
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-15-2016

BUILDING OCCUPANCY SIMULATION
AND DATA ASSIMILATION USING A
GRAPH BASED AGENT ORIENTED MODEL
Sanish Rai

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Rai, Sanish, "BUILDING OCCUPANCY SIMULATION AND DATA ASSIMILATION USING A GRAPH BASED AGENT
ORIENTED MODEL." Dissertation, Georgia State University, 2016.
https://scholarworks.gsu.edu/cs_diss/114

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

BUILDING OCCUPANCY SIMULATION AND DATA ASSIMILATION USING

A GRAPH BASED AGENT ORIENTED MODEL

by

SANISH RAI

Under the Direction of Xiaolin Hu, PhD

ABSTRACT

Building occupancy simulation and estimation simulates the dynamics of occupants and

estimates the real time spatial distribution of occupants in a building. It can benefit various

applications like conserving energy, smart assist, building construction, crowd management, and

emergency evacuation. Building occupancy simulation and estimation needs a simulation model

and a data assimilation algorithm that assimilates real-time sensor data into the simulation model.

Existing build occupancy simulation models include agent-based models and graph-based models.

The agent-based models suffer high computation cost for simulating a large number occupants,

and graph-based models overlook the heterogeneity and detailed behaviors of individuals.

Recognizing the limitations of the existing models, in this dissertation, we combine the benefits of

agent and graph based modeling and develop a new graph based agent oriented model which can

efficiently simulate a large number of occupants in various building structures. To support real-

time occupancy dynamics estimation, we developed a data assimilation framework based on

Sequential Monte Carol Methods, and apply it to the graph-based agent oriented model to

assimilate real time sensor data. Experimental results show the effectiveness of the developed

model and the data assimilation framework. The major contributions of this dissertation work

include, 1) it provides an efficient model for building occupancy simulation which can

accommodate thousands of occupants; 2) it provides an effective data assimilation framework for

real-time estimation of building occupancy.

INDEX WORDS: Building Occupancy Simulation, Agent based, Graph based, Occupancy

Dynamics Estimation, Data assimilation, Sequential Monte Carlo Methods.

BUILDING OCCUPANCY SIMULATION AND DATA ASSIMILATION USING

A GRAPH BASED AGENT ORIENTED MODEL

by

SANISH RAI

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2016

Copyright by

Sanish Rai

2016

BUILDING OCCUPANCY SIMULATION AND DATA ASSIMILATION USING

A GRAPH BASED AGENT ORIENTED MODEL

by

SANISH RAI

Committee Chair: Xiaolin Hu

Committee: Rajshekar Sunderraman

Yichuan Zhao

Ying Zhu

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2016

vii

DEDICATION

I dedicate this dissertation to my parents, Dilip Kumar Rai and Shakuntala Rai, for

encouraging my ambitions and to my wife, Manjina, for supporting it so lovingly.

viii

ACKNOWLEDGEMENTS

I want to express my gratitude to my advisor, Dr. Xiaolin Hu, for his continuous guidance,

patience, and support. I want to thank him for believing in me and providing invaluable supervision

throughout my time as a graduate student. His presence carries great significance in my work. I

would also like to thank Dr. Raj Sunderraman for all his support and encouragement during my

time at GSU. I express special appreciation toward my dissertation committee for their valuable

feedback and suggestions at every step of my work. Also, I would like to thank my colleagues

from SIMS lab, Yuan Long, Minghao Wang, Fan Bai, Haidong Xue, Peisheng Wu, and Nicholas

Keller for creating a great academic environment and always engaging me in intelligent and

thoughtful conversations from which many of my ideas have developed.

 I want to thank my friends Pallabi Gupta and Ishaka Maskey for always encouraging me.

I also want to acknowledge my brother Diwash Rai, my family members and friends for their

goodwill and support.

 Lastly, I would like to thank my wife, Manjina Shrestha, for providing immeasurable time,

support, and love. Thank you for always being there for me.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. viii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

 Introduction .. 1

1.1 Overview ... 1

1.2 Background .. 4

1.3 Problem Statement ... 7

1.4 Agent based model ... 9

1.5 Graph based model .. 11

1.6 Sensors .. 12

1.7 Data assimilation .. 14

1.8 Sequential Monte Carlo methods ... 15

1.9 Organization of the Dissertation... 16

 Related work .. 18

 Graph-based Agent-oriented model ... 24

3.1 General structure of the graph model .. 25

3.2 Occupant Agents .. 29

3.3 Agent’s behavior .. 32

3.4 Agent movement model ... 33

x

3.5 Queue Processing ... 34

3.6 Discrete time-based simulation algorithm ... 34

3.7 Experimental results and analysis for the graph based agent oriented model 36

3.8 Graph based agent oriented model for a pedestrian tunnel simulation 41

3.9 Hybrid model .. 44

 Data assimilation using graph based agent oriented model ... 48

4.1 Basic Theory ... 48

4.2 Data assimilation framework .. 52

4.3 Data assimilation using direct sensor data .. 58

4.4 Data assimilation experiments .. 63

4.4.1 Experiment settings .. 63

4.4.2 Results for smaller layout .. 68

4.4.3 Results for larger layout .. 77

4.4.4 Comparison of resampling using sensor data particles 86

 Towards activity informed DDDS framework .. 90

5.1 Case Study: A Smart Office Environment .. 90

5.2 Activity informed DDDS framework ... 91

5.3 Agent based model for building occupancy ... 93

5.4 Behavior patterns of occupants in a building .. 96

5.5 Behavior Pattern Recognition using Coupled HMM ... 102

xi

Conclusion ... 109

References .. 112

xii

LIST OF TABLES

Table 3.1 Transition table for vertex 2 a) normal scenario b) evacuation to Node 4 27

Table 4.1 Experimental Design ... 67

Table 4.2 Average RMSE for nodes ... 70

Table 4.3 RMSE for using sensors in (a)half (b)1/3rd (c)1/5th of the nodes 78

Table 5.1 Initial probability for HMM .. 99

Table 5.2 Emission probability for HMM .. 99

Table 5.3 Average accuracy for behaviors ... 102

xiii

LIST OF FIGURES

Figure 1.1 Data assimilation based on PF methods .. 16

Figure 3.1. Framework for graph-based agent-oriented model .. 25

Figure 3.2. a) A building floor plan b) Graph representing the floor plan 26

Figure 3.3. Number of occupants (a) node 2 (b) node 4 ... 37

Figure 3.4 (a) Occupants in safe node with varying link size (b) Occupants in safe node with

varying agents knowing direction to safe node ... 38

Figure 3.5 Node 4 occupants with varying group size .. 39

Figure 3.6 Computational time for agents (a) with 100% agents knowing direction (b) with 50%

agents knowing direction (c) agents with group size 20 ... 40

Figure 3.7 Computational time for mixed agents ... 40

Figure 3.8. Pedestrians in a tunnel .. 42

Figure 3.9. 6000 Pedestrians (a) Input rate (b) Average flow rate including source (c) Flow rate at

mid-section (d) Average flow rate without source ... 43

Figure 3.10. 2000 Pedestrians (a)Input rate (b) Average flow rate including source (c) Flow rate at

mid-section (d)Average flow rate without source .. 44

Figure 3.11. Flow rate at exit end (a) 2000 Pedestrians (b) 6000 Pedestrians 44

Figure 3.12 Agents crossing paths .. 44

Figure 3.13 Hybrid mode conversion of agents .. 46

Figure 3.14 Screen shot of hybrid model simulation .. 47

Figure 4.1 Data assimilation framework ... 58

Figure 4.2 Issue caused by placement of sensors ... 59

Figure 4.3 Standard Resampling b). Resampling with particles from sensor data 61

xiv

Figure 4.4. Experimental structure for small layout building ... 65

Figure 4.5 Experimental building structure for larger layout ... 66

Figure 4.6 Real simulation at increasing time steps for first scenario .. 68

Figure 4.7 Data assimilation simulation at increasing time steps for first scenario 68

Figure 4.8 Comparing results for first scenario .. 69

Figure 4.9 Comparing results for second scenario .. 72

Figure 4.10 Comparing results for third scenario ... 73

Figure 4.11 Comparing results for fourth scenario ... 74

Figure 4.12 Comparing results for fifth scenario .. 75

Figure 4.13 Comparing results for sixth scenario ... 76

Figure 4.14 Comparing results for seventh scenario .. 77

Figure 4.15 Data assimilation results in larger layout using sensors in half of the total nodes 79

Figure 4.16 Data assimilation results in larger layout using sensors in 1/3rd of the total nodes .. 80

Figure 4.17 Data assimilation results in larger layout using sensors in 1/5th of the total nodes .. 81

Figure 4.18 Data assimilation results using sensors in half of the nodes 83

Figure 4.19 Data assimilation results using sensors in one third of the nodes 85

Figure 4.20 Data assimilation results using sensors in one fifth of the nodes 85

Figure 4.21 RMSE comparison using different number of sensors .. 86

Figure 4.22 Comparison of standard resampling with resampling using sensor data particles with

200 particles .. 88

Figure 4.23 Comparison of standard resampling with resampling using sensor data with 100

particles ... 89

Figure 5.1 (a) Smart Office with sensors (b)Heat map based on sensor count in a week. 90

xv

Figure 5.2 Activity-informed DDDS framework.. 92

Figure 5.3 A simple example of a smart office environment consisting of a conference room and

cafeteria connected by a hallway. ... 103

Figure 5.4 (a) Office layout with waypoint graph (b) A shopping mall layout with agents 95

Figure 5.5 Behavior pattern states transition probability for HMM ... 100

Figure 5.6 a) Sensor frequency data (b) Comparing the real and predicted behavior (c) Normalized

probability for the behavior pattern in real time ... 100

Figure 5.7 (a) HMM for each location (b) A single path through an n-state HMM 103

Figure 5.8 (a) CHMM for 3 locations (b) Detail CHMM for location a having 3 states 105

1

 INTRODUCTION

1.1 Overview

This dissertation work aims in creating an efficient real-time building occupancy

simulation. A real-time building occupancy simulation consists of two parts: the simulation model

for the building occupancy and, the framework for real-time estimation of occupancy. A building

occupancy simulation models the dynamic spatial-temporal behavior and activities of occupants

in buildings. Studying and knowing the occupancy dynamics of a building is useful for various

applications, including more effective evacuation for buildings that have a large number of

occupants, conserving energy based on occupancy presence, designing and monitoring smart

environments, and real-time crowd management in places such as airports and train stations.

Various simulation models have been developed to study the dynamics of building occupancy.

These models study occupancy patterns, occupancy behavior and their interactions with each other

as well as with the environment. Meanwhile, advances in sensor technology allow more and more

buildings to be equipped with sensors, which can provide real-time information about the

environment. Assimilating these sensor data into a simulation model would allow better state

estimation of building occupancy and lead to more accurate simulation results. This is especially

useful for supporting real-time decision-making related to building occupancy. Data assimilation

is the process of integrating observation data from the real world into a simulation model to

produce better estimates of system states. To enable data assimilation, both a simulation model

that captures the state transition of the system and a data assimilation method that assimilates real-

time data into the model are needed.

Various models have been used for building occupancy simulation, out of which agent-

based and graph-based are two of the widely selected models ([1], [2], [3]). In agent-based

2

simulation, each agent represents an occupant, and the dynamic process of occupants is repeatedly

simulated over time to generate the complex and intriguing emergent behavior [4]. A graph-based

model for occupancy simulation uses the graph (node and edges) to represent the building structure

and can model the occupancy dynamics using flow or queuing network [5]. The agent-based

simulation has the advantage of being able to represent each occupant’s behavior and decision

making in detail. However, it has a high computation cost for applications with a large number of

occupants. On the other hand, a graph-based model assumes occupants as a homogeneous mass

and models their flow across the graph structure. It can model a large number of occupants in an

efficient manner, but cannot model heterogeneity and individual behavior of the occupants.

Realizing these limitations with the existing models, in this dissertation, we develop a graph-based

agent-oriented model that combines the property of both graph based and agent based models to

obtain their key advantages. In the model, the graph-based feature means occupants’ movement is

modeled as a flow from one node to another through a graph representing the building

environment, and the agent oriented feature refers to the model’s capacity to consider agents as

individual entities with unique features and decision making capabilities. The model has the

advantage that it can capture the heterogeneity of individual occupants, while in the meantime can

simulate thousands of occupants in an efficient manner. This advantage is critical for supporting

the data assimilation for buildings with a large number of people like a game stadium, shopping

malls, terminals.

As the second part of the dissertation, we present a data assimilation framework which

estimates the system state from observation data to achieve more accurate simulation. Data

assimilation is an analysis technique that combines the observations of the actual system with the

model to produce an estimate of system states. Typically, the state of the real system is

3

unobservable and thus, the simulation often starts from a state that is different from that of the real

system leading to inaccurate results. Thus, there is a prominent need to estimate the current state

of the real system dynamically. The sensor data provides an observation of the system, and data

assimilation assimilates these observations to infer the current system state. Data assimilation has

been widely used since long ago in areas of geosciences, mainly weather forecasting, and

hydrology, and recently in other applications like forest-fire, smart environment, and traffic

simulation. For the system, which is stationary, linear and Gaussian, various conventional state

inference algorithms such as Kalman filter and its variants exists. However, in the graph based

agent oriented model, the model is specified by behaviors and lacks analytic structures like in

equation based numerical models. This makes it difficult to apply conventional estimation

techniques and thus requires nonlinear, non-Gaussian, multimodal estimation techniques. In our

work, we select Sequential Monte Carlo methods which are non-parametric filters for data

assimilation of building occupancy simulation.

Sequential Monte Carlo (SMC) methods, also known as Particle Filters are a set of sample-

based methods that recursively estimate the state of a dynamic system from observation data using

Bayesian inference and stochastic sampling techniques [6]. SMC methods represent the probability

density function as a set of samples each of which is known as a particle with an associated weight.

Different methods like perfect sampling, sequential importance sampling, and resampling,

acceptance-rejection sampling is used to generate samples for the particles. Particle filters have an

advantage of being able to represent arbitrary probability densities without requiring all

information about the structure of the system model, making it an effective method for supporting

dynamic simulation with sophisticated simulation models. At the same time, particle filters are

iterative methods that can recursively adjust their estimations of system states when new

4

observation data becomes available. This feature best suits the system where new sensor data arrive

sequentially and the simulation system is continuously updated.

In this work, we performed some other works related to real-time building occupancy

simulation and presented the findings as well. We developed an agent based model which we use

to simulate a smart office environment [7]. The agent models the basic properties of an occupant:

movement to destination and collision avoidance behavior. We use a way point graph structure for

the environment which is a preplanned route calculation method to generate a path for agents. We

simulate a basic smart office scenarios and collect data for some period. We then use Hidden

Markov Models to use the historical data and predict the office behavior pattern in real-time. We

also present a case study of data collected from real test bed consisting of binary sensors in an

office layout. Since the graph based agent oriented model consists of both agent model and graph

model, it allows a convenient conversion of agent based component to graph based and vice versa.

Using this property, we have created a hybrid model which allows occupants to model in either

agent based or graph based on any node section.

1.2 Background

Building occupancy simulation finds its application in a variety of fields leading to

increasing emphasis on developing methods to build occupancy dynamics model. A model of

occupancy dynamics in a building gives information about the building with its occupants and can

predict the occupancy dynamics as a function of time [8]. Building occupancy simulation allows

us to analyze the behavior of occupants in various applications as occupant movement simulation,

evacuation simulation, or stadium evacuation simulation. Several models are used for building

occupancy simulation, out of which agent-based and graph-based are two of the widely selected

models. In agent-based simulation, each agent represents an occupant, and the dynamic process of

5

occupants is repeatedly simulated over time to generate the complex and intriguing emergent

behavior. A graph-based model for occupancy estimation uses the graph (node and edges) to

represent the building structure and can model the occupancy dynamics using flow or queuing

network. The agent based model works at the lower level with a focus on agent’s properties and

interaction, whereas graph based works at a higher level with a focus on the spatial cognition and

architecture.

An occupancy simulation model might require some initial conditions like building

structure, total initial occupants, their properties, and historical behavior. The model needs to

estimate the total occupants, their location and behavior for a realistic simulation of occupancy

evolution over time. A building occupancy simulation models the behavior of the occupants in the

environment so the model might depend on the type of the building. For example, for an office

building, the occupants will normally come to the office, attend meetings, go to the cafeteria, and

leave office whereas, in a school, the students will go to their classes, have breaks, and go home.

Modeling these kinds of behaviors helps understand their behavior and is useful for applications

like conserving energy and designing smart buildings. In another application, evacuation

simulation is used to model the occupant’s behavior in case of emergencies (fire, explosion, toxic

gas threat). Stadium evacuation simulation represents evacuation for a larger mass of people and

is critical since it concerns the safety of thousands of lives. The evacuation process is dependent

not only on the building structure (passage width, exit placements, obstacles) but also on the

crowd’s behavior (speed, exit information, time to react). As such, it becomes important to have a

model, which can simulate the process correctly and analyze the performance of evacuations in a

specific building for various types of occupants.

6

Selecting an appropriate simulation model depends on the requirements of the analysis

study and a single model may not be sufficient for all since each model is developed to represent

a certain case problem. In occupancy modeling, depending on crowd size, their environment, and

their motive, their dynamics might be different. As such an appropriate model is required, which

can be used to analyze occupancy dynamics of a crowd of small to large size under different

conditions. The existing agent-based models represent each occupant as a rational entity with own

property and decision making capacity, and model the behavior emerging from their interaction.

However, for an agent-based system, as the number of occupants increase, their interaction and

complexity increase the computation cost, so at some point the simulation becomes infeasible. On

the other hand, the existing graph-based models assume the occupants as a homogeneous mass and

model their flow across the graph structure. The graph-based model can accommodate the increase

in occupants, but since it does not consider the heterogeneity of the agent, the model may not

represent the correct occupancy dynamics.

To overcome these limitations, we propose a graph-based agent-oriented simulation model,

that combines the property of both graph-based and agent-based models to obtain both scalability

and heterogeneity. We apply the model in occupancy modeling to demonstrate the advantage of

our model for obtaining scalability while maintaining the individual agent property. In our model,

graph-based represents the building structure in nodes/vertexes and represents the occupant’s

movement as flow from one node to another through the vertex. The model considers the lower

entities as agents and provides them with individual features and decision making capabilities. To

control the computational cost as the number of agents increase, we model only the required

behavior of the agents which mainly impact the simulation. In our example, we show that the

model efficiently simulates the behaviors of occupants with different characteristics in high-

7

density buildings under various circumstances and gives occupancy information such as a total

number of occupants, their location, the rate of flow through an egress, occupants’ speed and their

behavior. Our research also focuses on using the real-time sensor data from the buildings for

dynamic data driven assimilation. Most of the building simulation models are offline, as such they

cannot synchronize with the real system. Nowadays sensors are becoming cheaper and viable to

install in more and more buildings which make it possible to obtain real-time occupancy dynamics

of the building. However, the sensors are not able to cover all the areas spatially and temporally

and the sensor data are prone to noise error. To overcome these limitations, we developed a data

assimilation framework using our new model and assimilated the sensor data for real-time

occupancy dynamics estimation.

