorrelated-source case). It 

is thus concluded that the DEML estimator with TS of the form given by Eq. (3.31) is 

asymptotically statistically efficient if snc (t) is composed of uncorrelated signals. 

Discussions 

Some interesting remarks are given below. 

1. The derivation of Eq. (3.23) is based on the assumption that the signal s(t) is 

Gaussian distributed. An alternative derivation of Eq. (3.23) in [16], however, does not 

make any statistical model assumption of s(t). These two different derivations result in 

the same cost function because, in both approaches, snc (t) is assumed known a priori. 

Thus, any assigned probability density function which has non-zero value for any 
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realisation of st, c (t) (and of s(t) through the relation Eq. (3.7)), will result in the same 
cost function Eq. (3.23). An example of such a function is the Gaussian density 
function. 

2. From Eq. (3.43), with Is as given by Eq. (3.31), it should be noted that the 

performance of the DEML method is largely unaffected by the angular separation 
between any two non-coherent sources. The reason for this can be understood by 

noticing that the filtered data vector yk, obtained by using the Nulling filter (Wpf = Rn' ) 

with the type-1 pre-filtering reference signal rl (t) = s(t), can be written by Eq. (3.33). 

From Eq. (3.33), as a result of null filtering, Yk is entirely free of terms due to other non- 

coherent signal components of snc (t) . Thus, the estimation accuracy of the DEML 

estimate 9k is essentially unaffected by the directions of other non-coherent signalst. It 

should be noted that this property of the DEML estimator remains even if R�c is not a 

diagonal matrix. However, when Rnc is non-diagonal, two filtered noise terms ek and el, 

k#1, are correlated. As a result, 9k, k. = 1, 
... , 

d, which are obtained from Eq. (3.38), 

are no longer the asymptotic ML estimates for the given filtered data matrix Y. 

Nevertheless, as noted before, analytical and simulation results in [16-17] suggest that 

the performance of the DEML estimator is only gradually degraded when the correlation 

between the signal components of s�c (t) is increased. 

3. The Null pre-filtering operation is performed entirely in the temporal domain. 

Thus, as shown in [ 16-17], the DEML method can estimate more source directions than 

those achievable by other existing methods such as the DML and SML methods. Note 

also that, unlike this temporal pre-filtering, the beamspace processor, which is based on 

spatial filtering, does not have this property. 

t The DEML estimate 9k is slightly dependent on other non-coherent source directions through the use of 

the estimate Eq. (3.41) of the noise covariance matrix. 
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4. Unlike most existing DOA estimators, the DEML method does not require the 
knowledge of the spatial noise covariance structure. Thus, it can be used in an unknown 
spatially correlated noise field. 

3.2.2 PFML DOA estimation with the type-2 pre-filtering reference signal 

The type-2 pre-filtering reference signal r2(t) is given by 

r2 (t) = snc (t) + n(t) 

1T 0 [r2; 
' 

(t) r2; 2 
(t) ... r 2; d, 

(t)J (3.50) 

This is the pre-filtering reference signal Eq. (3.17) with p=d, A= Ids , and Qn = 0. 

Due to the presence of the noise term n(t) in r2 (t), there is insufficient information to 

form the Nulling filter to decouple ds non-coherent signals, as was the case when the 

type-1 pre-filtering reference signal is given. Although the asymptotic ML cost function 

Eq. (3.30) (with the Unitary filter) is still applicable in this case, high computation may 

be required to obtain the DOA estimates, subject to the constraint on the structure of T, 

which is given by 

T= FsRncRr21Rr22 (3.51) 

where 
1 L-1 

Rr2 =- r2 (t)r2 (t) (3.52) 
L t=0 

The expression of Tin Eq. (3.51) is obtained from Eq. (3.20) with Wpf = 
k-1t2 and r(t) 

= r2 (t) . 
If s�, (t) is composed of uncorrelated signals, however, a simpler sub-optimal 

estimator can be obtained by filtering the observed data by the Matched filter. With this 

filter type, WPf is a diagonal matrix of which the diagonal elements are given by (see Eq. 

(3.12)) 

1 L-1 
[lvpf]kk 

L 
r2; k(t) 

t-0 

21-1/2 
, k= 1, ... , dS (3.53) 
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With this filter type, each of the filtered data vectors yk, k=1, 
..., d, has the form 

given by Eq. (3.33), with ek = Op (1 /NIL-) for large L due to the assumption that snc (t) is 

composed of uncorrelated signals. Note that, in this case, the covariance structure of 

each ek is not Rns In addition, two noise vectors ek and e1 generally have different noise 

covariance structures. Given Ak and yk 
, the spatial covariance structure of each of ek, k 

= 1, 
... , 

dS, is a scaled version of 

H Rn; 
k =R- (CoITr2; 

k 
)21Rnc1k, 

k 
AkYkYk 

`4k 
H (3.54) 

where 

corrr2; k = 
1EISnc; 

k 
(t)r2; 

k 
(t) I 1. [Rnc ]k, lk2 rRr2 lk, 

k2 

_ [Rnc ]kýk [R 
r2 

]k, k2 (3.55) 

In a similar manner to the derivation of the DEML estimator, given yk, the ML 

estimate of 9k can be obtained from 

9k = arg min f2; k (6 
ek), 

k=1, 
... , 

ds (3.56) 
kE ()Kk XI 

where 

fi; k (ek) = tr{ Pl 
1/2A 

Rn; k 
2YkYk Rn; k 

2} (3.57) 
Rn, k k 

A 

and Ak is as defined in Eq. (3.34). The matrix R.,; k is a consistent estimate of Rn; k or its 

scaled version. Here, Rn; k is chosen as 

H 

n, k =R- YkYk (3.58) 

As for the case of the DEML estimator, the above estimator is sub-optimal 

because it uses each of the data vectors yk, k=1, ... , 
d, only one at a time. For ease of 

reference, we will refer to the estimator Eq. (3.56), based on the data filtered by the 
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Matched filter, as the PFML-2 methods. 

Asymptotic analysis 

Due to the similarity between Eqs. (3.56-3.58) and Eqs. (3.38-3.39,3.41), the 

asymptotic properties of the PFML-2 estimator can be obtained in a similar manner to 

those of the DEML estimator, and are summarised in the following theorem. 

Theorem 3.3: Under the described signal and noise model assumptions, with r(t) = 

r2(t), TS as given by Eq. (3.31), and s�,, (t) being composed of uncorrelated signals, the 

PFML-2 DOA estimate 9k is asymptotically Gaussian distributed with mean 9k and the 

covariance matrix 

Etf(e 
_0 

1(e 
_e 

lT i_ "ncIk, k Re-1 I (DHR-1/2p1 R -1/2D J ®(YkYH)T }, 
k kJ k kl J2kn; k I/2 n, k kk 2L(corrr 

. k) 
Rn; k Ak 

2, 

k=1, ... , 
ds (3.59) 

where Rr2 = E{ Rr2 }, PR 
1/2X 

is the null projection of the column space of Rn; k 
2Ak, 

n: k k 

and Dk, Rn; k, and corrr2; k are given, respectively, in Eqs. (3.44,3.54,3.55). 

Proof : See Appendix D. 

From Eq. (3.59), it is seen that the estimation Mean-Square Error (MSE) is 

inversely proportional to (corrrz; k )2 and [RFC ]k, k . 
The value of corrr2; k measures the 

degree of correlation between the kth component of the pre-filtering reference signal 

r2(t) and the kth signal component of sn, (t), which, in this case, is uncorrelated with 

other signal components in snc (t) . 
The value of corrr2; k lies between 0 and 1, with the 

higher value indicating higher correlation between the two signals. It is seen from Eq. 

(3.59) that corrr2; k = 1, which corresponds to the case where n(t) = 0, achieves the 

t The DEML method should have been named the PFML-1 method. However, the acronym 'DEML' is 

chosen instead to acknowledge the original work. In fact, the PFML-2 estimator may have been called 

instead the DEML-2 method, due to its similarity to the DEML method. 
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lowest estimation error. Note, however, that the estimation accuracy of the PFML-2 

estimator can not be better than that of the DEML method, even for this best signal 
correlation case. This can be seen by first noticing that 

Rn; 
k > Rn 

with equality for the case where ds =1 and n(t) = 0. To prove the above performance 

order, it will be shown that 

Dk Rn 1/ 2P1112- R-1/2D >D HR 1/ 21 R -i/2D ]Zn qk nk-kn; k R-uzt n; 
1/2D- k 

n, k k 

(3.60) 

(3.61) 

Let Bk be the matrix whose column vectors form the null space of Ak . Thus, 

Rn 1/2P' Rn 1/2 
Rn Ak = 

Rk (BkHRn Bk 1 Bk H (3.62) 

and 

-1/2l 1/2 Rn; k p 
"2- 

Rn; k Rn; k `4k 
= Bk Oi Rn, kBk 

-1 Bk (3.63) 

Because Rn; k > R� 
, and by the matrix inversion lemma (see, for example, Appendix 

A. 2.4 of [44]), we obtain 

Bk (Bk Rn'kBk l-1 Bý 
= 

Bk (Bk RnBk )-1 Bk 
- 

BkCBk (3.64) 

where C is a suitable positive semi-definite matrix. By multiplying both sides of Eq. 

(3.64) by Dk on the left and Dk on the right of each side, the inequality (3.61) is 

proved. Next, notice that the term (yk yk )T in Eq. (3.43) and in Eq. (3.59) is positive 

semi-definite. Thus, for large L with s,,, (t) being composed of uncorrelated signals, it is 

seen that the MSE of each of the PFML-2 DOA estimates (each of the diagonal 

elements of the error covariance matrix Eq. (3.59)) using either rl (t) or r, (t), can not be 

smaller than the MSE of the estimate using the DEML method with the pre-filtering 

reference signal rl (t). 
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In addition to the described performance comparison, it should be noted that, 
unlike the DEML estimator, the MSE of 9k using the PFML-2 estimator is dependent of 
the directions of the signals which are uncorrelated with r2; k (t) and Snc; k (t) . 

This can be 

seen by observing that 

ds 

n, k = Rn + It [Rncl11(ArY1 A7) }+{ (1- (Corrr2; k)2) 
[RncIk, 

k j{ `4kYkYk `4k 
} 

1=1; 1*k 

(3.65) 

As a result, 

D HR -1/2Pý R=D HB B HR 
.B -1 BH k n, k u2 n, k kkkkn, k)k Dk Rn. k fýk 

_____d_ 
= DHB BHR B +BHf R]A -H AH B -1BHD (3.66) kklknkkiL nc 1, ll Yl iýl lkkk 

1=1; 1#k 

where Bk is as previously defined. Note that, the last term in Eq. (3.65) disappears in 

Eq. (3.66) because Ak Rk = 0, by definition. From Eq. (3.59) and Eq. (3.66), the 

dependence of the estimation error to all source directions is seen. 

3.2.3 PFML DOA estimation with the type-3 pre-filtering reference signal 

The type-3 pre-filtering reference signal r3 (t) has the form given by 

r3 (t) =A Snc (t) + 1Z(t) 

1T 
A [; 

i 
(t) r3,2 (t) ... r3; dS 

(i)J (3.67) 

where A is an unknown complex square matrix and is of full rank. When compared with 

Eq. (3.17), r3(t) is r(t) with p=d, , and Qn = 0. Because A is not known, neither the 

Nulling filter nor the Matched filter can be formed. Based on the data filtered by the 

Unitary filter using r3(t), the DOA estimates can be obtained by minimising Eq. (3.25) 
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or the asymptotically equivalent cost function Eq. (3.30). With this type-3 pre-filtering 

reference signal, the conditional mean 

E(YI Rr3, Wpf = R-1/2, A, A, Fs) =A FS RncAHRr3 Rr3 WPf 

= ATSR, 
ýcAHRr1R1/2 33 

A AT (3.68) 

where 

Rr3 
1 L-1 

3 Mr3 (t) (3.69) =L -Ir 
r-o 

and Rr3 =E{ Ri. 
3 

}. Except for the case where A is a diagonal matrix, minimisation of 

either Eq. (3.25) or Eq. (3.30) with respect to 0, and T of the form described in Eq. 

(3.68), can be a computationally intensive task. However, a simpler minimisation 

problem can be obtained by treating T as a completely unknown complex matrix. By 

doing so, given Y, the ML estimate of 0 is 

8= arge ön f3(O) (3.70) 

where 

f3 (9) = tr{ PR 
1/2Aj-1/2yyHj1/2 

} (3.71) 
n 

and Rn is as given by Eq. (3.27). The estimator Eq. (3.70), based on the data filtered by 

the Unitary filter, will be referred to as the PFML-3 method. 

Asymptotic analysis 

The following theorem provides the asymptotic properties of the PFML-3 

estimator. 
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Theorem 3.4: Under the signal and noise model as stated, the estimate 9, obtained by 
Eq. (3.70) with r(t) = r3 (t), is asymptotically multivariate Gaussian distributed with 

mean 0 and the covariance matrix 

E{ (8 - 8)(B - 8)T }-1 Re-1{ DHj? 1/2pj? -1/2D p (TT H)T } (3.72) 2 1. Rn A 

where T= i' RncAHR-3/2; kn=R- (AT)(AT )H, and PR 
112X 

is the null projection 
n 

of the column space of kn 1/2A 
. 

Proof See Appendix E. 

Note that, unlike in the DEML method, R� in the above theorem is generally not 

equal to Rn. However, R� can be replaced in Eq. (3.72) by Rn. This can be shown by 

using the argument of the proof of Theorem 3 in [19]. Alternatively, this equivalence 

can be proved by using a slightly more general result, given in the following lemma. 

Lemma 3.1: Let a positive definite matrix C=B+F, where B is positive definite, 

and F is a matrix whose column (or row) vectors lie within the space spanned by the 

column (or row) vectors of an arbitrary finite-value matrix A (or AH ). Then, 

C-112 pC11/2AC-112 = B-1/2P 
1/2AB-1/2 (3.73) 

Proof: The result can be proved by the same argument used in Proof of Theorem 3 in 

[19]. 

To gain more insight into the effect of the noise term n(t), we next express R, 
3 

as 

Rr3 = ARncA H+ Rn 

where R� = E{n(t)nH(t) }. By using the matrix inversion lemma, we obtain 

(3.74) 
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`4HRr31`4 - A"J lA 
- AHRnIA(Rnc +AHRnlA)-IAHRnlA 

(Rnc + A-"kn (AH)-' )-1 (3.75) 

Next, by using Eq. (3.75), TT H can be expressed as 

TT H=F RmAHR-IARnc-H 

= PSRnc (Rnc + A-1Rn (AHý-1ý-1 RncrH 

= Ts (Rnc + A-1Rn (AH)-1)(Rnc ý' A-'& ýAH)-ý )-'RfCI'H - 

J A-'& ýAH -ý (Rnc + Ä-ýRn (A")-l)-l RSC ' 

= TS{Rn, -(AHRnIA+Rnl)-1}TH (3.76) 

Because R�c and AHRn lA are positive definite, 

Rnc > Rnc - (AHRn lA + Rný )-t (3.77) 

If R. is allowed to approach a zero matrix, the inequality (3.77) will approach 

equality. Because T= TSRnCA HR-112 
, for the case where Rn = 0, it is seen that TTH= 

FSRncTH. Thus, from Eqs. (3.76-3.77), 

TT HI. 
n=o 

> TT Hl 
nn >o 

(3.78) 

which, in combination with Eq. (3.72), implies that 

E{ (e-e)(e-0)T1 IRn 
_o < E{ (e-e)(e-e )T 1 1Rn 

>o (3.79) 

Discussions 

First, the relation between the described PFML-3 estimator and the IV-based 

DOA estimators [ 18-20] should be noted. There have been two versions of the IV-based 

DOA estimators, namely the optimal temporal and spatial IV DOA estimation methods 
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[20]. In both the optimal SIV (Spatial Instrumental Variable) and optimal TIV 

(Temporal Instrumental Variable) DOA estimators, the instrumental variable vector of 

the similar form to that of r3 (t) is assumed available. For the optimal SIV estimator, the 

spatial instrumental variable vector is the data observed by the secondary array whose 

additive noise is uncorrelated with that of the primary array, where the actual DOA 

estimation takes place. In the optimal TIV estimator, the temporal instrumental variable 

vector is the time-delay version of x(t). Despite the difference in approach, it was shown 

in [20] that the optimal TIV and SIV estimators are mathematically equivalent. It will be 

shown that the two optimal IV-based methods can be cast in the form of the PFML-3 

method. To show this, let the instrumental variable vector s; v 
(t) be obtained under one 

of the following conditions. 

a) The Mx 1 vector s; v 
(t) is the output of the secondary array of M sensors. The 

signal component at this second array is fully correlated with that of the primary array. 

However, the noise components at the two arrays are uncorrelated. In addition, the 

secondary array response matrix is assumed to be composed of K independent column 

vectors. 

b) The Mx 1 vector s;, (t) is composed of M, delayed vectors of the observed data 

vector x(t). With M=N. M, it is given by 

s (t) = 
[xT(t 

_ 1) xT (t -2) ... xT (t _ MT )]T (3.80) 

under the assumption that the signal s(t) is temporally coherent, while n(t) is temporally 

uncorrelated. 

To prove the equivalence of the PFML-3 method and the optimal IV-based 

method with s;, (t) being obtained under one of the above two conditions, consider first 

the optimal IV-WSF (Instrumental Variable-based Weighted Subspace Fitting) cost 

function [ 191 
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.f v-wsf 
(e) = tr{ PR , /zA 

k-1/2YvYH k-112 } (3.81) 

where Y; 
v = UjvA 

;v with U; 
v and A' being obtained from the following S VD 

decomposition 

1/2 Riv = Rlv RS, 
ý 

= U11V H (3.82) 

where 

Riv =L 
t=o 

x(t)SH(t) (3.83) 

1 L-1 

;v_- 
I5;,, (t)S H (t) (3.84) 

L r=0 

The matrix U;, is composed of the ds left singular vectors which correspond to the 

diagonal matrix A 
;v of the ds largest singular values. The difference between the 

optimal IV-WSF cost function and the PFML-3 cost function is that the former cost 

function uses Y, and R instead of Y and Rn in the latter cost function. From Lemma 

3.1, however, it is seen that either Rn or R results in the same asymptotic properties of 

the DOA estimates. In addition, it will be shown that 1 can, in fact, be formulated 

under the PFML framework with the pre-filtering reference signal of the -form Eq. 

(3.67), by applying certain spatio-temporal filtering to the instrumental variable vector 

s; v 
(t). To see this, notice that s; v 

(t) can be expressed as 

S; v 
(t) = ASnc (t) + n; v 

(t) 

K 
where A is a full rank-ds matrix, E{n;, (t)n (t)} _ 

E{Snc (t)nH (t)} = E{Snc (t)nT (t)} = 0. 

(3.85) 

Ein;, (t)nT (t)} = 0, and 
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Next, let 

r3(t) = HHsiv (t) (3.86) 

where 

HR 
IV IV IV 
1H (3.87) 

With H as given by Eq. (3.87), we obtain 

r3 (t) = UJHJ? R_lsiv (t) (3.88) 

which can be written in the form Eq. (3.67) with A= UH; 
vRS 

ýA and n(t) _ 

U; ýR; 
V1 n; v 

(t). Based on r3 (t) in Eq. (3.88), we obtain the filtered data matrix 

Y= UivAj, (3.89) 

which is recognised as the optimal IV-WSF data matrix Y;,. Thus, it is concluded that 

the optimal IV-WSF method, with s; v 
(t) being obtained under one of the above 

conditions, coincides with the PFML-3 method with r3(t) being obtained by certain 

spatio-temporal filtering of s;, (t), as described in Eqs. (3.86-87). Note that, A in r3 (t) 

which is obtained by Eq. (3.88) is data dependent. In addition, it is suggested that, when 

additional information of the signal sources or noise is available, there may exist a better 

choice of the filter matrix H (than the one in Eq. (3.87)) which, by filtering s;, (t) by H 

in Eq. (3.86), gives r3(t) with higher signal to noise ratio. For instance, if approximate 

information of source directions is available, a beamspace pre-processor based on this 

prior knowledge may be applied in place of (or in combination with) U; 
v 

in Eq. (3.87). 

By doing so, improved noise rejection capability of H may be gained. Note also that, 

due to the generality of the form Eq. (3.67), the optimal IV-WSF method can still be 

cast as the PFML-3 method for the case where the signal component in s;, (t) is not fully 

correlated with s(t), by a suitable choice of A and the noise term n(t) in Eq. (3.67). 
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In addition to the above discussion, some interesting remarks are next given. 

1. It was shown in [ 19] that, as performed in Eq. (3.81), the use of the data 

covariance matrix R (or its consistent estimate) in place of the noise covariance matrix 
Rn (or its consistent estimate) does not affect the asymptotic properties of the DOA 

estimates. With the previously shown relation between the IV-based methods and the 
PFML-3 method, it is seen that, without affecting the asymptotic properties, the matrix 

R in the optimal IV-WSF cost function Eq. (3.81) may also be replaced by Rn (= R- 

'TV' in this case). On the other hand, R may as well be used in place of Rn in the 

PFML-3 cost function Eq. (3.71). The use of i? instead of Rn has the advantage of being 

slightly simpler to compute. However, as noted in Chapter 6, the use of Rn instead of R 

in the best-case PFML-3 method (n(t) = 0) gives slightly improvement in the 

estimation accuracy at low SNR. It also results in faster convergence rate when the 

IQML algorithm is used to compute the DOA estimates. Because the IV-based methods 

are related to the PFML-3 method as shown before, these improvements for the IV- 

based methods when using R. instead of R are also expected. 

2. Because the PFML-3 method does not assume any -prior knowledge of T, its 

performance is expected to be inferior to those of the DEML and PFML-2 methods 

when F has the structure shown in Eq. (3.31), and s,, c(t) 
is composed of uncorrelated 

signals. This remark will be confirmed by results from the performance study, discussed 

in Chapter 6. 

3. As for the case of the DEML and PFML-2 methods, the PFML-3 method is 

applicable when the noise covariance structure is not known. However,. unlike the 

DEML and PFML-2 methods, the number of source directions which can be estimated 

by the PFML-3 method is less than the number of array sensors. 
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3.2.4 PFML DOA estimation with the type-4 pre-filtering reference signal 

The type-4 pre-filtering reference signal is given by 

r4(t) = ASnc(t) + Qnn(t) 

T 
A [i;; 

i(t) r4; 2(t) ... r4; ds(t)l (3.90) 

where the ds x ds matrix A is assumed to be of full rank. The complete knowledge of A 

may not be available. However, under a certain situation to be described in Chapter 4, A 

may be well approximated as a diagonal or block-diagonal matrix. Lets assume at the 

moment that Qn(t) = 0. With this, the formulations of the DOA estimators, based on 

three different configurations of A, TS, and sec (t), are considered below. 

CASE-1: A is an unknown full-rank matrix; sr,,, (t) is composed of non-coherent signals, 

and I, S 
is of full rank. 

In this case, r4(t) is a special case of r2(t) with ii(t) = 0. Thus, with the Unitary 

filter being employed in the pre-filtering step, the PFML-3 estimator should be applied. 

CASE-2: A=A, where A is an unknown diagonal matrix; s,,, (t) is composed of 

uncorrelated signals, and FS has the structure given by Eq. (3.31). 

In this case, either the DEML estimator (with the Nulling filter) or the PFML-2 

estimator (with the Matched filter) may be applied. However, in practice when A is only 

approximately diagonal or Q�n(t) ý 0, the PFML-2 estimator is preferred because, from 

empirical study, the use of the DEML estimator in this case generally results in poorer 

DOA estimates than those obtained by the PFML-2 estimator. 

CASE-3: A=A, where A is a block-diagonal matrix with known structure, and sno(t) 

is composed of uncorrelated signals. The matrix TS is composed of block matrices. 

Let A be written as 
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Ä1 

A2 

0 

0 
(3.91) 

AKc 

K, 

where Ak are the Kk x Kk matrices of known dimensions, and Kk = ds 
. Under this 

k=1 

condition, the Unitary-Matched filter may be employed. With this filter type, WPf (t) is 

given by Eqs. (3.13-3.14), with 

Mk = IL . 
ýr4; 

k (0) r4; k (1) """ r4; k (L -1)] 
H 

,k=1.... , Kc (3.92) 

where r4; k, k=l.... 
, 

K, are obtained by dividing r4(t) into KK subvectors of length 

Kk each, i. e., 

[r r2... r4 K]= r4 (t) (3.93) 4,1 

Based on this filter type, in a similar manner to the formulations of the PFML-2 and 

PFML-3 estimators, a ML DOA estimator can be formulated from each of the Nx Kk 

filtered data matrices Yk, k=1.... , Kc, which are defined by 

[i', Y2 """ YK I=Y (3.94) 

Because Q�n(t) = 0, the conditional means of Yk, k=1.... , K, are 

E{Yk 1 Rr4, 
k, 

1' 
f; k = Rr41k2, Ak(Bk), I'S} = Ak(ek)Tk (3.95) 

rs; i 0 

rs = 
rs'2 

(3.96) 

0 FS, K. 

T=TR HR-1 R1/2 (3.97) k s, k nc; k k r4, k r4; k 

1 L-1 

R-r. t rH t (3.98) 
r4; k -L -, 4, k 

(4k 

k=o 
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K, 

where TS; k, k=1, 
..., K, are the Kk x Kk matrices, I Kk = K, and Rr 

:k_ k=1 
E{r4; 

k(t)r 
k(t) }, Rnc; 

k = E{ snc; k(t)SnC; k(t) }. The matrices Ak are as given by Eq. 
(3.91). 

The Kk x1 vectors Snc; k (t) and the Nx Kk sub-response matrices Ak (9k ), k=1, 
... , K, 

are as given by 

[`41(01) 
A2(e2) ... AKc(OK`)] = A(O) (3.99) 

[s; 

i(t) Snc; 2 (t) ... Snc; Kc (t)] 
T= 

Snc (t) (3.100) 

From Eqs. (2.3,3.99), it is noted that 0= [eT o""" oT ]T 
, where 0k are the Kk x1 

vectors. As before, the explicit expression of Ak as a function of °k will later be 

dropped. Based on Yk, the ML estimates of 9k, k=1, 
... , K, are given by 

6k = arg 
ek 

min 
X, 

f4; k(Bk), k= l,... , Kc 

where 

f4; 
k 

(Bk) = tr f Pl 
v2 

Rn; k 2YkýHRn; 
k 

2} 

Rn; k Ak 

R, k =R- YkY H 
n ;k 

(3.101) 

(3.102) 

(3.103) 

The above estimator, which is based on the data filtered by the Unitary-Matched 

filter, will be referred to as the PFML-4 estimator. By assuming that Qn(t) = 0, the 

asymptotic analysis of the above estimator is similar to those of the PFML-2 and PFML- 

3 estimators. It can be seen that the above estimator is asymptotically unbiased. Under 

the assumptions that Qn(t) = 0, A=A, with A and TS as given by Eqs. (3.91,3.96), 

and snc (t) is composed of uncorrelated signals, the asymptotic error covariance matrices 

of the PFML-4 DOA estimates 9k, k=1, 
... , 

K, are given by 

J^-T 1f H 1/2 1 1/2- -H )T El (ek 
- 

ek)(ek eký }= 
2L 

Re l (Dk Rn; k R-112A k-1/21i Dk) ® (TkTk }' 
n: k 

k=1, ... , K, (3.104) 
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where Ak = Ak (9k) (see Eq. (3.99)), 

Tk = TS; kRnc; kAk Rrä k (3.105) 

Dk = 
aak; l 

_ 
aak; 2 aak; xk 

_ (3.106 aok; 
l 

6k; 
l (ýBk; 2 

9k; 
2 aEk; 

Kk 
0k; 

Kk 

[Ok; 
1 

T 
and 6k; 

2 ... ek; 
Kk 

1= ek [ak; 
i ak; 2 ... ak Kk 

1= Ak 
'kk= R- ykykH with 

Yk=Ak1. 

When Qnn(t) # 0, the bias term Eb exists in the conditional mean of Y. For the 

case of the Unitary filter, 

E{ Y1 Rr4 
, Wpf = R-ä/2, A, A, TS } = AT + Eb (3.107) 

where 

T = FSRfCAHR-äR1/2 (3.108) 

E=R 
-HR-1 

Rli2 b nn r4 r4 

1 L-1 
Rr4 =Ll r4 (t)r4 (t) 

t-0 

(3.109) 

(3.110) 

When A is only approximately diagonal or block-diagonal, the bias term Eb in 

the data filtered by either the Matched filter or the Unitary-Matched filter, is due to both 

Q�n(t) and A, where A=A-A with A being diagonal or block-diagonal. If sr, c(t) 
is 

composed of uncorrelated signals and A is diagonal, by using the Matched filter, the 

conditional means of the filtered data vectors yk, k=1, ..., 
d, are given by 

lr -1/2 
ElYk I[Rr4] ýWpfJýk=[R, 

lkk )A, 
A, A, Fs} = Aktk + 

`EbIk, k, k 

k=1,..., ds (3.111) 

where 
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tk Yk [Rnc, 
k, k 

[AH, 

k k 

fRr4 -1 1/2 
3.112) 

L Jk k 

[k4 ]k, 

k 

-1 1/2 -1 1/2 [Eb]k = ATSRnc AH [Rr4 ] [Rr4 Ik, 
k 

+ Rn [QI 
k 

fRral 

ral (3.113) 
k k, k L Jk kJk, k 

and F, Yk , are as described by Eq. (3.31). 

For the case where s,, c 
(t) is composed of uncorrelated signals and A is block- 

diagonal with the structure shown in Eq. (3.91), the conditional means of the filtered 

data matrices Yk, k=1, ... , Kc, obtained by the Unitary-Matched filtering, are given by 

E{ Yk I Rr4; k, Wpf; k = Rr41k2 A, A, A, FS }= AkTk + Eb; k, k=1, 
... , Kz (3.114) 

T=TR ÄHR-' R1/2 3.115k s; k nc; k k r4; k r4; k () 

Eb; k = ATSRnCAkRr-'; kRr4 
k+ 

RnQ:; kRr4; kRr4 
k 

(3.116) 

where F and Ts k are as described by Eq. (3.96). The matrices Qn; k and Ak are given by 

[Qn; 
l 

Qn; 
2 ... Qn; 

KK 
]T 

= Qn 

IT [A, A2 
... ÄK =Ä 

where Q 
l; k ,k=1, ... , K, are the Nx kk matrices, and Ak, k= 1, 

ds x Kk matrices. 

(3.117) 

(3.118) 

K, are the 

Because Eqs. (3.107,3.111,3.114) have the same mathematical form, the 

following discussion based on the Unitary filter case can also be applied to the other two 

filter cases. From Eq. (3.107), without the knowledge of the bias term Eb, the DOA 

estimates using the filtered data matrix Y are expected to be biased, even for large L. 

When at least an approximate E, to Eb is available, the estimation bias can be reduced 

by substituting Y by the bias corrected data matrix 

Ybc = Y- Ec (3.119) 
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The bias term in Yb, is equal to (Eb - E,, ), which can be smaller than Eb (in a 

matrix norm sense) if Ec is close to Eb . In the next chapter, we will show how Ec can 

be obtained in practice. 

An exact knowledge of Eb is generally not available. An immediate question is 

that how the estimation performance is affected by this bias term. Only the case of no 

correction term EE needs to be considered. In the following, we provide the asymptotic 

bias analysis for the estimate of 0. Results from the following discussion, which deals 

with the data matrix Y with no bias correction term, can be equally applied to Ybc by 

substituting Eb by (Eb - Ec ). 

