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ABSTRACT 

Assimilating real time sensor into a running simulation model can improve simulation 

results for simulating large-scale spatial temporal systems such as wildfire, road traffic and 

flood. Particle filters are important methods to support data assimilation. While particle filters 

can work effectively with sophisticated simulation models, they have high computation cost due 

to the large number of particles needed in order to converge to the true system state. This is 

especially true for large-scale spatial temporal simulation systems that have high dimensional 

state space and high computation cost by themselves.  To address the performance issue of 

particle filter-based data assimilation, this dissertation developed distributed particle filters and 



applied them to large-scale spatial temporal systems. We first implemented a particle filter-based 

data assimilation framework and carried out data assimilation to estimate system state and model 

parameters based on an application of wildfire spread simulation. We then developed advanced 

particle routing methods in distributed particle filters to route particles among the Processing 

Units (PUs) after resampling in effective and efficient manners. In particular, for distributed 

particle filters with centralized resampling, we developed two routing policies named minimal 

transfer particle routing policy and maximal balance particle routing policy. For distributed PF 

with decentralized resampling, we developed a hybrid particle routing approach that combines 

the global routing with the local routing to take advantage of both. The developed routing 

policies are evaluated from the aspects of communication cost and data assimilation accuracy 

based on the application of data assimilation for large-scale wildfire spread simulations. 

Moreover, as cloud computing is gaining more and more popularity; we developed a parallel and 

distributed particle filter based on Hadoop & MapReduce to support large-scale data 

assimilation.  

 

INDEX WORDS: Large-scale spatial temporal systems, Distributed particle filters, Routing and 

layout, Simulation performance, Hadoop & MapReduce.  
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1 INTRODUCTION  

1.1 Data assimilation for large scale spatial temporal simulations  

Large-scale spatial temporal systems such as wildfire, road traffic and flood evolve 

system behavior in both space and time. Those systems have significant impact on both 

ecosystems and human society. Wildfires cause massive losses of natural forest resources, 

endangered species, properties, and even human lives. In the 2007 wildfire season, over 85,500 

fires across the whole US burned more than 9.3 million acres of land. It cost 1.8 billion dollars in 

effort to fight wildfires and a potential 2.5 billion dollars in insured loss for California alone [1]. 

The Insurance Council of Texas estimates that 2011 was the costliest year for wildfires in Texas 

with insured losses estimated at more than $500 million. In addition, insured loss estimates from 

the Bastrop Complex Wildfire in the state have reached $325 million due to the destruction of 

more than 1,600 homes, becoming the costliest wildfire in the state’s history [2]. In 2012, 20 

large wildfires were burning in eight Western states, from Idaho and Wyoming to California and 

Arizona, according to reports from the U.S. Forest Service. Federal firefighting costs passed $1 

billion for the first time in 2000 and have exceeded that mark every year but two. Together, the 

Forest Service and Interior Department have averaged $1.54 billion in fire suppression in the 

past decade. States pay another $1 billion to $2 billion annually, according to Headwaters 

Economics, a Bozeman, Montana-based research group. Fires affected about 7.3 million acres a 

year in the most recent decade, up 66 percent from the previous 10 years [3].  

Road traffic has become a serious problem with rapid development of the economy. The 

increasing traffic flow is resulting in serious congestion of urban road networks, which can 

decrease flow rate, delay travel time, increase fuel consumption and travel costs, and create 

negative environmental effects [4]. The Texas Transportation Institute estimated that, in 2000, 
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the 75 largest metropolitan areas experienced 3.6 billion vehicle-hours of delay, resulting in 5.7 

billion U.S. gallons (21.6 billion liters) in wasted fuel and $67.5 billion in lost productivity, or 

about 0.7% of the nation's GDP. It also estimated that the annual cost of congestion for each 

driver was approximately $1,000 in very large cities and $200 in small cities. Traffic congestion 

is increasing in major cities and delays are becoming more frequent in smaller cities and rural 

areas [5]. Floods are one of the few disasters that have the most extensive influence, the most 

frequent occurrence and the most severe losses [6]. The effects of floods include loss of life and 

damage to buildings and other structures, including bridges, sewerage systems, roadways, and 

canals. In order to effectively manage those systems, several major large-scale spatial temporal 

systems simulation research investigations have been performed. For example, several major 

models were developed for wildfire simulation, such as FARSITE [7], BehavePlus [8], and 

DEVS-FIRE [9] and Hfire [10]. For road traffic simulation, the work of [11] propose a set of 

methods aiming at extracting large scale features of road traffic, both spatial and temporal, based 

on local traffic indexes computed either from fixed sensors or floating car data and the work of 

[12] had shown the simulation of large spatial temporal system in flood risk estimation. 

However, these systems are inherently difficult to study since the accuracy of large-scale 

spatial temporal systems simulations depends on many factors, such as GIS data, fuel data, 

weather data, and such. Moreover, due to their complex and dynamic behavior, it is very difficult 

to obtain all these data with no error. For example, the GIS data and fuel data which are used in 

simulation research contain discrepancies compared to the real data constrained by spatial 

resolution. This is the same situation for other data like weather data, which changes by second 

in the real world. Be that as it may, the weather data used in simulation models is typically 

obtained from local weather stations in a time-based manner such as every ten minutes to thirty 
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minutes. Thus, the weather is considered as unchanged in the simulation model until the next 

data arrives. With those kinds of errors, the predictions from the simulation model will be 

different from what occurs in real large-scale spatial temporal systems. Therefore, without 

assimilating data from the real large-scale spatial temporal systems and dynamically adjusting 

the simulation, the difference between the simulation and the real large-scale spatial temporal 

systems are likely to continue to grow. 

Data assimilation is an analysis technique, in which the observed data is assimilated into 

the model to produce a time sequence of estimated system states [13]. Although data assimilation 

has been widely used in areas such as atmospheric, climate, and ocean modeling [14] [15], 

assimilating data in larger-scale spatial temporal systems simulation is still difficult to study 

because of the complexity of models. Additionally, the number of possible state variables and 

model parameters is extremely large, and many of them are spatially dependent. Moreover, 

another noteworthy complexity is associated with the nonlinear, non-Gaussian behavior of those 

models which makes it ineffective to use conventional inference techniques such as Kalman 

filter. Motivated by these problems, we select particle filter methods to support the data 

assimilation of large-scale spatial temporal systems. Particle filters (PFs) are a set of simulation 

based methods which provide a convenient and attractive approach to computing posterior 

distributions [16]. Particle filter estimation requires no assumptions about the state distribution or 

the state-space model components as nonlinear evolution and observation equations that have 

non-normal error distributions are allowed [17]. There are three major operations in PF 

processing: particle (or sample) generation, weight calculation, and resampling. Firstly, samples 

are generated from the space of unobserved states, and then probability masses associated with 

the particles are calculated. Finally, researchers undergo the process of removing particles with 
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small weights and replacing them with particles with large weight. Since PFs are very suitable 

for non-linear and/or non-Gaussian applications and also show great promise in addressing a 

wide variety of complex problems, they have already been widely used in many research areas 

such as wireless communications [18], robotics [19], navigation [20] and tracking systems [21] 

[22]. 

1.2 Challenges for data assimilation for large scale spatial temporal simulations 

Particle filters provide a well-established methodology for generating samples from the 

prediction and filter distributions without requiring assumptions about the state space model or 

the state distributions. The evolution and observation equations can be nonlinear and the initial 

state and noise distributions can take any form required. However, particle filters do not perform 

very well when applied to high dimensional systems. Because weight disparity increases with 

increasing state and likelihood dimension, leading to severe weight collapse. Weight collapse can 

be mitigated by including a resampling step before weights become too uneven, but for high 

dimensional systems weight collapse can occur in a single time-step, rendering resampling 

completely ineffective [17]. When the observations are high dimension, the filter ensemble 

collapses to a small number of distinct points, providing very poor estimates. For example, 

geophysical systems such as the atmosphere or the oceans [23] are characterized by large state 

spaces which are nonlinear, especially in high resolution applications. It is shown that direct 

application of the basic particle filter, importance sampling using the former as the importance 

density, does not work in high-dimensional systems, but several variants are shown to have 

potential.  