1.3 Problem Statement

Building occupancy estimation research is a popular area of interest, and a lot of models

have been built to simulate the occupancy in various kinds of buildings. A lot of agent based and

graph based models exist which simulate the normal occupancy, evacuation, and various other

occupancy behaviors. Agent based model are efficient to model few number of occupants and

graph based on a large number of people. As the number of agents increases in agent based model,

computational cost increases and it might become difficult to simulate after a few hundred/

thousand number of agents. In graph based model the emergent behavior due to the interaction

between agents cannot be simulated due to which the model might not appropriately model the

occupant’s behaviors. A building environment such as an office, school, labs do not have a large

number of people in there, and so an agent based model is sufficient to model the occupancy

dynamics there. However, an environment like shopping malls, concert areas, game stadium, train

subways, airport terminal have many people. Having more number of people means that there will

8

be a high casualty in case of events like fire, earthquake, other threatening events. Thus, there is a

significant need for these kinds of the environment to be simulated with accuracy for use in

applications like building construction, evacuation planning, controlling crowd, etc. Graph based

models although are computationally less expensive, not accurate enough to simulate such

environment as they cannot appropriately model the lower level interactions of the agents. As such,

the simulation may not properly represent the actual behaviors occurring in the building. Realizing

these limitations of the existing models, we created a model which combines the property of both

graph based and agent based models to obtain their key advantage: graph based scalability and

agent based heterogeneity. In our model, graph based model represents the building structure in

nodes and vertexes and represents the occupant’s movement as flow from one node to another

through the vertex. The model considers the lower entities as agents and provides them with

individual features and decision making capabilities. To control the computational cost as the

number of agents increase, we model only the required behavior of the agents which effects in the

simulation. Our model can efficiently simulate building occupancy consisting of agents in some

few hundreds to few thousands.

In the current state of building occupancy simulation, it is not enough only to model only

the occupancy dynamics, but it is a significant requirement to provide a real-time estimation of the

occupancy. Real-time occupancy simulation can provide dynamic estimates of the occupancy

which can be used by rescuers to during emergency events to search, rescue and egress

management. It allows monitoring of energy resource per real demand, track occupants and

facilitate according to their needs in real-time. Various kinds of sensors (video, sound, IR,

pressure) can be installed in different places of the building which can give estimates of the

occupancy. However, the data from the sensors are not reliable and cannot be used for estimation

9

directly. The sensor data are full of noise, incomplete and incomplete so a framework is required

which can utilize an appropriate algorithm to utilize sensor data for real-time building occupancy

simulation. We develop a data assimilation framework using Sequential Monte Carlo methods

which use our graph based agent oriented model to combine the sensor data. The framework

efficiently assimilates the sensor data and estimates the occupancy in real time thus providing a

real-time building occupancy simulation model.

1.4 Agent based model

An agent-based model (ABM) is a model for simulating the actions and interactions of

single or multiple agents to analyze their emergent and individual behavior in the overall system.

A single agent is defined as a discrete entity with its goals and behaviors with a capability to adapt

and modify its actions depending on the environment. Agent behaviors are defined as a simple set

of rules based on which agents perform their action, interact with other agents and the environment.

These interactions over the course of time and space give rise to various system behaviors, patterns,

and structures which give a better understanding of a rather complex system. An agent based model

consists of agents, their relationships, and methods of interactions, and the environment. In an

agent based model, an agent must be defined as an autonomous entity. They should be able to

make their own decisions depending on the situations. Agents may be heterogeneous, with

different property and goals, but the relationships and interactions between the various agents must

be defined clearly. The environment is the space in which agents behave and interact to evolve the

system over time. As such, agent based model can be expressed in a definition as “a computational

method that enables a researcher to create, analyze and experiment with models composed of

agents that interact with an environment” [9]. ABMs finds its application in a broad range of areas

and disciplines like biology, business, technology, economics and social sciences and others.

10

ABMs is widely used for modeling occupants and their behavior in a building structure. An agent

in the model can represent a real-world occupant entity with appropriate property and behavior

which makes the model reasonably accurate to represent occupant movement dynamics in a given

environment. An agent can be modeled to behave like a person by assigning certain speed, size,

goal and decision making property. Heterogeneous agents can be created as different agents with

different properties representing a mixed population of various gender, size, age, speed, motive,

interactions, and other properties. These agents interact in each environment; in this case in a

certain building like an office or school; they move around with various speed, go to a destination,

follow the rules like avoidance, grouping, herding, interact with each other and the environment

like evacuation, fleeing, etc. These kinds of interactions form the overall dynamics of the

occupancy modeling. Emergent behavior is generated from the aggregated individual behavior

which represents the behavior of the whole system. From this, we can study the nature of the

overall system as well as study the resulting impact on the individual agent.

ABMS are suitable to model occupancy dynamics since we can represent occupants easily

as agents with human like behaviors and decision making capabilities. The building where the

occupants exist is set as the environment and the interaction between agents and environment can

be defined as a set of rules. The agents perform the behavior of the real occupants under situations

that the system is meant to execute. For example, simulation can be performed where occupants

are given destination as goals. Now the agents will move towards their destination following some

rules which govern their direction and movement. They might interact with each other and exert

behaviors like cohesion or avoidance. The environment might be a building structure with various

rooms as their locations and destinations. When a large number of agents move to a common

destination emergent behaviors like crowd formation might be observed. But at the same time, we

11

can observe the behavior of an individual agent, how they interact with other agents and the

environment during crowd formation. The advantage of using ABMs for occupancy dynamics is

that each agent can efficiently represent a real-world occupant and the impact on the individual

due to various situations can be studied using resultant behavior of the agent representing the

individual. As such, a lot of occupancy models use ABMs to represent their system however, when

the number of agents increase, the system becomes incredibly complex and consume high

resource. Thus, it becomes difficult to model the system efficiently with large agents and complex

behaviors. Also because of their high degree of complexity, ABMs are unsuitable for real-time

simulation.

1.5 Graph based model

Graph based models (GBM) are used for representing structure information and provide a

higher-level view of the model compared with agent based models. Graph based model consists

of vertex/node and edge/links representing the structure and some equation to model the system

flow. In occupancy modeling, the environment structure where the occupants perform is

represented using vertex-edge; the vertices of the graph represent the zones of the structure, and

the edges represent the connectivity between the vertices. The vertices may have properties like

size, capacity, type and the edge connecting two or more vertices may have properties like length,

width, capacity, type (corridor, stairs). Occupancy is represented by the number of occupants in

each zone, and their dynamics are modeled as occupancy flows between the zones governed by

flow equations or queue modeling. Various equations have been developed which efficiently

model the occupancy dynamics in various situations [1]. The GBMs are highly faster than the

ABMS and consume less resource. So, in situations consisting of a large number of agents when

it becomes expensive and slow to model, GBMs can model such situation efficiently. For a general

12

system, the computational complexity of simulation grows proportionally with the number of

agents, their properties, and the structure of the environment. In case of simulations like a football

stadium or airport terminals, where there are thousands of occupants, it is very expensive to model

the system using ABM since there will be thousands of agents to represent the occupants. But the

GBMs can model thousands of occupants in a large environment with ease.

The GBMs do not represent the individual occupants using the agents, so it is much faster

than the ABMs. Since the concept of individual agent is not implemented, the emergent behavior

between the interactions between individual agents cannot be observed in GBMs. Because of this

missing feature, the GBMs might not be able to accurately represent the evolution of the system

based on the individual agent behaviors in the environment. Also, it is not possible to observe the

resulting impact on individual occupant during various scenarios of the system execution. But

fortunately for occupancy modeling, when there are a large number of occupants the overall

dynamics of the system is not affected by the behavior or interaction of a single individual

occupant. The overall movement pattern is more like the flow of particles over the environment

and is observed at a higher level rather than lower agent level. For example, when many people

move towards the same direction, if the passage is narrow, a crowd immediately forms. Whatever

be the individual occupant speed, it does not matter when a congestion is created, everyone will

slow down and move with constant speed. As such we can ignore the lower level interactions of

the occupants and yet get an accurate model of the system.

1.6 Sensors

Buildings today are equipped with different kinds of sensors which can be used to obtain

various information like the number of people, CO2 count, presence detection, the direction of the

crowd, etc. Sensors like video cameras, sound detectors, passive infrared motion detectors, access-

13

control devices, weight and pressure measurements and many others are available easily and in

cheap cost today. Sensors are present in electronic devices like cell phones, tablets, computers and

people also carry active RFID tags, NFC tags, GPS which can easily locate and track various

activities. However, the data collected from the sensor cannot be directly used as the output of the

estimation as they are full of noise and are incomplete. They have large uncertainty and cannot be

used as a direct measurement of the environment [10]. Taking an example of a simple infrared

(IR) sensor which detects when a person moves through their radius, it might false detect an

animal, or even a random noise. Also, it might give multiple counts for a single person or vice

versa. Sometimes, the sensor might fail to trigger and not detect at all thus giving false count. This

kind of detection errors is considered as noise in the data. Since sensors record data in certain time

intervals, during the time interval, information is not present. To place sensors such that they cover

all the area is not possible due to cost and other accessibility issues like confidentiality, privacy.

As such sensor data are incomplete regarding time and space.

In this research, we do not focus on correcting the sensor data. Instead, we assimilate the

available sensor data in our model to predict the current state of the system. We assume that the

building area we model has sensors installed in some areas only. Currently, sensors have the

probability of detecting occupant counts by an average of up to 80% [11]. In our work, we assume

that the sensors are placed such that they can predict the number of people in a room with 80%

accuracy. We utilize the sensor data to correctly estimate the system state like real-time occupancy

count in each area. We develop a non-linear stochastic state-space model for occupancy dynamics

and use Sequential Monte Carlo methods (particle filter) to assimilate the sensor data. The sensor

data are incomplete: they do not cover all the areas and time. However, the output of the model

14

will estimate the occupancy count over all the areas through each time step. As such, the model

solves the limitations of the sensor data and provides a real-time building occupancy estimation.

1.7 Data assimilation

Data assimilation is the process of incorporating the observations of the real physical

system into the simulation model of that system. Data assimilation assimilates data from the

environment to improve state estimation of the system under study [6]. A smart environment is

integrated with various sensors that can provide real-time information about the inhabitants present

in it. This integration makes it possible for the simulation model to dynamically obtain the real-

time sensor data and serve as an online tool to support real-time decision-making by incorporating

the data. The online tool utilizes both sensor data information and the simulation model to "predict"

the dynamics of the system in real time and thus has a different purpose from traditional offline

simulation-based studies (e.g., using agent-based simulation to carry out what-if analysis).

In the real world, the system’s states, which change over time, cannot be directly observed

and is unknown to the simulation model. Thus the simulation may start from a state different from

the state of the real system, leading to inaccurate simulation results. Hence, there is a need to

dynamically estimate the “current” state of the real system and then feed the estimated states to

the simulation model. This is achieved through data assimilation that utilizes real-time sensor data

for inference of the “current” system state. In [12] we presented the use of data assimilation in a

smart office environment to inference peoples’ occupancy information from sensor data. We used

Particle Filters (PF) as the data assimilation algorithm to assimilate real-time sensor data into a

simulation model and achieved improved results for simulating movements of single and multiple

agents in a smart office. Data assimilation combines the observations (i.e., sensor data) of the

current state of a system with the results from a prediction model (i.e., the simulation model) to

15

produce an analysis. The results of data assimilation thus depend not only on the observation data,

but also on the simulation model that “predicts” the evolution of system state. In this work, we

present a framework which uses our simulation model and helps in real time analysis of occupancy.

1.8 Sequential Monte Carlo methods

We use Sequential Monte Carlo (SMC) methods also known as particle filters (PF) for data

assimilation. It is a set of sample-based methods that recursively estimate the state of the dynamic

system from observation data using Bayesian inference and stochastic sampling techniques [13].

A key advantage of particle filters is their ability to represent arbitrary probability densities and

with little or no assumption about the structure of the system model. This makes it an effective

method for supporting dynamic simulation with sophisticated simulation models. Meanwhile, PF

is recursive methods that can recursively adjust their estimations of system states when new

observation data becomes available. This feature is suited where new sensor data arrives

sequentially, and the simulation system needs to be continuously updated.

To carry out the data assimilation based on PF, we need to formulate the problem using a

non-linear state-space model as shown by the system transition function in (1.1).

 , t) + w = OM(SZ

 ,, t) + v SM(SS

ttt

ttt 1
 (1.1)

In the equation, St and St+1 are the system state variables at time step t and t+1 respectively.

Zt is the observation variable representing the observations or measurements (sensor data). SM is

the system transition model and defines the evolution of the system state. In our work, this system

transition model is the simulation model. OM is the observation model and defines the computation

of observation variable from the current system state. The vt and wt are random variables which

refer to the noises of the system state and the observation data respectively. Based on the non-

16

linear state-space model of (1.1), PF can be applied to estimate the new states at each time step by

assimilating real-time sensor data. In the implementation of PF, the system state is represented by

particles, where each particle is a state candidate.

Figure 1.1 Data assimilation based on PF methods

Figure 1.1 shows the structure of PF and the procedure for data assimilation. In the figure,

at time step t, all particles’ states St-1 from time step t-1 are input into the simulation model and

evolve to a new set of state S't. Based on the new states, the observation model generates the new

observations O't. These observation data are compared with the real observation data Ot and the

importance weight of each particle is computed. The importance weights of all the particles are

then normalized, and the resampling algorithm draws a set of offspring samples St from S't which

has a probability proportional to the importance weights. These set of resampled states will be the

input for the next time step t+1.

1.9 Organization of the Dissertation

This dissertation is organized as follows: Section 2 summarizes the related work in this

research area; Section 3 presents the new graph based agent oriented model for occupancy

simulation. We present the components of the framework and describe how they function together.

St-1

State Evolution

(Simulation Model)
S’

t

Sensor data

generation(observation

model)

O’
t

Weight

calculation

and

normalization

Resampling St

ot

locations of

sensors

observation

data

real

observation

importance

weights

step t-1 step t step t+1

time

17

We also present an application of the model in simulating occupancy in a tunnel. A hybrid model

with nodes having pure agents or graph based agents is also presented. We describe the data

assimilation framework using Sequential Monte Carlo method in Section 4. Here we also present

a new framework which utilizes the direct sensor data to create new improved particles and present

the various experiments performed to validate the graph based agent oriented model and the data

assimilation framework. We summarize the results for various scenarios of occupancy in different

building sizes. Section 5 describes a framework for improving dynamic data driven simulation

using behavior pattern detection. We create an agent based model for the smart environment and

perform behavior pattern detection using the Hidden Markov Model. Conclusion provides an

overview of the dissertation work along with the possible future extensions.

18

 RELATED WORK

Building occupancy simulation is concerned with modeling and analysis of occupant

property and behaviors. In [14], the author defines occupancy at four levels varying with time: first

the number of occupants in buildings, second the occupancy status of space, third the number of

occupants in space and fourth the space location of occupants. The author classifies and reviews

the occupancy models and provides new methods to integrate the models into a tool that can be

used in different ways for different applications. Building occupancy finds its wide use in

conserving resources. In [15], the author has developed a framework known as sensor utility

network which uses information from various sensors to dynamically estimate the occupancy and

conserver resources. Building occupancy provides a basis for a smart environment where we can

simulate our test beds with various sensor and actuators and occupancy. [16] discusses the latest

research in smart environment, philosophical and computational architecture considerations,

network protocols, intelligent sensor networks and powerline control of devices, and action

prediction and identification for the smart environment.

Agent and graph based models have been used extensively for various modeling

applications. Agents can be used to represent individuals and assign them appropriate behaviors

like movement, vision, collision, congestion avoidance, and so on. In [17], agent based model is

used for simulating general pedestrians in groups and evaluate in various scenarios. In [18], the

authors present HuNAC (Human's Nature of Autonomous Crowds) model which replicate

pedestrian psychological factors to simulate behaviors in crowds. In [19], the authors propose a

layered approach to model the dynamics of the pedestrian crowd. The surface of the 2D

environment is divided into different layers to indicate the occupancy, the position of static

obstacles and possibly the dynamic obstacles situated in the environment. The agent utilizes the

19

layered environment and uses Markov decision process and semi-Markov decision process

approach to finding the correct move given its occupying cell. In [20], the author proposes a model

consisting of an environment model and an agent-based model. The environment model consists

of a route map, navigation map and the information of each object. To decide a path of an agent,

the agent’s destination and position are added to the topological graph and the shortest path

algorithm is utilized over the graph to find a suitable path for the agent.

Graph based models are used for representing structure information and provide a higher-

level view of the model in contrast to agent-based, which focus on the lower level complexity of

the agent interactions. In [21], a grid graph-based model known as ESM (Evacuation Simulation

Model) is proposed which considers the structural and spatial properties of the indoor space and

shows advantages for indoor route analysis in evacuation simulation. The work builds a graph with

each vertex representing a room, a segment of corridor or hallways and each edge representing a

pipeline that occupant can transport on. The transportation of occupants on the edge of the graph

is determined by factors such as social affiliation, access visibility, tenable time, speed, flow rate

and the distance between rooms. In [22], the author’s approach is based on three different models:

an agent-based model, which includes the detailed description of each individual occupant’s

velocity, behavior and trajectory; a graph model, which represents the building structure and traffic

dynamics using a graph, and a kinetic model, which models the congested areas of the building as

queues to simulate the situation of congestion in the building. Although graph-based models seem

to accommodate the increase in agents, it suffers from some serious limitations. First, the scenario

of congestion cannot be easily modeled because the occupants in graph model are treated as

homogeneous and so the occupant’s individual properties are not considered. In an environment

where occupants have different body size, speed, and motives the resulting behavior might be

20

different depending on the environment. In [23], the authors present a quantitative evacuation

model for analyzing evacuation results of a crowd in a stadium.

With the abundance of various sensors which can collect data about the occupants of a

building, there has been a recent trend of using data to obtain information about the environment

and the occupants in it. In [24] the authors propose to improve the functionality of the sensors to

reduce the energy consumption in buildings. The sensors are designed to learn from the activity of

occupants, and it detects and adjusts how long the light will be turned off after the detection of

occupants’ motion. In other works, [11] provides a probabilistic model for inferring occupancy

count from the sensor data and [25] utilizes sensor measurements along with historical data

regarding building utilization to produce occupancy estimates through the solution of a receding

horizon convex optimization problem. The authors in [26] have designed a real-time user tracking

system for smart environments from non-invasive binary motion sensor data. They have used

Hidden Markov Model with Viterbi decoding for determining occupant path from collected data.

Using agent-based simulations for dynamic estimation of occupancy using sensor data is

computationally expensive that it becomes unrealizable as the number of occupants increases

highly. Thus, the current works using agent based models can model for occupants in real time in

the number of 100s only. Building models at a higher level which are appropriate for real-time

estimation regarding computation cost are difficult because of the high uncertainty of occupancy

dynamics. For modeling many occupants, graphical models are much suitable. Authors in [22]

have presented an agent-based model to simulate the behavior of occupants in buildings but have

extracted a reduced model for real-time estimation. Still, the current works are insufficient

regarding predicting real-time occupancy in all areas and for a high number of people.

21

Various methods can be used to utilize the sensor data for improving occupancy estimation.

In our work, we use data assimilation which is a process of combining the observations of the

current state of a system with the results from a simulation model to produce a new estimation of

the state. It combines the information of the current state of a system with the results from a

prediction model to produce an analysis. The method of data assimilation for incorporating

observations finds its use in various fields of geosciences, weather forecasting, hydrology, and

other environmental systems. The analysis techniques used for data assimilation include methods

like three-dimensional variational analysis (3D-VAR), four-dimensional variational assimilation

(4D-VAR), Particle Filters, Kalman Filters and others. A data assimilation system using 3D-VAR

to improve ozone simulations in Mexico City basin is presented in [27] which generates the

optimal estimate of the true atmospheric state during the analysis time. In another work, 4D-VAR

is used to a regional ocean modeling system to produce an optimal estimation of the real ocean

state using satellite remotely sensed observations [28]. Kalman filter [29] can be used to estimate

the state of a dynamic system with observations represented by a linear state space model. In [30]

three extensions of the Kalman filter; extended Kalman filter, limited extended Kalman filter and

unscented Kalman filter has been presented to find the solutions to nonlinear discrete-time state-

space.