Asymptotic analysis 

The asymptotic condition in the following theorem on the asymptotic estimation 

bias is referred to the case where the bias term Eb is sufficiently small, and the additive 

noise term in Y, denoted by E., is negligible when compared with Eb, all in the 

Frobenius norm sense, say. Note that, the condition as described should be interpreted in 

a probabilistic sense. Let E. = E. / -j-L, and Eb = Eb /N Z7, 
where En and Eb are 

independent of L and L. The described asymptotic condition is met by letting L -4 C'O 

with L approaching infinity faster than Lt. Under this condition, the. asymptotic bias of 

the DOA estimate 0 by the PFML-3 estimator with r(t) = r4(t) is given below. 

Theorem 3.5: Under the described condition, the asymptotic bias of the PFML-3 

I 
estimate 0 with r(t) = r4(t) is given by 

8= Re-'I (D xR ii2 pl _1/2D) ® (TT H ST 1. Re{ { (D HR 112 pi -v2 0 
nRn 

n R-" ARnnR- 
nn 

(EbT H)T} IN } (3.120) 

where 9=0-0, Eb = RýQH Rrä12, T=F RncAHRýä'2, and Rn =R- 17Y H with 

The idea of this asymptotic condition setting is adapted from [45]. 
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Y= AT+Eb 

Proof : See Appendix F. 

(3.12 1) 

For sufficiently small Eb, by letting L -> °° at the same rate as L, the asymptotic 

error covariance matrix of the estimate 0 using the PFML-3 estimator with r(t) = r4(t) 

can be obtained as a combination of 00T , and the right hand side of Eq. (3.72) which is 

based on T= FSRnCAHRTä/2, and Rn =R- YY-H with Y as given by Eq. (3.121). 

For the case of the PFML-2 estimator with r(t) = r4(t), applied under the 

assumptions that s�` (t) is composed of uncorrelated signals and A is diagonal, the 

asymptotic bias of the estimate 9k can be obtained from 

B Re-iJ D xR -ii21,1 R -ii2D OttHT Reff D HR -1/2 p± R -112 0 k- 1kn, k R 1/2; n, k k) kiikn, k R 112 n, k 
n, k k mk k 

where 9k = 6k 
- 

9k 
, 

([Eb ]k ýk )T }IN} (3.122) 

[b]k =A TSRfý AH 
k 

fRr4 -1/2 + Rn [Q'] 
nk 

Rr4 (3.123) 
Jkk Jk, k 

-1/2 
tk Yk [Rnc ]k, 

k 
[AH, 

k, k 
IRr4 

I 

kk 
(3.124) 

and Rn, k =R- yk yk with yk = Aktk + {b]k. 

The above asymptotic formula can be derived in a similar manner to the 

derivation of Eq. (3.120). In addition, as in the case of the PFML-3 method, for 

sufficiently small [EbIk, the asymptotic error covariance matrix of the estimate 0k using 

the PFML-2 estimator can be obtained as a combination of 9k 9k 
, and the right hand side 

of Eq. (3.59) which is based on Rn; k =R- ykyk with { [Rnc]k, k(corrr2; k)2}Ykyk being 

replaced by tktk . 
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For the case of the - PFML-4 estimator with r(t) = r4(t), applied under the 

assumptions that sn, 
, 
(t) is composed of uncorrelated signals and A, TS are given, 

respectively, by Eq. (3.91) and Eq. (3.96), the asymptotic bias of the estimate 9k can be 

obtained from 

1/2l O 8 Re-' D HR -1/2P1 R -1i2D OT T-H TJ l ReJ D HR -1/2p J 
_R_ k- 1knk Rn k 2Ak n, k k) kT fl Re( (ff 

n, k Rn: k 
2Ak nk J 

H T) IN 
I 

(3.125) (Eb; 
k- k 

where 9k = 9k - 9k ; Tk is as given by Eq. (3.105), 

Eb; k = ATSRticAkRrä k+ RnQý; kRr4 
k (3.126) 

and R 
f; k =R- YkYkH with Yk = AkTk + Eb; k. 

As in the case of the PFML-2 and PFML-3 methods, the asymptotic error 

covariance matrix of the estimate 9k using the PFML-4 estimator can. be obtained as a 

combination of 0k 6k 
, and the right hand side of Eq. (3.104) which is based on R.;, =R 

Y 

Finally, the summary of the applied filter types and the resulting DOA estimators 

for the four pre-filtering reference signals is given in Table 3.1. 
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Reference signal Correlatedness of Filter type Estimator 

s�c (t) 

type-1 non-coherent Nulling filter DEML 

type-2 uncorrelated Matched filter PFML-2 

type-3 non-coherent Unitary filter PFML-3 

type-4 uncorrelated/ Matched filter/ PFML-2/ 

non-coherent/ Unitary filter/ PFML-3/ 

mixed correlated Unitary-Matched PFML-4 

and uncorrelated filter 

Table 3.1: Summary of the applied filters and PFML DOA estimators for the four pre- 

filtering- reference signals. 

3.3 Some practical aspects of the PFML methods 

So far we have not yet detailed how to choose and obtain the pre-filtering 

reference signal r(t), required for the formation of the filter in the pre-filtering step. In 

this section, we provide some practical examples of how these reference signals can be 

obtained. 

In some application areas such as digital radio communications, the noise-free 

type-1 pre-filtering reference signal rl (t) may be obtained in a form of the training 

sequence. However, in practice, the known sequence may not be well synchronised with 

the incoming signal sequence. As a result, the known signal may not be fully correlated 

with the signal component in the received data. Similar problem can also arise in the 

presence of the carrier frequency error. The known type-1 pre-filtering reference signal 

which is not fully correlated with the received signal component is more accurately 

modelled as the type-2 pre-filtering reference signal r2(t). When this is the case, the 

PFML-2 method should be applied instead of the DEML method. 

Although both the DEML and PFML-2 methods based on, respectively, r, (t) and 

r2 (t), offer asymptotically unbiased DOA estimates as well as superior performance to 
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the PFML-3 and standard DML and SML (or optimal WSF) methods, the duration of 

the known sequence of the pre-filtering reference signal may, however, be limited. This 

is the case in digital radio communications where a short training sequence is preferred 

to avoid bandwidth inefficiency. Furthermore, in many other problems (systems), 

neither ri (t) nor r2 (t) is available. Examples of which are passive sonar systems, and 

medical source localisation and imaging problems [46]. 

In [ 19], the IV-based DOA estimator was proposed. The instrumental variable 

s1, (t) is obtained as a delayed version of the observed data vector x(t). This temporal 

instrumental variable approach is based on the assumption that the additive noise is 

temporally uncorrelated while the signal s(t) is at least to some extent temporally 

correlated. The optimal IV-WSF method in [19] was shown in Section 3.2.3 to coincide 

with the PFML-3 method, when certain spatio-temporal filtering is applied to s;,, (t). 

Both the optimal JV-WSF and PFML-3 methods generally yield inferior result to those 

of the DEML and PFML-2 methods, when all mentioned methods are applicable. In 

addition, the performance of the optimal IV-WSF method degrades as the temporal 

correlatedness of s(t) decreases. It was suggested in [19] that oversampling of the 

observed data can be used to increase the signal correlation at the cost of increasing the 

noise level in s; v 
(t). Unfortunately, as demonstrated in [ 19], the data sampling rate can 

not be increased indefinitely without, at some point, deteriorating the DOA estimation 

performance. In addition to this drawback, in some application areas such as radio 

communications, this solution may not be applicable due to the presence of signals from 

adjacent frequency bands. 

In addition to the above TIV approach, the instrumental variable siv (t) can be 

alternatively obtained as the output of the secondary array [18,20,47]. This SfV 

approach is based on the assumption that the additive noise in the primary array, where 

the actual DOA estimation takes place, and the additive noise in the secondary array, 

from which the instrumental variable signal s;, (t) is obtained, are uncorrelated while the 
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signal components in both arrays are highly or fully correlated. The advantage of this 

SIV approach over the TIV approach is that the former does not rely on the temporal 

correlatedness of s(t). An obvious drawback of the SIV approach is that it requires the 

secondary array to supply sip, (t). The secondary array, however, is not used to perform 

DOA estimation. Although improved efficiency of the SIV approach can be obtained by 

averaging the DOA estimates using the two arrays, one at a time [47], the scheme is sub- 

optimal because the two arrays are not used simultaneously as a single array. In addition, 

the maximum number of source directions which can be estimated by the SIV method is 

smaller than that achievable when both arrays are used as a single array. 

The type-4 pre-filtering reference signal r4(t) has also been considered in 

Section 3.2.4. However, it has not yet been mentioned how r4 (t) can be obtained in 

practice. The detail of acquiring r4 (t) in practice is the subject of Chapter 4. Briefly, 
. 

r4 (t) may be obtained from the, observed data vector x(t) by. a suitable spatial filtering 

(beamforming) scheme. By pointing the beamformer toward each of the signal 

directions, s(t) can be extracted from x(t). Of course, the exact knowledge of source 

directions is not available in our case. However, under a certain source scenario, it will 

be shown in Chapter 4 how s(t) can be effectively estimated from x(t). At the moment, 

some interesting features of this new beamforming-based approach should be noted. For 

instance, it does not require a priori the knowledge of the signal waveforms. Unlike the 

SIV DOA estimation approach, the approach considered in Chapter 4 does not need the 

secondary array. In addition, s(t) is not required be temporally correlated, as demanded 

by the TIV DOA estimator. 

3.4 Conclusions 

In this chapter, we propose the (temporal) pre-filtering approach to narrow-band 

source direction estimation. The observed data is first temporally filtered by one of the 

four proposed filtering operators. The filtered data is subsequently applied to a DOA 
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estimator. Four different pre-filtering reference signals, from which the filter 

coefficients are obtained, have been considered. The ML DOA estimators have been 

formulated based on the filtered data using each of the four filter types. The relation of 

these PFML estimators with the ML method with known signal waveforms, and the IV- 

based DOA estimators, has been addressed. The asymptotic properties of the PFML 

DOA estimators have been analysed. However, detailed performance comparison of the 

described methods will be deferred until Chapter 6. Before that, in the next chapter we 

develop the beamforming-based PFML methods, which are practical realisations of the 

PFML methods based on the type-4 pre-filtering reference signal r4 (t) . In Chapter 5, the 

IQML algorithm will be studied and modified to allow for efficient computation of the 

ML DOA estimates. Thus, as well as the analytical results based on the asymptotic 

analytical study described in this chapter, simulation results using the IQML algorithm 

will also be provided in Chapter 6 to validate the analytical results. 

Before leaving this chapter, we summarise some of the important properties of 

the PFML DOA estimation methods as follows: 

" The DEML, PFML-2, and PFML-4 methods can estimate more non-coherent 

source directions than most existing DOA estimation methods. 

0 All PFML methods are applicable in an unknown spatially correlated noise field. 

0 Performance of these PFML methods are generally superior to those of the DML 

and SML methods, particularly under the mixed coherent-uncorrelated source 

scenario. 
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Chapter 4 
Beamforming-based Pre-Filtering Maximum Likelihood 
DOA Estimators 

4.1 Adaptive beamforming techniques for signal waveform 

estimation 

Classical and adaptive beamforming techniques have long been developed and 

widely applied [1-4,27]. A beamformer is used to enhance the quality of the received 

desired signal by means of spatial filtering [27]. In this section, we develop an adaptive 

beamforming procedure, tailored to extract from the received array data the type-4 pre- 

filtering reference signal r4 (t) , to be used under the PFML framework for DOA 

estimation. As in other beamforming methods, the goal of our procedure is, subject to a 

certain criterion, to obtain at the beamforming output an estimate of the desired signal 

Sd (t) = w" x(t), where w is the beamforming weight vector. In our problem, the desired 

signal is snc; k (t), k=1, 
..., 

ds, where s�C; k (t) is the kth component of sm (t). The signal 

sr,, (t) is in turn related to s(t) by Eq. (3.7). Thus, for ds > 1, more than one beamformer 

is required. 

One of the main issues in designing a beamformer is the choice of a 

beamforming criterion. In the following, we provide a brief discussion of three 

commonly known criteria and their suitability for our problem. 

a) Maximum Signal-to-Interference plus Noise Ratio (MSINR) criterion 

Under this criterion, the weight vector w is chosen so as to maximise the output 

SINR. It is given by [2] 
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w= JRfl ad (4.1) 

where ad is the array response vector which corresponds to the desired signal, is the 

interference plus noise covariance matrix, and µ is a scaling factor. To keep a unity gain 

in the look direction, the scaling factor µ should be selected as 

µ __ 
(ad D 

nlad)-1 (4.2) 

It is noted that the described optimality of the method is claimed under the 

condition that the. exact interference plus noise covariance matrix R;, or its scaled 

version, is used in Eq. (4.1). When Rin is not known but, in the absence of the desired 

signal, the array data snapshots x;,, (t) consisting of only interference and noise are 

available, the following consistent estimate may be applied instead. 

i L-1 

"in =L 
I'xin (t)'xin (t) 

in (4.3) 

Whether or not this method can be applied to our problem depends on the . 

availability of either R;. or x;., (t), as well as the knowledge of ad. Although in the DOA 

estimation problem the exact knowledge of ad is not available (otherwise there is no 

need for DOA estimation), approximate information for the desired signal direction (and 

for ad through the assumed known array manifold) may be sufficient. This is the case 

when there is no strong interference coming from the direction close to that of Sd (t). In 

many cases, however, neither R1 nor x;. (t) is known. 

b) Linear Minimum Mean-Square Error (LMMSE) criterion 

Under this beamforming criterion, the objective is to estimate Sd (t) which 

minimises the MSE given by 

MSE 0 E{Isd(t)-Sr (t)I2} (4.4) 
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where Sr (t) is known as the reference signal. Under the LMMSE criterion, the array 

weight vector is given by [2,13] 

w= R-lrxs (4.5) 

where rxsr = E{x(t)sr *(t)j. When R and rxsr are not known, their consistent estimates are 

applied instead. In addition, to obtain, up to a scaling factor, an exact LMMSE estimate 

of sd (t), the reference signal sr (t) is a scaled version of sd (t). In practice, however, it is 

generally sufficient for s. (t) to be highly correlated with the desired signal. 

From the above discussion, the major drawback of this criterion is the 

requirement to know sd (t), or a signal which is highly correlated with sd (t). It is 

arguable that if such a signal is known, it can be directly used in either the DEML or 

PFML-2 method. However, without prior knowledge of sd (t), the required reference 

signal can sometimes be obtained from the beamforming output itself. An example of 

this is in digital radio communication systems employing a decision feedback 

beamformer or equaliser [48-49]. The decision feedback system generally consists of 

two parts. The first part is a beamformer (or equaliser) whose purpose is to improve the 

quality of the received signal, e. g., to increase the SINR. The beamforming output signal 

is then passed through a decision device which, for sufficiently high SINR, can give at 

its output a scaled replica of sd (t). The signal at the output of the decision device is 

subsequently used as the reference signal Sr(t) for updating the beamforming weight 

vector, e. g., by using Eq. (4.5). Note that a good initial beamforming weight vector is 

generally required. This can be obtained, for instance, by using a known training signal. 

c) Linearly Constrained Minimum Variance (LCMV) criterion 

The LCMV criterion chooses the weight vector to minimise the average 

beamforming output power, subject to a unity (or constant) gain in the look direction, 
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which is generally the direction of the desired signal. Under this criterion, w is obtained 

as a solution to the following linearly constrained optimisation problem [27] 

w= arg min wH Rw (4.6) 

subject to 

w Had =1 (4.7) 

The solution is given by 

w= R-lad (aH R-lad)-I (4.8) 

In practice, the ensemble averaged array covariance matrix R is generally not 

available and has to be replaced by a consistent estimate. We note on passing that, 

although a single constraint is imposed on w in Eq. (4.7), it may sometimes be useful to 

apply instead a set of linear constraints [27]. 

From Eq. (4.8), the knowledge of the response vector ad is required. Although 

for the MSINR beamformer ad need not be precisely known, in the LCMV beamformer, 

slight difference between the constraint vector in Eq. (4.7) and the true array response 

vector of the desired signal can lead to severe performance degradation. In addition, the 

presence of the interfering signals which are correlated or coherent with the desired 

signal results in similar performance degradation. In either of these two cases, in spite of 

the constraint Eq. (4.7), the desired signal is partially cancelled to minimise the 

beamforming output power, a phenomenon known as the signal cancellation effect [21, 

27]. Despite these drawbacks, the LCMV beamformer has a practical advantage over the 

earlier methods because, apart from ad, its only other requirement is the array 

covariance matrix R, which can be estimated from the observed data. In the next section, 

a modified LCMV beamformer which solves the signal cancellation problem is 

provided. This, with careful application of the beamformer, makes signal waveform 

estimation possible without the need for the reference signal sr (t) or the desired signal- 

free data vector x;. (t) . 
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Although these adaptive beamformers generally have superior interference 

rejection capability to the classical non-adaptive beamformer, they can effectively 

reduce interference and noise only up to a certain extent. For instance, under finite input 

SINR and a limited number of sensors, it is clear that complete recovery of the desired 

signal from noisy data is not possible by any of the described beamformers. In addition, 

the closer the DOAs of the interferences are to that of the desired signal, the more 

difficult it is for a beamformer to reject these closely-spaced interferences. Thus, in the 

following section, we consider a scenario where the required type-4 pre-filtering 

reference signal r4(t) can be effectively obtained from the observed data by a suitable 

spatial filtering scheme. Next, to obtain r4 (t) from the observed data, a beamforming 

procedure based on the classical and LCMV beamforming methods is proposed. One of 

the important features of the procedure is that it is not susceptible to the signal 

cancellation effect due to pointing error and correlated signals. The pre-filtering 

reference signal r4 (t),, obtained by the mentioned beamforming procedure, is then 

applied under the PFML framework for DOA estimation. Note that, the signal and noise 

model as stated in Chapter 3 is also applied in subsequent sections. 

4.2 Beamforming-based PFML DOA estimation in the well- 

separated multiple cluster source scenario 

4.2.1 The multiple cluster source model 

Due to the limitation of a beamformer in suppressing strong interference whose 

angular location is close to that of the desired signal, in this section we restrict the use of 

a beamformer in obtaining r4 (t) to the following source scenario. 

First, it is assumed that s(t) is composed of groups of one or more signals, with 

two signals from different groups being uncorrelated. If the signals in each group are 

fully correlated, s(t) can be written by Eq. (3.7) with I'S as given by Eq. (3.31). When 
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the signals in each group are only partially correlated such that ds = K, the matrix F5 is 

either diagonal or composed of block matrices. 

Next, the angular spacing of two uncorrelated signal sources from different 

groups is required not to be less than one array beamwidth. However, the angular 

spacing of any two correlated signal sources within the same group can be less than one 

array beamwidth. This is the scenario where, for each group of correlated signal sources, 

the signal source directions are clustered around a nominal direction of arrivalt, as 

shown in Figure 4.1. The number of correlated signal sources in each cluster must not 

exceed the maximum number of sources identifiable by the array (see [50-51] for 

discussion of the conditions for the source DOAs to be identifiable). For arbitrary signal 

phases, with a uniform linear array, the maximum number of identifiable source 

directions is N/2 for even N, and (N - 1)/2 for odd N [50]. Note, however, that the total 

number of signal sources due to all clusters are allowed to exceed this identifiability 

limit. 

Before we continue the discussion, it is necessary to give practical justification 

for the described cluster source scenario. One of the application areas where the 

described signal model is well suited, is in mobile radio communications. Currently, 

mobile communication systems reuse the radio frequency bands by dividing a service 

area into small cells [52]. Two cells using the same frequency band are well separated to 

avoid co-channel interference. However, with an increasing demand for supporting more 

users and bandwidth requirement, the application of array signal processing techniques 

has been considered for improving bandwidth efficiency, by reusing the same frequency 

band within the same cell [53-56]. By dividing the area surrounding a base-station 

antenna array into several angular sectors, the signals from different mobiles, occupying 

the same frequency band, can be separated by using an antenna array employing a 

t This assumption can be relaxed by treating a signal whose direction is well separated from other 
correlated signal directions, as belonging to another source cluster. The scenario in Figure 4.1 is, 
however, assumed for ease of presentation. 

92 



suitable beamforming scheme. With proper bandwidth management and handover 

operation, two mobiles using the same frequency band can be kept well-separated 

angularly. In addition, for a mobile sufficiently far from the base station, the DOAs (at 

the base station) of the multipath mobile signals, resulting from reflection near the 

mobile, are generally confined to a narrow angular width [52]. Although this cluster of 

multipath signals may be more effectively modelled as being generated from a 

distributed source [55], it may also be well approximated by a small number of point 

sources, as suggested in [53]. Thus, this mobile radio propagation scenario may be 

represented by the described cluster source model. 

Another practical example of the cluster source model is in radar low-angle 

estimation and tracking [26]. In this problem, the estimation of the target object 

direction is made difficult by the presence of the mirror object, created by the reflection 

of the radar signal from the sea surface. For the case of a smooth reflecting surface, the 

scenario can also be described by the model. 

t 

\`ý 

I 

" ", 

Cluster of sources #3 

Figure 4.1: The three cluster source scenario with the cluster angular widths AC; k ,k=1, 

... 1 
3, and the cluster nominal directions of arrival 0c; k 9k=1, .... 

3. 
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4.2.2 Beamforming-based PFML DOA estimation 

Having provided some justification for practical usefulness of the described 

cluster source model, we next propose a combined classical and LCMV beamforming 

procedure, for operating under this source scenario. 

A combined classical and LCMV beamforming procedure 

1. Over the array FOV, calculate the following classical beamforming spatial 

spectrum 

PS(6) = aH(9)Ra(O) (4.9) 

From F(O), find-the locations 9c; k of, say K, spectral peaks corresponding to 

the nominal directions of the cluster signals. In addition, for each of the KK 

spectral peaks, the estimates of the left and right cluster widths (Al; k and Ar; 
k for 

the kth peak) may also be obtained from PS(O) at this step. Figure 4.2 illustrates 

these parameters for the single source cluster case (K, = 1). From the figure, Ol; k 

= 
9c; 

k - 
6l. 

k , and 
Ar; 

k = °r; 
k - 9c; 

k , where 
bl; 

k and 
9r"k 

are the estimates of the 

left and right cluster-edge locations. 

2. Form the matrix 

emax emax 

4.10 
p; o Pße)W(e)a(9)aH(e )de }{ Pß(e)d0 } Rf 

={ssc Ss c e 
min 

e 
min 

where 8min and Omax form the array FOV. The matrix W(8) is an optional 

weighting function. The positive number (3 is used to emphasise (or de- 

emphasise) the spectral peaks. The choice of ß>1 sometimes improves DOA 

estimation performance by improving strong directional interference suppression 

of the beamformer, which is to be formed in the next step. Note that, in practice, 
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where the array response vector is known only at discrete values of 0, the 

3. 

integral operator in Eq. (4.10) should be replaced by the sum operator. 

At each spectral peak location 9c; k, calculate the array weight vector 

wk = Rp; ka(ec; 
k)(aH(ec; k)Rp; ka(ec; 

k))-i 

where 

(4.11) 

ec; k +ýr, k emax 

RP; k = RP, o -{ 
JP(O)W(O)a(O)a'1(6)d6 }/{ f P(e)de 1 (4.12) 

ec; 
k -Ä1, k 

emin 

4. 

Note that Ol; k and Ar; 
k are the estimates of the left and right cluster widths as 

mentioned in Step 1. If the kth cluster angular width; denoted by Oc; k, is known 

at least approximately, instead of the values obtained by Step 1, Al; k and Dr; k 

may be alternatively chosen as DC, k/2, where Ac; k should be close to Ac; k . 

Obtain the estimates of K. nominal cluster signals from 

sC; k (t) = wk x(t), k=1, 
... , 

Kc 

G 
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Figure 4.2: The cluster nominal angular location, and the left and right cluster-edge 

angular locations. 
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If the signals in each cluster are coherent, i. e., s(t) = Fs,, 
c 
(t) with I'S as given by 

Eq. (3.31), the beamforming signal s, (t) = 
[sc; 

i(t) sß, 2 (t) """ sc; Kc (t)] 
T 

provides the 

type-4 pre-filtering reference signal (r4(t)) of the form Eq. (3.90). To see this, from Eq. 

(4.13) and Eq. (2.2), s, (t) can be written as 

sý (t) = WB As(t) + WB n(t) (4.14) 

where WB is the matrix composed of KK weight vectors from Step 3 of the beamforming 

procedure. Because s(t) = Fs,,, (t), 

sc(t) = WHAT s,, c(t) + WHn(t) (4.15) 

Provided that WB ATS is of full rank ds, si(t) in Eq. (4.15) is recognised as the type-4 

pre-filtering reference signal r4 (t) with A= WB ATS and Q,, = WB . 
When, for each cluster, the signals are only partially correlated, useful pre- 

filtering can still be obtained using sc (t) as the pre-filtering reference signal, provided 

that all of the signals Sk (t), k=1, ... , K, are at least partially correlated with sc (t). This 

requirement is necessary to ensure that there is sufficient information left in the filtered 

data for estimating all source directions. Note that, in this case, sc (t) does not have the 

form Eq. (3.90). However, if for each of sc; k (t), k=1, 
..., K, the component due to 

the signals from other clusters can be negligible, sc (t) can be approximated by 

Sc (t) Snc (t) + Qnn(t) (4.16) 

where s�, (t) is composed of uncorrelated signals. Based on the described assumption, 

each of the components of sn, (t) is a combination of the signals within the same cluster. 

In addition, s(t) can be written as 

s(t) = rssnc(t) + s'(t) (4.17) 

where the Kx KK complex matrix TS has the same form as that of TS which is given by 

Eq. (3.31). In this case, K, is smaller than d, 
, which is the rank of the signal covariance 

matrix. The term s'(t) is uncorrelated with snc (t) . With some loss of useful information, 
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s'(t) can be treated as noise under the PFML framework. It is thus seen that sc (t) in Eq. 

(4.16) has the form of r4(t) in Eq. (3.90) if we let s(t) = I'S snc (t) and treat the term s'(t) 

as part of the unknown additive noise. 

Let r4(t) = s, (t), and assume at the moment that the term Qnn(t) in r4 (t) is 

negligible. Thus, based on r4 (t) , either the Unitary filter or Matched filter may be 

formed. The DOA estimates can be obtained from either the PFML-2 estimator (with 

the Matched filter) or the PFML-3 estimator (with the Unitary filter). If A in r4 (t) (see 

Eqs. (3.90,4.15)) is approximately diagonal, the PFML-2 estimator should be preferred 

due to its superior performance to the PFML-3 estimator. The matrix A is 

approximately diagonal when each of the Kc beamformers, formed according to the 

described procedure, effectively suppress the signals from other Kc -1 clusters. When 

this is not the case, however, A is poorly represented by a diagonal matrix and the 

PFML-3 method should be used instead. Note that, because generally A is not truly 

diagonal, the DEML estimator should not be applied. It was observed from empirical 

study that, attempting to do so generally results in poor DOA estimates. In addition, 

when the term Qn(t) in r4(t) is not negligible, both the PFML-2 and PFML-3 

estimators yield biased DOA estimates. This estimation bias can be reduced by the use 

of the bias correction term, to be described in the next section. 

As mentioned in Section 3.2.4, the asymptotic properties of the above 

Beamforming-based PFML-2 and PFML-3 (BPFML-2 and BPFML-3) estimators can be 

obtained, respectively, from Theorem 3.3, and Theorem 3.4. For large L, and by 

neglecting the term of the order Op(1 /ý), Sc; k (t) =W ; kx(t) ,k=1, ... , K, where 

Was; k = Rp; ka(ec; 
k)(aH 

(ec; 
k )Rp; ka(9c; 

k) )-1 (4.18) 

and Rp; k = E{ RP; 
k }. The cluster locations 9c; k, k=1, 

... , K, can be obtained by Step 

1 of the described beamforming procedure, with R in Eq. (4.9) being replaced 

by R. This approximation of SC; k (t) is based on the fact that, for large L, 9c; k = 
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9c; k + On(1 /-ýL) and Rp; k = Rp; k + OP(1 /VL). Thus, for large L with r4(t) = sc(t), 

Rr4 = Was R Was, where W. = 
[was; 

l W ;2""" was; Kc 
] 
'This approximation of sc; k (t) 

does not affect the asymptotic properties of the BPFML-2 and BPFML-3 estimators, 

provided that the bias term Eb, to be discussed next, is sufficiently small. 

When the bias term Eb, which is due to Qn(t) and, for the case of the 

BPFML-2 estimator, the non-diagonal part of A, is not negligible but is sufficiently 

small, the asymptotic analysis which takes into account the bias term Eb differs from the 

above analysis, which neglects the term Eb, only in the asymptotic biases of the DOA 

estimates. The asymptotic estimation biases can be separately obtained from Eq. (3.120) 

for the BPFML-3 method and from Eq. (3.122) for the BPFML-2 method. 

4.2.3 An improved beamforming-based PFML estimator for correlated cluster 

sources 

The two beamforming-based PFML estimators as described in Section 4.2.2 

have one drawback. Their performance starts to deteriorate as the correlation between 

the signals in the same cluster decreases. This can be seen by noticing that, as the cluster 

signal correlation decreases, the term s'(t) in Eq. (4.17) has its amplitude increased 

while the amplitude of the term tts,,, (t) decreases. Because it is the latter term which is 

considered as the signal term in either of the two BPFML estimators, the effective SNR 

is reduced, resulting in poor DOA estimation. In this section, we provide a solution to 

this problem. In the following, based on approximate information of the signal 

directions, an improved version of the beamforming procedure in Section 4.2.2 is given. 

An improved beamforming procedure 

1. Follow Steps 1-2 of the beamforming procedure as described in Section 4.2.2. 

2. Calculate Rp; k using Eq. (4.12). Let the number of signals at the kth cluster be 

Kk 
. 
The Kk beamforming weight vectors corresponding to the kth cluster are 
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obtained from 

Wk 
,l= 

RP; kCk(CkRp; kCk)-'f , k=1,..., Kc; 1=1,..., Kk (4.19) 

where 

Ck = 
[a(kl) 

a 9k 
2 ... a(:: Ok 

Kk 
(4.20) 

fi = [0 ... 1 ... Of (4.21) 
lth 

and Ok 1, l=1, 
... , Kk are the approximations of the directions of the Kk signals 

which belong to the kth cluster. 

3. Obtain the estimates of the signal waveforms from 

Ska(t) = wk rx(t), k= 1, 
... , K,:; 1= 1, 

... , 
Kk (4.22) 

where Sk 1(t) is the estimate of the lth signal in the kth cluster. 

From the above beamforming procedure, let 

lT s (t) =1 sl 1(t) 
sl 

2 
(t) ... 

S1 
K, 

(t) S2 
1(t) ... ... 

SKI, 
KKC 

(t)J (4.23) 

It is seen that the signal vector s ̂(t) has the form of the type-4 pre-filtering reference 

signal r4 (t) as described by Eq. (3.90), provided that each of the signal components in 

s(t) is at least partially correlated with one of the components in si(t). Note that, in this 

partially correlated signal case, s(t) = Tsr, 
c(t) with ds = K, and TS being diagonal or 

composed of block matrices. If sk I (t), l=1, 
... , 

Kk 
, contain negligible amount of the 

signals from other clusters, by letting r4 (t) = i(t), the matrix A in r4 (t) (= Asnc (t) + 

Q. n(t)) is approximately block-diagonal. When this is the case, and that the term 

Q. n(t) is sufficiently small, the DOA estimates can be obtained by the PFML-4 

estimator (with the Unitary-Matched filter), detailed in Section 3.2.4 of Chapter 3. The 
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asymptotic properties of this Beamforming-based PFML-4 (BPFML-4) estimator can be 

obtained from Eqs. (3.104,3.125) (see the related discussion in Section 3.2.4). 

Remark 

It should be noted that, in all BPFML methods as described in this section and in 

Section 4.2.2, the maximum number of signal sources are limited by the interference 

suppressing ability of each of the beamformers, formed by either of the two 

beamforming procedures. Thus, for efficient estimation of the signal waveforms, which 

are subsequently used in the pre-filtering step of a PFML estimator, the number of 

source clusters Kc should not be larger than the number of sensors. In addition, the 

cluster signals with a smaller cluster angular width (i. e., less 'angular spread) are more 

effectively suppressed by the beamformer than the one with a larger cluster width. 