Moreover, the work of [24] also noticed that to avoid ensemble collapse, the particle 

population needs to increase exponentially with increasing state dimensions. Based on their 
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result, a nonlinear estimation problem with zero-mean unit-variance Gaussian noise, the 1011 

particles are required for a 200-dimensional state-space. In the work of [17], Jonathan Briggs 

forced on the issue of high dimensional particle filtering in state-spaces where the noise 

distribution is meta-elliptical and proposed a location-domain particle filter which created a 

particle population for each component of the observation vector which greatly increased the 

space and time complexity of the algorithm. From the experiment, his proposed filter took 2100 

seconds compared to the generic particle filter which took 0.034 seconds for an observation 

update on their test problem. When the number of observation vector components increased, the 

time taken by the algorithm for each observation update would increase too. This is a significant 

flaw since for their specific test problem with hundred observations a generic particle filter took 

approximately 4 seconds to run, while their proposed location-domain particle filter took 

approximately 60 hours [25]. This is also especially true for the wild fire simulation system 

where a large number of particles are needed in order for the data assimilation methods to 

converge to true system states. The state of wild fire simulation system is very expansive. This is 

because the state of wild fire simulation system may include many data such as fuel data, GIS 

data, weather data, etc. This will assuredly and significantly increase the computation costs and 

communication costs when applying PFs in wild fire simulation system.  

Based on the problems we point our above, some major types of methods dealing with 

PF-based high dimensional data assimilation, like particle smoothers, have already discussed as 

well. Particle smoothers are similar to particle filters except that they use observations available 

before and after the current time point in making their state estimates. In the work of [17], the 

author uses a particle smoother defined on a sequence of locations (rather than the traditional 

sequence of time points) to carry out the Bayesian update. Considering only one location at a 
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time in the smoother reduces the dimensionality of the problem, avoiding filter ensemble 

collapse. An experiment showed a particle smoother update was applied to the same BATS 

model and observations as has been shown to lead to filter ensemble collapse (more details can 

be found in [17]). Another method named The Merging Particle Filter which was introduced by 

Nakano [26]; the main idea of this method is: linear combinations of the particles are taken at the 

measurement time to reduce the variance in the weights. The author compared the performance 

of the merging particle filter to the particle filter with resampling and to the EnKF for the Lorenz 

63 and 96 models. They note that the EnKF works best with a low number of particles, but 

increasing the number of particles the Merging Particle Filter takes over and only with a very 

high number of particles is the particle filter with resampling superior [23]. Moreover, particle 

filter methods are very flexible, easy to implement, parallelizable and applicable in a variety of 

settings. Therefore, there are several distributed/parallel particle filters (DPFs) that have been 

developed [27] [28] [29] [30]. In these algorithms, the distributed nature is achieved by either 

transmitting local statistics of particles to a centralized unit or by using the message passing 

method. 

1.3 Distributed particle filter and particle routing 

According to the particle filter’ processing, the first two parts, particle generation and 

weight computation are simple to parallel and distribute, since every particle can work 

independently. The bottleneck in real-time PF implementation is the resampling operation. That 

is because resampling cannot be computed unless data from all particles are available. On the 

other hand, the resampling step is very critical in every implementation of particle filtering 

because the variance of particle weights quickly increases without it. Therefore, the particles can 

be run independently on different working processor units (PUs) during the particle generation 
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step and weight computation step, but the PUs must be combined together in a central processor 

unit (CU) in order to perform the resampling step. That means resampling creates a significant 

amount of communication at every time step of filtering and prevents the particle filter from 

being parallelized efficiently. After the resampling step, another important step to do is particle 

routing. Particle routing is necessary because the numbers of particles on different PUs are 

unbalanced after resampling. Thus, PUs that have a surplus of particles need to route the extra 

particles to the PUs with a shortage of particles for the next iteration of computing. Particle 

routing deals with selecting particles on some PUs and routing them to other PUs across the 

network. In distributed PFs, routing particles among PUs can serve two different purposes: 1) to 

help the “good” particles, i.e., particles with high weights, to propagate among the PUs and thus 

potentially to lead to better estimation results; 2) to ensure that the different PUs have the same 

number of particles (i.e., load balance) after resampling. 

The traditional method to handle the parallel and/or distributed computing method for 

particle filter required every detail, such as how to connect each PU and CU, what kind the 

communication method used inside each PU and CU, what is the computer network protocol will 

be used and etc. to be finished as well. Nowadays, a new technology can help us easily 

parallel/distributed the PF-based work. “Cloud Computing” is a technology that uses the internet 

and central remote servers to maintain data and applications. Cloud computing allows consumers 

and businesses to use applications without installation and access their personal files at any 

computer with internet access. “Cloud” refers to large Internet services running on tens of 

thousands of machines such as Amazon S3, Google AppEngine, Microsoft Windows Azure, etc. 

MapReduce is a software framework that allows developers to write programs that process 

massive amounts of unstructured data in parallel across a distributed cluster of processors or 
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stand-alone computers. Also, MapReduce is a programming model for processing huge data sets 

on certain kinds of distributable problems using a large number of computers (nodes), 

collectively referred to as a cluster [31] [32]. There are many different implementations of the 

MapReduce programming model, among which Apache’s Hadoop is the most well-known one 

and it has been successfully applied for file based datasets.  

1.4 Problem statement 

The major difficulty of applying PFs to high dimensional data assimilation problems is its 

high computation cost due to the large number of particles used, where each particle represents a 

full-scale simulation to the next observation time. This is a huge problem especially for the 

centralized particle filter method, since all the particles run the simulation on a single computer, 

resulting in potential problems with CPU and memory costs. This is also especially true for 

large-scale spatial temporal systems where a large number of particles are needed in order for the 

data assimilation methods to converge to true system states. Also, the state of large-scale spatial 

temporal systems is very expansive. This is because the state of large-scale spatial temporal 

systems may include many data such as fuel data, GIS data, weather data, etc. This will assuredly 

and significantly increase the computation costs and communication costs when applying PFs in 

large-scale spatial temporal systems. In order to improve the performance of data assimilation, 

distributed/parallel particle filters are necessary. Since some research exists on improving 

resampling for parallel and distributed particle filter, we are authoring a literature review 

focusing on distributed particle filter algorithms while including a quick overview of data 

assimilation, particle filter and dynamic data driven application systems (DDDAS). Also, as we 

mentioned before, particle routing is necessary because the numbers of particles on different PUs 

are unbalanced after resampling. Thus, PUs that have a surplus of particles needs to route the 



9 

extra particles to the PUs with a shortage of particles for the next iteration of computing. As the 

number of PUs increases, the communication overhead rises. The unbalanced particles on PUs 

are caused by the fact that particles have different importance weights. As a result, PUs hosting 

high weight particles generates a lot more replicates in resampling and need to route a large 

number of particles to other PUs. The uneven distribution of particles’ weights is common in 

data assimilation using PFs for spatial temporal simulations. Therefore, efficient particle routing 

is critical for reducing the communication costs in distributed PFs.  