The data assimilation algorithm used in this research is Particle Filters (PF). Particle Filters

can be applied to dynamic systems with non-linear behaviors, by approximating the state of

dynamic systems using particles and associated weights. A framework of dynamic data driven

simulation based on PF is presented in [31] for the forest fire spread simulation. It presents a data

assimilation framework based on PF to improve wildfire spread simulations using DEVS-FIRE,

in which real-time data are fed into the DEVS-FIRE simulation to improve the accuracy of wildfire

22

simulation. In another research [32], PF is used to develop a framework and algorithms to solve

the problems of positioning, navigation, and tracking. The author presents a general algorithm

based on marginalization enabling a Kalman filter to estimate all position derivatives. The work

describes the applications in car positioning, aircraft positioning, target tracking, combined

navigation and tracking and car collision avoidance. PF find use in other fields like biology and

chemistry as well. In [33], PF is used to create populations of compact long chain polymers and

the relationships between packing density and chain length. PF are used in [34] to set up a

probabilistic framework providing a basic for process fault diagnosis for the dynamic data

rectification.

In literature, we can find a lot of work related to building occupancy simulation. However

less research exists for real-time building simulation. And among the existing work, most of them

consider few occupants in a normal building. In [22], the authors have used extended Kalman filter

to assimilate sensor data with agent based model with occupancy of about 100 people only. [35]

presents a data assimilation framework for estimating movement patterns of about six occupants

in an office environment. In our previous work [12], we developed a framework for using data

assimilation for binary sensor data to predict occupancy behaviors in smart environments.

However, all these models are agent based and they are computationally expensive to use as the

number of agents increase. With the increase in the number of agents, their state size becomes

bigger thus increasing the cost of computation. In this paper, our proposed model utilizes the graph

based agent-oriented model which treats the system as a reduced order model where the occupants

are treated as individual agents operating with their intelligence. The model reduces the size of the

state to be estimated. We then use data assimilation using particle filter to estimate the real

occupancy using the available sensor data. The efficiency and low resource consumption of the

23

model makes the overall process quite efficient for real occupancy estimation of a large number

of occupants.

24

 GRAPH-BASED AGENT-ORIENTED MODEL

Since an agent-based model considers the detailed information for low-level abstraction,

with the increase in agents, the computational cost becomes expensive. Instead, to simulate the

scenario where a considerably large number of occupants are involved, a low-resolution model

describing the occupancy dynamics at high abstraction level is appropriate. Our model aims to

simulate occupancy dynamics for places with thousands of occupants by combining agent based

model with graph-based. Thus, the model structure is graph based with agent-driven behaviors of

residents. In the scenario where the existing agent-based models can represent the occupants in a

range of few hundreds, and the graph based models lack the complex heterogeneity of the agents,

our model combines agent-based and graph-based models to reduce the computational cost while

maintaining the heterogeneity of the agents. Each occupant is treated as an individual agent with

an own set of properties and decision-making capabilities. The graph model manages the structural

information with links as queues to model the occupancy flow. In our model, we try to exclude the

lower level property and interaction of the occupants to lower the computational cost, and at the

same time, maintain the necessary agent-based integrity of the model by treating the occupants as

individual agents operating with their intelligence. The agent integrity is maintained by preserving

the essential features while removing the unimportant detailed properties. The building structure

is represented as a graph, with all the rooms represented as nodes and their connecting doors or

passages as edge links. The behavior of occupants in the building is represented using flows among

the edge links of the graph which are treated as queues. Since movements of occupants in the

network are more orderly organized, simulation of interactions among occupants is not necessarily

needed. As such, detailed interaction of agents like collision avoidance, position tracking is not

required. Instead of using a coordinate to indicate the occupant’s position, the model represents

25

only the location of the occupant as its current node position. Removing these detailed properties

significantly reduces the computational complexity of the simulation. The framework of our model

is represented in Figure 3.1.

Figure 3.1. Framework for graph-based agent-oriented model

3.1 General structure of the graph model

The graph model consists of two submodels. One is the model of the building, and the other

is the model of the occupant. The model of the building defines the graph structure of the building

and how the occupants will move from a node of the building to another. The model of the

occupant describes the properties and attributes of the occupants. In the model of the building, the

building structure is represented using a graph. The vertex of the graph represents a segment of

the building structure. Typically, the segment of the building is a section of a corridor or the zone

of a room and the edges between the vertices represent the connectivity among the segments of

the building. For instance, consider a floor plan of a building structure illustrated in Figure 3.2(a).

GUI

Agents

Decision
making

Rule
Engine

Building
Structure

Queues

Graph model

26

Figure 3.2. a) A building floor plan b) Graph representing the floor plan

Figure 3.2(a) presents a floor plan with five rooms. In this floor plan, there is a door

between room 0 and room 3, room 0 and room 1, room 1 and room 2, room 2 and room 3, room 2

and room 4, and finally, room 3 and room 4. We consider that the rooms connected with doors are

linked using an edge directed from one room to another. Taking room 0 and room 3 as an example,

this means that, there is an edge directed from room 0 to room 3 and an edge directed from room

3 to room 0 because there is a door between room 0 and room 3. The graph representing this floor

plan can then be constructed as shown in Figure 3.2(b).

In this graph, vertices are connected using directed links. The vertex has several properties:

the id of the node indicates the identity of the vertex. The capacity of the node indicates the

maximum number of occupants that can reside in the zone represented by this vertex. The number

of occupants of the vertex represents how many occupants are currently staying in this vertex, and

the neighbor is an array of vertices that is connected to this vertex with links. To guide the

movement of occupants, we use transition tables in each vertex to indicate which direction the

occupants staying in that vertex should move to. The transition table defines the probability that

the occupants move from current vertex to its neighbor vertices. In the example shown in Figure

3.2(a), for instance, the occupants staying in vertex 2 will have 4 choices of movement, which are

moving to vertex 1, 3, 4 and staying in vertex 2 respectively. The transition table defines the

0

1

3

2
4

0

1

3

2

4

27

probability the occupants in the vertex perform each of the movements accordingly. In this

example, a transition table can be demonstrated in Table 3.1.

Table 3.1 Transition table for vertex 2 a) normal scenario b) evacuation to Node 4

In Table 3.1(a), -1 denotes occupants staying in the current node. The probability for the

occupants to stay in vertex 2 (same vertex) is 0.4, the probability for the occupants to move to the

vertex 1 is 0.2, the probability for the occupants to move to the vertex 3 is 0.2, and the probability

for the occupants to move to the vertex 4 is 0.2. The transition table in each vertex can be

considered as a profile of movement pattern. In different situations, the profile of movement

pattern can be different. For example, consider vertex 4 in Figure 3.2(a) as an exit room. In a

normal condition, the probability for occupants in vertex 2 to move to the vertex 4 can be given as

0.25. However, when there is an emergency in the building that requires sudden evacuation, the

probability for occupants to move from vertex 2 to vertex 4 may raise to 0.8 because, under

pressure, occupants are more likely to communally rush to the exit (Table 3.1(b)). Therefore, there

are multiple transition tables representing different profiles of occupants’ movement patterns in

each vertex of the graph. Specifically, the vertex in the model can be represented using 6 elements

variable v, where

,v=<i,c,L' D,E,T > (3.1)

Vertex Probability

-1 0.4

1 0.2

3 0.2

4 0.2

Vertex Probability

-1 0.0

1 0.1

3 0.1

4 0.8

28

In this equation, i is the id of the vertex, c is the capacity of the room represented by the

vertex, L’ is the collection of links that connect with the vertex, D is the distances between the

links in L’, E is a collection of neighbor vertices of the vertex and T is a collection of transition

tables of the vertex.

The link of the graph also consists of several properties. The “from” vertex demonstrates

the original vertex of the link and the “to” vertex displays the vertex that the link points to. The

flow capacity of a link defines the maximum number of occupants that can go through this link at

each time step and depends on the link width and density at that time step. Flow capacity is

expressed in term of movement speed, link width, and density using equation from [37] as

wdspdc f ** (3.2)

Here, s is the speed of movement, d is the density, and w is the width of the passage. Density

is the number of persons in a unit area and indicates the degree of crowdedness in a passage or

room. As the density increases, the speed of the movement is reduced as occupants find it difficult

to move freely. If s’ is the normal occupant speed, then new speed of movement due to density is

computed using equations from [38] as follows

  







 


87.0

)25.0(' ds
spd (3.3)

D

d
1



Here d is the inter-person distance, D is the density, and if d > 1.12 then speed is assumed

to be unimpeded. Two nodes may have more than one links distinguished by separate ids. To

model the congestion in the building, for each link, we define a move queue to describe the queue

formed by the occupants that is moving through this link. At each time step, the occupant decides

29

which room to move to and using which link. The occupant then spends a period of time to move

to the link connecting the current vertex where the occupant resides to the destination vertex. After

that, the occupant registers himself to the move queue of that link. Numbers of occupants that

equal to the flow capacity of the link are removed from the move queue at each time step. After

being removed from the queue, these occupants arrive at their destination and then again make the

decision to either stay there or move to another place. Besides the property of the link itself, there

is also a property link distance that represents the distance between two links. The link of the graph

can be considered as the gate between rooms. The link distance is then the distance between the

gates of the rooms. As the link distance is known, we can estimate the time required for the

occupant to travel in the room to arrive its destination. Specifically, the link in the graph model

can be represented using a five elements variable l, where

, , , ,from to fl i v v c q  (3.4)

In this equation, i represents the id of the link, vfrom represent the from vertex of the link, vto

represent the to the vertex of the link, cf represents the flow capacity of the link, and q is the move

queue of the link.

3.2 Occupant Agents

An occupant is represented as an agent, which has basic properties and can make individual

decisions. The agent will have node location, destination, speed, body size and their type (rescuer,

occupant). The property to the agent can be added depending on the simulation requirement. In

the current model, an agent can be an independent, part of a group or follow a herd. The group can

be any given size and the agents of the group try to move together during the simulation. Also, the

agents can be of two categories: first, regular occupants who knows the information about the exits

30

and second, new occupants who do not know the exit and follows the crowd during evacuation.

During the simulation, the agents represent the emergent behavior with time due to crowd

movement across the space.

The model of occupant describes properties of the occupants and how occupant moves

from one vertex of the graph to another during simulation. The state of the occupant defines what

profile of movement pattern will be used to determine the moving direction of the occupant. In

other words, if the vertex of the graph contains multiple transition tables, the state of occupant

determines which transition table will be used to guide the occupant’s movement. The location of

the occupant defines the id of the vertex that the occupant is currently staying in. The id of the

occupant defines the identification of the occupant. The gid represents the group id of the agent.

While moving from one node to another, the occupant is registered to the queue of the link from

where it is entering the node. The isInQueue property indicates whether the occupant has registered

itself into a move queue of a link. The destination defines the vertex that the occupant decides to

move to. The “from” link defines the link that the occupant went over to enter its current location.

The “to” link defines the link that occupant will use to move to its destination. The speed defines

the distance an occupant move along in a single time unit and is dependent on the density. The

speed will be slow if the density is high since it will impede the free movement of the occupants.

The action of the occupant defines whether the occupant is moving to other vertex or is staying in

his current location. The elapse time is the time the occupant has spent in its current location. The

delay of the occupant is a counter that counts how many time units the occupant will spend in his

current location. This counter is reset each time an occupant enters a new vertex. The value

assigned to the delay of the occupant is calculated based on the link distance between the “from”

link and “to” link of the occupant and its speed. The counter reduces by 1 at each time step. When

31

it reaches 0, it means that the occupant arrives at the “to” link and is ready to move to its destination

vertex. The occupant then registers itself to the move queue of the “to” link. The action property

defines the action that the occupant is performing; if it is 0, it means the occupant stays in current

vertex; if it is 1, it means the occupant is moving to another vertex. Specifically, the occupant in

the model can be represented using variable o, where



















ndestinatio

todelaymoveelapse

delaystayelapse

fromidposition

Vinqueue

spdlttmoving

ttstaying

s

slgidvpho

,,,

,

,,,,,

_

_ (3.5)

In this equation, ph represents the phase of the occupant to determine which transition table

to be used to guide occupants movements, vposition represents the current vertex the occupant reside

in, id represents the identification of the occupant, lfrom represents the link that the occupant come

from, s represents the state of the occupants and has three different values, staying, moving and

inqueue. Each of the value is associated with several properties. lto represents the link that occupant

is going to, vdestination represents the destination of the occupant, spd represents the speed of the

occupants, telapse time represents the time elapsed when the occupant stay in current room, tstay_delay

represents the time count that the occupant will stay in current vertex, tmove_delay represents the time

count that the occupant will be moving in current vertex. The collection of m occupants in the

model is represented by

1 2 3, , ,..., mO o o o o  (3.6)

where, om is the number of occupant in each of m nodes.

32

3.3 Agent’s behavior

The model of the building and the model of the occupant together make the general

structure of our agent-directed graph model. At each time step, the graph model evolves per two

sets of different rules. One set of rules describes the behavior of the occupants at each time step

including how they decide the destination vertex and how they move to the destination. Similarly,

the second set of rules reveals the behavior of occupant in the move queue of each link (defined in

4.5). The rules to decide the agent’s destination and how they move to the destination depends on

their property. For analyzing the behavior of agents, we have developed two types of property for

agents. The first property represents the agents as a member of groups with variable group size.

This property aims to analyze the behavior of occupants when they belong to a group (family,

friends, and colleagues) and try to remain in the group during any situations. So, they will move

to the same nodes, wait for the group at the gates before going in, wait for all the group members

to reach the room before making any new decision. The second property divides the agents into

two categories, one is the agent which knows the information about the building and another which

does not. The first kind of agents may be regular occupants, rescuers, firefighters, or safety escorts

and will be present in every node. The second kind of occupants are the ones who do not know

where to go but will follow a crowd assuming that it is moving in the correct direction. They will

follow according to the probability rule. Assume there are n occupants in a node and there are 3

exits with 30% exiting crowd in gate1, 50% exiting crowd in gate2 and 20% exiting crowd in

gate3. Then from n occupants, 30% will choose gate1, 50% will choose gate2 and rest will choose

gate3 as an exit. We assume that the probability is based on vision sense of the occupants. In the

case of emergency evacuation, we assume that one of the nodes will be the safety node and agents

reaching there will remain there till the situation improves.

33

3.4 Agent movement model

For the model of occupant movement behavior, at each time step, if the delay of the

occupant is larger than 0, then the delay of the occupant decreases by 1 and elapse time of the

occupant increases by 1. The delay of the occupant serves as a counter to count how many time

step the occupant will stay in its current location and the elapsed time of the occupant represents

the number of time steps the agent has been staying in the current location. If the occupant’s delay

is set to -1, this means this occupant has just entered its current location and needs to determine its

destination and delay. To determine the destination of the occupant, occupant looks up the

transition table (Table 4.1) of the current vertex it resides in and selects movement behavior profile

according to its current state. After selecting a destination vertex, the link connecting the current

vertex with the destination is selected, and in the case of more than one links, the agent will select

the link with fewer occupants in line. After the determination of the destination, the next step is to

determine how long the occupant will stay in the current vertex. The occupant stays in current

vertex for two reasons: if the occupant’s destination is current vertex, it means it chooses to stay

in this vertex for some time. If the occupant’s destination is one of the neighbor vertices of current

vertex, the occupant will spend some time to travel to that neighboring vertex. The duration an

occupant takes to stay in current vertex is a random value between given minStayTime and

maxStayTime. The duration an occupant will take to travel to the neighbor vertex is determined by

the speed of the occupant and the link distance between the link that the occupant used to enter its

current vertex and the link connecting its current vertex to the neighbor vertex it will travel.

Specifically, it is a random value between the maxDelay and minDelay. The maxDelay is

calculated by the link distance divided by the speed of the occupant, and the minDelay is either 0

(in the case maxDelay is smaller than elapsetime) or maxDelay minus elapsetime (in the case

34

maxDelay is larger or equal to the elapsetime). After the delay of the occupant is set, it reduces by

one at each time step. When it reaches 0, it means the staying time for the occupant has expired,

or the occupant has finished traveling and is ready to enter the destination vertex. Then the

occupant is queued into the moving queue of the link that connects the occupant’s current vertex

to its destination vertex.

3.5 Queue Processing

Each link is a queue where occupants are added to move to next node. The rules to decide

the behavior of occupant in the move queue of each link is explained as follows. At each time step,

the order of the links is randomized before processing them. For each link of the graph, the flow

rate is computed depending on the density of the link, then the number of occupants equals to the

flow capacity of that link are moved from the moving queue to the corresponding destination. The

occupants will be processed on a first-come-first-serve basis, assuming that the first arrived agents

will be first in a line of the crowd. The occupants that are removed from the move queue enter

their destination vertices where the destinations of the occupants become the locations of the

occupants. Meanwhile, the delays, elapsetime, isInQueue of the occupants are reset, and the “from”

link properties of the occupants are set to the link that the occupants are removed from. The

occupants make their new decision depending on the situation (normal, emergency, conference)

of the system.

3.6 Discrete time-based simulation algorithm

Here we define the algorithm for basic discrete time-based simulation of the model. At

each time step, the graph model evolves following two sets of different rules for agent movement

and queue processing. The first set of rules defines the behavior of the occupants at each time step

including how they decide the new destination and how they move towards the destination, second

35

set of rules defines the behavior of occupant in the queue of each link and how each occupant is

transferred to the new node.

Discrete time-based simulation

for time t = 0 to t = simulationtime

// dynamics of agent

for each agent o

 telapse = telapse + ∆t

 if (o.s = staying)

 tstay_delay = tstay_delay - ∆t

 if (o.tstay_delay ≤ 0)

 make decision to stay or move

 if (o.s = moving)

 vdestination = new node

 calculate the new tmove_delay

 else if (o.s= staying)

 calculate the new tstay_delay

 if (o.s = moving)

 tmove_delay = tmove_delay - ∆t

 if (tmove_delay ≤ 0)

 o.s = inqueue

 if (o.s =inqueue)

 //do nothing

end for

//dynamics of queue

for each link l

 for flowrate 1 to l.cf

 if ((l.nto.c > l.nto.N) && (l.q != null))

 o = remove one agent from l.q

 o.nposition = l.nto

36

 o. telapse = 0

 l.nfrom.N = l.nfrom.N – 1

 l.nto.N = l.nto.N +1

make decision to stay or move for agent o

 if (o.s = moving)

 vdestination = new node

 calculate the new tmove_delay

 else if (o.s= staying)

 calculate the new tstay_delay

 end for

end for

 end for

3.7 Experimental results and analysis for the graph based agent oriented model

We use our model to simulate building occupancy for various agent sizes for normal

occupancy and emergency evacuation. Here, we present our analysis of the model for emergency

evacuation. Here we present a simple building structure, but we can easily expand it to include

complex structure like stadiums or high level buildings. We use the building structure shown in

Figure 3.2 where we assume that node 4 will be the safe zone i.e. during evacuation everyone will

move towards this node. In the current model, we can vary the number of occupants, their speed,

the number of agents who knows the direction of node 4, the size of the group and width the doors.