Moreover, for the improved beamforming procedure, the use of a set of Kk linear 

constraints in each beamformer reduces the capability of the beamformer in suppressing 

the signals from other clusters, especially when Kk is comparatively large compared 

with the number of sensors. Thus, while the above improved procedure can outperform 

the procedure in Section 4.2.2 when the signals within the same cluster are partially 

correlated, the beamformer based on the procedure in Section 4.2.2 is expected to be 

better than that of the improved procedure in suppressing the signals from other clusters. 

At each beamforming output, the signals from other clusters need to be sufficiently 

reduced for the BPFML DOA estimates based on the PFML-2 or PFML-4 cost function 

to be approximately asymptotically unbiased. This requirement is, however, irrelevant 

for the BPFML estimator based on the PFML-3 cost function. 

4.3 Bias correction 

As mentioned in Section 3.2.4 of Chapter 3, the biases of the DOA estimates 

using the type-4 pre-filtering reference signal r4 (t) can be reduced if the bias term Eb is 
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known at least approximately. We consider first the case of the BPFML-3 estimator with 

the Unitary filter. If r4 (t) is obtained by one of the two beamforming procedures, ideally 

the bias correction term E,, in Eq. (3.119) should be chosen exactly as Eb, which is 

given by 

Eb = RfWBR-'R1/2 
aa 

(4.24) 

where WB is the matrix whose column vectors are the beamforming weight vectors, 

calculated, for instance, by Eq. (4.11). Unfortunately, in practice complete knowledge of 

Rn is generally unavailable. However, it can sometimes be estimated from the observed 

data. This is the case, for example, if the noise covariance structure Rns = 6-2 Rn is 

known and N> ds . Without imposing any constraint on the response matrix A and the 

signal covariance matrix R, , apart from that the column vectors of AR '2 span a ds - 

dimensional subspace, the ML estimate of R. is given by (see, for example, Chapter 8 

of [44]) 

Rn = 62Rns (4.25) 

where 

N 
62 =1 Ixi (4.26) 

N- ds i=ds+i 

and 2k;, i= ds + 1, ... , N, are the N- ds smallest eigenvalues of R- 12RR- 12 
. Thus, 

Ec may be chosen as 

Eý = 62 RnS WBIu-"2 (4.27) 

with 62 as given by Eq. (4.26). For the BPFML-2 method, the bias correction term for 

each of yk, k=1, 
... , 

Kc, can be similarly chosen as 

-1/2 [Ec]k 
=62 Rnswk[ 

r4 

]k, 

k 
(4.28) 
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where Wk is the weight vector obtained from Eq. (4.11). For the case of the BPFML-4 

method with the weight vectors obtained from the improved beamforming procedure, 

the bias correction term for each of Yk, k=1, 
..., Kc, may be obtained in a similar 

manner to that of the BPFML-3 method, and is given by 

A2 1/2 Ec; 
k =ß RnSWB; 

kkr4'k (4.29) 

where Rr4; k is as given by Eq. (3.98), and W; B; k is the matrix whose column vectors are 

the Kk beamforming weight vectors corresponding to the kth cluster. These 

beamforming weight vectors are obtained by Step 2 of the improved beamforming 

pröcedure (Eq. (4.19)). 

4.4 Robust adaptive beamformer 

Although the beamforming procedure of Section 4.2.2 is developed for the 

purpose of DOA estimation, it suggests a new beamforming formation which is robust 

to pointing error and the presence of correlated sources. Based on the waveform 

estimate . 
sd (t) of, the signal of interest, obtained by the described beamforming 

procedure, we propose the robust beamformer whose weight vector is given by 

W= Rinl'xsd (rx d Rinlrxsd )-1 (4.30) 

where 

l ý-1 
rxsd =L x(t) id (t) (4.31) 

t-o 

and the estimated interference plus noise covariance matrix 

Rin =R-" ýrxsý xsdý (4.32) 

= 1/(- sd (t)I2) (4.33) 
L r=0 
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In the presence of coherent sources, the performance of the proposed method, 

compared to that of the LCMV beamformer is demonstrated by the following simulation 

experiment. 

EXP-4.1: In this experiment, a uniform linear array of eight sensors was used. The 

inter-sensor spacing was half of the signal wavelength. The total of K= 10 complex 

signals impinged on the array. They were grouped into 5 clusters. Any two signals in the 

same cluster were coherent while uncorrelated with signals from other clusters. All 

signals had unity power. Their directions of arrival are listed in Table 4.1. 

Coherent Cluster No. 

source no. 1 2 3 4 5 

1 -65 -35 -5 20 55 

2 -60 -30 0 25 60 

Table 4.1: The signal directions of arrival (in degrees, compared with broad side). 

All pairs of coherent signals had the phase difference of 7t/4. All signal phases 

were measured with respect to the array centre which is the point in the middle between 

the fourth and fifth sensors. The second coherent signal from the 3rd cluster was 

considered the desired signal. In addition to these directional point sources, the additive 

circular complex white Gaussian noise was added at each sensor to obtain eight different 

SNRs, defined here as the reciprocal of the noise power. Five hundred simulations were 

carried out with the number of snapshots in each simulation L= 100. The proposed 

beamforming procedure was performed with AI; 
k and Ar; 

k being obtained by the first 

step of the beamforming procedure described in Section 4.2.2. The power factor (3 in 

Eqs. (4.10,4.12) was chosen to be P=2. In addition, the weighting function W(6) in 

Eqs. (4.10,4.12) was chosen to be uniform, i. e., its value is independent of 0. Apart 

from the proposed robust beamformer, the standard LCMV beamformer was performed 
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with the unity gain constraint in the look direction of 0 degrees. A beamforming 

performance is measured by the correlation between the beamforming output signal and 

the desired signal. The described performance measure is given in mathematical form by 

L-1 L-1 L-1 
CORR O 1: Sd (t)sä (t) . [{ 

Isd (t)I2 }{ Isd (t)I2 }]-lie (4.34) 
t=O r=o t=o 

where sd (t) is the beamforming output signal. The results from eight different SNRs 

using the two beamforming methods, as well as the signal received at the reference 

sensor (no. 1), are plotted in Figure 4.3. From the figure, it is seen that the LCMV 

beamformer suffers performance degradation due to the signal cancellation effect. The 

problem becomes more pronounced at high SNR. In contrast, the proposed robust 

beamformer performed better as SNR was increased. No signal cancellation problem 

was found for the proposed beamformer. 
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Figure 4.3: Plots of the CORRs corresponding to the LCMV method, the proposed 

beamforming method, and the signal received by the 1st sensor, at eight SNRs. 
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4.5 Conclusions 

In this chapter, we have developed the combined classical and LCMV 

beamforming procedure for estimating the desired signal waveforms. The source 

scenario where the described procedure is effective has been described. The main 

purpose of this beamforming procedure is to obtain the pre-filtering reference signal 

r4 (t) for use under the PFML DOA estimation framework. Based on this beamforming 

output signal, either the PFML-2 or PFML-3 estimator may be applied for DOA 

estimation. In addition, the improved beamforming procedure has been given to improve 

the estimation performance when the cluster signals are only partially correlated. From 

the pre-filtering reference signal obtained by this improved procedure, the PFML-4 

estimator with the Unitary-Matched filter can be applied. When the knowledge of the 

noise covariance matrix or its structure is known, it has been shown how the bias 

correction term Ec in Eq. (3.119) can be obtained in practice. Finally, by means of 

computer simulation, it has been observed that the adaptive beamformer based on the 

proposed beamforming procedure of Section 4.2.2 is robust to the presence of coherent 

sources. 
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Chapter 5 

The IQML Algorithm for Maximum Likelihood 
Parameter Estimation 

In the previous three chapters, we have formulated various ML-based DOA 

estimators. However, the computational aspect of these methods has not yet been 

considered. The ML DOA estimation problem can be solved, for instance, by using the 

algorithms considered in [57-59]. Despite superior performance over the subspace-based 

methods, the ML methods are in general computationally complicated. For the case of 

the data set with uniform sampling grid, e. g., the one obtained from a uniform linear 

array, the computationally efficient Iterative Quadratic Maximum Likelihood (IQML) 

algorithm was proposed in [22] to solve the DML parameter estimation problem. The 

algorithm is known to perform well for sufficiently high SNR. Later, the method was 

shown to be equivalent to the well-known Steiglitz-McBride algorithm [60]. 

Recently Nagesha and Kay [24] (see also Stoica and Sharman [23]) showed that 

the IQML algorithm in [22] suffers performance degradation under a certain parameter 

configuration, to be described later. They (Nagesha and Kay) provided a version of the 

IQML algorithm which solves the problem. In spite of this success, for the multiple 

snapshot case, both algorithms have high SNR thresholdt and are highly inefficient, 

when measured in terms of the performance departure from the CRLB. Later, it will be 

pointed out that this is due to an improper choice of the nontriviality constraint, required 

by both algorithms. 

tA SNR level below which the estimation performance degrades significantly, when compared with the 

upper performance bound set by the corresponding CRLB. 
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In this chapter, we consider the IQML algorithm for ML parameter estimation by 

minimising a certain cost function. Despite our main interest in narrow-band source 

DOA estimation, the development in this chapter can also be applied to other related 

parameter estimation problems such as multiple frequency estimation [22]. In the next 

section, we first formulate the form of the IQML algorithm which is the generalisation 

of the original one described in [22]. Pre-processing such as the array interpolator [25, 

611 is allowed in this generalised algorithm. We next propose an improved version of 

the IQML algorithm. For the multiple data snapshot case, the proposed algorithm offers 

performance improvement over both the original algorithm in [22] and the modified one 

in [24]. For the single data snapshot case, the proposed algorithm has superior 

performance to the other two existing IQML algorithms, under difficult situations such 

as small data length. In addition, when some parameter values are known a priori, the 

IQML algorithm which makes use of this knowledge is formulated in Section 5.3. This 

utilisation of the prior information is later shown to improve the estimation performance 

and convergence properties of the algorithm. 

In Section 5.4, we turn our attention from the one-dimensional to the two- 

dimensional parameter estimation problem. The problem of 2-D parameter estimation 

can be found, for instance, in source azimuth-elevation localisation and frequency- 

wavenumber analysis. Due to the increase in the dimensionality of the problem, the 

straightforward extension of many existing 1-D methods either is infeasible or results in 

a computationally complicated problem. Much work has concentrated on reducing the 

complexity of 2-D parameter estimation [41,62-66]. In [41], the IQML algorithm was 

applied, in conjunction with classical beamforming, to a rectangular array for the 2-D 

source localisation problem. The 2-D ML-based method employing the IQML algorithm 

was suggested in [62]. Although the latter method is based on an exact 2-D ML 

principle, its use is limited due to the requirement that there is at least one of the two 

parameter dimensions where its l-D parameters have distinct values. The method in 
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[63] also has similar restriction. While this is not the case for the method due to Hua 

[64], the method in [64], as well as the one in [66], can be highly inefficient because, to 

avoid high computational complexity, it must be applied to a subdata set with reduced 

dimensionality. Although the method in [65] is less computationally complicated than 

Hua's method, its performance is inferior to that of [64]. 

Based on the IQML algorithm, we propose a 1-D IQML-based 2-D parameter 

estimation method. The method consists of two IQML algorithms for separate 

estimation of the parameters in each of the two dimensions. The parameter pairing 

problem is addressed. The main contribution in this part is to provide a sufficient 

condition on the construction of the data matrix for consistent parameter pairing. Not 

only is the proposed method not as restrictive as Clark's method, its performance is 

found to be comparable or superior to the matrix pencil method of Hua [64]. 

5.1 Problem formulation 

We first consider the 2-D extension of the data model Eq. (2.2), given by 

x(t) = A(y, z)s(t) + n(t), t= 

where 

x(t) = vec(XT (t)) 

x�, (t) 

X (t) = 
x2'1 (t) 

xM, l 
(t) 

and 

XI 
,2 

(t) XI 
,NM 

... ... XM N 
(t) 

y= [yl Y2 ... 
_ 

rzl Z2 ... 

Let the response matrix A (y, z) be expressed as 

YK] 

ZK] 
T 

(5.1) 

(5.2) 

(. 3) 

(5.4) 

(5.5) 
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A(y, z) = [a1(y1, z1) a2(Y2, z2) ... aK(YK, ZK)] (5.6) 

where the response vectors ak (yk , Zk) ,k=1, ... , K, are given by 

ak(yk, Zk) = gk(yk) ® hk(Zk) (5.7) 

gk (Yký = (PYk 
[i 

Yk Yk ... Yk -11T 
J 

(5.8) 

hk (Zk) _ (PZk 
[l 

Zk Zk ... Zk -1 ]T (5.9) 

The phase factors Ty, and T,, are the modulus-1 complex numbers whose values 

depend on the chosen phase reference point. For example, if the signal phases are 

referenced to the first data sampling point x,,, (t), Tpy, = c°Zk = 1, k=1, .., K. In 

addition, the noise n(t) is assumed to be zero-mean circular complex temporally white 

Gaussian distributed. The noise covariance matrix Rn = a2 R�S is assumed to be of full 

rank. Depending on the estimation criterion, however, the signal vector s(t) = 

[s1 (t) s2 (t) """ SK (t)]T can be treated as being composed of either the deterministic 

unknown parameters or the stochastic signals. For the latter case, it is assumed that s(t) 

is a zero-mean circular complex temporally white stationary random vector with the 

multivariate Gaussian distribution. It is further assumed to be uncorrelated with n(t). 

Both s(t) and n(t) are also assumed to be ergodic. 

Based on the above data model, we consider in this chapter the problems of 1-D 

and 2-D frequency estimation, as well as the (1-D) source direction estimation problem. 

For the 2-D frequency estimation problem, the K 2-D frequency pairs (6y; k 5 6z; k) are 

related to (yk 9 zk) by 

Yk = exp(J27c9y, k) ,k= 
1, ... ,K 

(5.10) 

Zk = exp(j2lt9Z; k) 9k= 1, ..., K (5.11) 

The described data model can also be used for 1-D parameter estimation 

problems, by letting 9k =1, k=1, ... , K, and M=1. For the 1-D frequency estimation 

problem, the K frequencies 9z; k are related to Zk by Eq. (5.11). With the uniform linear 
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array of half signal wavelength inter-sensor spacing, the K source directions 0z k are 

related to Zk by 

Zk = exp(- jit sin(9Z; k)) , k= 1, ... ,K (5.12) 

Let 0 be the vector of the parameters (signal frequencies or directions) to be estimated. 

For the 2-D frequency estimation problem, 
[Oy; 

i 
B= By; 

2 ... ey 
K 

6z. 
l ... OZ; 

K]T 

[ey ez ]T 
(5.13) 

where ey and O are the Kx 1 vectors, while 

[Oz; 
i ez; 2 ... 6z; K]T (5.14) 

for the 1-D frequency and DOA estimation problems. Only the estimation of 0 is of 

interest here. The problem of estimating s(t) is addressed, for instance, in [62,67-69]. In 

subsequent sections, the estimation of 0 is based on the assumption that there exists a 

one-to-one relation between (yk 
, Zk) and (9y; k , 9z; k ), i. e-., (yk, zk) ' (9y; k , 6z; k ), k=1, . 

.., K. For the DOA estimation problem, this assumption is satisfied for -7t/2 < 0z; k 

it/2. In the following section, the 1-D. problem of estimating 9Z; k is considered. A new 

nontriviality constraint is proposed to improve the algorithm performance. 

5.2 The generalised IQML algorithm and the consistent non- 

triviality constraint 

5.2.1 The generalised IQML algorithm 

The IQML algorithm was proposed in [22] to solve the DML parameter 

estimation problem. It can also be used in a similar manner to solve the WSF problem 

[33], ([34], chapter 4). Let N2 = (K + 1). (N1 - K), where K< Nl < N. The N2 xN 

matrix H is given by 

TT H= [H; HT ... 
HNC 

-K 
(5.15) 
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where 

Hk = H. [IK+1 O(K+1)X(Nl-K-1)]"H, k=1 

=H" 
[o(K+1)x(k-1) I 

K+1 
O(K+1)x(Ni-K-k) ]"H, k=2, 

... , Nl -K-1 

= i. [o(K+1)x(Nl-K-1) IK+1]"II, k= N1 -K (5.16) 

are the full-rank (K + 1) xN matrices. In Eq. (5.16), the NI xN matrix ft has full rank 

N1, while the (K + 1) x (K + 1) matrix ft' is of full rank (K + 1). In addition, we let b= 

[b0 b1 ... bx ]T E Q(K+1)x1, where SZ(K+1)x1 is the set of feasible parameter values of 

b. Based on the Nx1 data snapshots x(t), t=0,1, ..., L-1, as described in Eq. (5.1) 

with 9k = 1, k=1, ... , K, and M=1, the IQML algorithm solves the following 

minimisation problem 

L-1 

arg min bH1XH (t)(BHHR�sHHB)-1 Xt (t) b (5.17) 
bE -(K+1)x1 

t=O 

where Rns is the noise covariance structure, the N2 x (N1 - K) matrix 

B=I NI -K 
0 'K+lb * (5.18) 

and 

X, (t) = 
[IK+lXt; 

l(t) IK+IXt; 2(t) ... IK+lXt; N, -K(t), 

T 
(5.19) 

with xt; k (t) as the (K + 1)x 1 transformed data vectors 

xt; k (t) = Hkx(t), k= 1, ... , Nl -K (5.20) 

The minimisation problem Eq. (5.17) can be found, for example, in the 1-D 

DML frequency estimation problem [22], where Nl = N, H= IN, and H= I K+1 . To 

obtain an exact DML estimate of the parameter 0 as given by Eq. (5.14), the vector b 

must be constrained so that the K roots -7 k, k=1, ..., 
K, of the polynomial g(b) = bozK 

+ b1z K-1 +"""+ bK , are distinct and lie on the unit circle. In doing so, the column 

, vectors of HHB form the null space of AH(z). The parameter estimates 9Z; k, k=1.... 
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K, can be obtained from the K roots 2k, k=1, 
... , K, of g(b) by using either Eq. 

(5.11) or Eq. (5.12). Based on a uniform linear array, the WSF and PFML problems for 
DOA estimation can also be similarly cast in the form Eq. (5.17). In comparing Eq. 

(5.17) with the original form in [22], the form Eq. (5.17) turns out to be equivalent to 

the original form if Nl = N, H= IN, and H= IK+l. However, Eq. (5.17) is more 

general because it allows for the inclusion of additional constraints as well as some 

forms of linear pre-processing. For instance, solving Eq. (5.17), with b being 

constrained such that the K roots of g(b) are distinct and. lie on the unit circle, is a 

difficult problem. To simplify the minimisation problem Eq. (5.17), it was proposed in 

[22] that the described constraint is replaced by the conjugate-symmetric constraint, 

imposed on b such that 

b= Ix+ib 

With this constraint, b can be written as 

where b is a real (K+ 1) x1 vector, and 

JK+l = 

for the case of odd K, and 

b= Jb 

I(K+1)/2 J I(K+1)12 

'(K+1)/2 I(K+1)l2 

I 
K/2 

°(K/2)x1 JI K/2 

JK+l = °lx(K/2) V2 °lx(K/2) 

I 
K/2 

O(Kl2)xl -. l I 
K12 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

if K is even. This constraint can be included into the minimisation problem Eq. (5.17) by 

replacing b with the real vector b and letting H= Ix+IJx+ilx+i' N1 = N, H= IN. In 

addition to this conjugate-symmetric constraint, the linear interpolator as considered, for 

instance, in [70] can be included into the algorithm, with H in Eq. (5.16) as the 
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interpolation matrix. This type of pre-processing allows for the application of the IQML 

algorithm to a real irregular uniform linear array. Discussion on this topic is given in 

Chapter 7. Furthermore, as will be discussed in Section 5.3, when some of the parameter 

components of 0 (or z) are known a priori, this prior information can be incorporated 

into the algorithm by a suitable choice of ft. 

5.2.2 The IQML algorithm with the consistent nontriviality constraint 

The IQML algorithm is known to converge quickly with good performance for 

sufficiently high SNR. However, the original method can yield a poor result for a certain 

parameter configuration as pointed out in [23-24]. To be specific, when applied with the 

conjugate-symmetric constraint, the original algorithm breaks down if the parameters 

Zk, k=1, 
... , 

K, are chosen such that 

K 

Re{ e"K"l2fIzk 1/2 }=0 (5.25) 
k=1 

In [24], a solution to this problem was provided. The difference between the 

original IQML algorithm and the one in [24] is in the choice of the nontriviality 

constraintt, imposed on the vector b to avoid the nontrivial solution b=0. Although the 

modified method in [24] offers improved performance, as does the one in [22], it is still 

inefficient when a few data snapshots are available. This inefficiency can be explained 

by observing that the first step of Bresler's IQML algorithm is the linear prediction 

method with the prediction order of K+1. It is well-known that the linear prediction 

method, particularly with a low prediction order, yields a poor result when applied to 

noisy data [7,32]. Subsequent iterations of the algorithm also suffer the same problem. 

Despite the fact that the first step of Nagesha's IQML algorithm is the Pisarenko 

harmonic retrieval method with spatial smoothing, and thus gives asymptotically 

unbiased estimates, the parameter estimates obtained from subsequent iterations of the 

1 The use of the term 'nontriviality constraint' here follows that of [62]. 
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algorithm can be biased. This is because the additive noise covariance matrix in 

subsequent iterations is modified by the matrix term F (see Eq. (5.29)). In the 

following, by applying a proper nontriviality constraint, these problems found in the two 

algorithms can be alleviated, resulting in marked performance improvement. 

The proposed algorithm and the earlier two methods, based on the generalised 

form of the IQML algorithm Eq. (5.17) with SZ("'>"' as the set of (K + 1) x1 complex 

vectors, are summarised as follows: 

1. Choose the initial condition F,. For instance, by letting the (K + 1) x1 vector bo 

= [1 0".. Of , 
F, may be selected as 

"H Hý 1 F, = (Bo HRnSH Bo )- (5.26) 

where Bo is the matrix B in Eq. (5.18) with b in the equation being replaced by 

bo. 

T 

2. At the ith iteration, obtain bi = 
[bj'o bj 1""" bi, K] from one of the following 

methods: 

a) Bresler and Macovski's method [22] 

L-1 

1(t)}b (5.27) b= arg min bH{jXt(t)FXt 
bE I(K+I)xl 

t=0 

subject to 

cT b=1 (5.28) 

where 

F= (BiH1HRnSHHBi_1)-1, i>1 (5.29) 

c= [1 0 ".. Of (5.3 0) 

and B; 
_, 

is the matrix B in Eq. (5.18) with b in the equation being replaced by 

bý-ý 
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b) Nagesha and Kay's method [24] 

bi is obtained by Eq. (5.27), subject to the following nontriviality 

constraint 

b 1l =1 (5.31) 

c) The proposed method 

bi is obtained by Eq. (5.27), subject to 

tr{ HHBFBHHR�S }=1 (5.32) 

3. 

4. 

Repeat the first step by using the estimate of b from the previous iteration, i. e., 

bi-,,, to form F i. The algorithm is repeated in this manner until either the number 

of iterations reaches a maximum limit or when 
II b; - bi_1 II <c, where E is a 

small threshold number. 

From the final b, map the K roots zk, k=1, 
... , 

K, of the polynomial g( b) _ 

b0 zK+ bl z K-1 +"""+ bK 
', onto the unit circle. For the DOA estimation 

problem, the estimates bz; k ,k=1, ..., 
K, can be obtained from the mapped 

roots by using Eq. (5.12). For the 1-D frequency estimation problem, the 

frequency estimates, can be similarly obtained by using Eq. (5.11). 

In considering the first step of the described procedure, it can be seen that, at any 

ith iteration, the estimate bi obtained by the proposed method (l. c) is asymptotically 

unbiased (at least for a positive definite F, ). In addition, while the proposed constraint 

Eq. (5.32) appears rather complicated, its computation can be simplified. This can be 

done by observing that Eq. (5.32) is equivalent to 

bHTb =1 

where 

(5.33) 
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N 

Ti = Xn (l)FXn (l) (5.34) 
c=i 

and 

Xn(l) = 
[lK+lXn; 

i(l) IK+lXn; 2(l) ... IK+lXn; N, -K(l)]T (5.35) 

with xn; k(l) as the lth column vector of 

R i/2 (5) ns; k = HR Rns 
. 36 

Note that, for fixed H and Rns, Xn (l) can be computed off-line. 

When the conjugate-symmetric constraint is applied by letting H= 

I 
K+1JK+II K+1' the vector b= Jb . The estimate of the real vector 

T ýbo bl """ bK ] is obtained from 

L-1 

b= arg mKnb'T{ Re(I XH(t)FX, (t)) }b (5.37) 
r=0 

subject to one of the three nontriviality constraints Eqs. (5.28,5.31,5.33) with b and b; 

in these and related equations being replaced by b and bi. In addition, 1 (''+')"' is, in this 

case, the set of (K + I) x1 real vectors. 

For Nl » K, the main computational part of the IQML algorithm is in computing 

(X H (t)FXt (t)) at each iteration. If Nl = N, Rns =H=IN, the matrix term 

(Bi_IHRnSHHBi_, ) is banded with the one-side bandwidth K (excluding the main 

diagonal). In this case, based on Hua's implementation of the algorithm [71 ], for J= (N1 

- K) » K, the approximate number of floating-point complex multiplications required 

by both Bresler's and Nagesha's IQML algorithms is 

Flop 1= (3L + 1)JK2 /2 + (7L + 3)JK/2 + 2LJ (5.38) 

In addition to Eq. (5.38), both algorithms require the O((K+1)3) computation to obtain 

b; at each iteration from Eq. (5.27), subject to the nontriviality constraint Eq. (5.28) for 

Bresler's algorithm, and the constraint Eq. (5.31) for Nagesha's algorithm. 
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For the proposed algorithm, additional computation is required to obtain T by 

Eq. (5.34). If Nl = N, Rns =H= IN, and ft= IK+l (or 'K+1Jx+IiK+i ), formation of T 

by Eq. (5.34) involves only addition operations and re-indexing of the elements in F. 

Because (BHIHRnSHHBi_1) is banded and Toeplitz, its inverse, which is F, can be 

obtained by a slight modification of the Trench algorithm [72], to take into account the 

band structure of (BýHIHRnSHHBi_, ) . Based on this algorithm, the approximate number 

of required multiplications to obtain F is given by 

Flop2 =5 J2/4 + KJ (5.39) 

The total number of multiplications required by the proposed algorithm is the 

combination of Flop, and Flop2, plus the O((K+ 1)3) computation required to obtain b, 

from Eq. (5.27), subject to the constraint Eq. (5.33). 

When (BHIHRnSHHBi_, ) has no special structure, based on Hua's imple- 

mentation, the required number of multiplications in Bresler's and Nagesha's algorithms 

is approximately J3/6 + (3K2 + 7K + 4)JL/2, while the proposed algorithm requires 

approximately J3/6 + (3 K2 + 7K + 4)(L + Nl )J/2 multiplication operations. All three 

algorithms require in addition the O((K+ 1)3) computation to obtain the solution to Eq. 

(5.27). 

From this computational count, it is seen that the proposed algorithm is more 

computationally complicated than the two existing algorithms. The higher complexity of 

the proposed algorithm is, however, partly compensated for by faster convergence rate. 

In the following section, the inclusion of additional constraints on b based on prior 

knowledge of some parameter values will be discussed. 
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5.3 The constrained IQML algorithm 

In this section, we consider the case where some of the parameter values are 
known a priori. Let zj ,1=1, ... , K1, which correspond to O1E{ 9Z; k Ik=1, 

..., K}, 

l=1, 
..., K,, are known a priori. In addition, the polynomial f (bu) = bb ZK-K, + 

b, u z K-K1-I 
+"""+ bK_K, , has K- Kl roots z1 u, 1 1, ..., K1, which correspond to the 

remaining K- Kl parameters 9z, ß c{0 "k 
1k=1, 

... , K}, 1=1, 
... ,K- Kl. By letting 

b" = 
[bu b, """ bK_K, ]T 

, the vector b can be written as 

bI x+I Bc I x-x, +l b" (5.40) 

cccH bx, bx, 
-1 ... bo p 

be be ... be 
B=x, x, -1 o (5.41) 

cc 0 bx, bx, 
-i ... bo 

where zj, 1=1, 
... , K,, are the Kl roots of the polynomial g(b c) = bö z K' + bl z x' -i 

+"""+ be ') with be - 
[bcbl 

""" be ]T 
. If H is chosen as BH, the vector b" can 

be estimated using any of the three described algorithms with b and K being replaced by 

bU and K- Kl. Computational saving can be gained in solving this constrained IQML 

problem because of smaller dimensionality of b" 
, compared with that of b. More 

importantly, the performance of the constrained IQML algorithm is generally better than 

that of the unconstrained algorithm. 

In studying the performance improvement obtained by the constrained IQML 

algorithm, it is useful to know what is the performance bound under this condition. 

Based on the compact CRLB formula derived in [9], which is formulated under the 

assumption that s(t) is a deterministic unknown parameter vector, the CRLB of an 

unbiased estimate of the unknown parameter vector 9" 

given the known parameter vector 0c_ý0c1 9Z; 2 

-ý0" eu Z; 1 z; 2 

cT BZ; 
Kj 

] 
1S 

T 
Bu ... z: K-K, 
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CRLB(9 u) 8_1 2L 
Re-' { DýxRn l'2PR 

ii2A Rn 1/2Du) gu } (5.42) 

1 L-1 

where RSA _- IsU (t)SH (t), and s� (t) is composed of the signal waveforms associated L r=0 
_ with the unknown parameters. The matrix D� is given by 

i- 
Öau; 

l 
aa°. 

2 
aau; 

K, 
(5.43) ° Öez; 

i 
eil aez 

2e 
-2 aez 

KU 
ez 

K� 

where au; k, k=1, 
... , K,,, are the response vectors corresponding to the unknown 

parameters 9i; k, k=1, 
... , Ku, and the number of unknown parameters Ku =K- Kl. 

Note that A is the response matrix corresponding to the true values of both the known 

and unknown parameters. 

One remark to be made is the connection between the above constrained 

algorithm and beamspace processing [40-42]. The IQML algorithm with the constraint 

Eq. (5.40) can be seen as the unconstrained algorithm being applied to the beamspace 

data snapshots TBS x(t), t=0, ... ,L-1, where TBS is B,, in Eq. (5.41) with N- Kl 

column vectors. In [42], a similar constraint was proposed to be applied to the MUSIC 

method. However, it was seen by computer simulation that the performance of the 

constrained IQML algorithm is superior to that of the constrained minimum-norm 

method, which is a variant of the method in [42]. 

5.4 Two-dimensional parameter estimation based on the IQML 

algorithm 

The two-dimensional parameter estimation problem has been considered, for 

example, in [62-66]. However, these methods are either inefficient in terms of 

performance [65], or limited in applicability [62-63]. In [64], Hua proposed the use of 

two 1-D frequency estimators, based on the matrix pencil principle, to estimate 

separately each of the two parameter components. Pairing between the two components 
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is carried out in a subsequent step. Despite computational saving, Hua's method is 

inefficient because it operates on the subdata set of reduced dimensionality. To improve 

the estimation performance, a subdata set with larger dimension is required [64]. With 

the increased size of the subdata set, however, the computational complexity of the 

method increases rapidly due to the need for performing matrix eigendecomposition (or 

SVD decomposition). 

From the shortcomings of the methods as mentioned, we propose an alternative 

2-D parameter estimator. In a manner similar to Hua's MEMP (Matrix Enhancement and 

Matrix Pencil) method, our method breaks the 2-D parameter estimation problem into 

two 1-D parameter estimation problems. Unlike the former method, however, the two 1- 

D estimation problems are solved by using the IQML algorithm instead of the subspace- 

based method which is employed in [64]. As can be seen later, the method achieves 

comparable or even superior performance to that of the MEMP method. In addition, the 

method can be implemented by means of parallel processing. Before considering the 

proposed 2-D method, however, we first provide a solution to the 2-D parameter pairing 

problem. 