Figure 1.1 illustrates this situation based on a run of the bootstrap algorithm for large-

scale wildfire spread simulation modeling. The figure shows the normalized weight of the three 

best particles out of 100 particles in each step of the data assimilation. Based on the figure, we 

can see the strong uneven distribution of particle’s weight in almost every step. Except the first 

two or three steps, the three particles account for more than 80% of the overall weight of the 100 

particles. (The reason why the first two or three steps did not have this same situation is because 

every particle’s fire shape is very small in first two or three steps, so the weight of every particle 

is almost the same). This means in a distributed environment the PUs hosting these high 

weighted particles will generate a lot more replicates in resampling and need to route a large 

number of particles to others. According to this information, how to route particles among PUs 

after resampling in effective and efficient manners calls for more research. 
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Figure 1.1 Normalized weights of the three best particles (out of 100) 

On the other hand, for the centralized resampling method, we have to face some issues 

since we have the CU, since it still requires a complicated scheme for particle routing, and makes 

a complex PU design and area increase when more PU are involved. But for cloud MapReduce 

and Hadoop, we do not need configure every detail, such as how to connect each PU and CU, 

what kind of the communication methods should be used inside, what are rules between every 

machine, etc., because the Hadoop system can help us to do it. Our only work is finishing the PF-

based application code following the MapReduce’s key/value pairs rules. Moreover, the 

advantage of developing map-reduce PF is like using other “cloud” servers, for example: you do 

not need buy many machines yourself in advance; you just pay when you use the cloud’s 

allocated machines. Also, you do not need upload your application work source (code) 

everywhere because you can just upload it to the cloud and use it when you want to do test. 
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1.5 My contributions 

First of all, our work applied a particle filter-based data assimilation framework in 

wildfire spread simulation for state estimation and parameter estimation. Our work on data 

assimilation explored the possible applications of particle filters in wildfire spread simulation 

based on DEVS-FIRE model, and applied particles filters to assimilating temperature sensor data 

for estimating the dynamically evolving fire front of a spreading fire. On the other hand, the 

simulation models of large-scale spatial temporal systems rely on many parameters to model the 

structure and behavior of systems under study. To achieve accurate simulation results, a 

simulation model needs to use correct model parameters. However, it is common that during the 

modeling process the parameters are largely unknown, uncertain and/or vary with time or space. 

Therefore, we used the DEVS-FIRE wildfire spread simulation model to show the results of data 

assimilation based on PF for large-scale spatial temporal systems. We carried out experiments to 

estimate the fuel moisture content and fuel bed depth parameters used in the wildfire spread 

simulation. 

Secondly, while several resampling algorithms [33] have been developed for distributed 

particle filters, less research has been conducted to investigate how to route particles among PUs 

after resampling in effective and efficient manners. In our work, we study the routing policies in 

distributed particle filters with both the centralized resampling schema and the distributed 

resampling schema. Based on the global information which the CU has full knowledge of the 

weight distribution of all particles on different PUs in the centralized resampling schema, we 

developed two efficient particle routing policies in distribution PF with centralized resampling, 

named minimal transfer particle routing policy and maximal balance particle routing policy. 

On the distributed resampling side, communications are constrained between neighboring PUs. 
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This local communication schema supports a large degree of parallelism due to elimination of 

the centralized resampling step. However, it also results in slow propagation of high-weighted 

particles, and thus reduces the convergence rate of the particles. To address this issue, we 

propose a hybrid particle routing approach that combines global routing with local routing to 

take advantage of both. In this approach, we mainly use local routing to ensure scalability and 

low communication costs, and occasionally invoke global routing to support faster propagation 

of "good" particles. We evaluate and compare the different particle routing methods based on the 

application of data assimilation for large-scale wildfire spread simulations as well.  

Moreover, using the technology of Cloud Computing, we developed a parallel and 

distributed computing method that uses Hadoop & MapReduce to handle the data assimilation in 

wildfire simulation based on particle filters. Our work build a foundation where future work can 

be carried out and the main experiment results showed the MapReduce-PF and Hadoop 

significantly increases the performance for data assimilation using large number particles. 

1.6 Organization of the dissertation 

Based on the structure of distributed PFs, the work will construct the entire system 

consisting of all the components, which will be explained later. Chapter 2 introduces the related 

work of data assimilation, sequential Monte Carlo methods (particle filters), dynamic data driven 

application systems (DDDAS), and several distributed particle filtering algorithms that have 

been developed in literature. Chapter 3 describes data assimilation based on PFs for large-scale 

spatial temporal systems, which includes an overview of DEVS-FIRE-based wildfire spread 

simulation and PF-based data assimilation framework. In Chapter 4 we detail the overall particle 

routing architecture and then describe three different particle routing policies. The experiment 

results and analysis for three different particle routing policies in distributed PFs with centralized 
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resampling will be discussed in this chapter as well. Chapter 5 will continue the introduction of 

particle routing in distributed PFs with decentralized resampling. Distributed resampling with 

local and global particle routing algorithms will be described in this chapter. In Chapter 6, based 

on MapReduce and Hadoop, we design a cloud MapReduce for data assimilation using 

sequential Monte Carlo methods in wildfire spread simulation. Finally, Chapter 7 contains 

conclusions and future research implications. 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

2     RELATED WORKS 

2.1 Data assimilation 

2.1.1 Overview of data assimilation 

Data assimilation is the process by which observations are incorporated into a computer 

model of a real system [34]. The purpose of data assimilation is to use observation data to 

improve state estimation of the system. The data assimilation methods try to minimize the errors 

between the real system and the models. The data assimilation methods can be divided into three 

main classes [35]: 1) Empirical methods, which include Successive Correction Method (SCM), 

Nudging, Physical Initialization (PI) and Latent Heat Nudging (LHN). 2) Constant statistical 

methods, such as: Optimal interpolation (OI), 3-dimensional variational data assimilation 

(3DVar) and 4-dimensional variational data assimilation (4DVar). 3) Adaptive statistical 

methods which include Extended Kalman filter (EKF) and Ensemble Kalman filter (EnFK). 

There are two main data assimilation algorithms: sequential based and cost function based. The 

sequential approaches are based on the Bayesian theories that combine the prior knowledge of 

the state vector and the measurement to obtain the posterior distribution of the state [36]. Some 

sequential data assimilation algorithms known as Kalman filters, Extended Kalman filter (EKF) 

and Ensemble Kalman filter (EnKF).  A Kalman filter is an optimal estimator, which shares the 

static update with some of the variational techniques, but Kalman filter algorithms also explicitly 

compute the error covariance through an additional matrix equation that propagates error 

information from one update time to the next, subject to possibly uncertain model dynamics [37]. 

The EKF doesn’t need the linear model operator and/or observation operator. The EnKF 

originated as a version of the Kalman filter for large problems and it is now an important data 

assimilation component of ensemble forecasting. Moreover, Particle filter is also called 
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sequential data assimilation filter that based on particle representations of probability densities, 

which can be applied to any state-space model and which generalize the traditional KF methods 

[38] [39]. For the cost function-based methods, the typical algorithms include the shuffled 

complex evolutionary (SCE) method [40] [41], a very fast simulated annealing (SA) algorithm 

[42] [43], the differential evolutionary (DE) method [44], and the genetic algorithm (GA) [45]. 

The common weakness of these methods is their slow computational speed, the more advantage 

and disadvantage can found in [36].  

There are two basic approaches to data assimilation: sequential assimilation, that only 

considers observation made in the past until the time of analysis, which is the case of real-time 

assimilation systems, and non-sequential, or retrospective assimilation, where observation from 

the future can be used, for instance in a reanalysis exercise [46] . But it needs a statistical 

approach, because the Cressman analysis which is the one of simple analysis method has some 

disadvantages. In the statistical approach, we try to use all the useful information, but don’t trust 

them at all. We can find a strategy to minimize the average of the differences between the 

analysis and the “truth” observation. In this sense, the analysis can be seen as the optimization 

problem. All the related errors are assumed to be unknown and have known statistical properties 

[47]. Note that the details of the most of algorithms above can be found in [46]. 