In Figure 3.3 we show the change in a number of occupants in node 2 and node 4 during evacuation

with total occupants in the building 500, 2000, 3500, 4000, 6000, and 8000 (all agents know how

to move to node 4). In node 2 there are two gates connected to node 4, so most occupants can

escape to node 4 immediately. Node 1 to Node 2 has only one door so the occupants from node 1

reach to node 2 after sometime due to congestion and then move to node 4. Thus, first we observe

sharp decrease and then a decreasing curve for escaping occupants from node 1.

37

Figure 3.3. Number of occupants (a) node 2 (b) node 4

Figure 3.4(a) shows the effect of increasing the width of the exit link to the safety node. The

flow rate of the link is related to the door width and density as shown in equation 4.3. We take

4000 occupants and assume that they will be in rooms other than node 4 which is the safe node.

The agents will move towards the node 4 depending on the flow rate of the doors. The width of

the doors is set at 1m, 2m, 3m, 4m, 6m and 8m. We assume that there will be no blocking of the

link due to the congestion and at least a certain number of occupants can pass the link at each time

step. As assumed we find that more occupants can reach the safe node early when the width of the

link is increased. Figure 3.4(b) shows the occupants reaching the node 4 safely for various

percentage of occupants who knows the direction of the safe node. The simulation is to show the

behavior of occupants where they tend to follow a crowd. The given percentage (20%, 50% etc.)

of the occupants knows the direction so they move directly towards that node, but the rest just

follow a group of crowd as a herd and when they reach the safe node they stay there. The agents

follow the group based on the probability of the crowd density at the exit doors. During the

evacuation, all the occupants know that they need to head to safety, so they try to reach the safe

node. To find the safe node they assume that the door which is most crowded will lead to safety

since normally people will go towards that door where the people are trying to flee. As such this

38

experiment tries to simulate the crowd following behavior of occupants. As assumed, as the

percentage of people who know the direction increases the people moving to the safe node also

increases. The door width is set at 3m and number of occupants is set at 4000. The non-linearity

of the graph is due to the flow rate which lets only a certain number of people through the doors,

if the flow rate is high then at 100% the curve will tend to be linear as everyone will come to the

room freely.

Figure 3.4 (a) Occupants in safe node with varying link size (b) Occupants in safe node

with varying agents knowing direction to safe node

Figure 3.5 shows the number of occupants in node 4 when agents forms groups of various

sizes (1 i.e. no grouping, 20 and 40). We take 4000 agents and width of each exit as 3m. Grouping

is one of the major behavior of occupants and they tend to move in groups during various

conditions. We assume that a group will wait for all their group members before leaving a node

and when everyone reaches a new place then only decide to move to a new place. All the nodes

will have some occupants initially and then they will move towards node 4 in groups. In the figure,

we see that for group size 1 more occupants reach in room earlier than larger group sizes. When

people tend to move in groups they must wait for everyone before making a new decision as such

as the group size increases people take more time to move which is observed in the figure.

39

Figure 3.5 Node 4 occupants with varying group size

Figure 3.6 below shows the computation time was taken to simulate for various agent size.

Figure 3.6(a) shows the results for 100% agents with direction information and Figure 3.6(b)

shows the result for agents with 50% information. In Figure 3.6(c) we show the result of increasing

the number of agents for a group size of 20. We run the simulation in a normal PC of Intel Core i5

and 4GB of memory and run for 2000 time-steps. For agent size greater than 10000, we increase

the node size and link width. The simulation is run for several times and computational time is

averaged. Next, we combine the behaviors of agents, so some of the agents have information of

the safe exit, some will form groups (they will also have information of the exit) and some will

follow the crowd. In Figure 3.7 we present the computational time for 10% agents having

information, 40% forming groups and rest following the crowd. From the graphs, we see that we

can achieve good computational time for large agents in a simple machine which gives us direction

to use larger machines in case we need to achieve more speedup. At the observed resource use, we

can increase the structure and agents as well as their complexity and yet achieve a reasonable speed

up than the existing works.

40

Figure 3.6 Computational time for agents (a) with 100% agents knowing direction (b)

with 50% agents knowing direction (c) agents with group size 20

Figure 3.7 Computational time for mixed agents

41

3.8 Graph based agent oriented model for a pedestrian tunnel simulation

In this section, we use our developed graph based agent oriented model for evaluating a

pedestrian tunnel simulation. Tunnels are normally used to provide transportation for vehicles,

however, in some places, they provide transportation to pedestrians as well. Globally, tunnels are

used in coal mines, underground constructions, and in some cases, even to connect two nearby

locations for people to pass through during matches, sporting events, religious, or cultural festivals,

and so on. When many people move through a closed structure like a tunnel, even a small incident

can cause chaos resulting in the instantaneous will to escape, thus, creating a stampede. The

incident at a point may propagate through other regions causing damage to all people inside the

tunnel. As such, the creation of such structure requires thorough knowledge and analysis of its

capacity and flow. Also, the building requires a study on how to improve the safety of the

pedestrian during various dangerous circumstances. In literature, we find research on tunnels for

vehicles, but not for pedestrians. However, because a single incident or accident in a pedestrian

tunnel may lead to a large number of deaths, there is a need for a study on tunnel simulation. In

this work, we have used our model to create a tunnel-like structure where pedestrians move from

one end to another. Simulation has been performed for movement of 2000 to 6000 pedestrians.

We have computed the average flow of occupants across various sections of the tunnel and

presented the result.

In our experiment, the length of the tunnel is 1000 m and width is 20 m. The pedestrians

will carry the speed of 2, 1, or 0.8 m/s. The pedestrians arrive at entrance terminal and walk

according to their designated speed to the exit of the terminal. The occupants entering the tunnel

is simulated by a given input pattern of increasing until a certain number and decreasing to zero.

When there are more pedestrians, it will form congestion and will slow down the movement

42

creating a gap of movement between two or more groups. In such a case, the overall speed of each

pedestrian is reduced, and they move slowly until the congestion is cleared.

Figure 3.8 shows the structure and the pedestrians moving (in black dots). In the simulation,

the pedestrian’s input rate is normal in the beginning but increases after a while. As such, the

pedestrians move normally at the beginning, but after some time, because of the increase rate, there

are congestions as represented by in the blue region in the figure. We can also observe that there

is some gap in the middle section which shows that the pedestrians who arrived later are slow due

to the congestion.

Figure 3.8. Pedestrians in a tunnel

Figure 3.9(a) shows the input for about 2000 occupants. The number of occupants

gradually increases and then reduces. Figure 3.9(b) shows the flow of occupants through a middle

section of the tunnel. Figure 3.9(c) shows the average number of pedestrians through the tunnel

including the input whereas Figure 3.9(d) shows the average number of pedestrians crossing the

tunnel and does not consider the input pedestrian. The figures demonstrate that when the volume

of the pedestrian is high, we can observe some gaps caused due to congestion and it takes some

time to fill up. Figure 3.10 shows similar results, but for 6000 occupants. In Figure 3.10(c) and (d),

we do not observe the change in the number of pedestrians due to delay, since there are many

pedestrians and they take a longer time to exit due to congestion. There are more pedestrians in

the system which increase the average number of people in the tunnel.

43

Figure 3.11 shows the flow rate at the exit end for (a) 2000 and (b) 6000 pedestrians, which

clearly shows the gap created due to congestion even though there is no gap in input. From the

figure, we can analyze the patterns of pedestrians’ flow at the mid-section and the end of the tunnel

for various size of the input. We see that as the number of pedestrians increase, the graph becomes

linear. It is because when there is a high volume of pedestrians, they become congested and they

cannot act independently. They are constrained by the space so they can’t move freely. As such,

their average speed becomes the average speed of the group which is very slow.

In this work, we could observe the behavior of pedestrians when they moved from one end

of the tunnel to another. Based on their speed and input rate, we observed their movement

dynamics across the tunnel and observed their flow rate. The model allows us to experiment with

various input rates, various type of pedestrian and perform the analysis like flow rate, time of exit,

pedestrian flow at different sections and time.

X-axis: Time step, Y-axis: No of pedestrians

Figure 3.9. 6000 Pedestrians (a) Input rate (b) Average flow rate including source (c)

Flow rate at mid-section (d) Average flow rate without source

44

X-axis: Time step, Y-axis: No of pedestrians

Figure 3.10. 2000 Pedestrians (a)Input rate (b) Average flow rate including source (c)

Flow rate at mid-section (d)Average flow rate without source

X-axis: Time step, Y-axis: No of pedestrians

Figure 3.11. Flow rate at exit end (a) 2000 Pedestrians (b) 6000 Pedestrians

3.9 Hybrid model

Figure 3.12 Agents crossing paths

45

In buildings, when occupants move around occupant’s path cross mainly in areas like

hallways and intersections. The path may be obstructed causing delay or rerouting, and the effect

is more when there are more people. Similarly, obstruction due to environment factors like road

closure, walls also may cause some effect in the movement. As shown in Figure 3.12, the black

arrows show the occupant’s possible paths from one exit to others. We can see that the possible

path is crossing in different directions. Two or more occupants crossing opposite paths may block

each other. This kind of agent interactions with each other and the environment create emergent

patterns that might be an important feature for certain regions of the environment. It might not be

necessary to model the whole system with agents, but certain regions like intersections, the cross

path might be best represented by pure agent based systems since the graph model is unable to

create such emergent patterns. In crowds, graph based manage speed using equations based on

density and do not consider the effect of agent interactions. Agent collision with each other or

environment during crossing paths/obstacles cannot be modeled accurately by graph based.

To properly model such scenarios, we need a model which can effectively switch between

agent and graph based as per requirement. Fortunately, our model is quite useful for this

implementation. Our graph based agent oriented model is not purely graph based; it consists of

agents as well. The model updates the agent properties with the system as well. Hence, we have

agents that can represent the state of the system spatially and temporally. As such, it is quite easy

to change our model from graph based on pure agent based and vice versa, upon requirement. We

create a hybrid model using our graph based agent oriented model, which consists of pure agent

based along graph based parts. In the nodes where agent interaction is important, we implement

pure agent based and in other nodes, we apply graph based. In the upper level, the whole system

is graph based agent oriented, however, in the lower level, we implement pure agents in our nodes

46

of interest. When an agent enters from graph based region to agent based region, it acquires a

specific origin coordinate near the entrance of the node and destination as a location coordinate

near the entrance of destination node. Then the agent starts to walk using waypoint graph towards

the destination, and after reaching the destination, if the next node is graph based it follows the

property of graph based agent. Similarly, when a pure agent from agent based enters the graph

based node, it gets its’ destination node and computes the move delay and executes. Figure 3.143

shows the transition of the agent from one mode to another. Figure 3.14 shows a snapshot of the

hybrid model simulation where the center intersection is the agent based and the black dots

represent the pure agents. We can see that the black dots are moving in a formation compared to

the red dots that are moving randomly.

Figure 3.13 Hybrid mode conversion of agents

47

Figure 3.14 Screen shot of hybrid model simulation

48

 DATA ASSIMILATION USING GRAPH BASED AGENT ORIENTED MODEL

4.1 Basic Theory

Data assimilation is the process of incorporating observations from the real system into the

system model to estimate the state of the system. It is a sequential, time-progressive procedure

where the system is compared with incoming new observations and the system state is updated to

reflect the observations. The procedure continues to produce a better prediction of the overall

system state. A model of a system is not perfect to accurately represent a real system since there

might be different inputs and unaccounted changes in the system which might change the behavior

of the system from the predicted one. As such, using the observations during the development of

the real system assists in keeping the model of the system on track with the real system. Also, the

observations from the real system are often sparse, erroneous and do not cover all the aspects of

the system, as such the observations cannot be considered as an accurate measurement of the

system state.

Data assimilation uses an analysis technique which allows the use of available observations

with the available system model to predict the future state of the system accurately. There are two

approaches of data assimilation: sequential and non-sequential assimilation. Sequential

assimilation considers the observations made in the past up to the point of analysis while non-

sequential assimilation uses the observation from future as well. Our work is related with the

sequential assimilation which is the case of real-time data assimilation. The dynamic model which

represents the real system depends on the type of application. In social science, models like agent

based or graph based represent the system, in the atmosphere, and oceanology mathematical

models represent the system and so on. These models define the physical constraints and need to

have the initial knowledge of the underlying system. The model normally initiates with a known

49

state and then continuously evolves till a certain specified duration. The observations are the

measurements which sample the system in space and time with spatial and temporal scales

dependent on the technique used to make the measurements [39]. The measurements provide

information of the system and provide an understanding of how the system evolves in space and

time.

Both the model and the observations consist of error; observations have an error in

precision, bias, and representability, while the model may be incomplete due to lack of

understanding or due to processes being omitted to make the problem tractable. Also, the

observations are discrete in time and space which will make the information of the system

incomplete for the whole space and time. As such appropriate algorithms are required which will

combine the observations efficiently with the model [40]. The algorithm provides a set of

consistent and objective rules which can evolve the system as true as the real system even with the

errors present in the model and observation. A simple approach is a linear interpolation however

it cannot effectively model how systems behave in the real world. Least squares estimation is a

basic linear method which requires that observation function should be linear and it calculates gain

using observation matrix, background error covariance matrix and observation error covariance

matrix. The gain is then used to calculate analysis error which is equivalent to a problem that

minimizes the cost function calculated by summing background term and observation term. From

least squares estimation, optimal interpolation methods can be derived where each observation is

assigned with weight based on the statistical property of their errors. Optimal interpolation

methods minimize the observation errors by determining the value of the gain. This is similar to

the three dimensional variational assimilation and four dimensional variational assimilation

methods. These methods aim at minimizing a cost function and its gradient represented by

50

observations weighted plus analysis and short term forecast by their accuracy. Variational

assimilation technologies focus on exploring the initial value of the model but do not aim at

adjusting the current state of the system at analysis time. To adjust the system state at analysis

time, Bayesian filtering is a viable method. Bayesian filtering methods estimate a system’s state

from noisy observations and is derived from Bayes theorem. According to Bayes rules, for events

A and B, provided that P(B) is not zero, then the following equation holds:

𝑃(𝐴/𝐵) =
𝑃(𝐵/𝐴)𝑃(𝐴)

𝑃(𝐵)
 (4.1)

The equation can be applied in the recursive Bayesian filtering problem, and we can get

the system evolution model for calculating the transition prior as

𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑣𝑡)~𝑝(𝑥𝑡|𝑥𝑡−1) (4.2)

where x is the system state variable, v is the system noise and g() is the system transition

function. Also, the observation model for calculating likelihood can be obtained as

 𝑦𝑡 = ℎ(𝑥𝑡 , 𝑜𝑡)~𝑝(𝑦𝑡|𝑥𝑡) (4.3)

where y is the observation variable, o is the observation noise and h is the measurement

function. Now assuming the system is Markovian with initial distribution of the system state and

historical observation vector, we can estimate the posterior distribution of the system using

Bayesian theorem as

𝑝(𝑥𝑡|𝑦1:𝑡) =
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

𝑝(𝑦𝑡||𝑦1:𝑡−1)
 (4.4)

The Kalman filter recursively performs the prediction and update to estimate the system.

It is an optimal filter for the linear and Gaussian system, however it is not appropriate for non-

linear, non-Gaussian, multimodal state estimation problems. Researchers have proposed various

extensions to Kalman filter to over these limitations like Extended Kalman filter, Limited

51

Extended Kalman filter, Unscented Kalman filter [30]. Ensemble Kalman filter uses a set of

ensemble members to approximate the distribution of the state of the target system to solve the

problem of high dimensionality. It calculates the covariance of the ensemble members, and then

use it to update the estimate of each ensemble members, unlike the standard Kalman filter which

calculates the covariance matrix. However, it assumes the system noise and observation noise to

be Gaussian, so it does not perform well for non-Gaussian. The Kalman filter requires that the

system must be written in analytic forms and requires that system to be linear and system noise

and observation noise follow Gaussian distribution, and some cannot handle multimodal

distribution. As such we use Sequential Monte Carlo Methods also known as Particle Filters which

can be applied to dynamic systems with non-linear behaviors and non-Gaussian noise. Particle

Filters approximate the state of dynamic systems using particles and associated weights. PF works

by formulating a non-linear state-space model of a generic form containing a state transition

function and a measurement function as below:

𝑥𝑡~𝑝(𝑥𝑡|𝑥𝑡−1) (4.5)

 𝑦
𝑡
~𝑝(𝑦𝑡|𝑥𝑡)

where xt represents the system state at time t evolved from the previous state at time t-1, yt

represents the observation at time t for system state at time t. Particle filters use a set of particles

to approximate the posterior distribution of the system state. The posterior distribution of the

system state in particle filters is represented by some weighted particles whose weights are

calculated based on state transition, proposal distribution, and likelihood of the particles. The PF

follow a prediction update methodology at each iteration where it samples particles through a

proposal density know as importance density. After prediction, each particle is assigned a weight

which is calculated through the likelihood density based on observations. Formally, the particle

52

filter is derived from sequential importance sampling (SIS), where the posterior distribution is

approximated by

𝑝(𝑥𝑡|𝑦1:𝑡) ≈ ∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1 𝛿(𝑥𝑡 − 𝑥𝑡
(𝑖)

) (4.6)

Here w is the weight of the particle which is updated using

𝑤𝑡
(𝑖)

∝ 𝑤𝑡−1
(𝑖) 𝑝(𝑦𝑡|𝑥𝑡

(𝑖)
)𝑝(𝑥𝑡

(𝑖)
|𝑥𝑡−1

(𝑖)
)

𝑞(𝑥𝑡
(𝑖)

|𝑥𝑡−1
(𝑖)

,𝑦𝑡)
 (4.7)

The particle filter performs three main steps at each iteration: sampling, weight calculation

and resampling [13]. The sampling step evolves the system state of each particle to the next data

assimilation time point; the weight calculation step computes the weights of particles based on

observation data, and the resampling step selects a new set of particles based on particles’

normalized weights. Sequential importance sampling suffers from a major problem of

degeneration in which after a few iterations one particle will have high weight, and other have

negligible weight thus not contributing to the state estimation. To solve the problem, an additional

resampling step is applied for eliminating particles with low weights and multiplying particles with

high weights. At each step, the samples are drawn from the proposal distribution 𝑞(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)

when this distribution is chosen to be the system transition prior 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖), equation 4.4 can be

transformed to:

𝑤𝑡
(𝑖)

∝ 𝑤𝑡−1
(𝑖)

𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

)𝑝(𝑥𝑡
(𝑖)

|𝑥𝑡−1
(𝑖)

)

𝑝(𝑥𝑡
(𝑖)

|𝑥𝑡−1
(𝑖)

𝑡
)

= 𝑤𝑡−1
(𝑖)

𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

) (4.8)

So, the update of weight depends only on the likelihood of the particles.

4.2 Data assimilation framework

In our research, we use particle filter as the algorithm for the data assimilation. The

observations are the information of the system which in our case for occupancy estimation is the

53

provided by the sensor data collected from the room, which is the number of occupants collected

from the sensor in the room. We use the basic particle filter algorithm also known as the Bootstrap

filter algorithm which utilizes the observation to update the state currently. In the pure agent based

model, the state of the system is proportional to the number of agents. Hence, as the number of

agents increase, the state of the system increases due to which it becomes computationally

expensive to maintain a large number of particles. In our work, we consider only the node

information as the state which consists of a total number of agents, direction probability of agents

and agents in the queue for each node. Formally the state of the system is defined as:

St = <s1
t , s2

t , ….sn
t > (4.9)

where n is the number of nodes, sn
t is the state of a node at time t and defined as

sn
t = <an, aq , pd> (4.10)

where, an is the no of agents in node n, aq no of agents in each queue of node n, pd is

direction probability for agents in node n. So

an =<a1 , a2 ……….am > (4.11)

where, m is the number of agents in node m. aq is the number of agents in queue and

aq ==<aq1 , aq2 ……….aqm > (4.12)

where, qm is the number of queues going out from the node. It depends on the edges in the

current node, pd is the direction probability, and it is probability pointing the destination of the

agents present in the node. It sums to 100% and points how many percentages of the total agents

are moving in a certain direction from the node. It also consists of agents staying in the node.