First, for ease of presentation, we assume in this section that Rns = 'MN 

" 
Next, 

let AS (y, z) be composed of p row vectors in A(y, z). In addition, let AS be AS t which 

corresponds to the true values of the K 2-D parameter pairs (yk 
, Zk) (9y; k , 9Z; k ), k= 

1, ... , 
K. If the column vectors of AS span a unique K-dimensional subspace for a given 

set of K distinct 2-D parameter pairs, there exists apx (p - K) matrix V such that 

ASH V=0 (5.44) 

It is seen that, the matrix V, whose column vectors span the null space of ASH 
, provides 

sufficient information for pairing the two l-D parameter components yk and zk. The 

t From this point, the explicit expression of A, as a function of (y, z) will, for most of the time, be omitted 

for notational convenience. 
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column vectors of V can be obtained, for example, from the p-K noise-subspace 

vectors of the average data covariance matrix 

1 M-q+1 N-v+1 

Rai 
M- +1 N-v+1 

I IRk'l (5.45) Cq )" () 
k=1 1=1 

where Rk l= E{xk l(t)xk 1 (t) }. The column vector xk IM of length p=q. v is obtained 

by stacking the column vectors of Xk 1(t) , i. e., xk (t) = vec(Xk , (t) ), where the qxv 

subdata matrix Xk 1(t) is given by 

Xk, 1(t) Xk, 1+1(t) Xk, l+v-1(t) 

,I 
(5.46) k 

X (t) 

Xk+q-1,1(t) """.. Xk+q-1,1+v-1(t) 

If q, v>K, M>K+q-1, and N>K+v-1, the noise subspace vectors of Rav, i. e., the 

p-K eigenvectors of Ray which correspond to the p-K smallest eigenvalues, form the 

null space of ASH. This choice of xk l(t), q, v, M, and N is adopted in [64]. The 2-D 

parameter pairing can be carried out by choosing K distinct pairs of the parameter 

estimates from the two dimensions, which are 

(y 
, 

z) = arg min tr{AHVVHA, } 
(Yk, Zk)E. _, 

k=1,..., K 

(5.47) 

where (y, z) A{ (9k, zk) Ik=1, ... ,K 
}and is the set of all possible 2-D pairs of 

the given two sets of the 1-D parameter estimates. The vector V is the estimate of V. It 

will be shown later how to obtain V. Given yk and zk , if we let V=V, it is seen that 

(y ,z), obtained by Eq. (5.47), is equal to (y , z) A{ (yk , zk) Ik=1, ... ,K}. Although 

this choice of the subdata vector Xk l (t) results in a consistent 2-D parameter pairing, the 

dimension of xk 1(t) and Rk 1 can be unnecessarily large when the number of the 

parameter pairs K increases. In fact, a subdata vector which gives a consistent pairing by 

Eq. (5.47) can be smaller than the described one. It can be seen that, given the distinct- 
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value parameters in one of the two dimensions, a consistent pairing can be done if As 

has the following properties: 

P. 1 Given a set of K distinct 2-D parameter pairs, the K column vectors of A, span a 

K-dimensional subspace. 

P. 2 Let the Ky x1 vector y° be composed of Ky distinct-value y-dimension 

parameters yk ,k=1, ... , KY . Similarly, the KZ x1 vector z° is composed of KZ 

distinct-value z-dimension parameters zk ,k=1, ... , KZ . Let { (y,; k , zl; k) Ik=1, 

... , 
K} and l (y2; k, Z2; k) Ik=1, 

... , K} be two sets of K distinct 2-D parameter 

pairs. If y° is given, it is assumed that for i=1,2, yi; k E{ y1 Il=1, ... , Ky }, k 

= 1, 
... , 

K, with the number of distinct-value parameters Ky. Similarly, if z° is 

given, it is assumed that for i=1,2, zi; k E{ zl Il=1, ... , KZ }, k=1, ... , K, 

with the number of distinct-value parameters K. Denote the given distinct-value 

parameter vector (either y° or z °) by w'. In addition, let y1 _ 
T ýT [Yi; 

i yi; 2 """ Yj; K] , and z; = 
[Zj; 

i Z;; 2 z;; K , 
for i=1,2. Given 

AS (yl, zl) 
1W 

o and AS (y2, z2) 
Iwo, 

each with the property P. 1, there exists a full 

rank matrix C such that 

A(yl, zl)lwo .C= 
A(. Y21 z2)Iwo (5.48) 

only if the 2-D parameter set { (yl; k, Z1; k) Ik=1, ..., 
K} is equal to { (y2, k, Z2; k ) 

Ik=1, ... , 
K}. The notation A, (y, z)Iwo denotes the sub-response matrix as a 

function of (y, z), given w° 

The above requirement on AS is noted to be slightly weaker than that of [64]. In 

the following theorem, we provide a fairly general rule for building xk 1 (t) of which the 

corresponding sub-response matrix, denoted by A,; k I, has the two properties as 

described. 
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Theorem 5.1: Let z° be given. If, by selecting some elements in the subdata vector 

xk I (t), the following of 

a) xa(t) 
[x, 

11 

b) Xß(t) _ 
[x, 

22 

m2 : 1-L ml, 

C) xy(t) 
[x, 

3, n3 

actors can be constructed: 
T 

Xml, 
ni+l ... xmi, 

nl+ll-1] , 
11 > K, 

T 
Xmz, n2+1 "' xm2, nz+12-1] 9 

12 ! min(K - KZ + 1, KZ) and 

T 
x 

3+1, n3 ... Xºn3+13-1, 
n3 

], 
13 

>K- KZ + 2, 

then As; k ! has the properties P. 1 and P. 2 (with w° = z° in P. 2). For As; k 1 to have (at 

least) the property P. 1, it is sufficient that xa(t) with ll > KZ and xy(t) with 13 >K- 

KZ +1 can be constructed from xk I (t) . 

Proof: See Appendix G. 

When the given distinct-value parameter vector w° in P. 2 is y°, a sufficient 

condition similar to the one given by Theorem 5.1 for the case w° = z° can be obtained. 

In addition, the subdata vector Xk I (t) of which the sub-response matrix As; k ! has both 

properties P. 1-2 can be used not only for 2-D parameter pairing, but also in estimating 

the unknown parameters in the other dimension. For instance, if w° = z° is given and 

As; k l has the properties P. 1-2, y can be estimated by 

(Y, z) = arg min tr{AH WH A, } (5.49) 
(Y, Z) 

subject to zk E{ zl 11=1,..., KZ }, k=1, 
... , 

K. If V is a consistent estimate of V, the 

estimator Eq. (5.49) gives a consistent estimate of (y, z). Moreover, if xk l (t) is 

constructed according to Theorem 5.2 with either l, or 12 > K, AS; k, I span a unique K 

dimensional subspace for a given set of K distinct 2-D parameter pairs with known KZ 
. 

This implies that, with sufficient matrix averaging in Eq. (5.45), Rai, contains sufficient 

information for the estimation of the K 2-D parameter pairs without prior information of 

either y° or z'. It should be noted, however, that the condition as stated in Theorem 5.1 
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is sufficient but not necessary. Sometimes, As; k 1 can have the two properties P. 1-2 with 

smaller Xk I (t) than the one obtained by the theorem. This is the case when KY and KZ 

are comparatively small, when compared with K. For instance, if the size of the vector 

xk 1(t) which is constructed by Theorem 5.1 is larger than (KY K, ), xk IM may be 

chosen instead as xk I(t) = vec(Xk 1(t)), where the qxv subdata matrix Xk ! (t) is as 

given by Eq. (5.46) with q> KY, v>K. This choice of xk 1(t) (and Rk l) was suggested 

in [73]. When KY and KZ are comparable to K, however, this alternative Xk I (t) (and 

Rk I) generally has larger dimension than the one obtained according to Theorem 5.1. 

Assuming that As; i l has at least the property P. 1, and the signal covariance 

matrix RS is positive semi-definite, the following theorem provides a sufficient 

condition in constructing Rav such that its noise subspace vectors span the null space of 

AS k1. The condition stated in the theorem is noted to be more general than the condition 

M>K+q-1, N>K+v-1, used for the construction of Ra� by Eq. (5.45). 

Theorem 5.2: Assume that Rav is formed by averaging r subdata covariance matrices 

Rk, l, i. e., 
Rav =1-Y Rk 

(k, 
(5.50) 

where the px p matrix Rk I= E{ xk l (t)xk 1(t) } with p>K, and 'P is the set of the data 

indices { (k1,1k) , ... , (kr) lr) } whose members form the centre data vector 

T 
xc (t) = 

[xk111 ýt) Xk2 12 
ýtý ... Xkr lr 

(t)] (5.51) 

If x, (t) and xk l (t), (k, 1) E 'P, are formed according to Theorem 5.1 such that the 

corresponding response matrices have at least the property P. 1, then the noise subspace 

vectors of Rav, which are the p-K eigenvectors of Rav associated with the p-K 

smallest eigenvalues, span the nullspace of Ak1, for (k, 1) E T. 

Proof: See Appendix H. 
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From Theorem 5.2, V can be obtained as composed of the p-K noise subspace 

vectors of Ray. Regarding the formation of the subdata vectors xk ! (t), (k, 1) E `P, such 

that their response matrices have the properties P. 1 and P. 2, it is seen that the formation 

may not be unique. Nevertheless, computational saving as well as performance 

enhancement can be gained if As; k I can be decomposed as A,;,,,, = Cc, D, where D is a 

diagonal matrix and CAS is column conjugate-symmetric, i. e., CAS = ICES, where I is 

assumed to have a suitable dimension. With this property, the eigendecomposition of 

Rav can be carried out with a real rather than complex matrix. In addition, performance 

improvement is gained because this allows for backward smoothing of Ra, � in addition 

to forward smoothing used in Eq. (5.50). Detail of the efficient methods in forming Ra� 

by forward/backward smoothing can be found in [74]. 

With the development of Theorems 5.1 and 5.2, consistent 2-D parameter 

pairing can be carried out. We next provide the proposed 2-D method as follows: 

The 1-D IQML-based 2-D parameter estimation method 

1. From the data matrix X(t) of size MxN (Eq. (5.3)), construct two sets of data 

snapshots as follows: 

xy(n, t) = 
[Xl, 

n(t) 
X2, n(t) ... XM, n(t)] 

T, 
n= 1, 

... ,N (5.52) 

x, (m, t) = 
[x, 

1(t) Xm, 2(t) ... Xm, N(t)]T , M= 1'. .. 'm 
(5.53) 

Assuming that KY and KZ are known, apply the IQML algorithm (any of the 

three versions described in Section 5.2.2) to x, (m, t) to estimate the z-dimension 

parameters, and to xy (n, t) to estimate the y-dimension parameters. The 

uniqueness of the parameter estimates is guaranteed by choosing N>2 KZ, and M 

!2 KY (see [50-51 ] for more details on the uniqueness problem). 

2. Estimate the average covariance matrix Ray by 

L-1 
Rav =1 xk l (t)Xk c (t) (5.54) 

rL (k, 1)EP r=o 
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with xk j (t) satisfying the condition stated in Theorem 5.1 and P being chosen 

according to Theorem 5.2. Note that, if each of the sub-response matrices 

corresponding to xkl(t) can be decomposed as As, k !=C,, SD, where D is a 
diagonal matrix and Cis is column conjugate-symmetric, i. e., C,, = ICES, the 

forward/backward averaging matrix 

av _ (Rai, + IRävI )/2 (5.55) 

should be used instead of Rai. In addition, for the single data snapshot case, 

more subdata matrices than the ones stated in Theorem 5.2 may be required for 

sufficient noise averaging. From the estimates of the y- and z-dimension 

parameters, the parameter pairing is carried out using Eq. (5.47), with V being 

composed of the p-K eigenvectors of Rav which are associated with the p-K 

smallest eigenvalues. 

We consider next the computational complexity of the proposed 2-D method. 

The main computational parts of the above 2-D method lie in the estimation of two 1-D 

parameters by the IQML algorithm, the formation of Ra� and its eigenvector 

decomposition. The computational complexity of the IQML algorithm for two 1-D 

parameter estimations can be obtained from the discussion on this topic in Section 5.2. 

Let Ray be formed (through Xk l (t)) from (M -q+ 1)(N -v+ 1) subdata matrices Xk I (t) 

of dimension qxv. For the single data snapshot case (L = 1), the required number of 

multiplications to form Rav is 

Flop3 = qv(qv + 1)/2 + (N- v)( q(qv) - (q - 1)q/2) + 

(M - q)( v(qv) - (v - 1)v/2) + (M - q)(N - v)(qv) (5.56) 
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Xi l(t) ( XI 
2`t) X1,3(t) 

............................... ..... ............ 

NE 

" it "E 

X2,1(t) 

To see how this computational count is obtained, we consider the 2-D 5x5 data 

matrix as shown in Figure 5.1. From the figure, q=v=3, and the total number of 

subdata matrices r=9. Only the single data snapshot case is considered. Let xl l (t) = 

vec(X i (t) ), where Xl 1(t) is the first subdata matrix (see the figure and Eq. (5.46)). It is 

seen that, by taking into account the Hermitian structure, the number of multiplications 

required to form xl 1(t)x l (t) is 

count# 1= qv( qv + 1)/2 (5.57) 

Next, to compute x12(t)x 2(t) 
, only the product of each of the three shaded data 

points in X1 2 (t) to itself, as well as to other data points in X12 (t), are needed to be 

computed. The same number of computations is required to compute xl 1,3 (t)X3 (t) 
. 

Thus, the total number of multiplications required at this stage is 

count#2 = (N - v)( q(qv) - (q - 1)q/2 ) (5.58) 

In a similar manner to the case of xi 2 (t)x z (t) and xi 3 (t)x 3 (t), the total 

number of multiplications required to form x2 i (t)xz 1 (t) and x31(t)x3'1(t) is 

count#3 = (M - q)( v(qv) - (v - 1)v/2) (5.59) 
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With proper order of computation, for each of the remaining outer product 

xk l (t)xk 1(t), there is only one new data point whose products with itself and the other 

points in Xk l (t) must be computed. Thus, the total number of multiplications required to 

compute the remaining outer product terms xk l (t)xk (t) is 

count#4 = (M - q)(N - v)(qv) (5.60) 

By combining Eqs. (5.57-5.60), we obtain the total number of operations 

required to form Rav, which is given by Eq. (5.56). In addition to this, the O((gv)3 ) 

computation is required for eigendecomposition of V. 
Finally, to facilitate the performance study of 2-D methods in the next section, a 

compact CRLB for the 2-D distinct-value parameter vector 00_ [(00)7' 

given by 

CRLB (9 °) _ 
'T H 1/2L 1/2- T 

Re -{ UI { (D2dRn PR_1i2fRn D2d )O (RS) } Ul } 
2L n 

where 

ýeo )T 
T 1,1S 

(5.61) 

aA aA aA aA aA (5.62) D 2d 0 ae °, 8 ae 02 0 ae OK 

Y 

aoz 
1e 

aei 
K, 

e 

Y; Y; y; Y 

UI = IKy+Z O lK (5.63) 

RS = (IKY+Z1 
Y+Z) 

O RS (5.64) 

H R, = ýs(t)s (t) (5.65) 
L r=0 

The matrix PR 12, is the null projection of the column space of Rn 1/2A 
, and Ky+Z = Ky 

n 

+ KZ K. As for y° and z', the vectors 0y and 0 are composed of, respectively, the KY 

distinct-value y-dimension parameters 0°k, k=1,... , 
KY, and the KZ distinct-value z- 

dimension parameters 0 k, k=1, ... , 
K. When the number of distinct parameter 

values in each of the two dimensions is not assumed known, KY = KZ = K, 0°=0, and 
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9y (6z) is treated as being composed of K distinct parameters. When this is the case, a 

somewhat simpler CRLB formula is given by 

CRLB () = 
Re -' { (D ýRn 112p 

v2ýRn'12D2d) ((1212) O RS )T } (5.66) 2L 

where 

(aal aa2 
(ýQK Ja1 aaK 

D2d 
ee aoy; 1 y; 1 a°y; 2 y; 2 aoy; 

K 
ey; K aoz; l 

0z; 1 a6z; 
K 

ez; K 

(5.67) 

The formulas Eqs. (5.61,5.66) can be derived from the results on the compact CRLB in 

[9]. A more general form of the bound Eq. (5.66) can be found in [75]. The proof for 

Eq. (5.61) is sketched in Appendix I. Note that, for large L, Eqs. (5.61,5.66) can be 

approximated by replacing RS with RS [9]. 

5.5 Numerical results 

Some computer simulations were carried out to compare our methods with 

theoretical bounds and some existing methods. In the first six experiments, we 

demonstrate the performance improvement by the proposed consistent IQML algorithm 

employing the new nontriviality constraint, in comparison with the algorithms due to 

Bresler [22] and Nagesha [24]. The last two experiments are dedicated to the problem of 

2-D parameter estimation. In all experiments, the additive noise is white and the noise 

covariance structure Rns = IN (= IMN for the last two experiments). Except for two 

constrained IQML methods in EXP 5.6, H=I x+1Jx+il x+i ' N1 = N, and H=IN for the 

1-D parameter estimation problem. For the IQML algorithm used in the 2-D 

parameter estimation problem, H= IKy+1JxY+iIK +i' Ni = M, and H= IM for the y- 

dimension parameter estimation, and ft= IKZ+1JKZ+1'K +t, Nl = N, and H= IN for the 
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z-dimension parameter estimation. In the case of the two constrained IQML methods in 

EXP 5.6 with the known parameter z' ,H= IKJKIKBc, where Bc is as given by Eq. 

(5.41) with Kl = 1, bo = -1, and bi = zc. In all experiments, the maximum number of 

iterations allowed for the algorithms is 50. The initial condition Fl is as given by Eq. 

(5.26) and, except for EXP 5.7-5.8, the threshold number F- is 0.5E-10. Note that, to 

allow for fair comparison, the estimate b1 at the ith iteration, obtained by any of the 

three algorithms, was first normalised before being used to calculate II bi - bi_l 11. The 

performance of a parameter estimator is measured by the Root-Mean-Square Error 

(RMSE) of a parameter estimate (in degrees or radians). The RMSEav is obtained as the 

Root-Mean-Square (RMS) value of the RMSEs due to all K parameter estimates. The 

RMS value of the CRLBs on the standard deviations of the K parameter estimates, 

denoted by CRLBav, will be used as the theoretical bound. 

In the following two experiments, EXP 5.1 and EXP 5.2, the problem of DOA 

estimation by a uniform linear array was considered. The IQML algorithms were 

performed with both the DML and WSF cost functions. The latter was applied with the 

1 optimal weight WWSf =AA,. 

EXP 5.1: In this experiment, the uniform linear array of N= 10 sensors, with inter- 

sensor spacing of half the signal wavelength, was used. Three far-field narrow-band 

point sources came from the directions of 2.5,0, and -30 degrees with respect to 

broadside. The waveforms of these signals were uncorrelated, complex Gaussian 

distributed, each with unity power. The complex additive white Gaussian noise was 

added at each sensor to obtain various values of SNR A -l0loglo o2, where 62 is the 

noise power at each sensor. For each SNR value, five hundred simulations were carried 

out with L= 100 snapshots of the data vector being generated in each simulation. 

From Figure 5.2, it is clearly seen that, based on the DML cost function, the 

performance of both Bresler's and Nagesha's IQML algorithms (BIQML and NIQML) is 

inferior to that of the proposed Consistent IQML algorithm (CIQML). The RMSEav of 
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the estimates using the CIQML algorithm attains the corresponding CRLBav for SNR > 

10 dB while the RMSEav of the estimates obtained by the RMNORM method never 

attains the bound. The RMNORM method is the root version of the minimum-norm 

procedure with single forward/backward averaging. The average bound CRLBav shown 

in the figure is based on the large sample approximate formula derived in [9]. It should 

also be noted that the best result gained by the NIQML algorithm at SNR <0 dB is 

immaterial. At this range of SNR, the estimation error of any of the methods performed 

here is too large for the result to be useful. In addition, the results shown in Figure 5.2, 

which reflect the performances of the three IQML algorithms and the RMNORM 

method, were based on the DOA estimates from all of five hundreds simulations, 

without excluding the simulations where the DOAs were not resolved. By dividing the 

array FOV (± 90 degrees) into three angular regions at 1.25 and -15 degrees, the DOAs 

are said to have been resolved by a DOA estimator if each of their estimates is located 

within each of the three angular regions. Nevertheless, for SNR >5 dB, the results based 

only on the simulations where the DOAs were resolved are essentially the same as the 

ones shown in Figure 5.2. At SNR > 11.25 dB, the DOAs were resolved in all 

simulations by any of the methods performed here. 

With the WSF cost function, however, the performance of the BIQML and 

NIQML algorithms, seen from Figure 5.3, was substantially improved. The NIQML 

algorithm, in particular, achieved the best result. Its performance is comparable to that 

of the proposed CIQML algorithm with the same cost function. The performance 

improvement of the BIQML and NIQML algorithms is due to the reduction of the noise 

covariance matrix term in the WSF data matrix ÜSWWSfÜ ', 
which is obtained by 

eigendecomposition of the sample data covariance matrix, as detailed in Chapter 2. Note 

that, the performance improvement of the BIQML algorithm, when applied with the 

WSF cost function, was also observed in [23]. However, the reason for the improvement 

was not detailed in [23]. From the same figure, the RMSEav obtained by the CIQML 
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algorithm with the DML cost function is seen to be approximately the same as the 

RMSEav of the estimates obtained by using the BIQML algorithm with the WSF cost 

function. In addition, for SNR >5 dB, the CIQML with the DML cost function achieved 

performance comparable to that of the NIQML algorithm with the WSF cost function. 

For the DML cost function, eigendecomposition of the data covariance matrix is not 

required. Thus, for a large array where the decomposition becomes costly, the use of the 

CIQML algorithm with the DML cost function may be preferred in terms of 

performance-complexity. 

In Figure 5.4, the average numbers of iterations for the three IQML algorithms 

using the DML and WSF cost functions, are shown with respect to SNR. It is seen from 

the figure that, among the methods based on the DML cost function, the proposed 

algorithm has the fastest convergence rate. When the WSF cost function was applied, 

however, the convergence rates of the BIQML and NIQML algorithms were greatly 

improved. With the WSF cost function, some improvement in the convergence rate of 

the proposed method can also be observed. At SNR above 5 dB, the average numbers of 

iterations of the CIQML algorithm (with any of the two cost functions), and the BIQML 

and NIQML algorithms with the WSF cost function, are between 5 and 10. Figure 5.5 

shows the percentages of convergence of the three algorithms using the DML and WSF 

cost functions. An algorithm is said to have converged if the condition 
II bi - bi_1 Ij <cis 

satisfied for the ith iteration number which is below 50. From the figure, down to SNR = 

2.5 dB, the CIQML algorithm with the DML cost function converged in all of five 

hundred simulations while the percentages of convergence of the BIQML and NIQML 

with the DML cost function dropped sharply at SNR of 5 dB. When the WSF cost 

function was applied, however, all three algorithms had approximately the same 

percentage of convergence. 
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Figure 5.2: The estimated RMSEav S of the DOA estimates in EXP 5.1 using three 

IQML algorithms with the DML cost function, and the RMNORM method, compared 

with the average CRLB on the std at various SNRs with a 1.25 dB step size. 
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EXP 5.2: The three uncorrelated signals in EXP 5.1 were replaced by the correlated 

ones with the cross correlation between the ith and kth signals as given by E{ s; (t)sk (t) } 

= 0.99 { exp( j1t(ai - ak)) 1. The signals s; (t), i=1, ..., K=3, were measured at the 

middle point between the 5th and 6th sensors. Through study of the corresponding 

CRLB, the signal phases a, were chosen as a, = 7c/8, a2 = it/4, and a3 = 37t/8, to 

represent an average performance case. 

From Figure 5.6, with the DML cost function, the inefficiency of the BIQML 

and NIQML algorithms is again seen. With the same cost function, the proposed 

CIQML algorithm yielded a superior performance to the other two algorithms. The SNR 

threshold of the proposed algorithm is also slightly higher than that of the RMNORM 

method. The RMNORM method employed forward/backward averaging of three 

overlapping subarrays of eight sensors each. As for the case of Figure 5.2 in EXP 5.1, 

the results shown in Figure 5.6 were based on all of five hundreds simulations. 

However, for SNR > 13.75 dB, the results based only on the simulations where the three 

DOAs were resolved are largely the same as the ones shown in Figure 5.6. At SNR > 

18.75 dB, the three DOAs were resolved in all simulations by any of the methods 

performed here. 

From Figure 5.7, with the WSF cost function being employed, the accuracy of 

the DOA estimates by all three IQML algorithms was improved. Among them, the 

CIQML and NIQML algorithms gave the best result. The SNR threshold of the CIQML 

and NIQML algorithms is approximately 7 dB lower than that of the RMNORM 

method. Note that, the CRLBav shown in Figure 5.6 was based on the deterministic 

signal assumption while the one shown in Figure 5.7 was based on the stochastic signal 

assumption. The latter was obtained using the large sample approximate CRLB formula 

derived in [76]. In this case, the two bounds are nearly identical, with the bound 

corresponding to the deterministic signal assumption having slightly smaller value at 

low SNR. 
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Figure 5.6: From EXP 5.2, the estimated RMSEav s of the correlated source DOA 

estimates using three IQML algorithms with the DML cost function and the RMNORM 

method, compared with the average CRLB at various SNRs with a 1.25 dB step size. 
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Figure 5.7: From EXP 5.2, the RMSEav s of the correlated source DOA estimates using 

three IQML algorithms with the WSF cost function and the RMNORM method, 

compared with the average CRLB at various SNRs with a 1.25 dB step size. 
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In the next four experiments, the single data snapshot case was considered. The 

problem considered in these experiments is of multiple undamped sinusoidal frequency 

estimation. Nevertheless, due to mathematical similarity, it also represents the DOA 

estimation problem with a single array snapshot. 

EXP 5.3: This example was taken from [24]. A single snapshot of N= 25 data points 

was generated from 

Xk = exp(ja, ). exp(j21tO1(k -1)) + exp(ja2 ). exp(j2m92 (k -1)) + nk I 

k=1, ... , 25 (5.68) 

where 01 = 0.35,02 = 0.37, al = 0, and a2 = 7u/4. 

The result shown in Figure 5.8 suggests that both the NIQML and CIQML 

algorithms yield slightly improved performance over that of the BIQML algorithm. At 

high SNR, both method gave slightly better result than that of the MFBLP (modified 

forward-backward linear prediction) method [32] (see also Chapter 2), which was 

performed with the prediction order of 18. The average number of iterations required by 

each of the three IQML algorithms is shown in Figure 5.9. 

EXP 5.4: In this experiment, the effect of the signal phases on the estimation 

performance was investigated. The two sinusoidal signal model of EXP 5.3 was again 

considered. However, the phase reference point was moved from the first data point, 

assumed in the last example, to the middle of the data set. With this, the observed data 

can be described by 

Xk = exp(jal ). exp(j27t91(k - co )) + exp(ja2) exp(j2it92 (k - co )) + nk, 

k= 1,2,..., N (5.69) 

where 01 = 0.35,02 = 0.37, and co = (N + 1)/2. Note that by choosing the phase 

reference point as described, the effect of the signal phases on the estimation 

performance is decoupled with that due to the signal frequency values (see [77], for 
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Figure 5.8: From EXP 5.3, the estimated RMSEav S of the two sinusoidal frequency 

estimates using three IQML algorithms and MFBLP method, compared with. the average 
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Figure 5.9: From EXP 5.3, the average number of iterations of three IQML algorithms, 

at various SNRs with a step size of 1.25 dB. 

138 



more detail on this issue). In this experiment, the data length was N= 25. Estimation of 

the two signal frequencies was carried out using the DML cost function with the three 

algorithms and the MFBLP method with the prediction order of 18, all at SNRs of 15 

and 20 dB. At each SNR value, the phase factor of the first signal was fixed at al = 0, 

while the second phase factor a2 was varied to obtain 9 different phase values as 

follows: 

a2 = mit/16, m=0,1,..., 8 (5.70) 

The estimated RMSEavs of the frequency estimates, obtained by the three IQML 

algorithms at SNRs of 15 and 20 dB are shown in Figure 5.10. From Figure 5.1Oa, the 

MFBLP method gave the best result as the second phase factor a2 approached al (= 0 

radian). However, for a2 > 0.8 radians, the proposed CIQML algorithm yielded the 

estimates whose RMSEav attained the CRLBav, while the RMSEav due to the MFBLP 

method did not. It is also seen that the performance of the BIQML and NIQML 

algorithms is inferior to that of the CIQML algorithm. At SNR = 20 dB, the RMSEav of 

the estimates using the CIQML algorithm attained the CRLBa� for all of the nine 

different phase factors. The performance of the BIQML and NIQML algorithms was 

greatly deteriorated as a2 approached zero. Note that, while the RMSEa� of the ML 

estimates using either of the three IQML algorithms attained the bound CRLBa� as a2 

approached 7t/2, the RMSEav of the MFBLP estimates never attained the bound. 
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Figure 5.10: From EXP 5.4, the estimated RMSEaV s of two sinusoidal frequency 

estimates using three IQML algorithms and MFBLP method, at nine different values of 

the second phase factor a2 . 
(a) SNR = 15 dB; (b) SNR = 20 dB. 

140 



EXP 5.5: The frequency model Eq. (5.69) was again applied. The data length N was, 

however, varied from 12 to 31 with a single step size. The experiment was repeated with 

two different SNRs of 15 and 20 dB. The two phase factors were chosen as at = 0, and 

a2 = 7t/4. The estimated RMSEav S of the frequency estimates using the DML estimator 

with the three IQML algorithms and the MFBLP method at the two SNRs are shown in 

Figure 5.11. For the MFBLP method, the prediction order at each value of N was chosen 

as the smaller of the two closest integer numbers to 3N/4. This prediction order selection 

was recommended in [32]. From the figure, it is seen that the CIQML algorithm offered 

better performance at a short data length N, than those of the BIQML and NIQML 

algorithms. In particular, at a SNR of 15 dB, the latter two algorithms performed badly 

for most of the chosen 20 values of N. In comparing between the MFBLP method and 

the DML method with the CIQML algorithm, the former yielded only slightly better 

results at N< 20. For N> 20, however, the DML method based on the CIQML 

algorithm yielded the estimates of which the RMSEa� attained the CRLBav, while the 

RMSEav obtained by the MFBLP method never reached the bound. Note that, at N= 23, 

the performance of the DML method using the CIQML algorithm sharply dropped. This 

is because, at one of five hundred simulations, the two frequency parameters could not 

be resolved and appeared as a single parameter. As a result, a spurious frequency 

estimate was picked as a real frequency estimate, giving the unusually large error. The 

same problem was also observed in the NIQML algorithm at the SNR of 20 dB (see 

Figure 5.1 lb). This problem may be remedied by using additional information of the 

signals. For instance, if the power of each signal, E{ Isk 12 is known to be well above 
1 L-1 2 

<, where sk (t) is the estimate of some threshold level > 62, the criterion 
1I Isk (01 
Lo 

sk (t), may be applied to detect a spurious frequency estimate. 
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Figure 5.11: From EXP 5.5, the estimated RMSEav s of two sinusoidal frequency 

estimates using three IQML algorithms and the MFBLP method, compared with the 

average CRLB on the std for 20 values of the data length N. (a) SNR = 15 dB; (b) SNR 

= 20 dB. 
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EXP 5.6: With the data model Eq. (5.69), the third frequency 93 = 0.41 was added. 