2.1.2 Application of data assimilation 

Data assimilation has already widely used in many different fields, such as geosciences, 

weather forecasting, atmospheric, oceanic, hydrologic and other environmental systems. For 

example, data assimilation used for Global Positioning System (GPS) discussed as well in [48]. 

Hurricane initialization by data assimilation which used for National Centers for Environmental 

Prediction (NCEP) official hurricane track forecasts for seven Atlantic hurricanes [49]. The 3-
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dimensional variational data assimilation (3DVar) and 4-dimensional variational data 

assimilation (4DVar) also widely used in data assimilation. The work of [50] gives some 

diagnosis statistical results of the assimilation surface observations with the regional GRAPES 

forecast and assimilation model. Chinese Meteorological Administration has developed a three 

dimension variational data assimilation system (Global/Regional Assimilation and Prediction 

System, shorten as Grapes 3Dvar), and with the ATOVS radiance data directly assimilated by 

RTTOV as observation operator [51]. Also, the work of [52] proposed a data assimilation system 

to improve ozone simulations in Mexico City basin using 3D-VAR that generated the optimal 

estimate of the true atmospheric state during the analysis time. In [53], the four-dimensional 

variational data assimilation technique (4D-VAR) is presented as a tool to forecast floods. The 

study is limited to purely hydrological flows and supposes that the weather, here a big rain, has 

been already forecasted by meteorological services.  For adaptive statistical methods which 

include Extended Kalman filter (EKF) and Ensemble Kalman filter (EnFK) also used in some 

field such as data assimilation with an EKF for impact-produce shock-wave dynamics which 

present study represents the first attempt of applying the extended Kalman filter method of data 

assimilation to shock-wave dynamics induced by a high-speed impact [54].  

The ensemble Kalman filter uses the nonlinear forecast model to transport the forecast-

error covariance from one analysis time to the next. It therefore constitutes not only an 

approximation to, but also a nonlinear extension of, the standard Kalman filter. It represents a 

promising approach toward the goal of developing a Kalman filter–based algorithm for 

atmospheric data assimilation. However, for the technique to be feasible in an operational 

setting, a computationally efficient analysis algorithm is required [55]. The work of [56] 

discussed the application of the ensemble Kalman filter (EnFK) to hydrologic data assimilation 
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and in particular to the estimation of soil moisture from Lband microwave brightness 

temperature observations and their mainly results shown the EnKF significantly underestimates 

the forecast error variances for 100 ensemble members. 

Data assimilation also widely used in the large-scale spatial temporal systems. For 

example in wildfire area,  the work [57], the authors present an effective proposal distribution for 

SMC based wildfire data assimilation and in work [58] proposed an approach to estimate forest 

fires based on sequential Monte Carlo methods from video images. Moreover, in order to 

increase the accurate of the flood forecasting, [59] implement sequential data assimilation for 

short-term flood forecasting and parameter uncertainty assessment using grid-based spatially 

distributed hydrologic models. Data assimilation also used in agent based simulation, the work of 

[60] present a method that assimilates real time sensor data into an agent-based simulation 

model. The goal of data assimilation is to provide inference of people’s occupancy information 

in the smart environment, and thus lead to more accurate simulation results. The author use 

particle filters to carry out the data assimilation and present some experiment results, and discuss 

how to extend this work for more advanced data assimilation in agent-based simulation of smart 

environment. The work of [61] presents a framework of behavior pattern informed data 

assimilation and describes the structure of this framework and focus on the task of behavior 

pattern detection using Hidden Markov Model. The author apply behavior pattern detection to a 

smart office case study example and discuss how the detected behavior pattern can inform the 

data assimilation in agent-based simulation of smart environments. 
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2.2 Sequential Monte Carlo methods (Particle Filters) 

2.2.1 Overview of particle filters 

Sequential Monte Carlo (SMC) methods, also called particle filters, are a set of 

simulation-based methods which provide a convenient and attractive approach to computing the 

posterior distributions [62]. There are three major operations in particle filters processing: 

particle (or sample) generation, weight calculation, and resampling. First of all, sampling from 

the space of unobserved states, then probability masses associated with the particles. Finally, 

process of removing particles with small weight and replace them with particles with large 

weights.  

We can more detail the major steps of particle filters based on sampling importance 

resampling are described below:  

Step 1: initialize N particles.  

Step 2: calculate importance weights.  

Step 3: normalize importance weights.  

Step 4: resampling.  

Step 5: predict new particles for future use.  

Step 6: go to Step 2 to execute the next time step.  

Based on the dynamic system, in the particle filter algorithm, step 1 initializes particles. With 

time advances, step 2 to step 5 are executed as shown in Figure 2.1. 
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Figure 2.1 Particle filters algorithms of case study 

For the general sequential importance sampling, we can formulate the sequential 

importance sampling method in terms of updates to the smoothing density. Based on the theory 

of particle filters, sample from a convenient proposal distribution q (𝑥1:𝑡  |𝑦1:𝑡 ), then use 

importance sampling to modify weights [63]: 

                            ∫𝑝 (𝑥1:𝑡 |𝑦1:𝑡) 𝑓 (𝑥1:𝑡)𝑑𝑥1:𝑡  = ∫
𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 
 𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 𝑓 (𝑥1:𝑡)𝑑𝑥1:𝑡                

          ≈ ∑𝑤𝑡
𝑖

𝑁

𝑖=1

 𝑓( 𝑥1:𝑡
𝑖 ) 

where  
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𝑥1:𝑡
𝑖  ~ 𝑞 (𝑥1:𝑡 |𝑦1:𝑡)   

and 

𝑤𝑡
𝑖 = 

𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 
 

So, we can define the un-normalized weight by: 

𝑤̃𝑡
𝑖 = 

𝑝 (𝑥1:𝑡 , 𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 
 

than calculate approximation to  𝑝 (𝑦1:𝑡) get: 

𝑝 (𝑦1:𝑡)  ≈∑𝑤̃𝑡
𝑖

𝑁

𝑖=1

 

Continue do the weight normalization step, the normalized weight is: 

𝑤𝑡
𝑖 = 

𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 
=
𝑝 (𝑥1:𝑡 ,𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 
 

1

𝑝 (𝑦1:𝑡)
 = 

𝑤̃𝑡
𝑖

∑ 𝑤̃𝑡
𝑖
𝑡

(𝑖)𝑁
𝑖=1  

 

After we get the entire particle’s weight, we can start the resampling work. Resampling 

is a critical operation in particle filters because with time, a small number of weights dominate 

the remaining weights, thereby leading to poor approximation of the posterior density and 

consequently to inferior estimates [64]. The idea of resampling is to remove the particle which 

have small weights and replace it by the particle which have big weights, so, after the 

resampling, the future particles are more concentrated in domains of higher posterior 

probability.  Resampling was first introduced in [65], and later proposed for SIS [66] [67]. 

Resampling  𝑗𝑡
(𝑛)

  ~  𝑎𝑡
(𝑛)

, where  𝑎𝑡
(𝑛)

 is a suitable resampling function whose support is defined 

by the particle  𝑥𝑡
(𝑛)

 [68]. 
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2.2.2 Application of particle filters 

Since particle filters are very suitable for non-linear and/or non-Gaussian applications, 

and also show great promise in addressing a wide variety of complex problems, which have 

already widely used in many research areas such as, tracking application, wireless 

communications, robotics, mobile robot localization, computer vision and navigation. The book 

of [69] apply particle filters to tracking a ballistic object, detection and tracking of stealthy 

targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging 

(bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of 

ground vehicles, and group and extended object tracking. The work [70] introduced a new 

method based on particle filters for multi-target tracking and data association in non-liner 

systems. This work firstly uses UKF to implement the single target tracking and then use particle 

filter for data association. The experiment result shown this method can reduce the algorithm 

execution, because the UKF need less particles compare to the traditional particle filter. 