Formally we can state direction probability as

54

pd = <pd1,pd2, …..pdn > (4.13)

where dn is the total directions each node can have. The directions are user defined and

depend on the structure of the building. The system transition function which evolves the system

from the current system is formulated formally as:

St+1 = GAMTransition(St) + Qt (4.14)

where, St is the system state at time t, GAMTransition represents the state transition

function, and Qt is the system processing noise. GAMTransition defines how the state of a particle

evolves from time step t (St) to t+1 (St+1). This function is based on the graph based agent oriented

model developed by us in Section 3.

The observation data for the particle filter is collected from a set of sensors placed in

selected node. We do not focus on collecting data from the sensors but assume that the rooms have

sensors which can compute the total number of occupants in each time step. If we have n number

of sensors deployed in our system; the sensors not be in every node, then the observation vector is

formally defined as:

O = <S1, S2……… Sn >

Sn = Obs(n)+ mt (4.15)

Obs(n) =<on, oqn>

where, Obs(n) is the observation at room n; which is the number of occupants in room n

(on) and a number of occupants queuing from room n(oqn). And mt is the measurement noise for

the observation. The sensors are independent of each other so the importance weight of a particle

can be calculated from the likelihood of individual observations.

The transition prior is p(xt|xt-1) is chosen to be the proposal distribution and the weight of

the particle is calculated based on the likelihood p(yt|xt). Since the measurement is a vector we

55

define the likelihood as a multivariate Gaussian distribution. The weight of particle is calculated

as follows:

𝑤𝑡 =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 (4.16)

where, x is the observation from the real system and µ is the measurement of the particle.

σ is the user defined value.

The particle filtering algorithm follows the standard sequential importance sampling with

resampling (SISR) procedure. The particles are initialized with given initial conditions, which we

assume is known to us. So, the particle filtering knows the initialization pattern of the occupants

through the input nodes. After that, samples are drawn by advancing the state of each particle using

the state transition function for a selected period Δt. The weight of each particle is calculated based

on the comparison between the observations generated by the sensor model for each particle and

the real observation data. The weights are then normalized so that in the sampling step, particles

with higher weights have greater chances to be selected and reproduced.

Since the particles faces the problem of degeneracy we perform standard resampling which

avoids the problem by eliminating the particles with small importance weights and concentrating

on the particles with higher weights. It samples n times (no of particles) which replaces from the

set of particles x t
 (i)

 according to the importance weights wt
(i). The algorithm of PF with re-sampling

is as follows:

Sequential importance resampling PF

1. Initialization:

Set time K=0

For i=1….N sample)(~ 00 xpx i

56

Set k =1

2. Importance sampling step

For i=1….N sample)|(~~
1

i

kk

i

k xxqx 

Set),(~
1:0:0

i

k

i

k

i

k xxx 

3. For I = 1….N compute weights wi
k

Normalize weights 



N

j

j

k

i

k

i

k www
1

/~

4. Resampling step

Resample with replacement N particles:),,1;(:0 Nixi

k  from the set:

),,1;~(:0 Nix i

k  based on the normalized importance weights i

kw~

5. Set 1 kk

Proceed to the importance sampling step as the next measurement arrives

We apply the SIR PF algorithm to our data assimilation. The basic algorithm for SIR in

our application is as follow:

1. Initialization

For particle i= 1….N, initialize agents based on given initial parameters and

randomly assign destinations

2. Importance sampling step

For all particles execute Δt steps of simulation defined by the system transition

model (graph based agent oriented model)

For all particles, calculate weights based on observation from real system and

particles

57

Normalize the weights

3. Resampling step

Resample based on normalized weights

Add noise (direction, no of occupants moving)

4. Repeat from step 2 as next observation arrives

After resampling, we select the particles which represents the best estimates of the system

state. From the estimated states, we need to continue our simulation by generating other parameters

of the system. In our research, we consider only the node information as the state for the data

assimilation. It is done to simplify the complexity of the particles so that we can reasonably

increase the number of particles with the dimension of the system. Since after the resampling, we

update only the state of the system, we need to update other parameters of the system from the

new state. We need to generate the new direction and moving delay time (Section 3.2) of each

agents. The new direction of the agents is calculated from direction probability array of the node.

For each agents in queue, their next destination is set towards the direction of the queue node. For

other nodes, their next destination is generated using the direction probability sampled from the

particle filter. The direction array may be direction like left, right, top, bottom, stay etc. After

generating the destination, move delay is generated randomly based on the distance between the

current node and the destination node. Then the rest of the simulation is continued using the system

model, the graph based agent oriented model. The whole system regeneration from the resampled

states is a crucial part of the simulation model and we plan to implement other efficient algorithms

in the future. The current framework can be represented using the figure below.

58

Figure 4.1 Data assimilation framework

4.3 Data assimilation using direct sensor data

In the particle filter algorithm, we utilize sensor data by calculating the likelihood weights

of the particle filters. As such, we do not directly use the sensor data into the model. The particles

resampled represent the estimated occupancy but in some cases, they may not be able to represent

the true state. As discussed before, particle filters suffer from the problem of degeneracy for which

we perform resampling; we eliminate particles with lower weights and multiplying particles with

higher weights so that the variance of the weight is reduced. However, resampling always

eliminates some particles which reduces the diversity and after some runs there is high probability

that all particles become identical. As such the particles are unable to represent the real state of the

system and it is too late to recover. In such scenarios, we can take the help of available sensor data

to recognize the better particle filters. The data obtained from the sensors are inaccurate and cannot

represent the real system wholly, but they are the observations of the system and provide some

information of the system. For example, a sensor might not identify the exact number of occupants

in an area, however it can identify if there are people more than a limit which recognizes as a

congestion. As such, using sensor data to detect number of people is not a good practice, but it can

59

be used to detect certain events like congestion, flow direction, evacuation. In this work, we utilize

some information from the sensor data to improve our data assimilation framework, especially in

situations when there are long congestions. As the number of nodes and occupants increase,

regardless of the model, more computation resources are required. With the increase in complexity

of the model, the accuracy of the data assimilation also decreases when we restrict the number of

particles. As such utilizing sensor data can help improve the result of sensor data while maintaining

the number of particles in the model.

Figure 4.2 Issue caused by placement of sensors

For example, in Figure 4.2, if Node 13 and Node 15 has high occupancy, then most

probably Node 14 has high occupancy. But if Node 13 has high occupancy and Node 15 has few,

two cases may arise: first Node 14 may be main destination and have high occupancy, second

Node 13 may be main destination and Node 14 may not have high occupancy. For the total

occupants, if there are few occupants in other sensors, Node 14 is the main destination, otherwise

if other sensors have significant number of occupants, Node 13 is the main destination. So, it is

difficult to estimate the real occupancy in such ambiguous nodes. In such a case, it becomes useful

to utilize the information from available sensor data. Obviously, we cannot directly put the sensor

60

data as the estimated occupancy, instead we need an algorithm to utilize it in our data assimilation

framework.

To utilize the sensor data, we create some new particles from the available sensor data.

These new particles are combined with the existing particles to create a new particle. In the

standard particle filter resampling, we treat the entire system state as one system and so, in building

occupancy a particle consists of various nodes with occupancy information. We can disintegrate

our whole system into a system consisting of various smaller states where each state is a sub-state

of a single system state. These sub-states, when brought together, represents the overall state of

the system. In our building occupancy simulation, we can break the system state of building

occupancy simulation into sub-states consisting of individual nodes as a sub-state with state

variables like occupancy count, occupancy behavior, and node properties. We consider each node

as a sub-state where a node has some occupants, queue size, and each occupant has a destination,

speed and other properties. When this information is combined for all the nodes, it provides us

with the information of the overall environment as a whole. The sensors used in our work is placed

in one of such node and provides information about that sub-state.

Using the real sensor data, we create a particle with occupancy distribution based on the

available sensor data. We will have nodes which have sensors in them, as such it is easier to get

an estimate for such nodes. However, we will also have nodes which won’t have sensor data. For

the nodes which do not have the sensors, we can use some methods like Gaussian distribution to

calculate the occupancy. Since the sensors in a building occupancy are correlated, the sensor data

from a node will influence its neighboring nodes without the sensor. Also, we do not generate

occupancy data for all the nodes; rather we randomly select nodes to generate the distribution. As

such we will have a certain (predefined) number of particles with sub-states as nodes, and some of

61

the sub-states might be null. Now we select the standard particles and improve them by mixing a

random number of sub-states from the new particles generated from sensor data. These new

particles will have their sub-states from both standard and sensor data generated particles. We

follow rest of the standard resampling procedure from the bootstrap filter. In this work, we set the

number of occupants in each node as the sub-state and we can generate other properties using the

data assimilation model. Formally, let us have a set St of new n particles generated using sensor

data,

St = <D1, D2,…..Dn> (4.17)

Dn = <N1, N2….Nm>

where Dn represents a particle and Nm represents a sub-state at time t.

Let us select a set S’t from the standard particles to use the new particles

S’t =<D’1, D’2,…..D’n> (4.18)

D’n = <N’1, N’2….N’m>

With these set of particles, a new particle is constructed as

𝑥̃ =< 𝐷1 ,̃ 𝐷2̃ … … 𝐷𝑛̃ > (4.19)

where 𝐷𝑛̃=select(𝐷𝑛,𝐷′
𝑛)

And select (X, Y) is a function to select a sub-state based on a probability from either X or Y.

Figure 4.3 a)Standard Resampling b). Resampling with particles from sensor data

62

Figure 4.3 represents how the new resampling method utilizes the sensor data works. In

this example, there are four particles each having four sub-states N1, N2, N3 and N4. In Figure

4.3(a), we can see the standard resampling procedure in which, based on weights particle P1 is

sampled twice, P2 and P3 are sampled once and P3 is not sampled. In Figure 4.3(b), we have two

new particles generated from sensor data. We select particle P1 and P3 randomly to combine with

the new particles and get two new particles and two original particles. In Figure 4.3(b), we have

the 1st and 3rd particle as a new particle in which the first particle has 1st and 4th sub state from

original particle and 2nd, 3rd from the new particle from sensor data. These particles now go

through the steps of resampling and have a better probability of representing the real system. We

can define the algorithm for resampling using the new method as follows:

Data assimilation using particles from sensor data

Resampling step:

Input: The set of particles < 𝑥̃𝑡
(𝑖)

: 𝑖 = 1 … 𝑁> with associated weights <𝑤̃𝑡
(𝑖)

: 𝑖 = 1 … 𝑁 >,

Set of particles from sensor data <𝑆𝑡
(𝐷)

: 𝐷 = 1 … 𝑀 >

Output: A new set of particles < 𝑥𝑡
(𝑖)

: 𝑖 = 1 … 𝑁>

Select k particles from original particle set to create set St’

For 1 to k

 Select a particle D from set St

Select a particle D’ from set St’

 Get sub-states with a probability p using select(D, D’)

Construct new particle 𝑥𝑡
(𝑖)

: < 𝑐1
𝑖 , 𝑐2

𝑖 … . 𝑐𝑚
𝑖 >

End for

63

Normalize the weights based on:

𝑤𝑡
(𝑖)

=
𝑤̃𝑡

𝑖

∑ 𝑤̃𝑡
(𝑗)𝑁

𝑗=1

 (4.20)

4.4 Data assimilation experiments

4.4.1 Experiment settings

For our experiment, we plan to implement our model in a building occupancy of a large

number of people. It is difficult and expensive to obtain the real scenario of building occupancy

and sensor information from a physical environment. As such, we have used identical twin

experiment to implement our data assimilation framework in a building occupancy simulation. We

have considered an occupancy scenario of a busy airport terminal which has different rooms as

terminal from where people board airplanes. We use graph based agent oriented model to simulate

a real terminal simulation without implementing data assimilation. In real applications, this model

will be replaced by a real system. Airport terminal is a good application where there are a lot of

people continuously moving towards a destination. The people when reaching the destination, stay

there till the boarding announcement and then they board the flight. Often time when there is

boarding delay, congestion is created which might affect other people moving through that zone

as well. We assume that each room is a node and we employ sensors in selected nodes. The sensors

give us the number of occupants in the node and queue. These observations are considered as

“true” result and recorded in real time. We conduct another simulation using the data assimilation

where the system transition is the graph based agent oriented model. The data assimilation

algorithm uses the particle filter algorithm where each particle represents a possible system state.

Each particle will also have their sensors which are similar to the real system. The data assimilation

compares the observation from the real sensor and observation from the particles to make next

64

state prediction. Since we assume that we know the initial conditions of the occupants, we use the

information in our data assimilation model when initializing the occupants.

The observation data for data assimilation is obtained from the various kinds of sensors

placed in different areas of the building. The sensor information is filled with noise, and they are

not able to provide 100 % information of the building. Due to various factors like cost, security,

convenience sensors cannot be placed in every part of a building, and, they are sampled at certain

time intervals. As such it might be difficult to get information of the system in certain time and

space. Our research aims in predicting occupancy in areas which are not covered by any kind of

sensors. As such we will predict the possible number of occupants in nodes which do not have

sensors as well. In our work, we assume that video sensors are installed in selected nodes only so

we will have information only in certain areas. We consider the sensor to be 60% accurate and so

use a Gaussian noise with mean as the correct number of occupants and variance as 40% of the

total occupants in a single node.

We use two kinds of building environments for our experiment. One is a small structure

consisting of 17 nodes as shown in Figure 4.4 and another is a bigger structure consisting of 79

nodes as shown in Figure 4.5. The bigger layout is similar to the smaller structure but consists of

more nodes and junctions for simulating complex scenarios with a larger number of people. The

numbers inside the nodes represent the id of the node. The structure mimics an airport/train

terminal type of environment where people enter the system through one or more entrances; then

they move to one of the terminals for boarding. Boarding represents the activity of leaving the

structure like when boarding a bus, train or plane. The nodes can have various size and capacity,

and the size of the edge will be dependent on the size of the room. There will be only one door

connecting two nodes and occupants will need to choose that door to go to the node. We will create

65

various scenarios in both the layouts and present the results for real-time occupancy estimation

using our framework.

Figure 4.4. Experimental structure for small layout building

Each node represents a section of the terminal, which may be a boarding zone or a walking

hallway. We assume that node 4 is the entrance and node 1, 2, 3 are the hallway; node 0 is the

intersection and Node 5 to Node 16 are the boarding zones. As such all occupants enter from node

4 and they have a destination to one of the nodes from 5 to 16. Each of the nodes has area of 75 x

75 meters; the intersection node is three times the regular nodes. The capacity of the nodes to

accommodate the occupants is directly proportional to their area size. In our experiment, we

assume that the capacity of each node is 112 occupants, and the intersection is 3 x 112 occupants.

The edge between two nodes has a thickness of 1m and length of 25 meters. For the real system,

we set the destination for each experiment, and we create a congestion which clears out slowly

after some time. In the data assimilation, the destination of the agents are random and keeps on

updating as the particle filter updates the state based on observation. We perform a prediction for

special cases which is congestion in a boarding node due to the high volume of occupants arriving

in the node before boarding time. Often in airport terminals, people come some hours before the

66

boarding time. As the boarding time is near, more people arrive at the terminal, as such, it creates

congestion at the checkpoint. Normally there is a single checkpoint for security, and due to high

volume, it can create congestion at the security checkpoint node. Also, normally the people arrive

at their boarding zone, wait till the boarding announcement and start boarding. However,

sometimes when there is a delay, they stay there, and other people may arrive there for boarding.

This scenario might create congestion as the crowd develops and the congestion will propagate to

the incoming nodes. We create various scenarios with different destinations, boarding time and

incoming rate and use data assimilation to predict the real scenario.

Figure 4.5 Experimental building structure for larger layout

Table 4.1 outlines the experiment motivation with parameters used and expected result and

remarks. We perform various experiments to validate our data assimilation model in various

building occupancy simulation.

67

Table 4.1 Experimental Design

Exp. Motivation Parameters Expected

Result

Remarks

1 Evaluate the

performance of data

assimilation for

smaller layout

Destination: one,

three No of

Agents: vary

Scenario:

congestion, normal

The model

efficiently

estimates the real

system state i.e.

the occupancy in

various nodes

Experiment verifies

the use of data

assimilation for

building occupancy

simulation during

various scenarios of

congestion and

normal behavior

2 Evaluate the

performance of data

assimilation for larger

layout

Sensors: half, one-

third, one fifth of

the nodes

The model

estimates the

occupancy with

decreasing

number of

sensors

Experiments verify

the use of data

assimilation with

graph based agent

oriented model for

occupancy estimation

with limited number

of sensors

3 RMSE comparison for

different sensors

Sensors: half, one-

third, one-fifth of

the nodes

Accuracy

decreases with

decrease in

sensors

The difference is

very less. Thus the

model is stable for

estimation with few

sensors

4 Comparison using

particles from direct

sensor data

Sensors: Half of

the nodes

Performs better

than bootstrap

filter without

using sensor data

for few particles

and more

occupants

Using particles from

sensor data improves

the estimation when

there are large

number of occupants

so using few particles

allows efficiency

68

4.4.2 Results for smaller layout

We create various scenarios of occupancy to test our data assimilation framework. In the

first scenario. we set up sensors in all the nodes to verify the model. We set the destination of the

people with 50% to node 7 and 50 % to node 11. The simulation starts from 6 am and the people

keep on arriving at the nodes since the start till 10 am. Due to heavy incoming of people, the crowd

keeps on increasing and only at 10 am boarding starts. We see that the result is good and matches

almost perfectly with the real sensor. Nodes 8, 11, 13, 14, 15, 16 have some occupants as the

model currently does not reroute the destination. As such the particles will have a few of the agents

with destinations at various nodes.

Figure 4.6 Real simulation at increasing time steps for first scenario

Figure 4.7 Data assimilation simulation at increasing time steps for first scenario

Figure 4.6 shows the screenshots of the real simulation run in which we see that initially,

people move to node 7 and 11 (shown by red dots). People keep moving there, but they do not

board, which creates congestion show by blue dots near the door. Black dots represent the people

reaching their destination, which is node 7 and 11 in this experiment. The congestion in real

69

simulation spreads towards the entrance node 4. Finally, after the boarding time congestion is

cleared and people move towards their destination to board. In Figure 4.7 screenshots of data

assimilation run are shown in which we can see people moving randomly, yet more people are

moving towards node 7 and 11 (shown by dense black dots in node 7 and 11). Like the real

simulation, since more agents move towards node 7 and 11, congestion is created and keeps

propagating to the nodes from where people keep coming. Finally, after the boarding starts, the

congestion clears and people move to node 7 and 11 for boarding. In some nodes, we can observe

some green dots representing the error occupant direction (node 15). These errors can be reduced

by increasing the number of particles and using better noise parameters.

Figure 4.8 Comparing results for first scenario

In Figure 4.8, we show a graph comparing the number of occupants in real and data

assimilation simulation. The data assimilation simulation is done for five runs, and the results are

averaged. Blue graph shows the real data, and red graph shows the data assimilation result. We

70

consider mainly the results in destination nodes and the path from the junction (node 7, 6, 5, 0 and

node11, 10, 9, 0). We observe that the data assimilation results match the real simulation result

and provide a good estimate of the number of occupants in all the nodes. We observe some high

error in path node 15, 14, 13, 0 and nodes 8 and 12 which is due to the randomness of the model.