The frequency values of the other two signals were the same as in EXP 5.4. The chosen 

phase factors were al = 0, a2 = it/8, and a3 = n/4. From Figure 5.12, the proposed 

CIQML algorithm achieved the best performance. It also has the lowest SNR threshold 

(approximately 5 dB lower than that of the NIQML algorithm). 

With the same scenario, two constrained IQML algorithms using Nagesha's and 

the proposed nontriviality constraints (constrained NIQML, and constrained CIQML), 

were performed using the constraint Eq. (5.40) under the assumption that 03 was known 

a priori. In addition, with 03 being assumed known, the constrained RMNORM method, 

which is a variant of the Constrained MUSIC method in [42], was performed with 

forward/backward averaging of eight 18x 18 subdata covariance matrices. In Figure 5.13 

the performances of the constrained methods are compared with those of the 

unconstrained ones. The estimated RMSEav of the frequency estimates using each of the 

unconstrained methods shown in Figure 5.13 is the RMS value of the RMSEs of the 

first two parameter estimates 91 and 62. From the figure, the two constrained IQML 

algorithms greatly improved the performance of their unconstrained counterparts. 

Among all three constrained methods, the constrained CIQML method again yielded the 

best result. The SNR threshold of the method is more than 3 dB lower than that of the 

constrained NIQML method. The CRLBav shown in the figure was based on Eq. (5.42), 

with 93 as the known parameter. The average number of iterations for each of five 

IQML methods is shown in Figure 5.14. From the figure, the proposed algorithm 

required a smaller number of iterations than those needed by the NIQML algorithm. In 

addition, the constrained algorithms needed fewer iterations than the unconstrained 

counterparts. 
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Figure 5.14: The average numbers of iterations required by two unconstrained and two 

constrained IQML algorithms. 

In the last two experiments, we consider the 2-D frequency estimation problem. 

The Hua's MEMP method, the proposed IQML-based and RMNORM-based methods 

were performed. The RMNORM-based method is based on the proposed 1-D IQML- 

based method, with the root version of the minimum norm procedure being used in 

place of the IQML algorithm in estimating the y- and z-dimension parameters. In each 

of the following two examples, a single snapshot of a uniform rectangular data X of size 

lOx 10 was generated. The structure of X is as shown in Eq. (5.3). From X, two sets of 

10 data snapshots, xy (n) and xZ (m), were constructed by Eqs. (5.52-5.53). The 

proposed IQML-based method was applied to xy (n), n=1, ... , 
10, to estimate the y- 

dimension parameters, and to xz(m), m=1, ..., 
10, to estimate the z-dimension 

parameters. The proposed version of the algorithm (CIQML) was employed with the 

theshold number E=0.5E-06. Pairing of the two parameter components was carried out 

using the forward/backward average matrix constructed by Eqs. (5.54-5.55), and 
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T 
Xk, l = 

[Xk, 
l Xk, l+l Xk, l+No-1 Xk+l, l Xk+M,, l+No-1 

] 

k= 1,..., M-Mo +1,1=1,..., N-No+1 (5.71) 

Two pairing procedures were performed in the proposed IQML-based method. They 

were carried out using two average pairing matrices Rav; 
l and '2' based on the 

subdata vectors Eq. (5.71) with M. = 3, No =2 for R; 1, and M. = 3, No =3 for R: 2. 

Only the pairing based on Ra ', 2 was performed for the RMNORM-based method. For 

the MEMP method, thirty-six 5x5 subdata matrices of the form described by Eq. (5.46) 

were constructed. Based on these subdata matrices, the 5x5 Rfb was constructed by 

Eqs. (5.54-5.55). The resulting Rte' was used to obtain the y- and z-dimension frequency 

estimates by the method described in [64]. The 2-D parameter pairing was carried out by 

Step 2 of the proposed 2-D procedure by using the described 5x5 average matrix Rf 
. 

EXP 5.7: In this example, a single snapshot of the data matrix X of size lOx 10 was 

generated according to the following model: 

3 

xk 1_ exp(Jai ). exp(J2n6y; j (k - co )). exp(J27u6Z; i (l - co )) + nk, r 

k= 1,..., M, 1=1,..., N (5.72) 

where M=N= 10, al = it/8, a2 = ic/4, a3 = 371/8, and co = 11/2. The 2-D parameter 

pairs (6y;, , 9z; 1) = (0.40,0.35), (0y; 2 , 9z; 2) = (0.35,0.35), and (&y; 3 , OZ. 3) = 

(0.35,0.40). In each of five different SNRs, three hundred computer simulations were 

run. The RMNORM-based method was performed with single forward/backward 

averaging of the sample covariance matrix, formed by xy (n) for the estimation of the y- 

dimension parameters, and by xZ (m) for the estimation of the z-dimension parameters. 

The previously defined RMSEav of the frequency estimates in each of the two 

dimensions, for the three methods, is shown in Table 5.1. It is seen that the proposed 

ML- 2-D method with the 3x3 pairing matrix R th yielded the best result. The two IQi 
av; - 

146 



based methods, as well as the RMNORM-based method, performed much better than 

the MEMP method. It should be noted, however, that in this case the MEMP method 

and the proposed IQML-based and RMNORM-based methods are based on different 

prior information. While the MEMP method requires only the knowledge of the number 

of 2-D parameter pairs K, the proposed methods require also knowledge of KY and K. 

Two theoretical bounds are included for the 2-D parameter estimates. Each of the two 

bounds was obtained as the RMS value of the 2-D CRLB on the standard deviations 

of the three parameter estimates in each dimension. For the CRLB 
av: l , the bound was 

based on Eq. (5.66), which assumes that only the number of 2-D parameter pairs K is 

known. The second bound, CRLB 
av, 2 , was based on Eq. (5.61), by assuming that KY, 

K, and K are known. Note from the table that the second bound is smaller than the first 

one, a result of additional prior information of KY and K. In addition, the RMSEav 

obtained by the proposed 2-D method, with R; 
1 or R; 2 , shows a surprising result of 

attaining the bound CRLBav; 2 at high SNR despite being based on 1-D parameter 

estimation. Figures 5.15-5.16 show the plots of the three 2-D frequency estimates over 

300 simulations at SNR = 20 dB, obtained by, respectively, the MEMP method and the 

I ML-based method with the matrix R The faulty pairing was proposed Q pairing aV; I "YPg 

observed in the proposed method. This type of error disappeared when either SNR 

> 20 dB or the pairing matrix Rte'; 2 was applied instead. 
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Method SNR (dB) 
10 15 20 25 30 

IQML-1 tx 10-2 0.41 0.62 0.30 0.06 0.03 
IQML-2 tx 10-2 0.38 0.20 0.11 0.06 0.03 
RMNORM x 10-2 0.46 0.25 0.14 0.08 0.04 
MEMP 0.10 0.94 X 10-2 0.40 X 10-2 0.22 X 10-2 0.12 x 10-2 
CRLB 

av; l X 10-2 0.59 0.33 0.19 0.10 0.06 
CRLBav; 2 X 10-2 0.30 0.17 0.10 0.05 0.03 

(a) 

Method SNR (dB) 
10 15 20 25 30 

IQML-1 x 10-2 0.47 0.62 0.31 0.06 0.03 
IQML-2 x 10-2 0.36 0.19 0.10 0.06 0.03 

RMNORM x 10-2 0.44 0.24 0.13 0.07 0.04 

MEMP . 
0.10 0.87 X 10-2 0.39 x 10-2 0.22 x 10-2 0.12 x 10-2 

CRLB 
av; l X 10-2 0.59 0.33 0.19 0.10 0.06 

CRLB 
av; 2 X 10-2 0.30 0.17 0.10 0.05 0.03 

(b) 

t Proposed method with the pairing matrix k 
. 1. 

# With the pairing matrix R 
, 2. 

Table-5.1: The RMSEav s of the frequency estimates by four estimation methods, 

together with the CRLB 
a,;, and CRLB 

av; 2 . 
(a) The y-dimension estimates; (b) The z- 

dimension estimates. 
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EXP 5.8: The 2-D data were generated by the same signal model Eq. (5.72) as in EXP 

5.7. Other parameters were the same as in the former experiment. However, the three 

2-D frequency pairs were chosen as (0y; 1,0z; l) = (0.45,0.35), (0y; 2, °z; 2) = 
(0.40,0.40), and (9y; 3 , 6Z; 3) = (0.35,0.45). The RMNORM-based method was 

performed with forward/backward averaging of two sample covariance matrices, formed 

by snapshots of two 9x 1 subdata vectors, overlapped by one data point, of xy (n) for 

the y-dimension parameter estimation, and of xZ (m) for the z-dimension parameter 

estimation. 

From Table 5.2, it is seen that the IQML-based method with two different 

pairing matrices performed slightly better than the MEMP and RMNORM-based 

methods at SNR below 20 dB. No faulty pairing was observed for the IQML-based 

method when either R 
;1 or R 

;2 was used for the purpose. At higher SNR (> 20 dB), 

however the MEMP method gave slightly better results than the IQML-based and 

RMNORM-based methods. We also note that, none of the methods performed here 

yielded the RMSEaV which attained the average CRLB (on the standard deviation), even 

at high SNR. For the case of the IQML-based and RMNROM-based methods, this is 

because the methods are not exact 2-D parameter estimators. For the MEMP method, 

the frequency estimation is performed on subdata matrices with reduced dimensionality. 

The estimator is thus sub-optimal. , 
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Method SNR (dB) 
10 15 20 25 30 

IQML-1 0.11 0.02 0.49 X 10-2 0.26 x 10-2 0.14 x 10-2 
IQML-2 0.11 0.02 0.49 X 10-2 0.26 x 10-2 0.14 x 10-2 
RMNORM 0.19 0.08 0.48 X 10-2 0.26 x 10-2 0.14 x 10-2 
MEMP 0.15 0.04 0.44 X 10-2 0.23 x 10-2 0.12 x 10-2 
CRLB 

av; l x 10-2 0.69 0.39 0.22 0.12 0.07 

(a) 

Method SNR (dB) 
10 15 20 25 30 

IQML-1 0.11 0.02 0.44 x 10-2 0.23 x 10-2 0.13 x 10-2 

IQML-2 0.11 0.01 0.44 x 10-2 0.23 x 10-2 0.13 x 10-2 
RMNORM 0.19 0.08 0.48 x 10-2 0.26 x 10-2 0.14 x 10-2 

MEMP 0.15 0.04 0.44 X 10-2 0.23 x 10-2 0.12 x 10-2 
CRLB 

av; l x 10-2 0.69 0.39 0.22 0.12 ' 0.07 

(b) 

Table-5.2: The RMSEav s of the frequency estimates using four estimation methods, 
together with the CRLB 

av; l 
(on the standard deviation). (a) The y-dimension estimates; 

(b) The z-dimension estimates. 

5.6 Conclusions 

In this chapter, we first presented the generalised form of the IQML algorithm. 

With this form, additional constraints as well as some pre-processing are allowed to be 

included into the algorithm. In addition, the constrained IQML algorithm has been 

formulated, based on the knowledge of some parameter values. The compact CRLB 

formula under this type of constraint has also been provided. The improved IQML 

algorithm, employing the new consistent nontriviality constraint, has been proposed. Its 

performance has been shown to be superior to those of Bresler's and Nagesha's IQML 

algorithms. For the multiple data snapshot case, significant improvement of the 

proposed algorithm over the existing ones can be obtained when the DML cost function 

is employed. When the optimal WSF cost function is applied, the performance of the 
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Bresler's and Nagesha's IQML algorithms are improved. The reason for this performance 
improvement has been addressed. 

The use of the WSF cost function in the correlated source scenario has been 

shown to yield superior performance to that of the DML cost function for all three 

IQML algorithms. In the uncorrelated source case with sufficiently high SNR, however, 

the performance of the proposed algorithm, when applied to the DML cost function, is 

comparable to that achieved by any of the three IQML algorithms using the WSF cost 

function. 

In addition to the multiple data snapshot case, the single data snapshot case has 

also been considered. It has been shown that the performance of the proposed algorithm 

is superior to those of Bresler's and Nagesha's algorithms, especially in difficult 

situations such as short data length N, and certain range of the signal phase factors. 

Moreover, the constrained IQML algorithm has been shown to offer improved 

performance over the unconstrained one. 

Based on the proposed algorithm, the IQML-based 2-D parameter estimation 

method has also been proposed. The parameter pairing problem has been considered. 

The sufficient condition for consistent -parameter pairing has been provided. The 

proposed 2-D method has been shown to offer comparable, and sometimes superior 

performance to the MEMP method. 
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Chapter 6 
Performance Study of the PFML DOA Estimators 

In this chapter, the performance of the PFML DOA estimators is considered. The 

study concentrates upon the beamforming-based PFML methods, detailed in Chapter 4. 

Their performances are compared with those due to the DEML method, and the two 

PFML methods which represent the best-case PFML-2 and PFML-3 estimators. Detailed 

study of the IV-based DOA. estimators, which are related to the PFML-3 method as 

shown in Section 3.2.3, can be found in [18-20]. The study of the DEML method for the 

special case of uncorrelated sources was reported in [16-17]. 

Results from computer simulation and analytical -studies will be used to assess 

the performance of these PFML methods. In this chapter, a uniform linear array of eight 

sensors, with inter-sensor spacing of half of the signal wavelength, is assumed. In 

addition to the assumptions A. 2.1-2.6, listed in Chapter 2, it is assumed that both the 

signal vector s(t) and the additive noise n(t) are circular complex multivariate Gaussian 

distributed. In addition, s(t) and n(t) are assumed to be statistically independent. Only 

the problem of DOA estimation is considered. The number of the signal sources whose 

directions are of interest, is assumed known. Methods for estimating the number of 

sources when it is not known a priori, have been studied and documented, for instance, 

in [47,78-81]. 
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6.1 Simulation and analytical results 

The analytical results reported here are based on the asymptotic analysis as 

provided in Chapters 3 and 4. For the computer simulation results, the proposed CIQML 

algorithm in Chapter 5 was applied to obtain the DOA estimates for all ML-based DOA 

estimators. The conjugate-symmetric constraint [22] was applied in the algorithm. The 

matrix H in Eq. (5.16) was chosen as IN, with Nl = N. The maximum number of 

iterations allowed for the algorithm was 50. The threshold number E was 0.5E-10. The 

initial condition matrix F, was chosen as given by Eq. (5.26), with Rns in Eq. (5.26) 

being replaced by Rn in Eq. (3.27) for the PFML-3 estimator, and by Rn; k in Eq. (3.58) 

for the PFML-2 estimator. The performance of a DOA estimator is measured by the 

RMSE (root-mean-square error) of a DOA estimate (in degrees). In addition, sometimes 

the RMS value of the RMSEs of all source direction estimates, denoted by RMSEav , 

will also be used. In all experiments, the signal vector s(t) was assumed to have the form 

described by 

(6.1) S(tý = Fcssnc(t) 

The signal covariance matrix was assumed to have the structure given by 

= I'csRncres (6.2) 

where Rnc is the covariance matrix of the ds x1 vector snc (t) . The vector snc (t) was 

assumed to be composed of ds uncorrelated signals. Thus, R,, 
c 

is a diagonal matrix. The 

Kx ds correlated signal structure matrix F takes the form 

YI, 2 71, ds 

= 
72,1 72,2 (6.3) T 

cs 
'YKc, 1 ... ... '! KC, ds 

where yj, k, i=1, .., 
K, k=1, ... , 

d, are the KOS x1 complex vectors. This signal 

model can be used to describe a wide range of source scenarios. However, the form was 
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designed mainly to describe the mixed correlated-uncorrelated cluster source scenario, 

as mentioned in Chapter 4. As before, K is the total number of sources with distinct 

directions and KK is the number of source clusters. In this study, the number of sources 
belonging to each cluster was restricted to be the same for all KK clusters, and was equal 

to Kcs. Many DOA estimators were involved in the experiments. Thus, for ease of 

reference and presentation, some information which relates to the methods used is 

provided: 

1. The DML method was performed with the total number of signal sources K being 

known a priori. Except for EXP 6.8, it was assumed that the noise covariance structure 

was known. 

2. The WSF method was based on the optimal weight W,, 
sf = A2AS1 (see Chapter 2 

for more detail). In addition to the total number of signal sources K, the rank ds of the 

signal covariance matrix was known. Except for EXP 6.8, the noise covariance. structure 

was also assumed known. 

3. The DEML method is the estimator described in Section 3.2.1. The method was 

originally proposed in [16-17]. However, in the simulation study performed here, the 

method was applied under a more general signal covariance structure Eq. (6.2), instead 

of the one corresponding to the uncorrelated source scenario, considered in [16-17]. 

Except for one of the two DEML methods in EXP 6.6, the known pre-filtering reference 

signal was s�c (t) . 
The noise covariance structure and the number of sources in each 

cluster were assumed known. 

4. The PFML-2 method was performed with sn, (t) as the pre-filtering reference 

signal, which is r2(t) in Eq. (3.50) with n(t) = 0. As shown in Chapter 3, the 

performance of the method with this pre-filtering reference signal is the best achievable 

by the estimator with any r2(t). The method was applied with no knowledge of the noise 
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covariance structure. However, the number of clusters and the number of signal sources 
in each cluster were known a priori. 

5. The PFML-3 method was performed with s,,,, (t) as the pre-filtering reference 

signal, which is r3(t) in Eq. (3.67) with A= Ids and n(t) = 0. As noted in Chapter 3, the 

performance of this method with n(t) =0 is the best achievable by the method with any 

r3 (t) . Except for EXP 6.8, the additive noise covariance structure Rns was assumed 
z known. In the experiments where R�S was known, Rn in Eq. (3.71) was replaced by Rns 

In addition, the total number of signal sources K was assumed known. 

6. The BPFML-2 method is the beamforming-based PFML-2 method as described in 

Chapter 4. The method was applied with the type-4 pre-filtering reference signal r4 (t) _ 

sc (t), where sc (t) was obtained from Eq. (4.13) by the proposed beamforming 

procedure of Section 4.2.2. For the kth source cluster, the estimates of the left and right 

cluster widths, kk and Ar; k, were obtained by the first step of the described 

beamforming procedure. The power factor 1 in Eqs. (4.10,4.12) was chosen to be ß=2. 

This value of (3 is not optimised. However, from empirical study, it was observed to 

yield a reasonable result. In addition, the weighting function W(9) in Eqs. (4.10,4.12) 

was chosen to be uniform, i. e., its value is constant and independent of 0. The number 

of source clusters and the number of signal sources in each cluster were known. 

However, the noise covariance structure was not known. 

7. The BPFML-2a is similar to the BPFML-2 method except that it was applied with 

the estimates of the left and right cluster widths, 
AI; 

k and Ar; k, being chosen as Ac/2, 

where the approximate cluster angular width Ac (in degrees) is equivalent to 1.6 times 

the array beamwidth (0c - 22 degrees when calculated at broadside). Other parameter 

values used by the method are the same as those for the BPFML-2 method. 

8. The BPFML-3 method is the beamforming-based PFML-3 method in Chapter 4. 

The type-4 pre-filtering reference signal, the estimates of the left and right cluster 
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widths, AI; 
k and Or; k, as well as other parameters such as the weighting function W(O), 

were obtained as described for the case of the BPFML-2 method. The noise covariance 

structure, the number of source clusters, and the total number of signal sources were 

assumed known. 

9. The BPFML-4 method is the beamforming-based PFML-4 method as described in 

Section 4.2.3. The type-4 pre-filtering reference signal required by the method was 

obtained from Eq. (4.22) of the improved beamforming procedure in Section 4.2.3. 

Other parameters were the same as for the BPFML-2 method. The number of source 

clusters and the number of signal sources in each cluster were known. The additive 

noise covariance structure was not known. 

10. The BPFML-2+bc, BPFML-3+bc, and BPFML-4+bc are, respectively, the bias 

corrected versions of the BPFML-2, BPFML-3, and BPFML-4 methods. The bias 

correction term for each method was obtained as described in Section 4.3, under the 

assumption that the noise covariance structure and the rank of the signal covariance 

matrix are known. 

11. The RMNORM method is the root version of the minimum norm procedure, 

described in Chapter 2. The method was applied with forward/backward averaging of, 

say J, identical uniform linear subarrays which are overlapped by one sensor. 

In all experiments, s(t) was assumed to be temporally white. Except for EXP 6.8, 

n(t) was spatial/temporal white with the noise power 62 at each sensor. In EXP 6.8, the 

noise covariance matrix Rn = 62 Rns, where the diagonal elements of the noise 

covariance structure R�s are 1's. Note that, each component of s(t) was measured at the 

array centre which was defined as the middle point between the fourth and fifth sensors. 

Here the SNR is defined as SNR 0 -101og10 62. The results for each signal and noise 

configuration were obtained from five hundred simulations using different pseudo noise 

sequences. Detail of the experiments and results are given as follows. 
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EXP 6.1: In the first experiment, two coherent signals arrived from the directions of 
20 and 15 degrees, with respect to broadside. The first signal source is defined as the 

one with the DOA of 20 degrees. Both signals had unity power with phase factors of al 

=0 and a2 = it/4. This signal configuration corresponds to the scenario of the single 

source cluster, consisting of two coherent sources. In this case, the matrix Fc, in Eq. 

(6.3) reduces to be the 2x 1 vector y= [1 exp(jit /4 )]T 
. Thus, s,, c 

(t) in Eq. (6.1) 

becomes the scalar quantity corresponding to the first signal source. In addition to the 

two coherent signals, the additive noise was added at each sensor to obtain eight 

different SNR values. Five DOA estimators were applied to the same data set. From 

Figure 6.1, it is seen that the (optimal) WSF method, the PFML-2, BPFML-2, and 

BPFML-2+bc methods achieved approximately the same performance level. The 

performance of the DML method is, however, clearly inferior to the other methods. The 

estimated RMSEav of the DOA estimates using the BPFML-2 method (without bias 

correction) is essentially the same as that due to the BPFML-2+bc method (with bias 

correction). The RMS value of the CRLBs on the standard deviations, shown in the 

figure, was obtained by Eq. (3.45), with the first signal as the know waveform. Note 

that, in this source scenario, the CRLB under this known signal waveform assumption 

coincides with the CRLB under the unknown deterministic signal assumption. Figure 

6.2 shows separately the estimation errors of the two source direction estimates obtained 

by the PFML-2 and BPFML-2 methods. From the figure, it is seen that the estimated 

RMSEs of the two source directions are essentially the same for either of the two 

methods. The CRLBs on the standard deviations were attained by the RMSEs of the 

estimates obtained by each of the two methods, within a wide range of the SNR value. 

Next, the biases of the two source DOA estimates for three PFML methods are 

shown in Figure 6.3. The first DOA is at 20 degrees and the second DOA is at 15 

degrees. The two source DOA estimates obtained by the PFML-2, BPFML-2, and 

BPFML-2+bc methods were found to be virtually unbiased at high SNR, i. e., the bias is 
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small in magnitude when compared with the standard deviation. The BPFML-2+bc and 

PFML-3 methods yielded DOA estimates with the same bias level. Note that, despite 

comparable RMSE value, at low SNR, the estimates obtained by the BPFML-2 method 

exhibited larger bias than that of those obtained by the BPFML-2+bc method. 
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Figure 6.1: The estimated RMSEav of two coherent-source DOA estimates obtained by 

each of five estimators, shown with the RMS value of the CRLBs on the standard 

deviations of the estimates at eight SNRs. 
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EXP 6.2: In this experiment, in addition to the first two coherent signals from the 
directions of 20 and 15 degrees as in EXP 6.1, another two coherent signals arrived from 

the directions of 5 and 0 degrees. Let the first two coherent signals belong to the first 

source cluster and be uncorrelated with the latter two signals of the second cluster. All 

signals had unity power with the phase difference between any two coherent signals 

equal to 7t/4. In this scenario, according to the signal model Eq. (6.1), the matrix 

1 exp(jm/4) 00 iT 

Lo 01 exp(jn/4) 

and ds = K,, 
S = K, 

ý. = 2, K=4. The vector s�c (t} was composed of the first and the third 

signal waveforms. The additive noise was added at each sensor to obtain eight different 

SNRs. The ensemble average of the array output spatial spectrum PS(0) (see Eq. (4.9)) 

is shown in Figure 6.4. For the beamforming-based methods performed in the 

experiment, two highest peak locations in the spatial spectrum PSS(6) were chosen as 

the estimates of. the two cluster nominal angular locations. Of the two peak locations, 

the one which was closer to the direction of 17 degrees was used as the location estimate 

of the first cluster. The array beam pattern corresponding to the asymptotic 

beamforming weight vector was; l , which points at the first cluster nominal direction and 

is calculated by Eq. (4.18), is also shown in Figure 6.4. Only the directions of the two 

sources which belong to the first cluster (DOAs of 20 and 15 degrees) are considered 

here. A similar result was also found for the case of the other two coherent source 

directions. The estimated RMSEs of the two Ist-cluster source DOA estimates using 

various DOA estimators are shown in Figure 6.5. From the figure, the DEML method 

has the minimum RMSE for both estimates. The performance of the PFML-2 method is 

slightly inferior to that of the DEML method, but better than those due to the other 

methods. The PFML-3 and WSF methods achieved comparable estimation accuracy. 

The DML method yielded inferior result to that of the WSF method. However, it still 
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performed better than the RMNORM method. The RMNORM method was applied with 
forward/backward averaging of two identical overlapping subarrays of seven sensors 

each. In comparing Figure 6.5a with Figure 6.5b, for the DML and WSF methods, the 

estimate of the first source direction (DOA = 20 degrees) is slightly more accurate than 

the estimate of the second source direction (DOA = 15 degrees). The RMSEs of the two 

estimates are slightly different for the case of the DEML and PFML-2 methods. For the 

PFML-2 method, the estimate of the first signal direction is slightly more accurate than 

the other. In the DEML method, the second DOA estimate is in turn more accurate. For 

the latter case, the better result (lower RMSE) for the second estimate is due to the 

closer DOA of the second source to the array broadside. It is a general property of a 

uniform linear array that, the closer the source direction is to the array broadside, the 

more accurate it can be estimated. Note that, for the case of the DEML and PFML-2 

methods, at most SNR values, the estimated RMSEs by computer simulation of the two 

DOA estimates are in good agreement with the asymptotic analytical RMSEs of the 

same method. These analytical RMSEs were obtained as the square-root values of the 

diagonal elements of the error covariance matrix, which is given by Eq. (3.43) for the 

DEML method and by Eq. (3.59) for the PFML-2 method. The difference between the 

simulation and analytical results for both methods becomes noticeable at SNR below 5 

dB. It is worth mentioning that each of the asymptotic error covariance matrices of the 

DEML and PFML-2 DOA estimates (Eq. (3.43) and Eq. (3.59)) coincides with the 

corresponding CRLB. It can thus be said that the best performance achievable by each 

of the two methods was attained for SNR >5 dB. 

Figure 6.6 compares the estimated RMSEs of the two 1 st-cluster DOA estimates 

using the PFML-2 method with those obtained by the BPFML-2 and BPFML-2a 

methods. It is seen that the BPFML-2a method achieved comparable performance to that 

of the PFML-2 method. For SNR above 5 dB, the estimated RMSEs of the two 

estimates using both methods are closely matched with the asymptotic analytical 
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RMSEs of the PFML-2 estimates. The asymptotic analytical RMSEs for the BPFML-2a 

method were also found to be essentially the same as those of the PFML-2 method. In 

contrast to the BPFML-2a method, the BPFML-2 method exhibited performance 

irregularity and inconsistency, as seen from Figure 6.6. For instance, as SNR increased 

from 25 to 30 dB, the RMSEs of the estimates using the BPFML-2 method increased 

rather than decreased. This unusual result can be understood by examining the estimates 

of the Ist-cluster angular location and the corresponding left and right cluster-edge 

locations, shown in Figure 6.7 for all of the 500 simulations at the SNR of 30 dB. From 

the figure, in 2 of 500 simulations (simulation nos. 12 and 341), the values of the left 

Ist-cluster-edge location estimate ( 91.1) differed significantly from the values of the 

same parameter estimate in other simulations. This is because, in these two simulations, 

the beamforming spectral peaks corresponding to the two source clusters were merged 

together, creating an unresolvable situation. As a result, in the two simulations, the 

beamformer which was constructed in a subsequent step (Eq. (4.11)) of the procedure in 

Section 4.2.2, was unable to suppress the two coherent signals which belong to the 

second cluster. The presence of these signals at the beamforming output, which was 

used as the pre-filtering reference signal in the BPFML-2 estimator, caused the 

unusually large estimation errör as seen in Figure 6.6. 
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EXP 6.3: The two-cluster scenario of EXP 6.2 was again used. In this experiment, 
however, the directions of the 3rd and 4th coherent signals moved, respectively, to 0 and 

-5 degrees. As in EXP 6.2, only the directions of the first two coherent sources (20 and 
15 degrees), which belong to the first cluster, are considered. For all of the 

beamforming-based methods performed in the experiment, two highest peak locations in 

the array output spatial spectrum PSS (9) were chosen as the estimates of the two cluster 

nominal angular locations. Of the two peak locations, the one which was closer to the 

direction of 17 degrees was used as the location estimate of the first cluster. 

Figure 6.8 shows that, except for the DEML method, the RMSEs of the two 

DOA estimates are smaller than the ones of the same method in EXP 6.2. As addressed 

in Section 3.2.1, the performance of the DEML method is largely independent of the 

angular spacing between two uncorrelated sources. In our case, the performance of the 

DEML method remained unchanged as the directions of the third and fourth signals 

moved from 5 and 0 degrees in EXP 6.2 to 0 and -5 degrees in this experiment. In 

comparing Figure 6.8 with Figure 6.5, it is seen that the performance difference 

between the PFML-2 method and the WSF method in this experiment is less than in 

EXP 6.2. The improvement gained by using the PFML-2 and BPFML-2 methods instead 

of the DML, WSF, and RMNORM methods, remains significant. As in EXP 6.2, the 

RMNORM method is the root version of the minimum norm procedure with 

forward/backward averaging of two overlapping subarrays, each consisting of seven 

sensors. In addition, significant improvement can be seen from Figure 6.8 for the 

BPFML-2 method. The performance of the method is comparable to that of the PFML-2 

method at most SNRs. This is because, in this experiment, the angular spacing between 

the two source clusters was sufficiently large such that the classical beamforming 

spectral estimator, used in Step 1 of the beamforming procedure of Section 4.2.2, 

correctly resolved the two cluster locations in all of the 500 simulations. The ensemble 

average of the array output spatial spectrum, and the array beam pattern corresponding 
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to the asymptotic weight vector w; l, calculated by Eq. (4.18), are shown in Figure 6.9. 

It is seen from the figure that, the spectral peaks corresponding to the two source 

clusters are well separated. Note that, in this experiment, the performance of the 

BPFML-2a method (not shown here) was found to be essentially the same as that of the 

BPFML-2 method. Figure 6.10 shows that the BPFML-2 method achieved superior 

performance to those of the BPFML-3 and WSF method. In addition, the BPFML-3 

method achieved comparable performance to that of the WSF method. The BPFML-2 

and BPFML-2+bc methods yielded approximately the same estimated RMSEs. At most 

SNRs, the estimated and analytical RMSEs of the BPFML-2 method are seen to be 

closely matched. The analytical RMSEs of the method are based on the asymptotic 

analysis as given in Chapters 3 and 4. Each of them is a combination of the error due to 

the finite data sample effect and the one due to the bias term Eb (see Sections 3.2.4 and 

4.2.2 for more detail). 

The bias in the DOA estimates is next considered. From Figure 6.11, at low 

SNR, the BPFML-2 method yielded estimates with larger bias than those of the PFML-2 

method. The BPFML-2+bc method, however, is seen to have the same estimation bias 

level as that of the PFML-2 method. At high SNR (> 10 dB), the three estimators 

yielded virtually unbiased estimates. 