The work [71] apply particle filters for solving the problem of simultaneous localization 

of mobile nodes in wireless networks with correlated in time measurement noises. Several model 

particle filters are developed in this paper and they also evaluated performance of those model 

based on RSSIs by accounting for, but without considering the measurement noise time 

correlation. In the same research area, the work [72] introduced the results of simulations of their 

algorithm named ‘Monte Carlo Localization Boxed’. The paper use particle filters to improve the 

localization accuracy and efficiency by making better use of the information a senor node gathers 

which make Monte Carlo Localization more lightweight for use in wireless sensor networks. The 

work [19] presents two examples of used Sequential Monte Carlo methods, one in the domain of 

computer vision and the other in mobile robotics. The particle filter also used in image 
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processing area to improve the quality of the image [73]. In the biology research area, the work 

[74] provided and application of particle filters which populations of compact long chain 

polymers were created by the Monte Carlo methods to study the relationships between packing 

density and chain length. 

2.3 Dynamic data driven application systems (DDDAS) 

2.3.1 Overview of DDDAS 

As we discussed in chapter 2.1, the data assimilation is the process used to incorporate 

observation into a simulation model of a real system. So, the DDDAS is an application or 

simulation that employs data assimilation that can effect and change which model or scale is 

used and in which the application can also steer how, when, and/or where data is collected [75]. 

There are three major components in a typical DDDAS: the model system, the measurement 

model and the data assimilation methods. We can viewed the DDDAS as a methodology to 

counterbalance incompleteness in model and capability to enhance the application models by 

imparting additional information into the model as at runtime additional data are used to 

selectively enhance or refine the original model. The DDDAS concept offers the promise of 

improving application models and methods and augmenting the analysis and prediction 

capabilities of application simulations and the effectiveness of measurement systems [76]. In 

DDDAS, the data from the sensors is fed into the simulation model to make prediction of the real 

systems which will treat as the measurement to evaluate the output and adjust states of the 

model.  According to those measurements, we can evaluate, choose, or analyze the system states 

utilizing statistical tools, data processing, and numeric or non-numeric techniques to improve the 

simulation results [47].  
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2.3.2 Application of DDDAS 

The National Science Foundation held the DDDAS workshop every year since 2000, 

which included numerous application scenarios which could advance both science and society by 

incorporating these ideas. Application areas described at the workshop include engineering 

(design and control), crisis management, medical, environment systems, manufacturing, business 

and finance [77]. 

The engineering part includes aircraft, oil exploration, semiconductor mfg and computing 

systems hardware and software design, etc. The crisis management includes transportation 

systems (planning, the accident response), the weather the hurricanes and floods, the wildfire and 

fire propagation. The medical includes customized radiation treatments, x-rays, NMR, surgery, 

etc. Moreover, the other part includes Supply Chain (Production Planning and Control) and 

Financial Trading (Stock Mkt, Portfolio Analysis). The work of [78] enable and promote active 

health monitoring, failure prediction, aging assessment, informed crisis management and 

decision support for complex and degrading structural engineering systems based on dynamic 

data driven methods. The work of [79] applies the DDDAS to monitor and manage surface 

transportation systems which composed of a heterogeneous collection of in vehicle, roadside and 

traditional computation and sensor node that mush analyze current system states, predict future 

states and rapidly adapt to unexpected disruptive event on short time scales. In work [80], a full 

DDDAS is proposed for dynamically estimation a concentration plume and planning optimal 

paths for unmanned aerial vehicles (UAVs) equipped with environmental sensors. The proposed 

DDDAS framework also creates solutions for efficient data collection and real-time vehicle 

control. 
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In work of [81] describes a DDDAS for coastal and environmental applications and the 

author coupled the real time sensor information with the water circulation model to forecast the 

emergency event of hurricane. The work [82] develop a dynamic data-driven planning and 

control system for laser treatment of cancer which include a general mathematical framework 

and a family of mathematical and computational models of bio-heat transfer, tissue damage, and 

tumor viability. The methodologies to be implemented involve uncertainty quantification 

methods designed to provide an innovative, data-driven, patient-specific approach to effective 

cancer treatment. An application of DDDAS also applied for wildfire simulation in [83] which 

the authors incorporate the real time data into the wildfire simulation model in order to improve 

the simulation results. The DDDAS also can applied in business area, in work of [84] introduced 

DDDAS concept to construct the model by the input data from the company which will give the 

employees the multiple choose to make their decisions. 

2.4 Distributed particle filters 

2.4.1 The centralized distributed particle filters 

Figure 2.2 shows the architecture of distributed particle filter. There are multiple working 

processors units (PUs) and one central processor unit (CU) in distributed particle filter 

architecture. In distributed particle filter, the first two parts: particle generation and weight 

computation are simple to parallel and distribute, since every particle can work independently. In 

this most of basic way, it used centralized resampling which particles generate and calculate the 

weight in each PU then each PU have to send all the particle state and the weight to the CU in 

order to do the resampling. Finally, CU need send back all the state to PU again to finish after 

the resampling. So, this method will cause the huge communication cost between the PU and CU 

since the entire particle’s state have to travel once between PU and CU in every step. Even in the 
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fully connected network, the scalability of the implementation is significantly affected by the 

sequential resampling and particle routing. One version of centralized resampling which is 

implemented on a network of personal computers is described in [33]. 

CU

PUPU

PU PU
 

Figure 2.2 Architecture of the distributed particle filter 

This centralized resampling method also will cause a big problem for large-scale spatial 

temporal systems. One feature of large-scale spatial temporal systems is that the state of these 

systems is large and has high dimension.  Thus the particles representing system state have large 

size, and involve high communication cost when passed from one processing node to another. 

So, the basic centralized distributed particle filter method will cause the huge communication 

cost for the large-scale spatial temporal systems compare to the other systems. Therefore, to 

achieve the minimum execution time, some works show that resampling can be distributed to PU 

and that CU is then responsible only for a small portion of resampling [33][85][86][87][88]. In 

this chapter, we will mainly review two of the important method: distributed resampling with 

proportional allocation (RPA) and distributed resampling with now-proportional allocation 

(RNA). 
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2.4.2 Distributed resampling with proportional allocation 

Compare to the centralized distributed particle filter, the RPA [33] method divided the 

sampling space to K disjoint areas at first, and each area corresponds to a PU. Since the 

proportional allocation is used in each area, the more samples are drawn from the strata with 

larger weights. In the CU side, the RPA do an extra work named “inter-resampling” which 

means the number of particle replicates is computed use the method residual systematic 

resampling (RSR) [88] after the weights of area are known.  Under the inter-resampling method, 

every PU can be treated as the single particles. Thus the input of CU in there is 𝑤𝑘 which means 

the sum of weight for all the particles in each PU. This is the first different part compare to the 

centralized distributed particle filter, because centralized distributed particle filter sends all the 

particle’s weight and state to the CU. On the other hand, the output of the CU after inter-

resampling is the number of particles that each PU will produce after resampling. This is the 

second different part compare to the centralized distributed particle filter, because centralized 

distributed particle filter send all the state back to the PU. Since the RPA just send the 𝑤𝑘 to CU 

side, thus this method has to do the resampling again in PU side named as “intra-resampling”. 

The goal of intra-resampling is make the enough particle state according the number which the 

CU gives the PU. Figure 2.3 shows the mainly different between centralized resampling (a) and 

RPA (b). The abbreviations are: S-sampling, I-importance computation, R-resampling, PR-

particle routing.  
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Figure 2.3 Sequence of operations performed for (a) centralized resampling and (b) RPA. 

There is an example shown how the RPA method worked and the particle exchange in 

figure 2.4. According the RPA method, we divided the sampling space to four disjoint areas at 

first, which means we use 4 PUs in this example, and we assume each PU has 100 particles. 