The people who move to that branch do not get the opportunity to come back to correct destinations

in the current model. We plan to improve the result in future work by applying a filter to those

noises.

We use root mean square error (RMSE) to compare the results of data assimilation with the

ground truth. RMSE measures how much error there is between two datasets. RMSE usually

compares a predicted value and an observed value. We compare the occupancy counts in each

node from the data assimilation with the real number of occupants from the real system (ground

measurement). RMSE is calculated as:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑁

𝑖=1 (4.1)

Table 4.2 Average RMSE for nodes

Node Average RMSE

0 11.58126

1 5.759036

2 5.777794

3 5.515986

4 5.141853

5 6.747146

6 6.374019

7 7.577623

71

8 7.009612

9 5.79183

10 5.55902

11 6.217388

12 7.29934

13 8.318082

14 7.209448

15 5.211005

16 12.94126

Here, 𝑥𝑖 is the real data and 𝑥̂𝑖 is the predicted data, N is the total number of data. We

compute RMSE for all the nodes and get the average for each Nodes. From the table, we can see

that the average RMSE is about 5 for node 15 which is quite good, also RMSE for other nodes are

also in acceptable range

Since our work is to estimate the occupancy of the building even in areas where there are

no sensors, in the second scenario, we place sensors only in Node 5,9,13,7,11 and 15. Since Node

0, 1, 2, 3 are hallways where people only move across, the patterns is formed by input and it is not

required for sensors to be placed there. Also, we focus on estimating occupancy mainly on the

boarding nodes, as such we place sensors in nodes separating by one node. We plan to do future

work on where to place sensors so that we can efficiently and accurately predict the occupancy

using data assimilation. In scenario 2, we place selected sensors and create a scenario in which the

80% people go to node 15 for boarding and rest go to random nodes. There is a congestion at node

15 since high number of people go to that node which slowly clears as people start boarding after

boarding time. We use 200 particles for data assimilation and resample in every 120 time step

72

where each time step is 1 second. In Figure 4.9, we see the results for the occupancy count in each

of the nodes. X-axis represents the time step, Y-axis represent the number of people, blue graph is

the real result and green is the result of data assimilation. We see that the result for Node 4, 3, 2,

1, 0, 13, 14, 15 (sequence of nodes for path up to Node 15) is quite good. We find some noise for

remaining nodes which are under acceptable range.

Figure 4.9 Comparing results for second scenario

In the third scenario, 50% of the people have destination node 11, 35% will have node 6

and rest will have random nodes. Here also we use sensors only in Node 5,9,13,7,11 and 15. As

for the initialization, assuming the simulation starts at 6 am, we assume that one person arrives

73

second except for from 7 to 8 am, 5 people arrive every 10 secs and between 11 and 12 am 3 people

arrive every 10 secs. This increase in rate will create congestion thus creating high peaks in graphs

as shown in node 15. We assume that all the people reaching their destination will board taking

time range from 0 to 30 min. Here node 6 does not have sensor yet the results are within acceptable

range. Figure 4.10 shows the result of data assimilation and we observe good results. Here also

blue graph is the real simulation and red graph is the particle filter result.

Figure 4.10 Comparing results for third scenario

In the fourth scenario, 30% of the people have destination node 7, 15% have destination

node 13 and rest have node 12. Every 20 seconds, a person enters the building until 8 am, and until

10 am 3 persons enter after which the rate is zero. We set the boarding time at 11 am and the

boarding rate as 30 minutes. Since people start arriving at their destination at 6 am but the boarding

for all nodes start only at 11 am congestion is created which propagates up to the entrance node

74

(node 4). As such even after the rate is zero, people move from the queue to their destinations from

node 4. We can see the results in Figure 4.11 below. Here we find that the results of the data

assimilation using particle filter is very good for the main destinations 7, 12 and 13, however there

are some errors in other nodes.

Figure 4.11 Comparing results for fourth scenario

In the fifth scenario, we run simulation to accommodate large number of occupants. We

increase the capacity of the nodes to three times and the simulation consists of a maximum of 3000

agents during a simulation time step. The agents keep on entering and leaving the system, hence

the total number of agents is much higher (about 15000). The simulation and the data assimilation

(200 particles) were running smoothly in our simulation environment, hence we can easily scale

our model to include more agents. Here we set node 7, 11 and 3 as destinations with equal

probability and 2 people enter the room every 20 second till 11 am after which 4 people enter till

75

2 pm. In the Figure 4.12 we see that results for node 6 and 10 are not very good. These nodes do

not have sensor hence sometimes the result is not perfect, yet they can predict the peak congestion

accurately.

Figure 4.12 Comparing results for fifth scenario

We create a bit complex scenario to test our model in sixth scenario. We divide the

boarding time in two halves so the people arrive in two halves first; before 9 am, and second;

before 2pm. Till 9 am, the people have three destinations of node 7, 11 and 14. Then people will

arrive to board for second half and will have destination of nodes 7, 10 and 13. From 11 am to 2

pm, one person arrives every 20 second and from 3 pm to 5 pm, 3 people arrives every 20 second.

The boarding rate is 0 to 20 minutes and node 7 boards at 9 am, node 11 and 14 board at 10 am in

the first half. In the second half, node 10 boards at 2 pm, node 7 boards at 4 pm and node 13 boards

at 6 pm. In this way, we create a scenario in which in a single simulation run, during first half three

76

of the nodes have different boarding time and people arrive as per their destination. Similar case

occurs in second half but for different destination creating a complex scenario which might occur

in real system. In the Figure 4.13, we see that because of the complexity of the system, the output

is not as good as the previous simulation however the results of the particle filter show similar

pattern as the real system. We hope that the results for this kind of complex scenario can be

improved using our method of using observations to create particles directly.

Figure 4.13 Comparing results for sixth scenario

In this scenario, we run a simple case without any congestion to see how our model behaves

in a normal scenario without congestion. We set 70% destination to node 7 and rest to others, the

input rate is 1 person every 10 second and boarding starts at 10 am. There is no congestion to cause

block the entrance as in previous experiments. In Figure 4.14 below, we can see that the data

assimilation framework can predict the occupancy in node 7 with good accuracy. As such we show

that our model will work even if there is no congestion.

77

Figure 4.14 Comparing results for seventh scenario

4.4.3 Results for larger layout

This experiment analyzes the accuracy of the data assimilation model. We perform

experiment for a simulation time of 8 hours for 8000 agents where two nodes are the sources from

where the occupants enter the structure. The capacity of each room is 120 and the width of the

door is 25m. The input rate is 4 occupants per 10 secs for the first 4 hours and afterwards 3

occupants per 10 secs. 50% of the occupants have node 113 and node 195 as their primary

destinations (25% each) and rest agents will have randomly other nodes as their destinations. The

occupants after reaching their destination will have a boarding time which ranges from 0 to 40

minutes. Since the input rate is high during the first 4 hours, it creates congestion in the nodes 113

and 195 which propagates to their neighboring nodes. We run data assimilation with 300 particles

78

and sample every two minutes, i.e. 120 time steps. For this experiment the sensors are distributed

in every other node, so we will be using about half of the sensors compared with the total nodes.

We compare the results in every node and analyze the output of the data assimilation with the real

data. Since the number of nodes are high, we present output for only the nodes concerned with our

experiment (main destination and intersections). In this experiment, we use sensor noise with

standard deviation of 3.

We run simulations for 10 runs and average the results. In Figure 4.15 we can see the

comparison of the number of occupants in the nodes with the simulation time. We observe that the

output of the model follows the pattern as the real data.

Table 4.3 RMSE for using sensors in (a)half (b)1/3rd (c)1/5th of the nodes

In Table 4.3(a) we can find the average RMS of the nodes. We see that the minimum RMSE

is 2.27 and maximum is 27.93, also for the main destination 113 is 13.67 and for 195 is 15.68.

Considering a large number of agents, the RMSE of these values are acceptable for prediction.

 RMSE

Node

ID

 Min 2.27 193

Max 27.93 3

Average 7.478862

Dest 1 13.67 113

Dest 2 15.68 195

 RMSE

Node

ID

Min 2.77 72

Max 23.75 3

Average 7.67

Dest 1 14.39 113

Dest 2 17.96 195

 RMSE

Node

ID

Min 2.63 193

Max 22.48 114

Average 7.489

Dest 1 14.7 113

Dest 2 18.62 195

79

Figure 4.15 Data assimilation results in larger layout using sensors in half of the total

nodes

Figure 4.15 shows the distribution of occupants in the main destination nodes and their

neighbors across time. Blue circular dots represent the number of occupants in a real simulation,

and orange color represents the average number of occupants from the particle filter simulation.

The main nodes consist of the sensor, so the distribution of the occupants is almost accurate with

the real simulation. However, both the neighbors do not contain sensors, yet we can see that the

distribution of the occupants follows the same pattern as the real simulation. X-axis represents the

simulation time where 1 time steps are 120 seconds, and Y axis represents the number of

occupants.

In the next experiment, we run the simulation same as experiment 1 but we reduce the

number of sensors to 1/3rd of the nodes and also, we generate the sensors with some randomness.

We fix sensors in the main destinations, then for other nodes we randomly generate the sensors.

To maintain the distribution of sensors, we group the nodes so that the neighboring nodes are in

the same group. Then for each group, we generate sensors randomly. This will remove the

80

possibility of randomly generating sensors in only one area of the layout. The reason for keeping

a sensor in the main destination can be justified with the reason that we are trying to estimate the

occupancy distribution in all the nodes and not only the destination. We know that the congestion

will be caused by having most of the occupants going to selected destination, but we want to

estimate how it affects other nodes. As such it becomes important to correctly identify the

occupancy in the main destination first. Our graph based agent oriented model can identify the

distribution in other nodes using the particle filter even if there are no sensors there. However, as

the number of sensors reduces while the number of nodes increases, the degree of uncertainty

increases and error in prediction increases. From Table 4.3(b) we find that although we reduced

the sensors we have obtained acceptable the RMSE for the rooms. Also in Figure 4.16, we can

find the similar patterns of the average output of the occupancy distribution compared with the

real occupancy in the nodes of interest.

Figure 4.16 Data assimilation results in larger layout using sensors in 1/3rd of the total nodes

81

Next, we reduce the number of sensors to about 1/5th of the total number of nodes. Like the

previous experiment, we randomly select sensors in each of the group. From the graph in Figure

4.17, we observe that the output of the particle filter can model pattern of the occupancy

distribution in the real system. The result of the RMS as shown in Table 4.3(c) is also in acceptable

range.

Figure 4.17 Data assimilation results in larger layout using sensors in 1/5th of the total

nodes

In the next set of experiments, we analyze the result of the data assimilation model for

estimating occupancy dynamics in a building with a large number of nodes and occupants. We

perform an experiment for a simulation time of 8 hours for about 5500 agents where two nodes

are the sources from where the occupants enter the structure. The capacity of each room is 100,

and the width of the door is 25m. In the experiment, we create a scenario in which the occupants

have node 113 and node 195 as their primary destination in the first half. In the second half, the

occupants have node 113 and node 151 as their primary destination. Thus, we can observe two

congestions in node 113, and one congestion during first and second half on node 195 and 151

82

respectively. We create the congestion manually for some hours, after which the occupants will

have a boarding time which ranges from 0 to 25 minutes. We run data assimilation with 100

particles and sample every two minutes, i.e. 120 time steps. We gradually decrease the number of

sensors from half to one-third and one-fourth and present our results. We observe that we can get

good results even when we decrease the sensors. Thus, our model can get good results with limited

sensors as well. We compare the results in every node and analyze the output of the data

assimilation with the real data as graphs. In the figure, we show the result for the main destination

and their neighbors to observe the estimation for the congestion. We also show the root mean

square error for each of the simulations. The root mean square is calculated as average root mean

square for all of the nodes in each time step. We run simulations for five runs and average the

results. In all our results, we can estimate the congestion in the nodes. In node 152, we observe

that there is no congestion in real simulation but our model shows there is congestion, it is due to

the location of the node. In the real model, we use the shortest path algorithm, Dijkstra’s algorithm

from the graph based agent oriented model to generate the path. As such in the case of node 151,

due to the specific location, the occupants move only from the direction of one neighbor, node 150

and not from 152 since it is the shortest path from both sources. In all other nodes, the occupants

move from both the neighbors since the shortest path consists of each neighbor for each of the two

sources. As such, in the data assimilation, the model estimates that the congestion in a node has a

cause/effect to the neighboring nodes. In this work, we do not consider the errors in such nodes at

a specific location and leave it for future work.

We use sensors in half of the nodes manually and place the sensors in the destination nodes,

but there are no sensors in the neighboring nodes. We use 100 particles for data assimilation to

detect the congestion. We observe that we are able to detect the patterns of congestion in all the

83

nodes. In Figure 4.18 below, the blue graph represents the real simulation, and orange graph

represents the data assimilation estimation. X-axis represents the time step of the simulation and

Y-axis represents the actual number of occupants in the node. As in the real simulation, data

assimilation shows that in node 113 and it’s neighboring nodes there are two stages of congestion,

while in node 195, 151 and its neighboring nodes there are only one stage of congestion. The

congestion in node 152 is an estimation error due to the model which has been described

previously.

Figure 4.18 Data assimilation results using sensors in half of the nodes

For the next experiment, we run the simulation same as the previous scenario, but we

reduce the number of sensors to one-third of the nodes, and we generate the sensors with some

randomness. We fix sensors in the main destinations, then for other nodes we randomly generate

the sensors. To maintain the distribution of sensors across the building, we group the nodes so that

84

the neighboring nodes lie in the same group. Then for each group, we generate sensors randomly.

This will remove the possibility of randomly generating sensors in only one area of the layout. The

reason for keeping a sensor in the main destination can be justified with the reason that we are

trying to estimate the occupancy distribution in all the nodes and not only the destination. We

know that the congestion will be caused by having most of the occupants going to selected

destination, but we want to estimate how it affects other nodes. As such it becomes important to

identify the occupancy in the main destination first. Our graph based agent oriented model can

identify the distribution in other nodes using the particle filter even if there are no sensors there.

However, as the number of sensors reduces while the number of nodes increase, the degree of

uncertainty increases and error in prediction increases. In our model, we can maintain the error in

prediction low even by decreasing the sensors as shown in our results. In Figure 4.19, we can find

the similar patterns of the average output of the occupancy distribution compared with the real

occupancy in the nodes of interest and observe that the results are comparable with the simulation

using half of the sensors. We further try to reduce the sensors and observe if we can maintain the

estimation error.

85

Figure 4.19 Data assimilation results using sensors in one third of the nodes

Next, we reduce the number of sensors to about one fifth of the total number of nodes. Like

the previous experiment, we randomly select sensors in each of the group. From the average

results, we observe that the output of the particle filter is able to model the pattern of the occupancy

distribution similar to the real occupancy distribution. Hence, we can use sensors in just about one

fourth of the total nodes to estimate the occupancy dynamics using our model and achieve a good

estimation. The results are shown in Figure 4.20 below.

Figure 4.20 Data assimilation results using sensors in one fifth of the nodes

86

We compute the average root mean square error (RMSE) for each simulation by computing

the averages of RMSE for each node at each time step. In Figure 4.21 below, we can observe that

for all runs, RMSE increases and then decreases and again increases. It corresponds to the scenario

of the experiment with two congestion stages when the number of occupants increase, thus

increasing error. In Figure 4.21 the blue, orange and gray graph represents the result of using

sensors in half, one-third and one fourth of the nodes respectively. We observe that the average

RMSE remains almost the same even when decreasing the sensors. We also observe that the

average RMSE is slightly less for using sensors in half of the nodes than using in one-third which

is less than using in one-fourth of the nodes. This shows that error increases as we reduce the

number of sensors and would be much evident if we reduce the number of sensors drastically.

Figure 4.21 RMSE comparison using different number of sensors

4.4.4 Comparison of resampling using sensor data particles

In this section, we conduct an experiment using particles from sensor data and compare the

results with the standard resampling. As the number of agents increase, it becomes difficult for the

standard particles to converge with the true system state, and hence the prediction accuracy of the

particle filter decreases. For particle filters, it becomes difficult to converge in the case of events

87

which are rapid in nature. Events like congestion which occurs in short periods of time are difficult

to detect due to the lack of time to converge and complexity of the system. We would require really

large number of particles to properly detect occupancy in such scenarios. However, using the

particles from sensor data, we can maintain the accuracy since the sensor data obtained can help

the particles not diverge from the real state by a large margin.

To verify it, we increase the capacity of the room to 200, the length of the edge to 35m and

the number of occupants to about 16,000 so that the complexity of the model is increased and it

becomes difficult for the general data assimilation to detect the occupancy behavior. The task of

estimating an exact number of occupants is highly difficult at such complex system state hence we

focus on detecting congestion i.e. when there are very high number of occupants in a node. For

this, we can define a threshold value which defines the minimum number of occupants to create a

congestion situation. When a node contains more than that number of occupants, it is in a

congestion state. Using the identical twin experiment, we create a real system with congestion in

two nodes (Node 113 and 195) for some period and observe the congestion which propagates

across the neighboring nodes. We set up sensors in about half of the nodes and run both data

assimilation filters.

Figure 4.22 shows the result of comparison where blue graph represents the occupancy

from a real system, yellow from the standard resampling and red from the resampling using sensor

data particles. For convenience, we compare the results of the main destination nodes and their

neighboring nodes. We observe that the standard particle filter is not able to detect congestion in

time compared with the particle filter using sensor data. We create a 1/5th of the total standard

particles as a set of particles using sensor data and randomly select the sub-states from both sets

of particles. We see that in the node the neighboring nodes the standard resampling is slow to

88

detect congestion. However the resampling using particles from sensor data can predict congestion

(occupants more than half the capacity) at the same time as the real system.

Figure 4.22 Comparison of standard resampling with resampling using sensor data

particles with 200 particles

In the second experiment, we increase the size of the room to 400, edge size to 35 and use

about 9500 agents for a congestion simulation. Congestion are created in nodes 113 and 195 in

two stages and we use only 100 particles to detect the occupancy. Since the number of particles is

quite few, the occupancy is difficult to estimate using the standard bootstrap particle filter.

However, using our new algorithm we are able to estimate the occupancy pattern for the congestion

with the limited number of particles. Figure 4.23 shows the result of the comparison, here blue

graph is the occupancy from real simulation, orange graph is the simulation using the standard

particle filter and red graph is the result of data assimilation using direct sensor particles. We

observe the result of data assimilation using direct sensor data is much better than using the

standard particle filter. The standard particle filter is able to make some estimation for the main

89

destination nodes but is not able to estimate the occupancy for the neighboring nodes. However,

the data assimilation using direct sensor data is able to make good estimation for neighboring

nodes as well. As such, we see that the new algorithm is able to make good predictions utilizing

the direct sensor information and use few particles compared with the standard particle filter.

