8 research outputs found

    What can you see? Identifying cues on internal states from the movements of natural social interactions

    Get PDF
    © 2019 Bartlett, Edmunds, Belpaeme, Thill and Lemaignan. In recent years, the field of Human-Robot Interaction (HRI) has seen an increasing demand for technologies that can recognize and adapt to human behaviors and internal states (e.g., emotions and intentions). Psychological research suggests that human movements are important for inferring internal states. There is, however, a need to better understand what kind of information can be extracted from movement data, particularly in unconstrained, natural interactions. The present study examines which internal states and social constructs humans identify from movement in naturalistic social interactions. Participants either viewed clips of the full scene or processed versions of it displaying 2D positional data. Then, they were asked to fill out questionnaires assessing their social perception of the viewed material. We analyzed whether the full scene clips were more informative than the 2D positional data clips. First, we calculated the inter-rater agreement between participants in both conditions. Then, we employed machine learning classifiers to predict the internal states of the individuals in the videos based on the ratings obtained. Although we found a higher inter-rater agreement for full scenes compared to positional data, the level of agreement in the latter case was still above chance, thus demonstrating that the internal states and social constructs under study were identifiable in both conditions. A factor analysis run on participants' responses showed that participants identified the constructs interaction imbalance, interaction valence and engagement regardless of video condition. The machine learning classifiers achieved a similar performance in both conditions, again supporting the idea that movement alone carries relevant information. Overall, our results suggest it is reasonable to expect a machine learning algorithm, and consequently a robot, to successfully decode and classify a range of internal states and social constructs using low-dimensional data (such as the movements and poses of observed individuals) as input

    Inferência de estados afetivos em ambientes educacionais : proposta de um modelo híbrido baseado em informações cognitivas e físicas

    Get PDF
    Orientador: Prof. Dr. Andrey Ricardo PimentelDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 11/12/2018Inclui referências: p.119-127Área de concentração: Ciência da ComputaçãoResumo: Na comunidade científica é comum o entendimento de que os softwares educacionais precisam evoluir para garantir um suporte mais efetivo ao processo de aprendizagem. Uma limitação recorrente destes softwares refere-se à falta de funcionalidades de adaptação às reações afetivas dos estudantes. Esta limitação torna-se relevante pois as emoções têm influencia direta no processo de aprendizagem. Reconhecer as emoções dos estudantes é o primeiro passo em direção a construção de software educativos sensíveis ao afeto. Trabalhos correlatos reportam relativo sucesso na tarefa de reconhecimento automático das emoções dos estudantes. No entanto, grande parte dos trabalhos correlatos utiliza sensores pouco práticos, intrusivos e caros que normalmente monitoram apenas reações físicas. No contexto educacional o conjunto de emoções a ser considerado no processo de reconhecimento deve observar as singularidades deste domínio. Sendo assim, neste trabalho a inferência é realizada utilizando uma abordagem de quadrantes formadas pelas dimensões valência e ativação. Estes quadrantes representam situações relevantes para a aprendizagem e podem ser utilizados para embasar adaptações no ambiente computacional. Diante disto, esta pesquisa apresenta a proposta de um modelo híbrido de inferência de emoções de estudantes durante o uso softwares educacionais. Este modelo tem como principal característica a utilização simultânea de informações oriundas de reações físicas (expressões faciais) e cognitivas (eventos no software educacional). Esta abordagem fundamenta-se na perspectiva teórica de que as emoções humanas são fortemente relacionadas com reações físicas, mas também são influenciadas por processos racionais ou cognitivos. A combinação de expressões faciais e informações sobre os eventos do software educacional permite a construção de uma solução de baixo custo e intrusividade. Além disso, esta solução apresenta viabilidade de utilização em larga escala e em ambientes reais de ensino. Experimentos realizados com estudantes em um ambiente real de ensino demonstraram a viabilidade desta proposta. Este fato é importante, considerando-se que a abordagem proposta neste trabalho é pouco explorada na comunidade científica e requer a fusão de informações bastante distintas. Nestes experimentos, foram obtidas acurácia e índice Cohen Kappa próximas de 66% e 0,55, respectivamente, na tarefa de inferência de cinco classes de emoções. Embora esses resultados sejam promissores quando comparados a trabalhos correlatos, entende-se que eles podem ser aprimorados no futuro, incorporando-se novos dados ao modelo proposto. Palavras-chave: Inferência de Emoção, Emoção Relacionada à Aprendizagem, Tutoria Afetiva, Computação Afetiva.Abstract: In the scientific community there is a common understanding that educational software must evolve to ensure more effective support to the learning process. A common limitation of these software refers to the lack of adaptive features to students' affective reactions. This limitation becomes relevant because the emotions have a direct influence on the learning process. Recognizing students' emotions is the first step toward building affect-sensitive educational software. Related work reports relatively successful in the task of automatically recognize students' emotions. However, most studies use impractical, intrusive and expensive sensors that typically monitor only physical reactions. In the educational context the set of emotions to be considered in the recognition process must observe the singularities of this domain. Thus, in this work the inference is performed using a quadrant approach formed by the valence and activation dimensions. These quadrants represent situations relevant to learning and can be used to support adaptations in the computational environment. So, this research presents a proposal of a hybrid model to infer emotions of students while using educational software. This model has as its main feature the simultaneous use of information coming from physical reactions (facial expressions) and cognitive (events in the educational software). This approach is based on the theoretical perspective that human emotions are strongly related with physical reactions, but are also influenced by rational or cognitive processes. Combining facial expressions and information about the events of educational software allows the construction of a low-cost and intrusiveness solution. In addition, this solution presents feasibility for use in large scale in real learning environments. Experiments with students in a real classroom demonstrated the feasibility of this proposal. This is important, considering that the approach proposed in this work is little explored in the scientific community and requires the fusion of quite different information. In these experiments, accuracy and Cohen Kappa index close to 66% and 0,55, respectively, were obtained in the inference of five emotion classes. Although these results are promising when compared to related works, it is understood that they can be improved in the future by incorporating new data into the proposed model. Keywords: Emotion inference, Learning related emotion, Affective tutoring, Affective Computing