So far the results from the PFML-2 and BPFML-2 methods were based on the 

use of the estimated noise covariance matrix Rn; l, given by Eq. (3.58). However, as 

mentioned in Chapter 3, except for the PFML estimators which are based on the type-4 

pre-filtering reference signal, R� as given by Eq. (3.27) (or Rn; k in Eq. (3.58)) can be 

replaced by the data covariance matrix R (or its consistent estimate) without affecting 

the asymptotic properties of the PFML estimators. This replacement can also be applied 

for the BPFML-2 method without significant change in its asymptotic properties, 

provided that the bias term Eb is sufficiently small. By applying the PFML-2 and 
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BPFML-2 methods with Rn; I being replaced by R, we found that, for most of the eight 

SNR values, the properties (bias and RMSE) of the resulting DOA estimates were 

essentially the same as those obtained by using Rn; i . Only at low SNR (<5 dB) did the 

methods using Rn; 1 yield slightly lower RMSEs of the DOA estimates. Despite this 

performance similarity, the number of iterations required by the PFML-2 and BPFML-2 

methods using i?.;, was found to be smaller than in the methods using R instead. To 

show this, the average numbers of iterations, required by the CIQML algorithm over 500 

simulations, of the PFML-2 and BPFML-2 methods using R and Rn: 1, were plotted in 

Figure 6.12 at eight SNRs. Also included in the figure is the average number of 

iterations required by the DEML method. From the figure, at SNR >0 dB, the PFML-2 

and BPFML-2 methods based on Rß; 1 required less iterations (converged faster) than the 

methods which were based on R. At SNR = 30 dB, the first two methods required 

approximately 3 iterations less than those needed by the latter two. Among all of the 

methods shown in the figure, the DEML method required the smallest number of 

iterations. 
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Figure 6.8: The estimated RMSEs of two 1st-cluster DOA estimates obtained by six 

estimators under the two-cluster four-source scenario of EXP 6.3, shown with the 

asymptotic analytical RMSEs due to the DEML and PFML-2 methods at eight SNRs. 
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scenario of EXP 6.3 at eight SNRs. 

J/ 

/ 

3/ 

3 

172 



2< 

22 

20 

c 18 
O 

16 
Ö 

14 
E 

c 
c12 
ca 

< 10 

C\ 
\\ 

DEML 

- PFML-2 + estimated noise cov. 

-- PFML-2 + estimated data cov. 
+ BPFML-2 + estimated noise cov. 
o BPFML-2 + estimated data cov. 

a: 
_ý 

-e---------o----- 

4L 
-5 05 10 15 20 25 30 

SNR (dB) 

Figure 6.12: The average numbers of iterations required by five PFML estimators, 
performed in EXP 6.3 at eight SNRs. 

EXP 6.4: The signal and noise condition in this experiment was based on that of EXP 

6.3. Here, however, the number of data snapshots L was varied to investigate its effect 

on the estimation performance. Results from the experiment will also be used to indicate 

how large the number of data snapshots is required for the asymptotic analytical result to 

be valid. Figure 6.13 shows the estimated RMSEs at the SNR of 5 dB for the first and 

second DOA estimates. From the figure, the PFML-2 and BPFML-2 methods yielded 

similar performance. The performance of these methods was inferior to that of the 

DEML method, particularly for L< 40. The PFML-3 method produced unreliable results 

for all values of L. The RMSEs of the estimates obtained by the method are of the same 

order or greater than the angular separation between the two signals. At L= 10, the 

results from all methods are poor. When comparing the estimated RMSEs due the 

DEML method with that obtained by the asymptotic analysis, it is seen that both results 

are closely matched for L> 30. For the case of the PFML-2 method, good agreement 

between the estimated and analytical RMSEs is seen for L> 40. The same remark can 
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also be said of the BPFML-2 method. As SNR was increased to 10 dB, it is seen from 

Figure 6.14 that the estimated RMSEs due to each of the DEML, PFML-2, and the 

BPFML-2 methods are close to the corresponding asymptotic analytical RMSEs for L as 
low as 20. The performance of the PFML-3 method was also improved. We note that, 

based on results from previous experiments and the fact that the error of the PFML-3 

estimator asymptotically attains the CRLB for the deterministic signal model (see 

Chapter 3), the performance of the PFML-3 method represents the best performance 

which may be achievable by the DML method, the WSF method, and the IV-based DOA 

estimation methods. In addition, the RMSEs of the estimates using the BPFML-2+bc 

method (not shown here) was found to be comparable to those of the estimates obtained 

by the BPFML-2 method. 
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Figure 6.13: The estimated and asymptotic analytical RMSEs of two l st-cluster DOA 

estimates obtained by four PFML methods under the signal scenario of EXP 6.4, at ten 

values of L with the SNR of 5 dB. (a) DOA = 20 degrees; (b) DOA = 15 degrees. 
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EXP 6.5: In this experiment, the biases and RMSEs of the DOA estimates using the 

two BPFML-2 methods, with and without bias correction, were examined at low SNR. 

The experimental results will also be compared with the corresponding asymptotic 

analytical RMSE and bias as given in Chapters 3 and 4. The experimental setup was 

based on the two-cluster model of four signal sources as described in EXP 6.3. The 

experiment was performed at SNRs of -5 and 0 dB, each with six different values of L. 

Figures 6.15-6.16 show the estimated and asymptotic analytical RMSEs of the 

first two DOA estimates (20 and 15 degrees) using four PFML estimators, at two SNRs 

of -5 and 0 dB. From the figures, the estimated RMSEs of the PFML-2 estimates are 

seen to be close to those obtained by the corresponding asymptotic RMSE analysis for L 

> 300 at SNR = -5 dB, and L> 200 at SNR =0 dB. At these ranges of L for the two 

SNRs, the RMSEs of the two DOA estimates using the BPFML-2+bc method are 

comparable to those of the PFML-2 method. We note that, for large L(> 300 ), the 

RMSEs of the BPFML-2 estimates did not decrease, but had an approximately constant 
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value. This is the result of the bias term in the filtered data used by the method. To see 

this, the estimation biases are shown in Figures 6.17 at the SNRs of -5 and 0 dB. From 

the figure, the biases of the two estimates using the BPFML-2 method remain 

unchanged as L increases beyond 200, while those due to the PFML-2 and BPFML- 

2+bc methods decrease. The biases of the estimates using the BPFML-2+bc are close to 

those due to the PFML-2 method. For the BPFML-2 method, with large L, the result 

from the bias analysis in Section 3.2.4 is seen to be in good agreement with the 

simulation counterpart at SNR =0 dB. However, at the SNR of -5 dB, the difference 

between the estimated and analytical results is rather noticeable for the bias of the first 

DOA estimate. This is due to the violation at low SNR of the assumption used in the 

analysis that the bias term [Ebil is sufficiently small. The bias term [Eb ]l in the 

BPFML-2 method is noted to be the combined effect of the additive noise and the two 

2nd-cluster signals (the 3rd and 4th signals). Nevertheless, at the two SNR values (-5 

and 0 dB), the bias term due to the 2nd-cluster signals was found to be insignificant 

when compared with the one due to the additive noise (approximately 10 times and 6 

times smaller in the 2-norm sense for, respectively, the SNRs of -5 and 0 dB). This 

explains why, for large L where the estimation error is due largely to [Edl rather than 

the finite data sample effect, the performance of the BPFML-2+bc method, of which the 

bias due to the additive noise is corrected, is close to that of the PFML-2 method, but 

different from that of the BPFML-2 method. 
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EXP 6.6: The experiment was based on the two-cluster model of EXP 6.3. The main 
purpose is to investigate the estimation performance as a function of the correlation of 
the two signals in each cluster. The correlation of the first two signals, which form the 
first source cluster, and that of the last two signals in the second cluster, were varied 

simultaneously to obtain 9 different values of CORR, defined by 

CORR O IE{si (t)sk (t)}I. [E{s1 (t)s: (t)}E{sk (t)sk (t)}]-112 (6.5) 

where s1 (t) and sk (t) are the two correlated signals in each of the two clusters. The 

signal model can be written in the form described by Eqs. (6.1-6.3) with sno(t) _ 

T-s s(t), and 

1000 

r_ 
exp(j7r/4). CORR 1- (CORR)2 00 

cS 0010 
(6.6) 

00 exp(jm/4). CORR Ji- (CORR)2 

As in previous experiments, the first two source directions are of interest. Two 

DEML methods in this experiment were based on different known signal assumptions. 

The first DEML method (DEML with 2 known signals) assumed that the first and third 

signal waveforms were known. The second DEML method (DEML with 4 known 

signals) assumed that all four signal waveforms were known. The noise covariance 

structure assumed known by both methods was a scaled identity matrix. For the 

BPFML-4 and BPFML-4+bc methods, two beamformers were calculated from Eq. 

(4.19) by the improved beamforming procedure. The look directions of the two 

beamformers were obtained by deflecting the estimate of the first cluster nominal 

angular location by, respectively, +0.5 and -0.5 times the array beamwidth (approxi- 

mately ±6 degrees). In each beamformer, a single null constraint was imposed on the 

angular location which was the look direction of the other beamformer. Note that, as in 

EXP 6.3, two highest peak locations in the spatial spectrum P,, (9) were chosen as the 
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estimates of the two cluster nominal angular locations. Of the two peak locations, the 

one which was closer to the direction of 17 degrees was used as the location estimate of 
the first source cluster. The estimated RMSEs of the first two source DOA estimates by 

eight ML methods at the SNR of 5 dB are shown in Figure 6.18. From the figure, it is 

seen that as CORR decreases, the increase in the RMSEs of the DOA estimates is 

obtained for the BPFML-2+bc method, and the DEML method with 2 known signals. In 

contrast, the RMSEs of the estimates obtained by the DML method, the WSF method, 

and the DEML method with 4 known signals, increase as CORR increases. Unlike the 

methods already mentioned, the RMSEs of the estimates obtained by the BPFML-4 and 

BPFML-4+bc methods change moderately as a function of CORR. The marked 

improvement in estimation accuracy gained by the BPFML-4+bc method, compared 

with the BPFML-4 method, is clearly seen in the figure. In addition, only the DEML 

method with 4 known signals and the BPFML-4+bc method achieved superior 

performance to the DML and WSF methods for all of the nine values of CORR. The 

PFML-2 and BPFML-2+bc methods, as well as the DEML method with 2 known signal 

waveforms, began to give a better result than the WSF method at CORR > 0.7. For 

CORR < 0.7, however, the performance of these methods is clearly inferior to those of 

the DML and WSF methods. Figure 6.19 shows the results for the SNR of 10 dB. It is 

seen from the figure that the BPFML-4+bc still yielded a better result than the other 

methods except for the DEML method with 4 known signal waveforms. However, the 

performance difference between the BPFML-4+bc method and the DML and WSF 

methods is less than in the case of the SNR of 5 dB. Figure 6.20 shows the ensemble 

average of the array output spatial spectrum, and the two array beam patterns 

corresponding to the asymptotic beamforming weight vectors of the beamformers used 

by the BPFML-4 and BPFML-4+bc methods. It should be noted from the figure that, the 

nulling locations in both beam patterns are approximately 2-3 degrees away from the 

first-cluster source directions of 20 and 15 degrees. This suggests that only approxi- 
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mations of source directions are required by the BPFML-4+bc method to obtain 
improved estimation performance over the BPFML-2, DML, and WSF methods. 
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Figure 6.18: The estimated RMSEs of two 1 st-cluster DOA estimates obtained by eight 

ML-based methods, under the signal scenario of EXP 6.6, at nine different values of 

CORR and the SNR of 5 dB. (a) DOA = 20 degrees; (b) DOA = 15 degrees. 
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EXP 6.7: A scenario where the number of sources is more than the number of sensors 

was considered in this experiment. Ten complex Gaussian distributed signals, each with 

unity power, impinged upon the array from distinct directions as listed in Table 6.1. 

They were grouped into five clusters, each consisting of two coherent signals. Any two 

signals from different clusters were uncorrelated. Let the first and second signals belong 

to the first cluster, the third and fourth signals belong to the second cluster, and so on. 

The phase difference between any two coherent signals was 7t/4. The described scenario 

can be written by the model Eq. (6.1), with snc (t) = [sl (t) s3 (t) s5 (t) s7 (t) 

and 

F= 

0 

Y2,2 

73,3 

74,4 

0 

75,5 

S9 (t)]T, 

(6.7) 
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where 

Yk, k = [1 exp(Jlc/4)]T, k=1, 
... ,5 (6.8) 

The estimated RMSEs of ten DOA estimates obtained by the PFML-2 and 

BPFML-2 methods are shown in coherent pairs by Figure 6.21. In the figure, the 

simulation results are compared with the asymptotic analytical RMSEs of the PFML-2 

estimates. Note that, these theoretical RMSEs are also the CRLBs on the standard 

deviations of the estimates, under the signal and noise condition assumed by the PFML- 

2 method. From the figure, it is seen that for sufficiently high SNR, the two methods 

accurately estimated the ten signal directions. For SNR > 25 dB, the estimated RMSEs 

of all DOA estimates using either of the two methods attain the asymptotic analytical 

RMSEs. Notice from these figures that, for both methods, the estimate of the source 

direction which is closer to the array broadside, is more accurate than that of the 

direction further from broadside. This is to be expected from the resolution property of a 

uniform linear array. Except for the source directions of -65, -60,55 and 60 degrees, all 

other source directions were reliably estimated for SNR as low as 5 dB. Note also that, 

the estimates using the BPFML-2+bc method (not shown here) were found to yield 

comparable estimated RMSEs to those of the BPFML-2 method, although the estimates 

obtained by the BPFML-2+bc method were slightly less biased at low SNR. 

Signal no. 1 2 3 4 5 6 7 8 9 10 

DOA (degrees) -65 -60 -35 -30 -5 0 20 25 55 60 

Table 6.1: The directions of arrival (in degrees) of ten signals, with respect to the array 

broadside. 
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EXP 6.8: In this experiment, the case of an unknown spatially correlated noise field 

was considered. Two coherent signal sources, each with unity power, arrived from the 

directions of 5 and 10 degrees. The phase difference between the two signals was it/4. In 

the experiment, the noise covariance matrix was given by 

[Rfl]k = o. 2. { PIS-kl exp(- jic(i - k) sin(en)) } (6.9) 

where 62 is the noise power at each sensor. The parameter p, whose value lies between 

0 and 1, controls the degree of spatial whiteness. For p=0, the additive noise is 

approximately spatially white. The parameter 9,, is the angular location where the noise 

spatial spectrum is at its peak. 

Figure 6.22 shows the estimated RMSEs of the two DOA estimates using five 

estimators at nine different values of p, with 9n = 30 degrees and SNR =5 dB. The 

DML method and the two optimal WSF methods were performed under the (wrong) 

assumption that the additive noise is spatially white. The WSF method with K=2 was 
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applied under the correct number of the signal sources. The second WSF method was 

performed with K=3. In the latter method, the peak in the noise spatial spectrum was 

modelled as the third signal source. From the figures, poor performance can be seen for 

the DML method. The performance of the WSF method with K=2 deteriorates as p 
increases. Improved performance at high p is observed for the WSF method with K=3. 

However, at low p, the performance of the WSF method with K=3 is inferior to that 

of the method with K=2. The performance of the PFML-2 and BPFML-2 methods is 

seen to be comparable to that of the WSF method with K=2 at low p. As p increases, 

the PFML-2 and BPFML-2 methods have superior performance to those of the two 

WSF methods. Note that, the asymptotic analytical RMSEs of the PFML-2 estimates,. 

shown in Figures 6.22, are also the CRLBs on the standard deviations of the DOA 

estimates under the same signal and noise condition assumed by the PFML-2 method. 

The noise spatial spectrum is shown in Figure 6.23 for three different values of p. The 

ensemble average of the array output spatial spectrum and the asymptotic beam pattern 

of the beamformer used, by the BPFML-2 method, for three different values of p, are 

shown, respectively, in Figures 6.24 and 6.25. 
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Figure 6.22: The estimated RMSEs of two coherent-source DOA estimates obtained by 

four ML-based methods, under the unknown correlated noise scenario of EXP 6.8, 

shown with the analytical RMSEs of the PFML-2 estimates at nine different values of 

p (RHO) and the SNR of 5 dB. (a) DOA =5 degrees; (b) DOA = 10 degrees. 
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Figure 6.24: The ensemble average of the array output spatial spectrum at three 

different values of p (RHO). 
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Figure 6.25: The asymptotic beam pattern of the beamformer used by the BPFML-2 
method, at three different values of p (RHO). 

6.2 Summary of the results and further discussion 

From the performance study in the last section, which includes computer 

simulation as well as the evaluation of the asymptotic analytical formulas derived in 

Chapters 3 and 4, we summarise some main results from the study, and provide 

additional discussion as follows: 

1. For the single source cluster scenario, considered in EXP 6.1, the BPF`4L-2 

method (with or without bias correction) achieved comparable performance to the best- 

case PFML-2 method (with the type-1 pre-filtering reference signal) and the (optimal) 

WSF method. 

2. For the two cluster source scenario with two coherent signals in each cluster, as 

considered in EXP 6.2-6.5, the BPFML-2 method, with or without bias correction, 

offered performance comparable to the best-case PFML-2 method. Its performance is 

superior to the RMNORM, DML, and WSF methods. As the angular separation between 
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the two clusters increases, the difference in performance between the BPFML-2 method 

and the DEML and WSF methods is reduced. For small angular separation between the 

two clusters, the BPFML-2 method can sometimes exhibit unusually large estimation 

error. This is due to the unresolvable situation in some simulations by the classical 

beamforming spectral estimator used in the beamforming procedure of Section 4.2.2. 

This problem was not found in the BPFML-2a method. Note that, it may be 

advantageous in this closely spaced cluster situation if a suitable non-uniform weighting 

function W(O) is applied in Eqs. (4.10,4.12) instead of the uniform weighting function 

used here. 

3. The RMSEs of the DOA estimates obtained by the BPFML-2 method was found 

to be essentially the same as those due to the BPFML-2+bc method in most 

experiments. It was observed, however, that the BPFML-2+bc method yielded less 

biased estimates. In addition, for the case of low SNR with sufficiently large data 

snapshots, the estimates obtained by the BPFML-2+bc method were found to be more 

accurate and less biased than the ones obtained by the method without bias correction. 

Moreover, as seen in EXP 6.6, the use of bias correction was found to be essential in the 

BPFML-4 method. In EXP 6.6, it was found that the BPFML-4+bc method has superior 

performance to the BPFML-4 method. The reason for this performance difference is that 

the two beamforming weight vectors used in the BPFML-4 method (with or without bias 

correction) generally have larger vector norms than that of the weight vector used in the 

BPFML-2 or BPFML-3 method. Thus, even at low noise situation, the part of the bias 

term which is due to the additive noise (T 2w in this white noise case) can be large (in 

the 2-norm sense). As a result, by correcting the bias term due to the additive noise. the 

performance of the BPFML-4 method can be greatly improved. 

4. The BPFML-3 method was found to offer performance comparable to that of the 

optimal WSF method. This provides an alternative to the WSF method for the highly 

correlated source scenario. In addition, when the classical beamforming spatial spectrum 
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F (9) (see Eq. (4.9)) is already available or can be effectively computed (for instance, 

by using the FFT algorithm [82] for the case of a uniform linear array), the BPFML-3 

method is more computationally attractive because, unlike in the WSF method, the 

eigendecomposition of the sample data covariance matrix is not required. 

5. The BPFML-2 method (with or without bias correction), as well as the PFML-2 

method and the DEML method with incomplete knowledge of all signal waveforms, 

was found to suffer severe performance degradation as the correlation between two 

closely spaced signals decreases, as demonstrated in EXP 6.6. The solution to this 

problem is to use the BPFML-4+bc method instead. The performance of the BPFML- 

4+bc method was found to be superior to the DML and WSF methods. For highly 

correlated sources, its performance is seen from the experiment to be comparable to 

those of the PFML-2 method and the BPFML-2 method (with or without bias 

correction). 

6. In EXP 6.7, it was demonstrated that by using either the BPFML-2 method (with 

or without bias correction) or the PFML-2 method, the number of source directions can 

be greater than the number of array sensors (ten source directions using eight sensors, in 

the experiment). The DOA estimates using either of the two methods were found to be 

virtually unbiased for sufficiently high SNR. It should be noted, however, that for the 

BPFML-2 method to be applicable, it is important that the angular separation of any two 

clusters is sufficiently large to be resolvable by the classical beamforming spectral 

estimator. 

7. In EXP 6.8, the problem of DOA estimation in an unknown spatially correlated 

noise field was considered. From the experiment, without prior knowledge of the noise 

covariance structure, the performance of the PFML-2 and BPFML-2 estimators for 

highly spatially correlated noise was found to be superior to those of the DML and WSF 

methods. However, the BPFML-2 method should be applied in this correlated noise case 
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only if the noise spatial spectrum is sufficiently smoothed in the vicinity of the source 
directions. The BPFML-2 method is expected to yield a poor result if the noise spectral 

peak location 9r, lies close to the source directions. 

8. In all experiments, the DEML method with complete knowledge of all signal 

waveforms was found to achieve the lowest RMSEs and biases of the DOA estimates. 

When the complete knowledge of all signal waveforms is not available, however, the 

method can perform badly, as observed in EXP 6.6. A scenario where the complete 

knowledge of the signal waveforms may not be available is in the case of two (or more) 

multipath signals. Either when the delay time between the two signals is too long, or the 

bandwidth of the signals is too large, the two signals are only partially correlated. Thus, 

knowing only one of the two signal waveforms provides only partial knowledge of the 

two signals. Incomplete knowledge of the signal waveforms can also arise even in the 

single source case. If the known signal and the impinging signal are not well 

synchronised, the two signals may not be fully (or not even highly) correlated. 

9. In the experiments, the estimated RMSEs by computer simulation have been 

compared with the analytical RMSEs obtained from the asymptotic analytical study, 

reported in Chapters 3 and 4. It was found that, in various signal and noise scenarios, the 

simulation and analytical results were in good agreement for a wide range of the number 

of data snapshots (L), under a comparatively low SNR condition (-5 to 10 dB). 

10. As noted in EXP 6.3, the use of the estimated data covariance matrix R in place 

of the estimated noise covariance matrix Rß; 1 (see Eq. (3.58)), in the PFML-2 and 

BPFML-2 method (with or without bias correction) did not significantly affect the 

estimation error. However, it was shown also in the experiment that, either of the two 

methods which used R converged slower than the one which used Rn; 1 instead. This 

suggests that, at least when the CIQML algorithm is applied, improved performance in 
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terms of convergence rate can be obtained for the IV-based DOA estimators [18-20], by 

using Rn as given by Eq. (3.27) instead of R. 

11. It is interesting to compare the performance of the proposed BPFML methods 

with that of the beamspace-based DOA estimators [40-42]. For the BPFML methods to 

be efficiently applied, it is assumed that any two source clusters are sufficiently spaced 

angularly (more than one array beamwidth). Under this condition, at least approximations 

of the interfering signal directions can be obtained by using, for instance, the classical 

beamforming spectral estimator. Although no beamspace-based method was performed 

in the experiment, the CRLB under the assumption that some of the source directions 

are known a priori, as provided in Chapter 5, can be used to compare the performances 

of the two approaches. The bound as described sets the best performance which may be 

achievable (for unbiased estimates) by a beamspace-based method which is based on the 

exact knowledge of some source directions. In the case of the two-cluster four-source 

scenarios in EXP 6.2 and EXP 6.3, for fair comparison with the BPFML methods, the 

known signal directions for a beamspace-based method should be those of the 2nd- 

cluster signals (the 3rd and 4th signals). Because in the experiments these signals are 

uncorrelated with the first two signals, by comparing the constrained CRLB in Eq. 

(5.42) with the unconstrained bound in [9] for large L, it can be seen that the bounds on 

the asymptotic analytical RMSEs of the DOA estimates of the first two signal source 

directions remain unchanged whether the knowledge of the 2nd-cluster source 

directions is available or not. As a consequence, with the knowledge of the 3rd and 4th 

signal directions, the asymptotic performance of the DML and WSF methods under the 

scenarios used in EXP 6.2 and EXP 6.3 are still expected to be inferior to those of the 

PFML-2 and BPFML-2 methods. In addition, it is worth noting that, "'hile the 

beamspace pre-processing is a spatial filtering scheme, the proposed pre-filtering 

approach is a temporal filtering scheme. 

197 



6.3 Conclusions 

In this chapter, we have presented a detailed performance study of the PFML 

DOA estimators and comparison with some existing methods. The study was based on 

both computer simulation and analytical evaluation of the asymptotic formulas, derived 

in Chapters 3 and 4. The analytical study has been validated by simulation results for 

various signal and noise scenarios. The performance of the beamforming-based methods 

have been shown to be superior to the standard DML and WSF methods. The BPFML- 

4+bc method has been shown to offer performance improvement over the BPFML-2 

method in the correlated source scenario, as demonstrated in EXP 6.6. Under the same 

scenario, the method has also yielded superior performance to the best-case PFML-2 

method employing the type-1 pre-filtering reference signal, and the DEML method with 

incomplete knowledge of the signal waveforms. In addition, it has been demonstrated 

that the BPFML-2 method (with or without bias correction), as well as the PFML-2 

method, is capable of estimating more source directions than those which can be 

estimated by most existing methods. Finally, provided that the noise spatial spectrum is 

sufficiently smoothed in the vicinity of the source directions, it has been shown that the 

performance of the BPFML-2 method is superior to those of the DML and WSF 

methods, when these methods are applied in an unknown spatially correlated noise field. 
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Chapter 7 
Source Direction Estimation with Interpolated Arrays 

7.1 Introduction 

The study of DOA estimation in this thesis has so far been based on the 

assumption that exact knowledge of the array response vector is available. In addition, 

to allow for the application of the IQML algorithm, an ideal uniform linear (or 

rectangular) array, whose response vector is of the form described by Eqs. (5.6-5.9), was 

assumed in Chapters 5-6. In practice, however, a real uniform linear array has its 

response vector different from the ideal one due to various sources of perturbation. For 

instance, the array perturbation may arise from sensor placement error, non-identical 

sensor characteristics, and the presence of mutual coupling between sensors [83-86]. In 

this chapter, this realistic modelling error will be taken into consideration for the 

problem of DOA estimation using the IQML algorithm. The array interpolation 

approach will be used to improve the performance of the algorithm, when used with a 

perturbed uniform linear array. The least squares linear interpolation design procedure, 

due to Friedlander [25], is considered. Modification of the procedure in [25] is 

proposed. The bias of the DOA estimate using the interpolated array is next studied. The 

bias analysis for the PFML methods, detailed in Chapter 3, is applied to obtain the 

analytical estimation bias due to the array interpolation error. The result from this bias 

analysis is validated by the direct bias calculation using the asymptotic DML and WSF 

cost functions. Both the direct and analytical results are based on the data set of real 

array response vectors. 
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A problem associated with DOA estimation by the IQML algorithm with the 
interpolated array is next addressed. It is shown by means of computer simulation that, 

based on the IQML algorithm with the interpolated array, the WSF method suffers 

performance degradation in the presence of the interfering signal(s) whose direction lies 

outside the Interpolated Sector Of View (ISOV)t. The cause of this problem will be 

discussed. When the interfering signal(s) is uncorrelated with the signals whose DOAs 

lie inside the ISOV, the BPFML-2 method is shown to offer a solution to the problem. 

7.2 The weighted least squares approach to array interpolation 

In Chapters 5-6, the DOA estimation problem has been solved by using the IQML 

algorithm, under the assumption of an ideal uniform linear array. Doubt may be raised, 

however, on the applicability of the algorithm to a real uniform linear array with 

perturbation. Indeed, use of the IQML algorithm to a non-ideal uniform linear array 

results in degraded performance. This array irregularity problem can also degrade the 

performance of the Root-MUSIC method. In addition, highly biased DOA estimates 

may be obtained in applying spatial smoothing pre-processing to a perturbed uniform 

linear array. To alleviate these problems, the array linear interpolation approach has 

been considered by some researchers [25,61]. Generally, the objective of the array 

interpolation is, through suitable choice of the interpolation matrix, to obtain the 

synthesised array of which the response vector is close to a desired one according to 

some criterion. In our case, the desired array response vector is that of the uniform linear 

array as described by Eq. (2.5). Before considering detailed discussion of the 

interpolated array design, however, it should be noted that the problem considered here 

has a different nature from another array perturbation problem, known as the auto- 

calibration (or self-calibration) problem [86-89]. In the latter problem, the perturbation 

t The ISOV is the region of angular locations of which the corresponding array response vectors are 

required to be close to the desired ones. 
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is an unknown quantity, though some of its statistical properties are generally assumed 

known. The methods dealing with this problem involve joint estimation of source 

directions and array perturbation parameters. On the other hand, in the array 

interpolation problem, the array perturbation is assumed known, through real array 

response measurement, for instance. In addition, correction of the array perturbation is 

generally performed separately from the DOA estimation. Of course, difference between 

the true perturbed array response vector and the known nominal value is inevitable in 

practice. Nevertheless, due to the averaging nature of the interpolation. processing, small 

random deviation of the array response vector from the known nominal value may be 

tolerable [25,70]. 

Detail of the interpolated array design, based on the least squares approach in [25] 

with some modification, is provided in the following subsection. 

7.2.1 The weighted least squares interpolated array design 

In this subsection, we propose the interpolated array design procedure which is 

based on the least squares procedure of [25]. Modification is made to the method in 

[25], however, by adding the weighting function to the least squares formulation. In 

addition, control over the out-of-sector array response is introduced. Detail of the 

procedure is given as follows: 

The interpolated array design procedure 

1. Decide on the values of the following parameters: 

0 The geometry of the interpolated array 

0 The number of sensors Ni in the interpolated array 

The interpolated array inter-sensor spacing d; 

The location in space of the interpolated array 
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" Two sets of angular locations. The first one, denoted by O1, is composed 

of the directions which form the ISOV. The second set of angular 

locations, 02, is composed of the directions which lie outside the ISOV. 

0 The weighting function w; (0 ) 

In this study, the uniform linear array geometry is chosen for the interpolated 

array. The two DOA sets O1 and 02 may be chosen by first dividing the entire array 

FOV into two angular regions. The first one belongs to the ISOV. The second one is the 

out-of-sector region, i. e., the region outside the ISOV. The members of O, are chosen 

as, say M,, angular locations which are uniformly distributed across the ISOV. The M21 

say, members of 02 can be obtained in a similar manner. The number of evaluated 

angular locations Ml and M2 should be chosen according to how smooth each real-array 

sensor directivity gain is as a function of the DOA. For instance, if the directivity gain of 

each sensor is sufficiently flat over the specified angular regions, only a small value of 

M, and M2 is required. 

The remaining parameter to be discussed is the weighting function w; (e) . 

Generally, wi(O) should be selected to emphasise the ISOV, to obtain close 

approximation within the ISOV of the interpolated array response vector to the desired 

one. For instance, w; (9) may be chosen to have a (discrete) rectangular shape as 

described by 

w; (0) = K/Ml, 0E of 

w1(6) = "M2,0 E 02 

w1(0) = 0,0 O1 v 02 (7.1) 

where the factor K has positive value. 

2. Obtain the NX Ni interpolation matrix G as a least squares solution to the 

following problem. 