Figure 4.23 Comparison of standard resampling with resampling using sensor data with

100 particles

90

 TOWARDS ACTIVITY INFORMED DDDS FRAMEWORK

5.1 Case Study: A Smart Office Environment

We consider a smart office environment and plan to estimate the system state (e.g., density

and locations of people in the environment) from sensor data to support emergency response

planning for scenarios such as fire alarm and evacuation. To study the sensor data, we set up a

smart office environment at the Department of Computer Science at Georgia State University on

the 14th floor. It consisted of 20 TelosW static wireless sensor nodes (Figure 5.1(a)) deployed

throughout the 30 meter × 30 meter floor workplace environment. The sensors are fixed on the

ceiling and are triggered when a person walks under it, but it does not detect a person sitting

motionless under the sensor. The sensor nodes are deployed mainly in the hallways, key positions

like entry, exit, positions with high motion activities in workday like a conference room, printer

room, kitchen, busy lab. The nodes are equipped with Panasonic AMN-31111 PIR (passive

infrared) motion sensor. The detected motion data are sampled at 10 Hz when an event triggered

by motion. The base station collects the data through multi-hop communication (formed a 5-hop

network) and stored in a back-end database.

Figure 5.1 (a) Smart Office with sensors (b)Heat map based on sensor count in a week.

91

The data can be visualized in the form of a two-dimensional matrix, where the columns

denote sensors and the rows denote the time intervals. The time interval of the row is 100ms and

a duration of 2 seconds is typically observed for detecting a person crossing under a sensor. Figure

5.1(b) uses a heat map showing the sensor counts counting the activities on each sensor, based on

data collected for a consecutive week from morning 8 am to evening 20 pm. The data for each

node is counted, which provides the activity occurring at that node. In the heat map, brighter colors

indicate higher counts of occupancy. From the figure, clearly, node M99 (Kitchen) and

91(Conference) have the highest count followed by node M92 (Printer room).

By looking at the data from the sensor network, we can identify regions with various

densities of activities. For example, a region where a meeting is going to take place will record a

high number of activities for that duration. The hallways leading to that region of high activity will

also record a high-density corresponding for the entering and exit of the people. When the meeting

is over, the people will leave the meeting room and may go to a cafe or their respective rooms.

This behavior pattern will lead to reduced activity in the conference room and increased activity

in the cafe and other office rooms. Hence, we will have activities depending on time and space.

By understanding this spatial and temporal relationships, we can develop a model to represent

human behaviors in space and time, and then recognize the “current” behavior patterns from real-

time sensor data.

5.2 Activity informed DDDS framework

In this section, we discuss a new Data Driven Dynamic simulation framework for smart

environment known as activity-informed DDDS framework. A dynamic data driven simulation

(DDDS) is a model where the real-time data streams continually influence a simulation system for

better analysis and prediction of a system under study [41]. A major task of DDDS is data

92

assimilation that assimilates sensor data collected from the real system into the simulation model.

Typically, the real system’s states, which change over time, cannot be directly observed and is

unknown to the simulation model. This makes the simulation start from a state different from the

state of the real system, leading to inaccurate simulation results. Thus, there is a need to

dynamically estimate the “current” state of the real system and then feed the estimated states to

the simulation model. This is achieved through data assimilation that assimilates real-time sensor

data for inference of the “current” system state. In this work, we present a framework that adds a

new layer of behavior pattern recognition from sensor activities on the top of data assimilation and

uses the recognized behavior pattern to inform the simulation model. Figure 5.2 shows this

activity-informed DDDS framework. As it can be seen, at the bottom layer is data assimilation of

the simulation model. The data assimilation uses real-time sensor data and the simulation model

to infer the state of the system and to tune the model parameters in real-time.

Figure 5.2 Activity-informed DDDS framework.

On top of data assimilation is the activity identification and behavior pattern recognition

layer. In this work, we propose to use Hidden Markov Model (HMM) [42] and extensions of HMM

for the task of behavior pattern recognition from spatial-temporal sensor activities. HMM is

defined as quintuple (S, E, P, A, B), where S = {S1…SN} are the values for the hidden states, E =

R
e
a
l
S

y
s
te

m
 Hidden Markov

Model (HMM)

Simulation Model

behavior patterns

activity

identification

re
a
l
ti
m

e
 d

a
ta

data

assimilation

s
e
n
s
o
rs

historical

data

Model training/learning

93

{O1…OT} are the values for the observations, P is a probability distribution of the initial state, A is

the transition probability matrix, and B is the emission probability matrix. HMM is used to

recognize events/patterns in many different applications ([43] [44] [45]). In our framework, HMM

supports behavior pattern recognition from real-time sensor data and outputs the recognized

behavior patterns to the simulation model to inform the latter for a better simulation. Figure 5.2

also shows that the HMM needs to be trained from historical data before it can be used in real time

for behavior pattern recognition.

This framework separates the two layers that have different concerns: the simulation model

captures the low-level dynamics of the system behavior, and the HMM recognizes the high level

“behavior pattern” to inform the simulation model. In the next section, we focus on the behavior

pattern recognition layer and use a smart office environment as the application context to show

how to recognize behavior patterns form spatial-temporal sensor data using HMM.

5.3 Agent based model for building occupancy

In this section, we present our agent based model designed for simulating a smart office

environment. Agent based model simulates each occupant as an agent and thus allows us to observe

emergent behaviors due to agents’ interactions. Agents can be given properties as of an actual

occupant and allowed to interact in an environment consisting of obstacles like walls, doors, and

path like stairs, doors. Thus, the agent will behave based on their property in a given environment

at various kind of situations and generate occupancy dynamics. The model runs in a stepwise

fashion and models individual occupants’ moving behavior of navigation and collision avoidance.

In this work, we develop a relatively simple agent based simulation model and use it to model a

small smart office and a relatively larger shopping mall building structure. Figure 5.3(a) shows a

layout of a smart office with a conference room, break room, copier room and a reception office.

94

Blue lines represent the walls, and black points represent the way points described later. Figure

5.3(b) shows a layout of a shopping mall with the single intersection. The black dots are the agents

who represent the occupants moving across the mall. There is only one intersection, and since

everyone uses the same intersection, there is a crowd formation when many people pass through

it. Using agent based model we can observe the formation of crowd behavior in the environment

at a detailed level.

Each agent is modeled to have two basic behaviors which a general moving occupant

display in the real world: get to destination and avoidance. The agents display behavior-based

control mechanism, in which the agent may choose to select a behavior matching current world

condition to conflict resolution when there are competing alternatives [36]. The first behavior

allows the agent to navigate to a given destination by generating a preplanned route from the

current location to the destination. The agent follows the path until they reach the destination, after

which they may be made to go to the new destination or stay there. The avoidance behavior enables

an agent to avoid collision or blockade with another agent or an obstacle. It does so by following

three properties: the first it keeps a certain comfortable distance with its neighbor agents. If an

agent finds another agents or obstacle near its comfortable radius, it will move to a comfortable

distance away from it. Second, if an agent’s path is blocked, it moves sideways to generate an open

path. Third, the agent may generate a new route to the destination if its current route is blocked.

An agent can be formally defined as {l, v} where l is the coordinate location of the agent

and v is the velocity. An agent generates its route to the destination using a predefined waypoint

graph in the environment. The graph is created in such a way that for any position in the

environment floor map, a path can be generated to a point in the graph, known as a way point,

without crossing any obstacles. The way points are set at every intersection and rooms so that each

95

location can generate the shortest path to it. Then the agent can follow the waypoint graph

connections to reach any destination. Thus, waypoint graph allows the model to connect every

coordinate of the environment. In Figure 5.3(a), a layout is shown for a smart office where black

circles represent points and lines between them represent the connectivity among the way points.

An agent will compute the shortest path between its source and destination through the waypoint

graph. The route of the agent consists of series of way points, and an agents’ moving direction is

determined based on its current location and the next route point. Formally, the waypoint graph

can be defined as a vertex edge graph G = {V, E, D} where V, E, D are the sets of vertices, edges,

and distance of edges respectively.

Figure 5.3 (a) Office layout with waypoint graph (b) A shopping mall layout with agents

The environment consists of a sensor which is modeled as a binary passive infrared sensor.

The sensor can detect the number of people moving through its range, which is a circle of

predefined radius. It is a basic sensor and can only detect if there is any motion across its range.

The output is binary, 1 for a detection and 0 for no detection in a sample step. Thus, it is unable to

identify if multiple people pass through its range since it will be 1 for any detection. The sensors

96

are assumed to be mounted at ceilings and placed at places where people mostly move, like

intersections, entrances and exits of the room. The reason for choosing binary sensors is their cheap

cost and non-invasive nature in areas like an office.

Using the model, we can simulate smart environments with few occupants like an office,

home or hospitals. The model allows occupants to move across the rooms thus simulating various

activities that occur in those environments. The sensors collect the real-time information from the

environment which can be used in data assimilation framework for dynamic estimation of

occupancy.

5.4 Behavior patterns of occupants in a building

We apply behavior pattern detection to a smart office case study example. The case study

example, in this section, focuses only on the behavior pattern detection using Hidden Markov

Models (HMM) [51]. The HMM is a statistical Markov model in which the hidden system states

are predicted based on the visible outputs. The advantage of HMM is that it can learn the

parameters from the historical data and use it for state estimation in future. In this case study, we

create a smart office environment using the agent-based model [52]. With the agent-based

simulation model, we can easily create some occupants and create different scenarios. We are

interested in a scenario of a conference event when agents move inside the conference room to

start the conference and then move outside the conference room when it ends. The smart office

environment is deployed with simple binary sensors that report 1 if an occupant enters its sensing

area and reports 0 otherwise. The binary sensor provides anonymous position information and

cannot identify multiple occupants in its sensing area. The data collected by the sensor contains

errors and is subject to environment clutter.

97

In this work, we focus on correctly identifying the behavior patterns in real time. Sensor

data are collected from the binary sensors and HMM is used to identify the behavior pattern states

during a conference. The binary motion sensors are placed at the doors to capture the motion and

are triggered only when users pass through their range. To use the HMM model, first we need to

train the model to recognize the observations. For that we learn the HMM parameters from the

historical data. We train the HMM for several scenarios (with data generated from simulations) of

a general conference and learn the HMM parameters. We then use the trained HMM to estimate

the behavior patterns in new scenarios.

To create training dataset, we create all the possible scenarios concerning the conference

room where the users attend the conference. For a system consisting of an environment like a

conference room, the behavior pattern will be behaviors like “entering the conference room”,

“leaving the room”, “attending the conference”. The observational data are the real-time data

from the binary motion sensors. The behavior pattern is the states of the real system which are

reflected by the sensor observations. For our experiment, we consider six different behavior

patterns (a state represents each in HMM): outside, inconference, few_entering, high_entering,

few_leaving and high_leaving. The state outside represents the behavior pattern when there is no

conference so that all the occupants are outside the conference room, the state inconference

represents the behavior pattern when the occupants are inside the conference room for attending

conference. The state few_entering represents the behavior pattern for a small number of occupants

entering the conference room and high_entering represents a large number of occupants entering

the conference room. Similarly, low_leaving and high_leaving represents the behavior patterns

when a small and large numbers of occupants leave the conference room, respectively.

98

It is a challenging task to extract high-level information like behavior patterns directly from

binary sensor data. So, as a pre-processing, we check the triggered rate of the sensors for a fixed

sample period. For the experiment, we used a sample of 15 time steps and based on the amount of

sensor triggered rate during that time sample, assign sensor data for each sample according to three

values: zero sensor count, low sensor count, and high sensor count. Zero sensor count is the result

of either when there is no conference so no occupants are entering/leaving the room or when the

conference is happening so all users are seated inside the room. Low sensor count is the result of

a small number of occupants (about one or two) entering or leaving the room. High sensor count

is the result of either at the beginning or ending of the conference as the majority occupants enter

or leave the conference room at the same time. At the beginning and end of a conference, most the

occupants enter and leave the room, but during the conference, they do not move so no sensor is

triggered.

99

Table 5.1 Initial probability for HMM

Table 5.2 Emission probability for HMM

We select some training data from historical sensor data and use the Baum-Welch

algorithm to learn the HMM parameters [53]. Then in real time, we used the learned HMM to

predict the maximum likelihood of each state based on the real-time sensor data. The state with

the maximum probability estimates the behavior of the system. We can estimate the probability of

each state to represent the possibility of each behavior pattern at the current time based on the

observation. We utilize this information to predict a behavior pattern of the real system. Table 5.1

shows the initial state probability for each of the states and Table 5.2 shows the emission

probability used for HMM computation. Figure 5.4 shows the learned state graph and shows the

transition probability between the states. With the learned HMM, we then use it to predict the

behavior pattern of new scenarios. Several scenarios have been used to test the HMM, including

one when all occupants attend a conference and leave at the end, and one when a few occupants

States Initial Probability

outside 0.99

few_entering 0.002

high_entering 0.002

inconference 0.002

few_leaving 0.002

high_leaving 0.002

Behavior

States

Emission probability

O(Zero) O(Low) O(High)

outside 0.90 0.05 0.05

few_entering 0 1 0

high_entering 0.024 0.976 0

inconference 0.90 0.05 0.05

few_leaving 0 0.053 0.947

high_leaving 0 0.053 0.947

100

enter the conference room to check if there is a conference and leave the room as the room is

empty.

Figure 5.4 Behavior pattern states transition probability for HMM

Figure 5.5 a) Sensor frequency data (b) Comparing the real and predicted behavior (c)

Normalized probability for the behavior pattern in real time

se
n

so
r

fr
eq

u
en

cy
 t

yp
es

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

outside few_entering few_leaving

conference high_entering high_leaving

0

1

2

3

4

5

0 50 100 150 200 250 300

Real Behavior

Predicted States

0

1

2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

S e n s o r F r e q u e n c y

p
ro

b
ab

il
it

y
b
eh

av
io

r

p
at

te
rn

 s
ta

te
s

se
n
so

r

fr
eq

u
en

cy
 t

y
p
es

0: outside 1: few_entering 2: few_leaving

3: conference 4: high_entering 5: high_leaving

0: Zero 1: Low 2: High

(a)

(b)

(c) time

time

time

 Sensor frequency

Real behavior

Predicted States

outside

inconference

0.991

few_entering

high_entering

few_leaving

high_leaving

0.008

0.009

0.91

0.045

0.072

0.045

0.009

0.992

0.008

0.01

0.1

0.001

0.33

0.33

0.023

0.34

0.966

0.91

101

We can compute the maximum likelihood probability for each time step and predict the

current behavior pattern as shown in Figure 5.5(b). In the figure, the blue line represents the real

behavior of the state, and the red line represents the estimated behavior of the system using HMM.

The estimation is done in the real time when the sensor data is received. We can see that we could

correctly estimate the behavior of the conference scenario and distinguish the conference state

from the outside state, even though both of them give the observation of zero sensor count. Figure

5.5(c) shows the normalized relative probability for the different states in real time. As can be seen,

the probabilities for the conference state and the outside state dominate during the conference time

and the outside time, respectively.

The experiment aims at evaluating the possibility of detecting behavior patterns from the

sensor data, and the evaluation of the accuracy is calculated as:

T

SS real

t

T

k

k

t



1

 (5.1)

where, T is the total simulation steps and S is the behavior pattern state.

Table 5.3 shows the average accuracy for recognizing the behaviors from the observed

sensor data using HMM. We assume that the behavior states always start from all users outside

the conference room. From the results, we see that we have a good accuracy for recognizing the

behavior patterns from the noisy sensor data in the real time. The accuracy for behavior pattern

few_entering is low because the occurrence of that behavior is very low compared to other

behavior patterns.

102

Table 5.3 Average accuracy for behaviors

For this example, the behavior pattern when there is a conference or no conference is

successfully recognized with high accuracy. The information of relative probability as shown in

Figure 5.5(c) can be used by the data assimilation component for improving state estimation as

discussed in the behavior pattern informed data assimilation framework.

We recognized the behavior patterns of a system from sensor data in real time that can

provide useful information to improve particle filter-based data assimilation. A framework of

behavior pattern informed data assimilation has been presented and a smart office case study

example is shown as how the behavior pattern detection works.

5.5 Behavior Pattern Recognition using Coupled HMM

Within the application context of the smart office environment, this section uses a simple

example to show how to recognize behavior pattern from spatial-temporal sensor data using

Coupled HMM (CHMM) [46]. We consider a simplified smart office environment that has a

conference room and a cafeteria room connected by a hallway, as shown in Figure 5.6. People

attend the meeting in the conference room and go to the cafeteria during breaks. Suppose the three

places have binary sensors that capture the motions of the people. We can say that during the

Behavior State Average Accuracy

outside
85.53

inconference
90.44

few_entering 18.40

high_leaving 75.01

few_leaving 63.35

high_leaving 71.07

103

breaks, there will be more counts in the cafeteria and increased counts across the hallway during

start and end of the break. At other times, more counts will be in the conference room. Also at each

location, the sensor activities will depend on various events like the start of the conference, short

breaks, change of speakers, end of conference and others.

Figure 5.6 A simple example of a smart office environment consisting of a conference

room and cafeteria connected by a hallway.

Since the activity consists of people moving across the rooms at various time intervals, we

can assume that each room exhibits the Markov property in the temporal domain. Then we can

create a single HMM for each room based on the observation of the sensor data. Observing each

spatial location separately, a localized model can be achieved by creating a single HMM for each

room separately. Figure 5.7(a) illustrates an HMM for the conference room.

Sa1t

Sa2t

Sa3t

Sant

Sa1t+1

Sa2t+1

Sa3t+1

Sant+1

Sa2T

Sa3T

SanT

Sa1T

Figure 5.7 (a) HMM for each location (b) A single path through an n-state HMM

In Figure 5.7(a), the circles represent the states. The shaded circles are the observed states

and others are hidden one. The hidden states correspond to the activity of each location. Figure

5.7(b) shows a detail representation of a conventional HMM for a location with n states. The

straight line shows the transitional probability and represents the hidden states selected for each

104

time step. For example, the states of a conference room may be begin_conference,

having_conference, short_break, end_conference, etc. Similarly, the cafeteria may have states like

empty, break_time, etc. These states will differ according to the time period and will also have

relation with the neighboring locations. Using the HMM for each spatial location, we can capture

the temporal behavior pattern relationships within each location. Incorporating the temporal

information will enable the detection of behavior pattern with varying temporal transitions.

As discussed before, there is also a dependency between different places. When a person

moves from one place to another, the neighboring places of the source exhibit certain activity

pattern. For example, in Figure 5.6, during the break when people go to cafeteria from conference

room, they go through the hallway. Thus, the flow of motion will show a certain pattern from the

conference room to the hallway and then to the cafeteria. This means the sensor activity will have

a strong correlation within the spatially neighboring regions. The sensor activity in a place will

have relationships with the activities in close proximity regions. We can model this strong

relationship between spatially neighboring regions to account for the activity relationship over

space. In this paper, we choose to use coupled Hidden Markov Model to capture this correlation

behavior of the neighboring regions.

Figure 5.8(a) shows a coupled Hidden Markov Model (CHMM) that captures the

relationship between the activity occurring in the conference room, hallway and cafeteria. In the

figure, Sa, Sb, and Sc represent the states of the conference room, hallway, and cafeteria

respectively. The solid straight lines represent the transition probabilities for states corresponding

to one location, and the dashed lines represent the coupling probabilities affecting the states

between different locations. Figure 5.8(b) shows the detailed model and displays a single path for

two locations where location a has three states and location b has four states. The coupled HMM

105

captures the spatial-temporal correlation between the neighboring locations. It can be trained to

help recognize the behavior patterns from sensor data.