After the sampling, the distribution of the normalized PU weights before resampling is shown in 

the figure2.4 (a). Continue do the inter-resampling, based on the weight of each PU; the number 

of particles that each PU will produce is 120, 120, 70 and 90. Therefore, PU_01 and PU_02 have 

surpluses of particles. In this example, PU_02 sends 10 particles to both PU_03 and PU_04, and 

PU_01 sends 20 particles to PU_03. Of course, the method also has another choose: PU_01 

sends 10 particles to both PU_03 and PU_04, and PU_02 sends 20 particles to PU_03. The way 

of sending the particle named “particle routing”, in this example, both ways are same idea and 

have same communication cost, but particle routing is another side can reduce the 

communication cost, we will discuss the particle routing work in chapter 5.  
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 Weight before resampling 

PU_01 0.3 

PU_02 0.3 

PU_03 0.175 

PU_04 0.225 

SUM 1 
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20

10

10
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Figure 2.4 An example of particle exchange for the RPA algorithm 

Simply summarize the RPA method, there are two mainly different between centralized 

resampling and RPA method, first of all, RPA only send the sum of the weight to CU and hold 

the state in each PU, but centralized resampling will send all the weight and state information to 

CU. So, RPA can significantly reduce the communication cost between the PU and CU because 

it avoids send the state. Another different is the centralized resampling only do the resampling 

once, but the RPA has to do twice resampling in order to make sure the number of particle’s state 

is correct. The main advantage of distributed RPA over centralized resampling lies in reducing 
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the amount of deterministic communication and in the distributed resampling where the 

resampling is executed concurrently in the PUs instead in the CU. 

2.4.3 Distributed resampling with non-proportional allocation 

Although the distributed RPA method has already reduced the communication cost as 

well compare to the centralized distributed particle filter, it still required a complicated scheme 

for particle routing. Also it will make a complex PU design and area increase when more PU 

involve since it still needs the CU part. Moreover, the RPA is still a global pre-processing step 

because it still use inter-resampling in CU side, which may cause the extra delay because the CU 

have to get all the particle’s weight in order to do the resampling. Due to those problems, the 

authors introduced the RNA algorithm to solve those problems. The main idea of RNA is use the 

term group instead of PU and no “CU” at all during the whole algorithm. The designer can 

deterministic and planned the particle routing, which means the term group where a group is 

formed from one or more PUs and no CU exist in this method. In RPA, the number of particles 

drawn is proportional to the weight of the stratum. On the other hand, in RNA the number of 

particles within a group after resampling is fixed and equal to the number of particles per group. 

So, full independent resampling is performed by each group. In this chapter, there are three RNA 

methods reviewed as well: regrouping, adaptive regrouping and local exchange [85] [86]. 

2.4.3.1 Distributed RNA with regrouping 

The first RNA method named “distributed RNA with regrouping”. First of all, the 

method signs all PUs to several groups, which a group is formed from one or more PUs. The first 

two steps particle generation and weight computation continue finished in each PU, and then 

resampling and particle routing are done in each group, which means the full independent 

resampling is performed by each group. At the next sampling instant, the PUs is rearranged so 
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that they form different groups. Therefore, after each time instant, regrouping is performed so 

that particles are exchanged among PUs and the variance is reduced. An example shown in 

figure 2.5, PU_01 and PU_02 form one group and PU_03 and PU_04 form another group at first 

step. In here, the RPA algorithm is applied to both groups in order to reduce the communication 

cost inside of each group, also, the particle routing just happened instead of each group.  Next 

step, the method need rearrange the group in order to make all the “good” particle can travel to 

every PU. In this example, the new groups can be composed of PU_01 and PU_03in a group and 

PU_02 and PU_04 in a group. 

PU_02PU_01

PU_03 PU_04

PU_02PU_01

PU_03 PU_04

(a) (b)  

Figure 2.5 The example of RNA with regrouping 

Compare to the RPA, distributed RNA with regrouping can reduce the communication 

cost since it does not need the CU at all, so the resampling and particle routing just need 

happened instead of the group. But it is not always efficacy in all situations, because it depends 

on the number of PUs. Because it is very difficult to decide how many PUs in a group and how 

many group created when the number of PUs increased. First of all, from the example above, we 

can easily create two groups and the two periods we can get the goal if we just have 4 PUs, since 

the local controllers are simple because there is only one PU with surplus and one with shortage 

of particles. But when we have more PUs, the situation becomes complicated, because if more 

than three PUs be a group, the inside of group still have the high communication cost between 
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each PU since we used the RPA inside of every group. Nevertheless, if we keep every group just 

maintain two or three PUs because we do not want to increase the communication cost inside of 

each group. But we still have much PUs; we have no choice but create more groups. Under this 

situation, we have to do more times regroup work in order to make sure the good particle can 

travel to each PU. Therefore, choosing so small value for the number of PU in a group could 

cause high distribution factor and large number of periods until full propagation of particles is 

achieved. In the extreme case, all the non-zero weights particles are in one PU and we still have 

much PUs, the distributed RNA with regrouping method will cost a long time to finish. 

2.4.3.2 Distributed RNA with adaptive regrouping 

Based on the distributed RNA with regrouping method, the author extend the method 

because they the distributed RNA with regrouping method uses the predefined fixed rules to 

form the groups. But omit a very important fact which we can get the distribution of the group 

weights.  So, the method of distributed RNA with adaptive regrouping is forming the PU which 

has the largest weight and the PU which has the smallest weight to a group. Then the other group 

is formed from the remaining PUs. For each group, the RPA algorithm still applied in order to 

reduce the communication cost. Simply side, this method regroup the PU based every PU’s 

weight, find the PU with the largest weight and PU with the smallest weight in every step and 

form these two PU to a group, then put rest of PUs to a group. For example, in Figure 2.6, we 

assume PU_01 and PU_04 have the largest and the smallest weights, so form that two to one 

group and the other group is formed from the remaining PUs (in this example is PU_02 and 

PU_03). The totally same rule applied in next around figure2.5 (b), we get the weight result after 

the first step and we know the PU_01 and PU_02 have the largest and the smallest weights, so 

form it to one group, and then form the rest of PU_03 and PU_04 to a group. The basic idea of 
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this method utilizes the Randez-Vouz load balancing algorithm [89], which is a simple greedy 

algorithm that associates the heavily and the lightly loaded groups. This method has the same 

disadvantage with distributed RNA with regrouping method, because if we face the much PUs, 

there are only two groups in this method: the first group just has 2 PUs which the PU with the 

largest weight and the PU with the smallest weight. But other group will have more than 3 PUs; 

it will face the same communication cost problem since we still use RPA inside of the group. 

PU_02

(lowest)

PU_01

(highest)

PU_03

(2nd)

PU_04

(3rd)

PU_02

(highest)

PU_01

(3rd)

PU_03

(2nd)

PU_04

(lowest)
 

Figure 2.6 Example of RNA with adaptive regrouping 

2.4.3.3 Distributed RNA with local exchange 

Although the RNA with regrouping and RNA with adaptive regrouping methods did not 

have the CU in order to reduce the communication cost, it still apply the RPA algorithm worked 

inside of each group. As we discussed the limitation of those two methods, it still faces the same 

problem if more than 3PUs formed in one group. Moreover, those two methods also make the 

particle routing process is still random which cause very difficult for pipelining between the 

particle routing and sampling steps. So, based on those problems, the method of RNA with local 

exchange is introduced.  In RNA with local exchange method, every PU equals a group and no 

RPA involved at all since only one PU in each group. So, the entire steps finished inside of the 

PU include the resampling part. And then the particles are exchanged in a deterministic way only 

among the neighboring PUs and the routing is done through local communication in every step. 
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Figure2.7 shows the example RNA with the local exchange. In this example, we assumed every 

PU has 100 particles and it is exchanges the 50 particles to their neighbor with an anti-clockwise 

direction after they did the resampling by themselves. The advantage of this method is the 

communication between the PUs is only local, so it does not need a complex PU design and the 

pipeline of particle routing is easy. But the local communication can increase the pass steps, the 

good particle have to travel every PU in order to get the full resampling in the extreme case.  