W1/2AH G= W12 Ad +E (7.2) 
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where 

Ar = 
[ar(61) 

ar(e2) 

Ad 
= 

[ad(el) 
ad(e2) 

W; _ 

w, (61) 

0 

w; (62 ) 

... Qr(OM, 
+2 

)J 

... ad(8Mt+2 )] 

0 

wj(OMI+2 

(7.3) 

(7.4) 

(7.5) 

The angular locations 9k ,k=1, ... , 
Ml, are the Ml members of O1, while 9k ,k= 

MI+1, 
... , 

M1+2 (M1+2 = Ml + M2), are the M2 members of 02. In addition, a, (9) and 

ad (0) are, respectively, the real and desired array response vectors at 0. The least 

squares solution to Eq. (7.2), which minimises the Frobenius norm of the error matrix E, 

is given by 

G= (ArWA7)-IÄrWÄdx (7.6) 

3. The above two steps may be repeated several times with different values of the 

parameters, listed in Step 1, such as the interpolated array location. From the resulting 

interpolation matrices, the best one may be chosen by first calculating, for each G, the 

Ml x1 interpolation error vector e; whose kth elements are given by 

ei; k = 11 eý II / II ar(9k)II k= 1, ... , 
Ml (7.7) 

where ek is the kth column vector of 

E; = GHAT - Ad (7.8) 

Each of the elements e;; k in e; is the interpolation error corresponding to each of the M, 

angular locations inside the ISOV. It is proposed that the best interpolation matrix G is 

chosen as the one with the minimum 11 e; IFrom the chosen G, the interpolated array 

output vector is given by 
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x; (t) = GHx(t) (7.9) 

Further reduction of 11 e; II. can still be achieved by continuing the design by the 
following optional step. 

4. With the power factor 8>0, the Ml elements of e; = Ke S/ (IMF e S) are used as 

the first Ml diagonal elements of W i. Other diagonal elements of W remain unchanged. 
The newly formed W is subsequently used to find a rrew interpolation matrix G from 

Eq. (7.6). This step may be repeated several times with different values of b. Among the 

interpolation matrices obtained by different values of b, the one with the minimum 
11 e; 1is again selected. 

Before considering a design example using the above procedure, the difference 

between the proposed procedure and the one described in [25] should be mentioned. 

First, in addition to the least squares criterion applied also in [25], the 00-norm (II e1 II. ) 

criterion is used in the 3rd step and the optional 4th step of the proposed procedure. The 

second difference between the two procedures is in the way in which Ar and Ad are 

formed. For the procedure in [25], Ar and Ad are composed of, respectively, the real and 

desired response vectors corresponding to the angular locations within the ISOV. The 

method does not impose control of the interpolated array directivity gaint in the out-of- 

sector region. In contrast, the proposed design procedure imposes mild directivity gain 

constraint in the out-of-sector region, through the inclusion in Ar and Ad of the real and 

desired response vectors corresponding to the out-of-sector angular locations. Without 

such control, the resulting interpolated array may give poor DOA estimation despite its 

lower interpolation error than that of the one with the out-of-sector gain control. This is 

because, as well as the interpolation error, the estimation bias is also affected by the 

interpolation matrix G through the interpolated array noise covariance structure, which 

is GHRnSG for the DML and WSF estimators. Note that, R., is the noise covariance 

t The array directivity gain is defined here as the 2-norm of the array response vector. 
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structure of the real array. It will be shown in the next subsection that, despite lower 

interpolation error, the interpolated array based on the design procedure in [25] can yield 
larger estimation bias than that due to the interpolated array obtained by the proposed 

procedure. 

7.2.2 Design example and the analysis of estimation bias 

In this subsection, an example of the array interpolation design is presented. The 

design was based on a data set of 720 real array response vectors corresponding to the 

angular locations equally spaced by 0.25 degrees over the array FOV of + 90 degreest. 

The measurements correspond to a real uniform linear array of eight sensors. Each 

sensor is a T-shaped vertically polarised half wavelength dipole, in the form of a double 

sided printed circuit board with a single RF output. The inter-sensor spacing is 0.574 

times the operating radio wavelength. This data set was part of the SCARP project, 

carried out by ERA Technology. Additional information of the array can be found in 

[90]. The number of sensors and their spacing for the interpolated array were chosen to 

be the same as in the real array. The ISOV was between -11 and +6 degrees, which is 

approximately one array beamwidth. The members of e, were Ml = 69 angular 

locations which are uniformly distributed across the ISOV. Similarly, M2 = 20 angular 

locations, which lie uniformly across the angular region outside the ISOV, were chosen 

as the members of 02. The weighting factor K was 100. These values of Ml, M2, K, as 

well as the chosen location of the interpolated array, are the ones which yield, among a 

few other parameter choices, the minimum II e; IBased on this optimal parameter 

choice, Step 4 of the design procedure was carried out with various values of the power 

factor b. The factor b=0.5 was found, among five different values of b between 0.25 

and 2, to achieve the minimum 11 e; (I... The interpolation errors at Ml angular locations 

The set of the real array response vectors was in fact obtained after linear interpolating of the array 

response measurements taken at 5 degree interval. This preliminary interpolation should not be confused 

with the interpolation performed by G in Eq. (7.9). 

205 



within the ISOV, previously defined as the elements e;; k of e;, are shown in Figure 7.1 

for the array designed without Step 4 (Design #1), and the one designed with Step 4 

(Design #2). The reduction of the maximum interpolation error (II e; 11. ) by Design #2 is 

noted. 

To compare the proposed design procedure with that of [25], the third 

interpolated array was designed with Ar and Ad composed of the real and desired 

response vectors corresponding to 9k , k. = 1, ... , M,. Other parameter values as listed 

in the 1 st step of the proposed design procedure, are the same as the optimal ones 

chosen in the previous two designs. The interpolation error by this design (Design #3) is 

compared with that of Design #2 in Figure 7.2. From the figure, it may be suggested that 

this third design should be preferred due to its lower interpolation error. However, as 

will be seen later, it is the second design which results in less biased DOA estimate(s). 

Next, we investigate the DOA estimation bias caused by the specific-case 

interpolation error matrix 

E; = GHAT - Ad (7.10) 

where Ar and Ad are the real and desired response matrices corresponding to a 

particular source direction scenario. Notice that the estimation bias due to E; and the 

one due . to Eb in the filtered data using the type-4 pre-filtering reference signal, as 

detailed in Chapter 3, are mathematically equivalent. Thus, the bias due to E; can be 

analytically obtained by one of the asymptotic bias formulas Eqs. (3.120,3.122,3.125). 

With the PFML-3 DOA estimator, the estimation bias due to E. for large L and 

sufficiently small E; is given by 

8= Re-' { (D HRn 112 pi 
U2Rn 

-1/2- 0 (TT H )T 1. Re l{ (D HRn 112P1 
U2-Rn 

I/2ý O 
Rn A Rn 'j 

(E; T TH )T 11 N1 (7.11) 

where9=E{O -6}, Rn=GHR. G. 
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Figure 7.1: Array interpolation error (e;; k) corresponding to each of two interpolated 
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The matrix TT H in Eq. (7.11) is as given in Theorem 3.5. The asymptotic formula Eq. 

(7.11) can also be applied for the cases of the DML and optimal WSF methods. If the 

DML DOA estimator is applied, TT H= RS R. For the optimal WSF method, this matrix 

term is equal to (RSAd R-'AdRS) 
. The analytical bias formula Eq. (7.11) is next 

validated using the data set of real array response vectors with two interpolated arrays 

based on Designs #1 and #2. Under the large snapshot condition where the finite sample 

effect is negligible, two experiments were carried out for the purpose. The comparison 

between the three array designs (Designs #1-3) will also be given. 

EXP 7.1: The single source scenario is first considered. In the simulation, the signal 

direction was varied among sixty-one values. In each of sixty-one DOA values, the 

exact array covariance matrix was generated using the set of real array response vectors 

with each of the two interpolation matrices by Designs #1 and #2. The identity matrix 

with a positive scaling factor was added into the array covariance matrix, to simulate the 

additive white noise covariance matrix. Note that, in this single source case, the SNR 

value has no effect on the estimation bias. The DOA estimate was calculated for each 

source direction configuration by using the CIQML algorithm with the asymptotic DML 

cost function, which is Eq. (2.24) with R being replaced by R. The algorithm was. 

applied with the conjugate-symmetric constraint H= Ix+1JK+iI K+i and H= GH 
. 
The 

maximum number of iterations allowed for the algorithms was 50. The threshold 

number F_ was 0.5E-10 and the chosen initial condition F is as given by Eq. (5.26). The 

estimation bias, obtained by this direct evaluation, compared with that of the analytical 

formula Eq. (7.11) for sixty-one DOA configurations, is shown in Figure 7.3. From the 

figure, it is seen that the analytical result is in good agreement with the result by direct 

evaluation. In comparing the estimation bias for each of the two interpolated arrays, the 

one from the interpolated array using Design #2 achieved the lower maximum bias. 

Figure 7.4 compares two analytical biases for two interpolated arrays obtained by 

Designs #2 and #3. The result shows that, despite lower interpolation error seen in 
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Figure 7.2, the array based on Design #3 does not have an improvement in terms of the 

estimation bias over the one obtained by Design #2. 
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Figure 7.3: The estimated and analytical biases of the DOA estimate as a function of the 

single source direction using two interpolated arrays obtained by Designs #1 and #2. 
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EXP 7.2: Next, a two coherent signal scenario is considered. In this experiment, two 

coherent signals with unity power each arrived at the array with the angular spacing of 5 

degrees. The phase difference between the two signals was it/4. The signal phase was 

measured at the middle point between the fourth and fifth sensors of the real array. The 

directions of the two signals were varied to obtain thirty-seven DOA configurations. For 

each DOA configuration, the exact array covariance matrix was generated by using the 

real array response vectors with each of the two interpolation matrices, obtained by 

Designs #1 and #2. The scaled identity matrix was added, as the noise covariance 

matrix, into the array covariance matrix. The DOA estimates were obtained by the 

CIQML algorithm with the asymptotic optimal WSF cost function, which is based on 

the eigendecomposition of R instead of R. The algorithm parameters such as the 

threshold number E were the same as in the EXP 7.1 By direct evaluation, the bias of 

each of the two source DOA estimates from 37 DOA configurations, compared with 

those obtained by Eq. (7.11), are shown in Figure 7.5. The analytical result is seen to be 

closely matched with the result from direct evaluation of the WSF cost function. 

However, unlike in EXP 7.1, the performance difference between the two interpolated 

arrays is less clear in this two coherent-source case. This seems to be because, in this 

case, the estimation bias for each source direction depends on the combination of the 

two column vectors in E; 
. 

The desirable property of the interpolated array obtained by 

Design #2 is its lower maximum interpolation error, when compared with that of the 

array obtained by Design #I (see Figure 7.1). The averaging of the two error vectors in 

E; makes the resulting averaged error vector less fluctuated. This appears to be the 

reason for the similar estimation performance by using the two arrays. 

The analytical biases of the two DOA estimates using two interpolated arrays 

obtained by Designs #2 and #3 are shown in Figure 7.6. The biases of the two estimates 

using the array obtained by Design #3 are seen to fluctuate more, when compared with 
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those of the array obtained by Design #2. Thus, the interpolated array based on Design 

#2 should be preferred in terms of the estimation bias property. 
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locations using two interpolated arrays obtained by Designs #1 and #2. (a) 1st source 
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the first source direction using two interpolated arrays obtained by Designs #2 and #3. 

7.3 Source direction estimation by the IQML algorithm with the 

interpolated uniform linear array 

In Section 7.2, we investigated the DOA estimation bias using the interpolated 

array under the asymptotic condition, where the finite sample effect is neglected. In this 

section, the finite sample case will be considered. To study the performance of the 

CIQML algorithm with the interpolated array, two simulation experiments were carried 

out based on the set of real array response vectors, previously described, and the 

interpolation matrix obtained by Design #2. Details of the experiments and results are 

provided below. 

EXP 7.3: In this simulation experiment, two coherent complex Gaussian distributed 

signals with unity power and phase difference of ic/4 were assumed to impinge upon the 

real array with the angular spacing of 5 degrees. The directions of both signals were 

simultaneously changed with the step size of 1 degrees to obtain 11 different source 
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DOA configurations shown in Table 7.1. In each configuration, the additive white 
Gaussian noise was added at each sensor to obtain the SNR of 20 dB. Different signal 

and noise sequences were used in each of 50 simulations for each source direction 

configuration. The two source directions were estimated using the optimal WSF method 

with the CIQML algorithm. The algorithm parameters such as the threshold number c 

were the same as in EXP 7.1. The estimated RMSEs of the two DOA estimates using 

the interpolated array and the real array are shown Figure 7.7. The improvement gained 

by using the interpolated array is seen from the figure. The maximum RMSE among the 

total of 22 DOA estimates is 0.560 degrees for the method with the interpolated array, 

while the maximum RMSE for the estimates with the real array is 4.581 degrees. The 

RMS value of the RMSEs of the 22 DOA estimates is equal to 0.266 degrees for the 

method with the interpolated array, and is equal to 2.565 degrees for the method with 

the real array. 

Figure 7.8 shows the estimated biases of the DOA estimates using the real and 

interpolated arrays. By comparing the bias with the RMSE, it is seen that the estimation 

error is due largely to the bias for both cases of the real and interpolated arrays. For the 

estimates using the interpolated array, the ratio between the absolute value of the 

estimation bias and the RMSE is greater than 0.8 in 17 of 22 DOA estimates. 

Subex no. 

Ist DOA (degrees) 

1 

-10 

2 

-9 

3 

-8 

4 

-7 

5 

-6 

6 

-5 

7 

-4 

8 

-3 

9 

-2 

10 

-1 

11 

0 

2nd DOA (degrees) -5 -4 -3 -2 -1 0 1 2 3 4 5 

Table 7.1: List of 11 source DOA configurations corresponding to two coherent signals 

in EXP 7.3. 
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EXP 7.4: The two coherent source scenario in EXP 7.3 was again assumed. In this 

experiment, however, the directions of the two sources were fixed at -5 and 0 degrees. In 

addition, the third uncorrelated signal was added with its direction being varied among 
four different values. The third signal has the same unity power as the two coherent 

signals. The additive noise was added to obtain the SNR of 20 dB. Direction estimation 

was carried out using three different methods. The first two methods were based on the 

optimal WSF cost function. The first one was applied to the data without the 

interpolation matrix. The second method was applied using the interpolation matrix 

which was obtained by Design #2. The same interpolation matrix was used in the third 

BPFML-2 method, described in Chapters 4 and 6. For the BPFML-2 method, only the 

two DOAs of the coherent signals were estimated. In terms of the source cluster model, 

described in Chapter 4, the two coherent signals form the first source cluster, while the 

third uncorrelated signal belongs to the second cluster. In all three methods, the CIQML 

algorithm was used to obtain the DOA estimates. The algorithm parameters such as the 

initial condition are the same as in EXP 7.1. From 100 simulations, the estimated 

RMSEs of the two coherent source DOA estimates by the three methods for each of four 

different DOAs of the third signal, are shown in Table 7.2. From the table, the BPFML- 

2 method outperforms the WSF methods with the real and interpolated arrays. The 

reason for poor performance of the WSF method with the real array is obvious. The case 

of the method. with the interpolated array, however, needs detailed explanation. It may 

appear at first that the superior performance of the BPFML-2 method over the WSF 

method, both based on the interpolated array, is due to the general performance order 

among the two methods as demonstrated in Chapter 6. However, by comparing the 

performance of the WSF method using the interpolated array with that of the same 

method for the two-signal case in EXP 7.2, severe performance degradation can be 

observed for the result in this experiment even if the angular location of the third signal 

is far from those of the first two coherent signals. This suggests that the problem is not 
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simply due to the presence of more signal sources. Notice that the angular location of 
the third source lies outside the , ISOV. Thus, its response vector is not well 
approximated by the uniform linear array response structure as given by Eq. (2.5). As a 
consequence, the IQML algorithm suffers a modelling error problem. This imposes a 
serious limitation to the application of the interpolated array to DOA estimation using 
the WSF cost function with the IQML algorithm. This out-of-sector-signal problem does 

not seem to have been addressed before. Although a method similar to the WSF method 

with the IQML algorithm was applied to the interpolated uniform linear array in [70], 

the simulation study provided in [70] considered only the case where all signal 
directions lie within the ISOV. 

In addition to the proposed solution using the BPFML-2 method, an approach 

based on spatial filtering may be suggested as a possible solution to the above problem. 

It may appear that the beamspace pre-processing [40-42] can be applied to suppress the 

out-of-sector signals, provided that their locations are known at least approximately. 

Unfortunately, the response vectors of the out-of-sector signals may not have the 

structure Eq. (2.5). Thus, it is generally not possible to design the beamspace matrix so 

as to suppress the out-of-sector signals while preserving the (approximate) structure Eq. 

(2.5) of the interpolated response vectors. It is possible, however, to first place the 

beamspace matrix just after the real array output. The interpolation matrix is then 

applied to the resulting beamspace data vector where the out-of-sector signals are 

already suppressed. Nevertheless, in doing so, the interpolation matrix needs to be 

designed for a particular beamspace matrix, which in turn depends on the angular 

locations of the out-of-sector signals. This latter approach then turns out to be equivalent 

to the interpolated array design procedure of Bronez, detailed in [61]. The goal of this 

alternative design procedure is to match the interpolated array response vectors at some 

t Similar performance is also expected by using the BPFML-2a method. In addition, when the signals 

whose directions lie within the ISOV are only partially correlated, the BPFML-4 method ma\ be used 

instead. 
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angular locations within the ISOV to the desired ones, while attempting to minimise the 

array gain in the directions outside the ISOV. To allow for small variation in the out-of- 

sector signal directions without re-designing the interpolation matrix, more degrees of 
freedom are needed to provide sufficient signal suppression for a given angular region 

(outside the ISOV). Thus, the effective number of array sensors left for DOA estimation 

is reduced. As a consequence, DOA estimation performance has to be sacrificed. For the 

out-of-sector signal(s) which is uncorrelated with the signals whose angular locations lie 

within the ISOV, the proposed BPFML-2 method has been shown to offer a satisfactory 

solution. Not only in that it solves the problem without degrading estimation 

performance, the method generally yields better performance than the DML and WSF 

methods, as shown in Chapter 6. However, the presence of the out-of-sector signal(s) 

which is correlated with the signals within the ISOV remains as an unsolved problem. 

The 3rd DOA (degrees) 20 30 40 50 

WSF + real array 0.826 0.621 0.504 0.508 

WSF + interp. array 0.298 1.195 0.759 2.752 

BPFML-2 + inte . rray 0.187 0.209 0.194 0.199 

(a) 

The 3rd DOA (degrees) 20 30 40 50 

WSF + real array 4.031 3.811 2.562 3.030 

WSF + interp. array 0.121 2.155 0.872 2.267 

BPFML-2 + interp. array 0.169 0.185 0.181 0.181 

(b) 

Table 7.2: The estimated RMSEs (in degrees) of two coherent source DOA estimates in 

EXP 7.4, obtained by three ML methods at four DOAs of the 3rd uncorrelated signal 

with the SNR of 20 dB. (a) Ist DOA = -5 degrees; (b) 2nd DOA =0 degrees. 
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7.4 Conclusions 

In this chapter, the problem of source direction estimation using the IQML 

algorithm with the interpolated array has been considered. The weighted least squares 

procedure for the interpolated array design has been presented. The procedure is based 

on the least squares method of [25]. Modification has been made to the method in [25] 

by including the weighting function into the design equations. The mild constraint on 

the interpolated array directivity gain in the out-of-sector region has been imposed. It 

has been shown that, without this out-of-sector gain constraint, the resulting interpolated 

array can exhibit large estimation bias despite its lower interpolation error (than that of 

the array designed with the constraint). 

The analysis of the estimation bias due to the interpolation error has also been 

made. The analytical bias, obtained by the adaptation of the asymptotic bias formula in 

Chapter 3, has been shown to be closely matched with the result obtained by direct 

evaluation of the asymptotic DML and WSF cost functions. The reduction of the 

maximum interpolation error by continuing the array design in Step 4 of the proposed 

procedure has been observed in the single source case. However, the performance 

difference between the two interpolated array designs, with and without Step 4, has so 

far been inconclusive for the more complicated case of two coherent sources. 

The problem of source DOA estimation by the IQML algorithm, using the 

interpolated array with a finite number of snapshots, has been investigated. It has been 

shown, by means of computer simulation, that the use of the interpolated array greatly 

improves the estimation performance of the IQML algorithm. The out-of-sector-signal 

problem has been addressed. It has been shown that, with the WSF cost function, the 

estimation performance is degraded in the presence of the signal(s) whose angular 

location lies outside the ISOV. The cause of this problem has been pointed out. For the 

case of the uncorrelated out-of-sector signal(s), the use of the BPFML-2 method has 

been proposed as a solution to this problem. Its superior estimation performance over 
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the WSF method in the presence of the uncorrelated out-of-sector signal has been 

demonstrated by computer simulation. 
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Chapter 8 
Conclusions and Future Work 

8.1 Conclusions 

In this thesis, the problem of narrow-band source direction estimation from an 

array of sensors has been considered. The pre-filtering maximum likelihood (PFML) 

approach to DOA estimation has been proposed. This approach has been shown to 

provide an alternative and unified treatment of the ML method with known signal 

waveforms [16-17], and the IV-based DOA estimators [18-20]. The pre-filtering 

approach is based on certain temporal pre-processing of the raw data obtained from the 

outputs of the array sensors. The resulting filtered data snapshots are used to formulate a 

DOA estimator. Four filter types have been proposed for use in the pre-filtering step of 

the PFML framework. The coefficients of these filters are obtained from the pre-filtering 

reference signal, which should be highly correlated with the signal waveforms. Four 

types of the pre-filtering reference signals have been considered. Based on the statistical 

properties of the data filtered by each of the four filters, four PFML DOA estimators 

have been formulated. Analysis of the asymptotic properties of these PFML DOA 

estimators has been provided. 

In Chapter 4, based on the described PFML framework, the new beamforming- 

based BPFML methods for DOA estimation have been proposed. The methods are the 

realisations of the PFML methods which are based on the type-4 pre-filtering reference 

signal. The combined classical and LCMV beamforming procedure has been proposed 

to obtain the type-4 pre-filtering reference signal from the observed data. This 

beamforming procedure is well suited for the scenario consisting of well-separated 
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clusters of highly or fully correlated signals. When the signals within the same cluster 

are only partially correlated, the improved beamforming procedure, also proposed in 

Chapter 4, should be used instead. 

Next, it has been shown how the bias inherent in the BPFML methods can be 

corrected in practice. Based on the analysis of the PFML methods in Chapter 3, the 

asymptotic properties of the BPFML methods have been analysed. In addition, apart 
from its main purpose for DOA estimation, the combined classical and LCMV 

beamforming procedure has been shown to provide adaptive beamforming which is 

robust to pointing error, as well as to the presence of correlated sources. 

In Chapter 5, the IQML algorithm for efficient computation of the ML parameter 

estimates has been considered. The generalised form of the algorithm has been provided. 

The improved version of the algorithm has been proposed. By employing the consistent 

nontriviality constraint, the proposed algorithm (CIQML) has been shown by computer 

simulations to outperform two existing IQML algorithms due to Bresler & Macovski, 

and Nagesha & Kay (BIQML and NIQML). With the DML cost function, the proposed 

algorithm yields superior performance to the existing ones for the multiple data snapshot 

case. For the single data snapshot case, the improved performance is gained by the 

proposed algorithm for a short data length N, or under the worst signal phase factor case 

[77]. In addition to the improvement in estimation accuracy, the proposed algorithm has 

been found to converge faster than the two existing methods. It has also been 

demonstrated that, the use of the optimal WSF cost function instead of the DML cost 

function can greatly improve the performance of the existing BIQML and NIQML 

algorithms. The reason for the improvement has been pointed out. 

Some of the parameter values (to be estimated) may sometimes be known a 

priori. The formulation of the IQML algorithm which takes advantage of this prior 

information has been provided. Because this prior knowledge imposes constraint on 

some of the parameter values, the resulting algorithm has been referred to as the 
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constrained IQML algorithm, also in analogy with the related constrained MUSIC 

method [42]. Under the deterministic signal assumption, with the described prior 
information of the parameter values, the CRLB of the unknown parameter estimate(s) 
has been provided. It has been found that the constrained IQML algorithm outperforms 

the unconstrained one as well as the constrained root-minimum norm method. The latter 

is a variant of the constrained MUSIC method. 

In addition to the 1-D problem, the problem of 2-D parameter estimation has 

also been considered. The problem of pairing two sets of I -D parameters has been 

addressed. The sufficient condition to guarantee the unique 2-D parameter pairing has 

been derived. Based on this result, the 2-D parameter estimation method based on the 

1-D IQML algorithm has been proposed for the case of uniform-sampled observed data. 

The method has been demonstrated through simulation to outperform the MEMP 

method, when there is the multiplication of the parameter values in each of the two 

dimensions so that KY and KZ < K. For the case of distinct parameter values in each of 

the two dimensions (KY = KZ = K), the proposed procedure has been found to 

outperform the MEMP method at low SNR, with slightly inferior performance to the 

latter at high SNR. Under the deterministic signal assumption, the CRLB of the 2-D 

parameter estimate(s) for each of the two cases has also been provided. 

In Chapter 6, performance study of the PFML methods has been carried out. The 

computer simulation under various representative cases has been performed. The DEML 

method with complete knowledge of the signal waveforms has been found to achieve 

the best result in all experiment. It has been shown that the proposed BPFML-2 method 

outperforms the DML and WSF methods under the scenario consisting of multiple 

clusters of coherent signals, provided that the angular spacing between any two clusters 

is larger than one array beamwidth. For the case where the signals within the same 

cluster are only partially correlated, the BPFML-4+bc method has been found to 

achieve better performance than the DML and WSF methods. In addition, it has been 
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found that the BPFML-2 method achieves comparable performance to the best-case 

PFML-2 method, which is based on the type-1 pre-filtering reference signal, The same 

conclusion can be said of the BPFML-3 method and the best-case PFML-3 method. 

Although the BPFML methods with the bias correction and the no bias-correction 

counterparts have been observed to achieve comparable estimation accuracy, the use of 

the bias correction reduces the estimation bias to a level comparable to that of the best- 

case PFML methods. At low SNR with a large number of data snapshots available, the 

method with the bias correction yields more accurate DOA estimates than the method 

without the bias correction. In addition, the bias correction has been found to be 

essential for the BPFML-4 method. 

In addition to its superior performance to the standard DML and WSF methods, 

the BPFML-2 method has been shown to be capable of estimating more source 

directions than those which can be estimated by the DML and WSF methods. In 

addition, it is capable of estimating source directions in an unknown spatially correlated 

noise field. These properties are also shared by the BPFML-4 method (with or without 

bias correction). In addition, because both the BPFML-2 and BPFML-4 methods (with 

or without bias correction) separately estimate the directions of two (or more) sources 

from different clusters, the two methods can be implemented by means of parallel 

processing. 

Validation of the analytical result, which was based on the asymptotic analytical 

study in Chapters 3 and 4, has also been carried out in Chapter 6 using computer 

simulation. Both analytical and simulation results have been found to be closely 

matched in most studied scenarios. The asymptotic analytical and estimated RMSEs of 

the DOA estimates are in good agreement for the number of snapshots as low as 20 at 

the SNR range of 5- 10 dB. 

In Chapter 7, the problem of source direction estimation using an irregular 

uniform linear array has been considered. The array interpolation approach has been 
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taken to circumvent the problem. The new interpolated array design procedure has been 

proposed. The procedure is the modification of the least squares procedure of 
Friedlander [25]. Unlike the approach in [25], however, the proposed procedure 
introduces a weighting function into a design equation to reduce the maximum 

interpolation error. In addition, for the proposed procedure, a mild constraint is imposed 

onto the out-of-sector directivity gain of the interpolated array. It has been shown that, 

despite higher interpolation error, the proposed procedure results in lower estimation 

bias, when compared with the result based on the procedure in [25]. In addition, the 

estimation bias due to the interpolation error has been calculated for two interpolated 

arrays, with and without Step 4 of the proposed design procedure. It has been found that, 

among the two arrays, the interpolated array obtained by including Step 4 into the design 

procedure has lower maximum absolute bias value for the single source case. For a more 

complicated case of two coherent sources, however, it has not yet been conclusively 

shown which one of the two arrays should be preferred. In all of the described bias 

study, the result obtained by direct evaluation of the asymptotic DML and optimal WSF 

cost functions has been compared with the result obtained by the asymptotic analytical 

bias formula. The latter has been adapted from the bias formula derived in Chapter 3 for 

the type-4 PFML methods. It has been found that both results are in good agreement for 

all of the study cases. 

The performance of source direction estimation using the IQML algorithm with 

the interpolated uniform linear array has been investigated. It has been found that, by 

using the IQML algorithm, the DOA estimates based on the interpolated array are more 

accurate than the ones with the real irregular array. In addition, the out-of-sector-signal 

problem has been addressed. It has been demonstrated that, by using the IQML 

algorithm with the interpolated uniform linear array, the WSF method suffers 

performance degradation in the presence of the signal(s) whose angular location lies 

outside the ISOV. The reason for this performance degradation has been explained. For 
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the case where the out-of-sector signal(s) is uncorrelated with the signals whose 
directions lie within the ISOV, this problem can be avoided by using the BPFML-2 

method instead. Through computer simulation study, the latter method has been found 

to outperform the WSF method in estimating source directions within the ISOV, with 

the presence of the uncorrelated out-of-sector signal. 

8.2 Future work 

The following remaining issues are suggested for future work. 

0 The detection problem of estimating the number of sources has been entirely 

omitted in this thesis. As well as the DOA estimates, the BPFML methods also 

give the estimate of the noise covariance matrix. This suggests the possibility of 

estimating the number of sources in an unknown spatially correlated noise field. 

In fact, for some special type-2 PFML methods, the detectors based on the IV- 

based DOA estimators have already been available for estimating the number of 

sources in the unknown noise field condition (see Chapter 6 of [47]). It remains 

to be seen, however, which performance level can be achieved by a similar 

detector based instead on the BPFML methods. 

0 The proposed pre-filtering approach has so far been applied with the DOA 

estimators which are based on the ML principle. From a computational point of 

view, it may be advantageous to apply instead a sub-optimal high resolution 

DOA estimator such as MUSIC for the DOA estimator part of the pre-filtering 

framework (see Figure 3.1). 

" The performance analysis of the CIQML has not yet been considered. Although 

the convergence analysis of the related Steiglitz-McBride algorithm has been 

considered in [91-92], similar study for the IQML algorithm is yet to be done. 

The availability of the convergence analysis for the three algorithms will allow 
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for a more thorough comparison, and may lead to further insight and possible 
improvement. 

0 The CIQML algorithm has been available in a batch form. The parameter 

estimation is carried out using a set of data snapshots under the assumption that 

the observed signal is stationary over the observation period. The availability of 

the algorithm in a recursive form, where the parameter estimation is carried out 
for each new available data snapshot, is of interest in two aspects. First, this may 

lead to a more computationally efficient algorithm for real time implementation. 

Secondly, it may improve the estimation performance of the algorithm, when 

applied to the parameter tracking problem under a highly non-stationary 

environment. 

0 As observed in one of the two experiments relating to the 2-D parameter 

estimation problem, detailed in Chapter 5, the RMSEs of the parameter estimates 

obtained by the proposed 1-D based 2-D parameter estimator did not attain the 

CRLB even at comparatively high SNR. This is due to the 1-D nature of the 

method. It is thus suggested that improvement may be obtained by continuing the 

parameter estimation using an exact 2-D estimation method, based on the initial 

parameter values obtained from the proposed 1-D based method. 

0A possible improvement to the proposed interpolated array design procedure 

should be considered. As seen in Chapter 7, the interpolation error as defined in 

the context may not be a good criterion in assessing the quality of the 

interpolated array. A natural criterion should be to choose the interpolation 

matrix so as to minimise the DOA estimation bias. The interpolated array design 

based on this criterion may be possible through the use of the asymptotic 

analytical bias formula Eq. (7.11). Note, however, that the straightforward use of 

Eq. (7.11) in the interpolated array design, e. g., by minimising the 2-norm of the 
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bias vector given by Eq. (7.11) with respect to the interpolation matrix G, leads 

to a highly complicated optimisation problem. Thus, future work should 

concentrate on a simplification to this direct approach. 