Sat

Sbt

Sct

Sat+1

Oat

Sct+1

Sat+1

Oat+1

Obt

Obt

Obt+1

Oct+1

HMM for

location a

HMM for

location b

Figure 5.8 (a) CHMM for 3 locations (b) Detail CHMM for location a having 3 states

and location b having 4 states

The posterior of a state sequence through the coupled HMM of two locations a and b can

be obtained by using equation by Brand [46] as follows:

)|()|(
)(

)|()|(
)|(

1111

11

|||

2

|

1111

t

b

tt

a

tabbabb

T

t

aa

b

b

a

a
bOPaOPPPPP

OP

bOPaOP
OSP

tttttttt 





 (5.1)

where 𝜋𝑎1
and

1b are the initial probabilities of states,
1| tt aaP and

1| tt bbP are the inner-state

transition probabilities,
1| tt baP and

1| tt abP are the coupling probabilities modeling the interactions

between two HMMs,)|()|(t

b

tt

a

t bOPaOP are the output probabilities of the states. From the

observed data, we need to find a state sequence S, which maximizes P(S|O). For each state, we

need to compute both the inner-chain transition and coupling probabilities and using in equation

(1) outputs the best state sequence S which involves recognized activity state sequences Sa for

location a and Sb for location b. We can expand equation 5.1 for more than two locations, thus

modeling the spatial-temporal relationship for activities in the environment.

106

Specifically, we follow the CHMM model used by [47] to carry out behavior pattern

recognition. We develop an HMM for each of conference room, hallway, and cafeteria, and

establish couplings between the three HMMs. We consider our model as a special case of dynamic

Bayesian networks and consider each stream of an HMM as a continuous mixture. For the learning

process of CHMM, the parameters can be defined as follows:

)()(iqPi c

t

c

o  (5.2)

)|()(iqOPib c

t

c

t

c

t  (5.3)

)//|()(1,,| lkjqqPia c

t

c

t

c

lkji   (5.4)

where c

tq denotes the state of the coupled node for the location c at time t,)(ic

o is the initial

state probability,)(ib c

t is the observation probability and)(,,| ia c

lkji is the transition probability for

cth location at time t for the transition from state j, k and l state of other locations to state i .

The observation probability for Gaussian mixture components [48] is given by

)),,(()(,,

1

,

c

mi

c

mi

c

t

M

m

c

mi

c

t UONwib

c
i




 (5.5)

where c

mi , and c

miU , represents the mean and covariance matrix of the ith state of the coupled

node with mth component of the associated mixture node in the cth channel, c

tM is the number of

mixtures and c

miw , represents the conditional probability iqmsP c

t

c

t  |() when c

ts is the

component of the mixture node in the cth stream at time t. In the training phase, for each training

observation sequence r, the data in the stream is managed according to the number of states of

coupled node. A K-means algorithm [49] with c

iM clusters can be used to determine a sequence

of mixture components for each stream.

The new parameters of the model can be estimated as:

107

),(

),(

,,

,,,

,
mi

Omi
c

trtr

c

tr

c

trtrc

mi








 (5.6)

),(

))()(,(

,,

,,,,,,

,
mi

OOmi
U

c

trtr

Tc

mi

c

tr

c

mi

c

tr

c

trtrc

mi







 (5.7)

)',(

),(

,',

,,

,
mi

mi
w

c

trmtr

c

trtrc

mi







 (5.8)

),,,(

),,,(

,,

,,

,,|
lkji

lkji
a

c

trlkjtr

c

trtrc

lkji







 (5.9)

where,



 


otherwise

msiqif
mi

c

tr

c

trc

tr
,0

,,1
),(,,

, (5.10)



 

 

otherwise

lkjqiqif
lkji

c

tr

c

trc

tr
,0

//,,1
),,,(1,,

, (5.11)

),|(max
....1, miqOPs c

t

c

tMm

c

tr c
i




 (5.12)

For finding the hidden states, we can use the Viterbi algorithm [50] for the CHMM as

below:

Initialization:

0),,(

)()()()()()(),,(

0

0000





kji

kbjbibkjikji C

t

B

t

A

t

CBA




 (5.13)

Recursion:

}),,({maxarg),,(

)()()(}),,({max),,(

,,|,,|,,|1,,

,,|,,|,,|1,,

nmlknmlinmlitnmlt

C

t

B

t

A

tnmlknmlinmlitnmlt

aaanmlkji

nbmblbaaanmlkji












 (5.14)

Termination:

),,({maxarg},,{

),,({max

,,

,,

kjiqqq

kjiP

Tkji

C

T

B

T

A

T

Tkji








 (5.15)

108

Backtracking:

),,(},,{ 1111

C

t

B

t

A

tt

C

T

B

T

A

T qqqqqq  (5.16)

where
C

T

B

T

A

T qqq ,, represents the hidden states for each of the HMMs recognized during

backtracking step of the Viterbi algorithm.

Recognizing the behavior patterns of a system from sensor data in real time can inform a

simulation model for more accurate simulations of the system under study. In this work we propose

an activity-informed dynamic data driven simulation framework and focus on behavior pattern

recognition from sensor data that reflect the spatial-temporal activities of the system. We can use

coupled HMM to carry out behavior pattern recognition and apply it to a smart office environment

example.

109

CONCLUSION

This dissertation makes an important contribution in building occupancy simulation. The

graph based agent oriented model is efficient in modeling a large number of occupants in any kind

of building. It improves the performance of simulating a large number of occupants by representing

only the basic features of the agents. In a crowd, an agent’s behavior is limited by the factor that

their free movement is restricted due to congestion and all the people need to move at the same

speed. As such, omitting the unnecessary features can conserve resource and improve performance

highly. In our model, we use only the required features like moving, staying or waiting and add

other features on top of it when required. We model the basic occupancy dynamics using

mathematical models like queuing theory and flow model and were able to obtain the same

occupancy behavior as other existing models while improving the performance.

The graph-based agent-oriented model takes a significant leap to build models which

require a large number of agents because rather than relying on a singular model, it synthesizes

two popular methods of agent and graph-based. Such an amalgamation promises added benefits to

any model that initiates from the technique that we follow because one of the primary goals of our

model is also to avoid the limitations of existing models. The model can be applied not only to

building occupancy simulation, but also where a large number of agents need to be modeled for

analyzing their emergent behaviors. In our experiments, we could simulate a large number of

agents and yet observe the behavior developed by the individuality of agents. In our future work,

we plan to compare and validate our model with the existing works and real scenarios. We also

plan to analyze the level of complexity we can simulate as we increase the number of agents.

We used data assimilation for real-time estimation using observations from sensor data.

Video sensors we used which allowed us to get information like occupancy count and flow in the

110

rooms. We use Sequential Monte Carlo method, also known as Particle Filters as our data

assimilation algorithm. SMC method is suitable for a nonlinear, non-Gaussian and non-analytical

model like graph based agent oriented where occupants may exhibit emergent behaviors based on

their individual property. We developed data assimilation framework which assimilates the sensor

data with the graph based agent oriented model using SMC algorithm. PF consists of particles each

of which represents a possible system state with some weight. In each iteration, new particles are

generated and are resampled based on weight.

To reduce the computational cost of data assimilation and improve the performance, we

set the state size minimal and consider only the node information. This significantly reduces the

computational cost since number of nodes is quite less compared to number of agents which might

in number of thousands. The graph based agent oriented model is in-itself a computationally cheap

model. Thus, the overall data assimilation framework is also efficient and much faster than the

existing real-time agent based models. We ran experiments for two different layouts of buildings

for a various number of occupants in various scenarios. All the scenarios consist of congestion,

and we could accurately estimate the congestion in real-time. We reduced the number of nodes

having a sensor and still maintained the accuracy of estimation. We also developed a new data

assimilation framework which creates particles from the available sensor data to improve the

existing particles.

In this dissertation, we also presented other works done in building occupancy simulation.

We developed an agent based model for simulating smart office environment. The model is

appropriate for the environment with few number of occupants. We also used Hidden Markov

Model to estimate behavior patterns of smart office environment by training from historical data.

We have also presented a coupled HMM framework for utilizing the learned behavior pattern in

111

dynamic data driven simulation. It will allow to make a real-time estimation of the simulation and

provide a higher-level information to data assimilation in improving the performance. We also

developed a hybrid model which allows pure agents in areas where it is important to observe

emergent behaviors.

Several future research exist for the continuation of the current work. The graph based

agent oriented model may be used in other applications where agents are computationally

expensive like traffic, boids simulation, etc. Various learning methods may be applied to the sensor

data to analyze occupancy patterns. These learned properties can be used to improve the

performance of data assimilation. In this work, we used only one sensor, however, more than one

sensor might be available in buildings which can provide various kinds of information. We can

develop an appropriate framework to assimilate different kinds of sensor data. Another remaining

work is to validate the model in a real system with real sensor data.

112

REFERENCES

[1] E. D. Kuligowski, R. D. Peacock, and B. L. Hoskins, A review of building evacuation

models. US Department of Commerce, National Institute of Standards and Technology

Gaithersburg, MD, 2005.

[2] I. Gaetani, P.-J. Hoes, and J. L. M. Hensen, “Occupant behavior in building energy

simulation: Towards a fit-for-purpose modeling strategy,” Energy Build., vol. 121, pp. 188–

204, Jun. 2016.

[3] C. Wang, D. Yan, and Y. Jiang, “A novel approach for building occupancy simulation,”

Build. Simul., vol. 4, no. 2, pp. 149–167, Jun. 2011.

[4] C. M. Macal and M. J. North, “Agent-based Modeling and Simulation,” in Winter

Simulation Conference, Austin, Texas, 2009, pp. 86–98.

[5] G. Franz, H. A. Mallot, and J. M. Wiener, “Graph-based Models of Space in Architecture

and Cognitive Science – a Comparative Analysis,” in Proceedings of the 17th International

Conference on Systems Research, Informatics and Cybernetics (intersymp‘2005),

Architecture, Engineering and Construction of Built Environments, Pages 30–38. the

International Institute for Advanced Studies in System R, 2005, pp. 30–38.

[6] F. Bouttier and P. Courtier, “Data assimilation concepts and methods March 1999,”

Meteorol. Train. Course Lect. Ser. ECMWF, 2002.

[7] C. Rottondi, M. Duchon, D. Koss, G. Verticale, and B. Schätz, “An energy management

system for a smart office environment,” in 2015 International Conference and Workshops on

Networked Systems (NetSys), 2015, pp. 1–6.

[8] M. Green, Building Codes for Existing and Historic Buildings. John Wiley & Sons, 2011.

[9] N. Gilbert, Agent-Based Models. SAGE, 2008.

113

[10] J. Hutchins, A. Ihler, and P. Smyth, “Modeling Count Data from Multiple Sensors: A

Building Occupancy Model,” in 2nd IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007, 2007, pp. 241–244.

[11] K. P. Lam et al., “Occupancy detection through an extensive environmental sensor network

in an open-plan office building,” in Proc. of Building Simulation 09, an IBPSA Conference,

2009.

[12] S. Rai and X. Hu, “Behavior Pattern Detection for Data Assimilation in Agent-Based

Simulation of Smart Environments,” in 2013 IEEE/WIC/ACM International Joint Conferences

on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013, vol. 2, pp. 171–178.

[13] A. Doucet, N. de Freitas, and N. Gordon, “An Introduction to Sequential Monte Carlo

Methods,” in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N.

Gordon, Eds. Springer New York, 2001, pp. 3–14.

[14] X. Feng, D. Yan, and T. Hong, “Simulation of occupancy in buildings,” Energy Build., vol.

87, pp. 348–359, Jan. 2015.

[15] M. Maasoumy, “Estimation of Occupancy Distribution in Buildings,” Univ. Calif.

Berkeley, 2009.

[16] D. Cook and S. Das, Smart Environments: Technology, Protocols and Applications (Wiley

Series on Parallel and Distributed Computing). Wiley-Interscience, 2004.

[17] S. Bandini, F. Rubagotti, G. Vizzari, and K. Shimura, “An Agent Model of Pedestrian and

Group Dynamics: Experiments on Group Cohesion,” in AI*IA 2011: Artificial Intelligence

Around Man and Beyond, R. Pirrone and F. Sorbello, Eds. Springer Berlin Heidelberg, 2011,

pp. 104–116.

114

[18] O. Beltaief, S. E. Hadouaj, and K. Ghedira, “Multi-agent simulation model of pedestrians

crowd based on psychological theories,” in 2011 4th International Conference on Logistics,

2011, pp. 150–156.

[19] B. Banerjee, A. Abukmail, and L. Kraemer, “Advancing the Layered Approach to Agent-

Based Crowd Simulation,” in 22nd Workshop on Principles of Advanced and Distributed

Simulation, 2008. PADS ’08, 2008, pp. 185–192.

[20] Q. Qin and J. Wei, “An agent-based approach for crowd dynamics simulation,” in 2010

IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), 2010,

vol. 2, pp. 78–82.

[21] T.-S. Shen, “ESM: a building evacuation simulation model,” Build. Environ., vol. 40, no.

5, pp. 671–680, May 2005.

[22] R. Tomastik, S. Narayanan, A. Banaszuk, and S. Meyn, “Model-Based Real-Time

Estimation of Building Occupancy During Emergency Egress,” in Pedestrian and Evacuation

Dynamics 2008, W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg,

Eds. Springer Berlin Heidelberg, 2010, pp. 215–224.

[23] Lidi Huang, Deming Liu, and Yongyi Zhang, “Dynamics-Based Stranded-Crowd Model

for Evacuation in Building Bottlenecks,” Math. Probl. Eng., pp. 1–7, Jan. 2013.

[24] V. Garg and N. K. Bansal, “Smart occupancy sensors to reduce energy consumption,”

Energy Build., vol. 32, no. 1, pp. 81–87, Jun. 2000.

[25] Z. Yang, N. Li, B. Becerik-Gerber, and M. Orosz, “A Multi-sensor Based Occupancy

Estimation Model for Supporting Demand Driven HVAC Operations,” in Proceedings of the

2012 Symposium on Simulation for Architecture and Urban Design, San Diego, CA, USA,

2012, p. 2:1–2:8.

115

[26] D. De, W. Z. Song, M. Xu, C. L. Wang, D. Cook, and X. Huo, “FindingHuMo: Real-Time

Tracking of Motion Trajectories from Anonymous Binary Sensing in Smart Environments,”

in 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS),

2012, pp. 163–172.

[27] N. Bei, B. de Foy, W. Lei, M. Zavala, and L. T. Molina, “Using 3DVAR data assimilation

system to improve ozone simulations in the Mexico City basin,” Atmospheric Chem. Phys.,

vol. 8, no. 24, pp. 7353–7366, Dec. 2008.

[28] J. Wilkin, J. Zavala-Garay, J. Levin, and W. G. Zhang, “Four-Dimensional Variational

Assimilation of Satellite Temperature and Sea Level Data in the Coastal Ocean and Adjacent

Deep Sea,” in IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing

Symposium, 2008, vol. 3, p. III-427-III-430.

[29] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, 2nd ed. Upper Saddle River,

N.J: Prentice Hall Information and, 2000.

[30] C. Antoniou, M. Ben-Akiva, and H. N. Koutsopoulos, “Nonlinear Kalman Filtering

Algorithms for On-Line Calibration of Dynamic Traffic Assignment Models,” IEEE Trans.

Intell. Transp. Syst., vol. 8, no. 4, pp. 661–670, Dec. 2007.

[31] H. Xue, F. Gu, and X. Hu, “Data Assimilation Using Sequential Monte Carlo Methods in

Wildfire Spread Simulation,” ACM Trans Model Comput Simul, vol. 22, no. 4, p. 23:1–23:25,

Nov. 2012.

[32] F. Gustafsson et al., “Particle filters for positioning, navigation, and tracking,” IEEE Trans.

Signal Process., vol. 50, no. 2, pp. 425–437, Feb. 2002.

[33] J. Zhang, R. Chen, C. Tang, and J. Liang, “Origin of scaling behavior of protein packing

density,” J. Chem. Phys., vol. 118, no. 13, pp. 6102–6109, Apr. 2003.

116

[34] T. Chen, J. Morris, and E. Martin, “Dynamic data rectification using particle filters,”

Comput. Chem. Eng., vol. 32, no. 3, pp. 451–462, Mar. 2008.

[35] M. Wang and X. Hu, “Data Assimilation in Agent Based Simulation of Smart

Environment,” in Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation, New York, NY, USA, 2013, pp. 379–384.

[36] R. Aylett and M. Cavazza, “Intelligent Virtual Environments-A state-of-the-art report,”

Proc. Eurographics 2001 STARs, vol. 3, 2001.

[37] J. J. Fruin, Pedestrian planning and design. Metropolitan Association of Urban Designers

and Environmental Planners, 1971.

[38] K. Ando, H. Ota, and T. Oki, “Forecasting the Flow of People,” Railw. Res. Rev., vol. 45,

pp. 8–14.

[39] R. H. Reichle, “Data assimilation methods in the Earth sciences,” Adv. Water Resour., vol.

31, no. 11, pp. 1411–1418, Nov. 2008.

[40] W. A. Lahoz and P. Schneider, “Data assimilation: making sense of Earth Observation,”

Front. Environ. Sci., vol. 2, May 2014.

[41] X. Hu, “Dynamic data driven simulation,” SCS MS Mag., vol. 1, pp. 16–22, 2011.

[42] L. Rabiner and B. Juang, “An introduction to hidden Markov models,” IEEE ASSP Mag.,

vol. 3, no. 1, pp. 4–16, Jan. 1986.

[43] W. A. Hoff and J. W. Howard, “Activity Recognition in a Dense Sensor Network.,” in

SNA, 2009, pp. 67–72.

[44] L. Kratz and K. Nishino, “Anomaly detection in extremely crowded scenes using spatio-

temporal motion pattern models,” in Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, 2009, pp. 1446–1453.

117

[45] L. Wang, T. Gu, X. Tao, and J. Lu, “Sensor-Based Human Activity Recognition in a Multi-

user Scenario,” in Ambient Intelligence, M. Tscheligi, B. de Ruyter, P. Markopoulus, R.

Wichert, T. Mirlacher, A. Meschterjakov, and W. Reitberger, Eds. Springer Berlin Heidelberg,

2009, pp. 78–87.

[46] M. Brand, “Coupled hidden Markov models for modeling interacting processes,” 1997.

[47] A. V. Nefian, L. Liang, X. Pi, L. Xiaoxiang, C. Mao, and K. Murphy, “A coupled HMM

for audio-visual speech recognition,” in in International Conference on Acoustics, Speech and

Signal Processing (CASSP’02, 2002, pp. 2013–2016.

[48] D. Reynolds, “Gaussian Mixture Models,” in Encyclopedia of Biometrics, S. Z. Li and A.

K. Jain, Eds. Springer US, 2015, pp. 827–832.

[49] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2 edition. New York:

Wiley-Interscience, 2000.

[50] I. Rezek and S. J. Roberts, “Estimation of coupled hidden Markov models with application

to biosignal interaction modelling,” in NEURAL NETWORKS SIGNAL PROCESS PROC

IEEE, 2000, vol. 2, pp. 804–813.

[51] A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer, “Predicting

transmembrane protein topology with a hidden markov model: application to complete

genomes1,” J. Mol. Biol., vol. 305, no. 3, pp. 567–580, Jan. 2001.

[52] A. K. Dey, G. D. Abowd, and D. Salber, “A context-based infrastructure for smart

environments,” in Managing Interactions in Smart Environments, Springer, 2000, pp. 114–

128.

[53] A. B. Poritz, “Hidden Markov models: a guided tour,” in , 1988 International Conference

on Acoustics, Speech, and Signal Processing, 1988. ICASSP-88, 1988, pp. 7–13 vol.1.

	Georgia State University
	ScholarWorks @ Georgia State University
	12-15-2016

	BUILDING OCCUPANCY SIMULATION AND DATA ASSIMILATION USING A GRAPH BASED AGENT ORIENTED MODEL
	Sanish Rai
	Recommended Citation

	tmp.1480912789.pdf.fCLBt