    Identifying Social Signals from Human Body Movements for Intelligent Technologies

    Get PDF
    Numerous Human-Computer Interaction (HCI) contexts require the identification of human internal states such as emotions, intentions, and states such as confusion and task engagement. Recognition of these states allows for artificial agents and interactive systems to provide appropriate responses to their human interaction partner. Whilst numerous solutions have been developed, many of these have been designed to classify internal states in a binary fashion, i.e. stating whether or not an internal state is present. One of the potential drawbacks of these approaches is that they provide a restricted, reductionist view of the internal states being experienced by a human user. As a result, an interactive agent which makes response decisions based on such a binary recognition system would be restricted in terms of the flexibility and appropriateness of its responses. Thus, in many settings, internal state recognition systems would benefit from being able to recognize multiple different ‘intensities’ of an internal state. However, for most classical machine learning approaches, this requires that a recognition system be trained on examples from every intensity (e.g. high, medium and low intensity task engagement). Obtaining such a training data-set can be both time- and resource-intensive. This project set out to explore whether this data requirement could be reduced whilst still providing an artificial recognition system able to provide multiple classification labels. To this end, this project first identified a set of internal states that could be recognized from human behaviour information available in a pre-existing data set. These explorations revealed that states relating to task engagement could be identified, by human observers, from human movement and posture information. A second set of studies was then dedicated to developing and testing different approaches to classifying three intensities of task engagement (high, intermediate and low) after training only on examples from the high and low task engagement data sets. The result of these studies was the development of an approach which incorporated the recently developed Legendre Memory Units, and was shown to produce an output which could be used to distinguish between all three task engagement intensities after being trained on only examples of high and low intensity task engagement. Thus this project presents the foundation work for internal state recognition systems which require less data whilst providing more classification labels
    corecore