And this restricts the level of parallelism. 

To sum of up, although the RNA solved the problem like make an easy CU design and no 

extra delay happened since no CU between each group, it also has two main problems: firstly, 

the efficacy of the RNA depend on the number of PUs. The efficacy will reduce with the more 

PUs involve because the RPA algorithm still applied inside of the group. On the other hand, from 

the simulation of result side, all the RNA method losing the accuracy, because those methods did 

not do the resampling together in every step.  

PU_01

PU_06

PU_05

PU_02

PU_03

PU_04

50 50

5050

5050

 

Figure 2.7 Example of RNA with local exchange 
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2.4.4 Compressed distributed particle filter 

The work of [90] presents three schemes for distributing the computations of generic 

particle filter: global distributed PF (GDPF), local distributed PF (LDPF) and compressed 

distributed PF (CDPF). The GDPF basically same as the centralized distributed particle filter 

method we mentioned in 2.4.1, which sampling in every PU independently and the weight 

normalization and resampling performed at the CU. The LDPF has not formed to any group, the 

all the step include the resampling part finished in every PU. But different with the RNA with 

local exchange, the LDPF still has the CU exit, because each PU will sending only sufficient data 

to CU which is then responsible for providing the filter estimate. The main point of [90] is 

introducing the CDPF method. From the GDPF and LDPF method, the author found the GDPF 

will not loss the accurate at all but it causes the huge communication cost increase. Furthermore, 

the LDPF can reduce the communication cost since the resampling finished inside of every PU, 

but LDPF will loss the accurate because there is no centralized resampling at all. Based on those 

problems, the author introduced the CDPF method which can not only reduce the communication 

cost and also maintain a good simulation result.   

For CDPF, the sampling part still finished in every PU independently and the weight 

normalization and resampling performed at the CU. However, the PU will not sending the entire 

select particle to CU, instead just send a representative distribution of reduced size. And the CU 

will do the resampling based on this representative distribution and send the information back to 

every PU. Actually, the CDPF method attempts to bypass the necessary of sending large amounts 

of repeated particles with representative datasets of non-repeated particles. It is based on the idea 

of the so called “fast bootstrap” proposed in [91], so, the resampling way is use the fast bootstrap 

method in CDPF. The CDPF method facilitates significantly less data exchange between the PU 
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and CU than direct parallelization, because this avoid to sending duplicate particles between the 

PU and CU. But since CDPF won’t sending the whole information of select particle from PU to 

CU and just send a representative distribution of reduced size, so this method still was generally 

less accurate. 

2.4.5 Distributed particle filter methods summary 

Since the different distributed particle filter methods have the different properties such as 

the resampling step finished in PU side or CU side, the different particle routing way and 

performance is lose or not. So,   we cannot say which method is always better than other one, 

because different method has its own merits and demerits. One method is better or not depends 

on several situations like the numbers of PU involved or what kind of application applied. 

Therefore, in order to choose the appropriate methods it is very necessary to summarize the key 

part properties of different distributed particle filter methods. In table 2.1 and table 2.2, we 

summarizes the 4 parts of distributed particle filter methods, such as the weight pass method 

from PU to CU, the resampling step finished in PU or CU ( shown in table 2.1), the particle 

routing information and the performance situation ( shown in table 2.2). The abbreviations 

shown in table are: CEDPF: centralized distributed particle filter; RNA-R: RNA with regroup; 

RNA-AR: RNA with adaptive regrouping; RNA-LE: RNA with local exchange; CODPF: 

compressed distributed particle filter; LDPF: local: distributed particle filter. 
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Table 2.1 Summarize first two parts of the different distributed PFs 

 The weight pass method from PU to CU Resampling finished in which side 

PU CU 

CEDPF Passed the weight of all particle  CU 

RPA Passed the sum of weight of all particle Intra-resampling Inter-resampling 

RNA-R Passed the weight in own group PU, no CU 

RNA-AR Passed the weight in selected group PU, no CU 

RNA-LE No weight passed  PU, no CU 

CODPF Passed the sum of the weight PU  

LDPF No weight passed PU  

 

Table 2.2 Summarize another two parts of the different distributed PFs 

 Particle routing information 

 

Performance loss 

CEDPF From PU to CU, then from CU back to PU No 

RPA The PU with extra send the surplus particle to PU with 

shortage particles  

No 

RNA-R Between their own group Yes 

RNA-AR Between their own group Yes 

RNA-LE Fixed with their neighbor  Yes 

CODPF From PU to CU, then from CU back to PU but without 

duplicate particles 

Yes 

LDPF From PU to CU than from CU back to PU Yes 
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3    PF-BASED DATA ASSIMILATION AND ITS APPLICATION TO WILDFIRE 

SPREAD SIMULATION 

In this chapter, we evaluate the data assimilation based on PF for large-scale temporal 

systems as the wildfire spread simulation. Wildfire simulation is a very important research area 

in large-scale spatial temporal systems. Every year, wildfires incur sudden and rapid damages to 

and losses of natural forest resources, endangered species, human lives, and properties. 

Simulation of wildfire can provide an important tool for studying and predicting wildfire spread. 

Over the years, several major wildfire spread simulation models have been developed, such as 

FARSITE [7], BehavePlus [8], and DEVS-FIRE [9] and Hfire [10]. The used model in our work 

is DEVS-FIRE, an integrated wildfire spread and suppression simulation model built on Discrete 

Event System Specification (DEVS) formalism [92]. We will overview the DEVS-FIRE based 

wildfire spread simulation and go through the PF-based data assimilation framework. Then we 

will discuss how to apply the data assimilation for wildfire spread simulation, during which the 

detail steps like sampling, weight computation and resampling using DEVS-FIRE simulation are 

discussed and some main results also shown as well. 

3.1 Overview of DEVS-FIRE-based wildfire spread simulation 

DEVS-FIRE is a discrete event system specification (DEVS) model for simulating 

wildfire spread and suppression. Before we discuss the DEVS-FIRE model, we would better to 

take a look the DEVS formalism. There are two kinds of models in DEVS: atomic model and 

coupled model. The elements of an atomic model include: input events, output events, state 

variables and state transition functions, output function and time advance function. There are two 

different transitions in state transition functions: external transition, internal transition and 

confluent transition. The DEVS is a structure shown in equation (3.1): 
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                                   M=<X, S, Y,𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝛿𝑐𝑜𝑛, 𝜆, ta>                                           (3.1) 

which X is the set of input values and S is a set of states, Y is the set of output values, 𝛿𝑖𝑛𝑡: S→S 

is the internal transition function. 𝛿𝑒𝑥𝑡: Q × 𝑋𝑏 →S is the external transition function, where  

𝑄 ∈ {(𝑠, 𝑒)|𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠)} is the total state set, e is the time elapsed since last transition, 

𝑋𝑏 denotes the collection of bags over X. And𝛿𝑐𝑜𝑛 : S × 𝑆𝑏 →S is the confluent transition 

function: S→ 𝑌𝑏 is the output function, ta:𝑆 → 𝑅0,∞
+  is the time advance function.  

The DEVS-FIRE model is based on the DEVS formalism and supports discrete event 

simulation of wildfire behavior and fire suppression tactics [9]. Figure 3.1 shows the architecture 

of the DEVS-FIRE.  

