4,216 research outputs found

    Building Occupancy Simulation and Data Assimilation Using a Graph Based Agent Oriented Model

    Get PDF
    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates the real time spatial distribution of occupants in a building. It can benefit various applications like conserving energy, smart assist, building construction, crowd management, and emergency evacuation. Building occupancy simulation and estimation needs a simulation model and a data assimilation algorithm that assimilates real-time sensor data into the simulation model. Existing build occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating a large number occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of the existing models, in this dissertation, we combine the benefits of agent and graph based modeling and develop a new graph based agent oriented model which can efficiently simulate a large number of occupants in various building structures. To support real-time occupancy dynamics estimation, we developed a data assimilation framework based on Sequential Monte Carol Methods, and apply it to the graph-based agent oriented model to assimilate real time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this dissertation work include 1) it provides an efficient model for building occupancy simulation which can accommodate thousands of occupants; 2) it provides an effective data assimilation framework for real-time estimation of building occupancy

    Data Assimilation for Agent-Based Simulation of Smart Environment

    Get PDF
    Agent-based simulation of smart environment finds its application in studying people’s movement to help the design of a variety of applications such as energy utilization, HAVC control and egress strategy in emergency situation. Traditionally, agent-based simulation is not dynamic data driven, they run offline and do not assimilate real sensor data about the environment. As more and more buildings are equipped with various sensors, it is possible to utilize real time sensor data to inform the simulation. To incorporate the real sensor data into the simulation, we introduce the method of data assimilation. The goal of data assimilation is to provide inference about system state based on the incomplete, ambiguous and uncertain sensor data using a computer model. A typical data assimilation framework consists of a computer model, a series of sensors and a melding scheme. The purpose of this dissertation is to develop a data assimilation framework for agent-based simulation of smart environment. With the developed data assimilation framework, we demonstrate an application of building occupancy estimation which focuses on position estimation using the framework. We build an agent based model to simulate the occupants’ movement s in the building and use this model in the data assimilation framework. The melding scheme we use to incorporate sensor data into the built model is particle filter algorithm. It is a set of statistical method aiming at compute the posterior distribution of the underlying system using a set of samples. It has the benefit that it does not have any assumption about the target distribution and does not require the target system to be written in analytic form .To overcome the high dimensional state space problem as the number of agents increases, we develop a new resampling method named as the component set resampling and evaluate its effectiveness in data assimilation. We also developed a graph-based model for simulating building occupancy. The developed model will be used for carrying out building occupancy estimation with extremely large number of agents in the future

    Sensor-Driven, Spatially Explicit Agent-Based Models

    Get PDF
    Conventionally, agent-based models (ABMs) are specified from well-established theory about the systems under investigation. For such models, data is only introduced to ensure the validity of the specified models. In cases where the underlying mechanisms of the system of interest are unknown, rich datasets about the system can reveal patterns and processes of the systems. Sensors have become ubiquitous allowing researchers to capture precise characteristics of entities in both time and space. The combination of data from in situ sensors to geospatial outputs provides a rich resource for characterising geospatial environments and entities on earth. More importantly, the sensor data can capture behaviours and interactions of entities allowing us to visualise emerging patterns from the interactions. However, there is a paucity of standardised methods for the integration of dynamic sensor data streams into ABMs. Further, only few models have attempted to incorporate spatial and temporal data dynamically from sensors for model specification, calibration and validation. This chapter documents the state of the art of methods for bridging the gap between sensor data observations and specification of accurate spatially explicit agent-based models. In addition, this work proposes a conceptual framework for dynamic validation of sensor-driven spatial ABMs to address the risk of model overfitting

    Agile AI development for Real World Solutions

    Get PDF
    This keynote will analyse the importance of IoT, Blockchain and Edge Computing as contributors to the development of distributed intelligent systems that have the capacity to interact with the environment "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI, IoT and Blockchain in an Edge Computing model or elsewhere, offers a world of possibilities and opportunities

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems

    Get PDF
    Assimilating real time sensor into a running simulation model can improve simulation results for simulating large-scale spatial temporal systems such as wildfire, road traffic and flood. Particle filters are important methods to support data assimilation. While particle filters can work effectively with sophisticated simulation models, they have high computation cost due to the large number of particles needed in order to converge to the true system state. This is especially true for large-scale spatial temporal simulation systems that have high dimensional state space and high computation cost by themselves. To address the performance issue of particle filter-based data assimilation, this dissertation developed distributed particle filters and applied them to large-scale spatial temporal systems. We first implemented a particle filter-based data assimilation framework and carried out data assimilation to estimate system state and model parameters based on an application of wildfire spread simulation. We then developed advanced particle routing methods in distributed particle filters to route particles among the Processing Units (PUs) after resampling in effective and efficient manners. In particular, for distributed particle filters with centralized resampling, we developed two routing policies named minimal transfer particle routing policy and maximal balance particle routing policy. For distributed PF with decentralized resampling, we developed a hybrid particle routing approach that combines the global routing with the local routing to take advantage of both. The developed routing policies are evaluated from the aspects of communication cost and data assimilation accuracy based on the application of data assimilation for large-scale wildfire spread simulations. Moreover, as cloud computing is gaining more and more popularity; we developed a parallel and distributed particle filter based on Hadoop & MapReduce to support large-scale data assimilation

    Sequential Monte Carlo Based Data Assimilation Framework and Toolkit for Dynamic System Simulations

    Get PDF
    Assimilating real-time sensor data into simulations is an effective approach for improving predictive abilities. However, integrating complex simulation models, e.g., discrete event simulation models and agent-based simulation models, is a challenging task. That is because classical data assimilation techniques, such as Kalman Filter, rely on the analytical forms of system transition distribution, which these models do not have. Sequential Monte Carlo methods are a class of most extensively used data assimilation algorithms which recursively estimate system states using Bayesian inference and sampling technique. They are non-parametric filters and thus can work effectively with complex simulation models. Despite of the advantages of Sequential Monte Carlo methods, simulation systems do not automatically fit in data assimilation framework. In most cases, it is a difficult and tedious task to carry out data assimilation for complex simulation models. In addition, Sequential Monte Carlo methods are statistical methods developed by mathematicians while simulation systems are developed by researchers in particular research fields other than math. There is a need to bridge the gap of theory and application and to make it easy to apply SMC methods to simulation applications. This dissertation presents a general framework integrating simulation models and data assimilation, and provides guidance of how to carry out data assimilation for dynamic system simulations. The developed framework formalizes the data assimilation process by defining specifications for both simulation models and data assimilation algorithms. It implements the standard Bootstrap Particle Filtering algorithm and a new \emph{Sensor Informed Particle Filter}, (SenSim) to support effective data assimilation. The developed framework is evaluated based on the application of wildfire spread simulation, and experiment results show the effectiveness of data assimilation. Besides the framework, we also developed an open source software toolkit named as Data Assimilation Framework Toolkit to make it easy for researchers to carry out data assimilation for their own simulation applications. A tutorial example is provided to demonstrate the data assimilation process using this data assimilation toolkit
    • …
    corecore