0 From both simulation and analytical studies, the proposed BPFML-2 and 

BPFML-4 methods have been shown to yield superior performance to the 

existing DML and WSF methods. The performance of the methods in a real 

environment, where various modelling errors generally exist, remains to be 

assessed. However, due to the applicability of the methods under an unknown 

spatially correlated noise field, and in the case where the number of sources 

exceeds the number of sensors, the methods are expected to be less susceptible to 

the related modelling errors than the DML and WSF methods. 
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Appendices 

A Partitioned complex Wishart matrices 

Let LW be an (M + N) x (M + N) - random matrix with the complex Wishart 

distribution, described by LW - CW(L, M+N, W). Partition LW and W by the Mth row 

and column as follows: 

LW LWH 
LW = 11 

�21 (A. 1) 
LW21 LW22 

W= 
[W11 WiHt 

(A. 2) 
W21 W22 

Some results on the distributions of the partitioned matrices in Eq. (A. 1) are -given 

below [39]: 

i) The NxN Schur complement 

LW = L(W22 - 
W21W ý1W_H) (A. 3) 

has the complex Wishart distribution CW(L - M, N, f V-), i. e., 

.. L-M-N 

LW 
P(LW) _ 

Ff (L-M) - L-M exp{ - L. tr(WW-1) } (A. 4) 
IWI 

where 

1H (A. 5) W= W22 - 
W21W 

1 
jý'21 

FN (L - M) - nN(N-1)12 r(L - M)F(L -M -1) ... F(L -M-N+ 1) (A. 6) 
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and r(") is the gamma function. 

ii) Given L11, **j 1 has the Gaussian distribution as expressed by 

P(W21Wi11 I LWII) 
_ 

ILW.. � IN -I _M 
exp{-L. tr((W21W 1- 

W21W 
1-1) -1 

W 
l(W21W 1-W -I21W 1 

)H W-1}} (A. 7) 

ItMNIWI 

iii) LW is statistically independent of W21 Wi1 and LW 1. 
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B Proof of Theorem 3.1 

Proof of the theorem can be directly obtained from the results on partitioned 
complex Wishart matrices, summarised in Appendix A. Let M= ds 

,WI= 
Rr _ 

L MHMr, W21 W 
1' = YWPfRr 1, W22 = R, and W= Rn =R-Y --! 

R l IyH. Thus, 

from i), ii), and iii) in Appendix A, the joint PDF of YWpf Ri ' and LR, given Rr 
, 
is 

P(LRn, YWPfRr I Rr) = P(LRn) P(YWPfRr lRr) 

N L-N-d, 
'rI LRn 

d, N L exp{-L. { tr{(Y-AT)Wpfý'WPf (Y-AT)HRn ' }+tr{RnRn '} }} 
1L I'N(L-ds)IRnI 

IN� 
L-N-d, 

LRr LRn 

dN Lexp{-tr{{(Y-AT)W 
i 1WPf(Y-AT)H + LRný}} 

7t S Ff (L - djlk 

where 

T= RsrRr 1RrWpf 

(B. 1) 

(B. 2) 

and Rsr = E{s(t)rH(t) }. From Eq. (B. 1), the likelihood function Eq. (3.19) follows. In 

addition, by taking logarithms of both sides of Eq. (3.19) and neglecting unrelated 

terms, we arrive at 

¬(Y, Rn, Rr, W1 ; 0, Rn, T) = 

- ink - tr{ {(Y-AT)WPfRr 1WPf(Y-AT)H +R�}Rn1 } (B. 3) 

The function e(") is maximised with respect to k when [39] 

Rn = (Y-AT)WpfRý 1Wpf (Y-AT)H +Rn (B. 4) 

By substituting Eq. (B. 4) into Eq. (B. 3), we arrived at Eq. (3.23). 
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C Proof of Theorem 3.2 

The proof is based on the ideas of related proofs in [9,16], and uses some results 

on the derivatives of the projection matrix in [33]. First, consider the DEML cost 
functions 

fl; k (6k) = tr{ PR 
1/ZA 

kn 1/2 yk yk jZ 1/2 } k= 1, ... , ds (C. 1) 
nk 

where Rn is as given by Eq. (3.41). Due to the fact that Rn is a consistent estimate of Rn 

(Rn = Rn in this case), and the assumptions A. 2.4 and A. 2.6, the estimate 9k, which is 

obtained by minimising Eq. (C. 1), converges with probability 1 to the true parameter 

value 9k as L -> oo. In addition, because the estimate ek is obtained by minimising Eq. 

(C. 1) with respect to 0k 
, the first derivative of Eq. (C. 1), when evaluated at 9k 

, 
is 

fl; k (ek) AV ek fi; k (ek)ek = 0. Because 9k is a consistent estimate of 9k 
, 

for large L, 

the first-order Taylor series expansion of fl; k (Ok) around the true parameter value 9k 

when evaluated at 0 k, results in 

0 fl; 
k(ek) + F; 

k(ek)(ek - ek) (C. 2) 

where Fl; k (9k) AV ek fl; 
k (ek)e , and the higher order terms are neglected. To obtain 

k 

the distribution of (6k - 9k ), the terms fl; k (6k) and F; k (9k) need to be evaluated as 

follows. 

Let 9k T, 
be the 77th element of 6k 

. 
The first derivative of f 

;k 
(8k) with respect to 

Ok. n, when evaluated at 9k, can be expressed as 

fl 
I 

[i. 
kk] l(e)17 = tr { Pl 

uz Ak 
(ek, 

ýl 
ek ik 1ý2 yki 'Rn 1/2 

- -2. ReJ ^HR-ii2 pi j? -1/2A ýý H'? -IA -i HR-i (C. 3) 
-i -yk n t12A-k n k, 77 kn k)k n . 

yk 
Rn 

where 

t The cost function Eq. (C. 1) uses kn instead of Rn, in Eq. (3.39). However, as will be seen, both cost 

functions yield the same asymptotic results. 
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apl 1_ Rý 1/zAk 

_ 
R-i/2A ek> 

17 ' 
ek) 

aOk, 
nkk, 77 k 

1 1/2 H" 1- 1 -H " 1/2 _-{ Pý 
Rn i/z q-k 

Rn k, ýAk Rn Ak )- Ak Rý + rl 

(pl R-1/2 A (ý HR-lA -1 A Hi? -112)H l j? 1/2Ak n k, r1 kn k) kn! (C. 4) 

and Ak 
Ak 

Next, observe that vec(Y) is Gaussian distributed, with mean aek, 
77 

ek 

vec(A TS) and the covariance matrix -T O R. )/L. Because P111z Rý 1/2Ak =O, and Rn 
Rn Ak 

= Rn + On (1 /-FL) t, we obtain 

_ -2 . ReiJ(- H R-1/2Pi -1/2ý xRhý HRA 
1/ - . 

yk -k Yký 
nR- ZRnk, 17 kn k) nl 

Yk J 
n 

+0 p 
(I /L) 

2. Re[ (5k -AkYk)HRn1/2" 
n 

v2; 
kRn 

1/2Ak, 
17Yk 

l+ Op(1/L) 
J 

2. Rel (. Yk - AkYk )H Rn U2PRn 
112Ak Rn "2Ak, 

17 ik I (C. 5) 

where, in the last line, we neglect the term with the order Op (l / L). 

The second derivative matrix F; k (9k ), evaluated at 9k, is next considered. Its 

T74th element is given by 

tr Pl e R1/2 xR-'/2 [pl; 
k(00]17, ý 

{ 
Rn-1/2Ak e k, r1' k, ý8 k) n 

Yk. yk n 

=2. Re l fl x j? -1/2P lJ xR-iý -i xR-i xR-iA xR-ýA i {{knnk, 
tj kn k) kn . 

yk yk 
n k( kn k) 

} 
Rn Ak 

+ tr{Q R-1/2 xR-112 p1 }} (C. 6) 
rnYkn ii2- Rn Ak 

2 

P1 
_a. ý, 2 A 

where PR 
1/2A 

(ek 
, 7' 

ek, 'ek) 
R 

a6 a9 
k 

nkk, Tj k, 
9k 

t See [44] for discussion of the order symbols Op(. ) and op(. ). 
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HR "' 1- 1Hý 1/2 Qr = Rn Ak, 4 (Ak 'A" 
k) Ak Rn Ak, 

n (Ak 
n 

Ak )- Ak Rn - 

R-v2ý H1 -I A HR n ä2P1 
ýýzA- + n k, rý, 

ý 
kn ký knnk, rl( kn ký 

R� k 

H11H1H ý-1/2 j? _1/2Xk 
, 

ý`4k IZn ̀ `lk) `4k Rn Ak, (``ýk jlý Ak) Ak kn 
(C. 7) 

and A= Because (9k - 9k) -> 0 as L -> oo, andfis of 7l 

the order O, (1 / -J-L) , 

[i; 
k(k)] ý=2. 

Re{ 
C 

{Ä H R-ii2Pl ýýz- Rii2ý xR_l -i xRIý - Hý xRiý x tr RA li 
k, nR qk n k, t) kn k)k nk 

irk Yk knkn lk) i JJ 

= 2. Re{ tr{Ak Rn 1/2PR 
12; R� 1"2Ak, 

nYkYk 
}} (C. 8) 

nk 

In Eq. (C. 8), the term of the order Op (1 /-ý-L-) is neglected. From Eq. (C. 8), 

F8=2. ReJ D HR1/2Pl 
�2 R1/2D) 4 (YkYk )T i (C. 9) 1, k( k) l( kn Rn qk nk 

where 

D= 
aak; l aak; 2 (C. 10) k 

[Ok; 

1 
0k; 

1 (ý°k; 2 
0k; 

2 (ýBk; Kk 
ek; 

Kk 

From Eq. (C. 2), we obtain 

Ef (k- ek)(0k 

- 0k)T }= r'1; ekF; 
k k(Bk)FI-k(ek 

(C. 11) 

where 
[I; 

kk(k)J ýý=E{[ 
fl; k (0k )] 

77 
[f1; 

k(0k)II }. From Eq. (C. 5), we obtain 

,ý= 

[ 

2. Re i E{ 7H Ak Rn 1/21 R 1/2X 
Rf 1/2 (Yk AkYk)(Yk - 

AkYk)H Rn 1/2P1 
U2Ak Rn t/2Ak 

i7Yk 
}} 

nk 

21 HA H R-1/2P1 
ll2 

R-1/2Ak 
ýk - Re{ [Rný I k, kk kn Rn X, 

L 
(C. 12) 
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where we have used the fact that E{ (Yk - AkYk)(Yk - AkYk )T }=0 and the identity 

Re(zl)Re(z2) = Re( zlz2 + zlz2 )/2 for any two complex numbers zl and z2. From Eq. 

(C. 12), we obtain 

2[R 1nc I 
k, k H 1/2 1 1/2- HT Fl; k k(6k) =L Re{ (Dk Rn PRL"2AkRn DO 0 (YkYk) } (C. 13) 

With the fact that Yk is Gaussian distributed, and from Eqs. (C. 2, C. 5, C. 9, C. 11, C. 13), 

the estimation error (9k - 9k) is asymptotically Gaussian distributed with zero mean 

and the error covariance matrix 

1 

El(ek - 
ek)(ek - 

ekýT Re-i{ (Dk Rnii2PR-1/2 A 
Rnl/2Dkl 0 (YkYk )T 

J 
2L nkI 

(C. 14) 

where [Rýý ]k, k can be replaced by [R- ]k, k without affecting the asymptotic results 

because Rn1 = R-1 + O, (1 /fL--). 

234 



D Proof of Theorem 3.3 

The PFML-2 cost function is given by 

a f2; 
k 

ek) = tr{ PR 
1/2A 

Rn; 
k 

2YkYk HR-112 2} 
(D. 1) 

n, k k 

By substituting f2; k (9k) for Ak (9k) in Proof of Theorem 3.2 and following the 

same arguments in that proof, we obtain 

_ -2 . ReJ ^A 2PR2Ä xRý -ý At l+ 
fl (. yk k ký n; k n; k k, 77 k n; k ký k n; k kkJ 

n, k k 

Oß(1 /L) 

2. Re{ (. yk -Aktk)HRn; k 
2PIZ 

: -UZA 
Rn; 

k 
2`4k 

ýtk 
}+O (1 /L) 

n, k k 

2. Re{ (i 
k- 

Aktk )H R 
n, 

kl2pR-vzA 
n; k 

2Ak, 
i1tk 

} (D. 2) 

n, k k 

and 

F. 9 2. ReJ D HR -1/2P1 R -1121 OttH Ti D. 3 2, k ký 1kn, k R-1 12X, n, k ký kkJ 
nýk 

-1 
1/2 

tk Yk [Rnc ]k, 
k 

[Rrz IL, 

k[ 
R 

r' Jkk 
(D. 4) 

where f2; k (0k) AVO f2, k (9k) e, F2; k (9k) A0 ek f2, k Ae; Dk and Rn, k are given, 
kk 

respectively, by Eq. (C. 10) and Eq. (3.54). By following Proof of Theorem 3.2, it is seen 

that (9k - Ok) is zero mean Gaussian distributed with the covariance matrix 

E{(ek - 
ek)(ek _ 

ek)T 
J=1 

Re' { (Dk Rn; 
k 

2PR 
u2A 

1Zn; k 2Dk) O (tktk )T } (D. 5) 

2L n. k 

Because, for large L, Rrz can be replaced by Rr2 
, 

-1/2 
tk Yk [Rnc, 

k, k 

[Rr2 ]k, 

k 

1/2 
= Y/k [Rnc ]k, 

k 
corrrz; k 

where 

(D. 6) 
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*i 1/2 -1/2 COITr2; k =I (t)r2; 
k 

(t) 
J 

I[Rnc ýk, 
k 

[Rr2l 

Jk k 
12 -1/2 

= [R]'[R(D. 7) 
k, k 

From Eqs. (D. 5-D. 6), we arrive at Eq. (3.59). 
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E Proof of Theorem 3.4 

The PFML-3 cost function is given by 

f3(0) = tr{ Pl R_1/2"HRn _1/2 } (E. 1) R-1/2A n 
n 

Because the estimate 0, obtained by minimising Eq. (E. 1), converges to a true parameter 

value 0 as L -> co, and f3 (0) AVe f3 (0) 0=0, the first-order Taylor series expansion 

of f3 (0) around a true parameter value 0, and evaluated at 0, results in 

0 f3(6) + F3(9). (9 -0) (E. 2) 

where F3 (9) AV0 f3 (8) 10 With respect to 977, the first derivative of f3(0), 

evaluated at 8, can be expressed as 

-Rn 
ii2An(ý x ^n lA )-t ý HRn IYYHRn v2 }} (E. 3) 2. Re{ tr{ PlRýý2A 

rý n 

where A, 
7 

A 
aA 

ae n e. 
By following similar arguments used in Proof of Theorem 3.2 

(Eqs. (C. 5-C. 9) ), we obtain 

ff3 (8 ), --2. Re{ tr{ (Y -AT )H IZn '/2Pk 
�2Ä 

1/2A, 
IT 

}} (E. 4) 
L 1ý n 

and 

[i3( e )ý = 2. Re[ tr{ A Rn 1/2 pn �ZX 
Rn li2A77T TH}} (E. 5) 

1j, ý 

where 

T= TSRnCAHRr3/2 (E. 6) 

Rn =R- (AT)(AT) H (E. 7) 

As a result, 

F 2. Re ID HR l/2 pl R _1/21) 0 (TT H )T } (E. 8) 
nn 

where 
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aa, 
_ 

aal 
_ ... 

aax 
a91 e, a02 e2 aOx eK (E. 9) 

In addition, from 

[P3(O )] 
n. ý = Et[fs(e)]n[. fs(e)]) 

=2. Re{ E{ tr{ T HÄ HRn i/2P1 
ýý2�i/2 (Y -A T) } Rn A 

tr{ (Y A -Y )H Rý 
R 

1/2P' 
1/2A _i 

1/2A Tj} } 
n 

dS 

= 2. Re{ E{ { ýTýk AH Rn 1/2P1 
-j? 

-1/2 (yk -AýTl) }. 
k-1 R-1/2A k 

ds 
HR "' 1/2 1 1/2 }}} { (. Yk -AIT 

Ik) 
nR R-1/2; i 

Rn Arg [T Ik 
k=1 n 

2HH 
1/2 1 1/2R "R 1/2 1 1/2 Re{ tr{ T Aý Rn P, 

/2ARn nn 
P_, 

/2ýRn A17 Tj} 
Lnn 

_2 Re { tr{ A HR -1/2P1 R -1/2A TTH1E. 10 
Ln Rn -i/2A n lj 

}1) 

we obtain 

F3 (8) _2. Re { (D HRn "2 p 
, ýzq 

R� li2D) O (TT H )T } (E. 11) 
L 

From Eqs. (E. 2, E. 4, E. 8, E. 11), and that vec(Y) is Gaussian distributed, the estimation 

error (0 - 0) is asymptotically Gaussian distributed, with zero mean and the error 

covariance matrix 

E{ (e-0)(e-0)T }= F3'(e)F3(e)F31(e) 

=1 Re-' { (D HRn l/2 p 
1/2; 

Rn ! /2D) O (TT H )T } (E. 12) 
2L n 
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F Proof of Theorem 3.5 

The PFML-3 cost function is given by 

A 
f3 (9) = tr(P n 

112A 
kn 1/2yyHRn 1/2) (F. 1) 

Let 9= (9 -9), where 9 minimises Eq. (F. 1), the additive noise term (in Y) En _ 
En / -\[L--, and the bias term Eb = kb / JL, 

where En and 'kb are independent of L and L. 

The analysis is carried out under the situation where L -> oo with L approaching infinity 

faster than L. Because 6 -> 0 under the described condition, the first-order Taylor series 

expansion of f3 (9) around a true parameter 8, when evaluated at 9, is given by 

0= f3 () ) 

= f3(e) +i (e)(e - e) (F. 2) 
With respect to 9., the first derivative of f3 (0) at 0 can be expressed as 

[ f3 (8 ), _-2. Re[ tr{ PR 
1/2; f 

Rn 1ý2Aý (A HRn IA)-' A HRn IYYHRn 1/2 }} (F. 3) 

Observe that, for large L, vec(Y) is Gaussian distributed, with mean vec(AT + Eb) + 

OP (1 / V-L) and the covariance matrix (Id, (9i )/L, where T= TSRncA HR-i/2 
, 

Eb = 

Rn QH Rßä/2 
, and 'kn =R- YY H with Y= AT + Eb. Because L -> oo at a faster rate 

than L, and that Pl 
112Rn 

-1/2 A=0, we obtain the asymptotic expression of [()] as 
Rn A 7l 

given by 

[f3(8)] 
= -2. Re{ tr{(Y-AT)HRn112p±1i2ýRn1/2A7(AHRnIA)-1AHRnIY} } 

ý1 Rn 

--2. Re { tr{ Ee Rn 1/2PR 
�Z; 

kn-1/2 T}} 
n 

(F. 4) 

where we have neglected terms of the order o (1 /N L) (o,, (1 / JL) for the terms which 

involve a stochastic signal). From Eq. (F. 4), it can be shown that 

. 
f3 (e) 2. Re {{ (D HRn 1/2pR 

I/2; j 
Rn 1/2) O (EbT H )T } 1N } (F. 5) 

n 
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Next, the second derivative matrix F3 (9) (= v0 f3 (e) Ie) is given by 

F39) = 2. Ref D xR 
n 

v2 p1 Rn 1/2D) ® (TT H )T } (F. 6) R-v2ý n 

From Eqs. (F. 2, F. 5, F. 6), the asymptotic bias is given by 

= Re-' { (I) xR -i/2 pl R _1/2 0 (TT H )T }. Re{ { (D HR -lull -1/2 n Rn U2ý nn RU2X n) 
n 

AT H )T 11 N} (F. 7) 
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G Proof of Theorem 5.1 

Consider the data vector 

x(t) - 
[4(t) 

xä (t) 4(t)]T (G. 1) 

where xa(t), xß(t), and xy(t) are as defined in the main context (Section 5.4). It is 

sufficient to consider only the case where 1l ! KZ, 12 > min(K - KZ + 1, KZ), 13 >K- 
KZ +2 (> K- KZ +1 for the proof of the full-rank part related to P. 1), ml = m3 = nl = 

n2 = n3 = 1, and m2 = 2. With the data vectorx(t) given by Eq. (G. 1) and the parameters 

as specified, the kth response vector is expressed as 

=TTTT ak 
[aa 

ak, ß ak, Y] 
(G. 2) 

where 
li -1 aka = 

fi 
Zk ... Zk ] (G. 3) 

12-1 T 
ak /3 = Yk 

[l 
Zk ... Zk (G. 4) 

_ 
13-1 T 

ak, Y 
[i 

Yk ... yk 
I (G. 5) 

Let the response matrix A= [al a2 """ aK ] correspond to the K distinct 2-D 

parameter pairs (yk 
1 Zk), k=1, 

... , 
K, with Zk E{ zý ,l=1, ... , 

KZ }, k=1, 
... , K. 

Note that, zo ,1=1, ... , K, are KZ distinct-value z-dimension parameters. First, we 

will show that A has the property P. 1, and is thus of full rank K, by showing that there is 

no solution to the equation 

[ak, ak2 ... akK-, 1 
.p= ako , k1 E{1, ... , K}, 1=0, ... ,K-1 (G. 6) 

for any vector p. 

CASE-1: The z-dimension parameter z4) of the k0th 2-D parameter pair is unique 

among the K z-dimension parameters Zk, 11=0, ... ,K-1. 
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With 11 > KZ and the fact that ako, a is independent of the other (KZ - 1) 

independent vectors aka as, 
it is thus seen that the solution to Eq. (G. 6) does not exist. 

CASE-2: The kath 2-D parameter pair shares the same z-dimension parameter value 
(z4, ) as those of other, say, (K0 - 1) 2-D parameter pairs. 

Observe that if there exists a solution to Eq. (G. 6), there must also be a solution 

to 
[ak, 

ak2 ... akKo 
-, 

]. 
P=a, (G. 7) 

where ak, ,1=1, .... 
KO - 1, correspond to the (K0 - 1) 2-D parameter pairs which 

share the same z-dimension parameter value as that of the k0th 2-D parameter pair. 

However, the matrix 
[akr 

ak,, y''' akK, 
_,, r] 

has full rank KO due to its Vander- 

monde structure and the fact that (in this case) 13 >K- KZ +1> KO. Thus, a solution to 

Eq. (G. 7) and to Eq. (G. 6) does not exist. 

By combining the two cases, it is concluded that A has the property P. 1. The full- 

rank part of the Theorem is thus proved. It remains to prove that A has also the property 

P. 2. In the other word, it will be shown that given the distinct-value z-dimension 

parameters zk ,k=1, ..., 
K, there are K unique and distinct pairs (yk , Zk), Zk E{ Zl ,l 

= 1, 
..., 

KZ }, of which the corresponding response matrix A span a unique K 

dimensional subspace. To show this, we define aK+l as the response vector 

corresponding to the (K + 1)th 2-D parameter pair, which shares the same z-dimension 

parameter as that of the k0th 2-D parameter pair (zkOý )" However, the y-dimension 

parameter value of the (K + 1)th 2-D parameter pair, denoted by yK+1, is different from 

those of the k0th and those of other 2-D parameter pairs which have the same z- 

dimension parameter value as zk,,. Again, we will prove this part of the theorem by 

showing that there is no solution to 
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Ap = aK+l 

= 
[aa b. a p ax+i, yýT (G. 8) 

where A is of full rank K and 8= YK+i'Yk0 

CASE-1: The z-dimension parameter value z4, of the k0th 2-D parameter pair is unique 

among those of the first K 2-D parameter pairs. 

In this case, given that the solution to Eq. (G. 8) does exist, there must also be a 

solution to 

ako, a ak', a akz, a ... akK-t"a 

_ 
aka 

G. 9) Po 
a+aa.. a P- [ö. 

aß] 
( 

Q kQ kß kQ 

Because . ll > KZ and zk0 is unique, ako a 
is independent of the other (K - 1) 

vectors aki a, 
1E{1,..., K-1}. Thus, from Eq. (G. 9), po =1 and 

[aka 
aka 

a*** 
akK-i, 

a] "P=0 (G. 10) 

However, notice that, among the (K - 1) vectors, only ak1 a, 1E{1,... 
, K- 1}, 

which have at least one replica, can be combined to form a zero vector for Eq. (G. 10) to 

have a nontrivial solution. There are u< min(K - K, KZ - 1) groups of such vectors. 

Let ak, a, 
1=1,... 

, u, be u independent vectors. In addition, let aka a, 
1=U+1, 

... , V, 

be the response vectors which span the same subspace as that spanned by ak1 a511, .. 

., u. A solution of Eq. (G. 9) exists only if 

akl, a ak2 a aku a rº p+ 
aku+I, a aku+2, a ... akv, a 

p ºrº =0 (G. I 
.) 

[a1 

,ß 
ak2, ß ... aku, ß aku+I, ß aku+2, ß ... akv ß] " 8[2. ak0, ß] 

where b2 =6-1. Due to the fact that 12 > min(K - KZ + 1, KZ) > u, the vector ako ß 

does not lie within the u-dimensional subspace spanned by the column vectors of 

[ak, 
ß ak2 ß akf3 ak' ß""" akßJ. Because yK+l # yS2 #0 and there is no 
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solution to Eq. (G. 11). As a result, a solution to Eq. (G. 9) and to Eq. (G. 8) does not 

exist. 

CASE-2: The koth 2-D parameter pair shares the same z-dimension parameter value as 

those of other (K0 - 1) 2-D parameter pairs. 

Let the 2-D parameter pairs (yk1, Zkl ), 1 = 1, 
..., Ko - 1, share the same z- 

dimension parameter value as that of the k0th 2-D parameter pair. From the proof for 

CASE-l, the response vectors corresponding to the 2-D parameter pairs whose z- 

dimension parameter values are different from the z-dimension parameter value of the 

k0th 2-D parameter pair, need not be considered. Thus, if the solution to Eq. (G. 8) 

exists, there must also be a solution to 

ako, a ak( a ... aka apI- ako a (G. 12) 
a) r 

aka 
r 

akKO_l, 
r 

[aK+1YJ 

However, the 13 x (KO + 1) matrix 
[akOl 

" 
ak, y """ akKly ax+ly] is of full 

rank (K0 + 1) due to its Vandermonde structure and the fact that (K0 + 1) < (K - KZ + 

2) < 13. Thus, there is no solution to Eq. (G. 12), and neither to Eq. (G. 8). 

By combining the two cases, it is proved that A has the property P. 2. 

244 



H Proof of Theorem 5.2 

The pxp average covariance matrix Rav can be written as 

Rav =1I Rk, I r(k, 1)E`Y 

_J1HlH ; kt, [t l 
IDk 

l"sDk, l J"S; ki, 11 + 62 In 
r (k, 1) E IF 

(H. 1) 

where the full rank-K matrix As; k< <j is the response matrix corresponding to Rk, 11, and 

k-kt l-l1 
Yl zl 0 

k-k1 l-lt 
Y2 Z2 Dk l= (H. 2) 

0 k-ki l-li 
yK ZK 

Because the signal covariance matrix RS is positive semi-definite with at least one non- 

zero eigenvalue, it can be decomposed as 

RS = k, s, s 
H+S (H. 3) 

where sl = 
[s11 sl, 2""" sl, KT is the eigenvector of RS which corresponds to a non- 

zero eigenvalue X1, and a positive semi-definite matrix S' is the remaining term. Based 

on this decomposition, Eq. (H. 1) can be expressed as 

R=A {D a. aH DH}ASH + AS 
1D S'DH dH + av s; ki, lý s s, k, l s, klý s ký, lý ki, ll 

{ 
k, l k, l 

}"S; 
ki, 1 

r (k, 1)EP r(k, 1)EP 

62 Ip (H. 4) 

where 

s,, l 
(. yl 

" 
Z1 

DS = 

0 

0 
S122 (y2 kI 

Z21 ) 

1k l 
as; k, l = Yi Z1 

SI, K(YKk'ZK11 

k! k1T 

. 
y2 Z2 YKZK 

] 
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Notice that the term Ias; 
k, la 

k, 
l in Eq. (H. 4) is equal to AT A* , where AC is the 

(k, 1) E ̀ ' 

response matrix corresponding to the centre vector xc (t) , described by Eq. (5.51). 

Because x, (t) satisfies the condition stated in Theorem 5.1 such that Ac has full rank K, 

the square matrix Ias; 
k, 1a 

ki is also of full rank K. As a result, the first matrix term 
(k, I)E`Y 

in Eq. (H. 4) is composed of the column vectors which span the column space of AS; kl, I, . 

It is also seen that the subspace spanned by the column vectors of the second matrix 

term in Eq. (H. 4) must lie within the column space of AS; k, !,. Because As; k< << is 

assumed to have at least the property P. 1, and Ray has the structure shown in Eq. (H. 1) 

with p>K, the p-K eigenvectors of Rav corresponding to the p-K smallest 

eigenvalues form the nulispace of kAS 
I, II . 
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I Proof of the 2-D CRLB formula Eq. (5.61) 

Assume that x(t) is modelled by Eq. (2.2), n(t) is complex Gaussian distributed, 

and s(t) is an unknown parameter. Given L snapshots of x(t), t=0,1, .., L-1, the log- 

likelihood function is given by 

e(x(0),..., x(L-1); 0°, s(0),..., s(L-1)) 
L-l 

const. -L In IR� I- (x(t) - As(t))H Rn 1(x(t) 
- As(t)) (I. 1) 

r-o 

where the 2-D distinct-value parameter vector 

T 
80_ 

[0i0 
e2 ... eKy+Z 

1 

A {(60 )T (BZ )T ]T (I. 2) 

The vectors 0y and 0° are composed of, respectively, the K, distinct-value y- 

dimension parameters and the KZ distinct-value z-dimension parameters. In addition, it 

is noted that Ky+Z = KY + K. In deriving the CRLB of an unbiased estimate of 0', the 

first derivatives of the log-likelihood Eq. (I. 1) with respect to 00 and s(t), t=0, ... , 

L-1, are required. By following the derivation of the compact CRLB formula in 

Appendix E of [9], 

[-* li = 
at 

0e ao 
L-1 

= 2. Re{ sH(t)AiHRnln(t) }, i=1, ... , 
Ky+Z 

t=0 

where A; A 
aaelA 0. 

From Eq. (I. 3), 

L-1 

2. Re{ (Rn U2D2dSD(t) ) HRn 1/2n(r) } 

t=0 

where 

(I. 3) 

(I. 4) 

aA aA 
_ 

aA aA 
D7d = ae ooe y. ý y, 2Ba 

Oy 
Ky 

ea 0Z; 
10a 

ez: 
KZ 
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and 

SD (t) = IKy+Z 0 S(t) (I. 6) 

Next, notice that the derivative of Eq. (I. 1) with respect to s(t) is the same for both 1-D 

and 2-D parameter cases. With the fact that the derivation of the compact CRLB in [9] 

involves the matrix product term Rn 1/2D2dSD(t), 
not the individual matrix components 

in it, a compact CRLB of an unbiased estimate of the 2-D parameter 0', given KY 
, KZ, 

and K, can be obtained by following the derivation in [9], with the term DX(t) appeared 

in the mentioned reference being replaced by R� 1/2D2dSD (t) 
.A compact formula for the 

CRLB on the unbiased estimate 6° is thus given by 

CRLB(9°) = 
L_ 

Re _1 { ISH (t)D ýRn 1/2(I -R -t/2ý (ý HR-i )-i HR-1/2 )R-i/2D SD t 
2 

t=0 
Dnnnn 2d 

( )ý 

H 1/2 1 1/2- 

=1 Re -1 { U, { (D2dRn PR_, i2ARn D2d) ORS } U, } (1.7) 
2L 'I 

where 

+Z) 
(I. 8) Rs - (1Ky+ZIKyT 

ÜI = IKy+Z 0 IK (I. 9) 

1 L-1 
H 

and RS is the sample covariance matrix of s(t), i. e., RS =- s(t)s (t). 
L r=0 
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