Fire Spread Model

(Cellular space)

Behave model

(Rothermel )

Fire 

fighting

Weather data Fuel data GIS data

Visualization

 

Figure 3.1 Structure of DEVS-FIRE model 

 

Based on the structure of DEVS-FIRE model, we can see the core of DEVS-FIRE model 

is fire spread model which is modeled as a cellular space model containing individual cells 

coupled together. First of all, the cellular space model get the necessary information such as 

weather data, fuel data and GIS data (aspect data and slope data). When ignited, each cell uses 

the Rothermel model [93] to computer a one-dimension fire spread which include the fire speed 

and fire direction, then decomposed into two-dimensions based on an elliptical fire spread. The 
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visualization component displays the simulation results which changes the display color of a cell 

whenever the cell’s state changes. From the left side of the structure, we can see the DEVS-FIRE 

also supports fire suppression simulation. This can be achieved by adding interactions between 

the fire spread model and the firefighting model. The work of [94] presents an integrated 

framework and demonstrates how fire spread simulation, firefighting resource optimization, and 

fire suppression simulation can effectively work together for wildfire containment, the more 

work about fire suppression were discuss very in [94] and omit in here. 
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Figure 3.2 Fire spread decomposition of DEVS-FIRE 

In the DEVS-FIRE model, the fuel data, GIS data and weather data within individual 

forest cells are assumed to be constants. Each cell has an ID(x, y) denote its location in the cell 

spaces, cell are coupled with their neighbors acceding to the Moore neighborhood, in which a 

central cell has eight surrounding cells, and its fire spread behavior is modeled by the Rothermel 

model. The entire cell space is a coupled model by connecting input ports and output ports 

between neighboring cells, so a cell can send messages to ignite its neighbor cells. Each cell is a 
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DEVS atomic model and transitions through different states like unburned, burning and burned. 

At first, the state of all the cells are unburned, once the cell receives and ignition message and 

also its fire line intensity is greater than the burning threshold, the state of this cell become to 

burning and the cell from burning to burned when its burn delay time has elapsed.  In DEVS-

FIRE, the rate of spread decomposed into eight directions including North, Northeast, East, 

Southeast, South, Southwest, West, and Northwest from the ignition point according to an 

elliptical shape as illustrated in figure 3.2, the method which calculate the spread rates can be 

find in[95]. 

3.2 Overview of PF-based data assimilation framework 

In order to improve the simulation result, the real time data is assimilated into the 

simulation model. To apply particle filter methods for data assimilation, the system model and 

the measurement model need to be defined as well. Because particle filter methods are sample-

based methods that use Bayesian inference and stochastic sampling techniques to recursively 

estimate the state of dynamic systems from some given observations [96] [47], a dynamic system 

is formulated as discrete dynamic state-space model, which is composed of the system model 

and the measurement model in equation (3.2) and (3.3) [97] as shown blow: 

                               𝑠𝑡+1 = 𝑓(𝑠𝑡, 𝑡) + 𝑣𝑡                                                                       (3.2) 

                              𝑚𝑣𝑡 = 𝑔(𝑠𝑡, 𝑡) + 𝑤𝑡                                                                       (3.3) 

In these equations, t is time step, 𝑠𝑡 and 𝑚𝑡 are the state variable and the measurement variable 

respectively, the functions of f and g define the evolutions of the state variable and the 

measurement variable. The 𝑣𝑡 and 𝑤𝑡 are two independent random variable to generate the state 

noise and the measurement noise. So, based on the simulation model, we formulate a non-linear 

state-space model as equation (3.4) and (3.5). 
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                      𝑠𝑡𝑎𝑡𝑒𝑡+1 = 𝑆𝐹(𝑠𝑡𝑎𝑡𝑒𝑡 , 𝑡) + 𝑣𝑡                                                               (3.4) 

                        𝑚𝑣𝑡 = 𝑀𝐹(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑡) + 𝑤𝑡                                                                   (3.5) 

which 𝑠𝑡𝑎𝑡𝑒𝑡 and 𝑠𝑡𝑎𝑡𝑒𝑡+1 are the system state variables of simulation state at time step t and 

t+1; SF is the system transition function,  𝑚𝑣𝑡  is the measurement variable, in our work we 

consider the measurement variables as the date obtained by the sensors deployed in the different 

filed. The 𝑣𝑡 and 𝑤𝑡 refer to the noises of the system state and those of the measurement data 

respectively. The system model and the measurement model are the essential components of the 

data assimilation system. The measurement model converts the output from the system model 

into the measurement data, which is used to compare with the real time data.  

Because the sequential importance sampling has the limitation which the whole process 

relies on the initially generated sampling, so the particle filter methods used in here implement 

the sequential importance sampling with resampling (SISR) principle. The SISR forms the basic 

structure of particle filter methods which has been shown that a large number of particles are 

able to converge to the true posterior density even in non-Gaussian, non-linear dynamic systems 

[98]. For systems with strongly non-linear behaviors, particle filter methods are more effective 

than the widely used Kalman filter and its various extensions. More details about the algorithm 

can be found in [99]. A basic particle filter algorithm that implements the SISR procedure goes 

through multiple iterations. In each iteration, the algorithm receives a sample (particle) set 

𝑠𝑡𝑎𝑡𝑒𝑡−1 and an observation𝑚𝑣𝑡 . Each sample in  𝑠𝑡𝑎𝑡𝑒𝑡−1 is used to predict the next state in 

the importance sampling step. The importance weight of each particle is then updated and 

normalized. In the resampling step, N offspring samples are drawn with a probability 

proportional to the normalized sample weights. These samples represent the posterior belief of 

the system state and are used for the next iteration. 
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The figure 3.3 shows the structure of particle filter methods and the procedure of the data 

assimilation algorithm. In the figure, the rectangle boxes represent the major components and the 

circles and rounded rectangles represent the data or variables. The data assimilation algorithm 

runs in a stepwise fashion. The state from time step t-1 are fed into the system transition model, 

the result state set then denoted as  𝑠𝑡𝑎𝑡𝑒𝑡
′ . In order to computer the importance weight for 

each 𝑠𝑡𝑎𝑡𝑒𝑡
′, the sensor data is computed according to the measurement function which denoted 

as 𝑀𝑡
′. Then compare to the real observation data which collected from real time sensors, we can 

finish the weight calculation and weight normalization. After that, a resampling algorithm is 

applied to generate 𝑠𝑡𝑎𝑡𝑒𝑡  and it is the input for t+1 for next step. For the algorithm of particle 

filter methods, the set of states is represented by a set of particles. 

The algorithm starts by initializing N particles representing the initial states and each 

particle’s weight is initialized to 1/N. The algorithm goes through multiple iterations, every of 

which includes the sampling step, weight computation step (weight update) and resampling. In 

the sampling step, all the particles go through the system transition model to obtain their 

corresponding state of the next time step. In the weight update step, we can get the importance 

weights of the particle according to calculate the difference between the sensor data computed 

from the measurement model and the real sensor data. Finally, in resampling step, we select the 

particles based on their normalized weights to form a new set of particles. And we will use those 

particles and assign their new weight to 1/N to continue go the next iteration. 
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Figure 3.3 PF-based data assimilation 

3.3 Data assimilation for wildfire spread simulation 

Based on the information we shown in section 3.2, we can easily summarize the data 

assimilation for wildfire spread simulation work. Based on the DEVS-FIRE simulation model, 

we formulate a non-linear state-space model as show in equation (3.6). 

                                 {
𝑓𝑖𝑟𝑒𝑡+1 = 𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡) + 𝑣𝑡
𝑇𝑀 𝑡 = 𝑀𝐹(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑡) + 𝑤𝑡

                                                      (3.6) 

which we define the state is the fire shape, because the fire front is the most important 

information in a wildfire spread simulation. However, the state in large-scale spatial temporal 

systems can include many parts such as the fuel data, slope data, aspect data and weather data, 
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etc. In equation (3.6), 𝑓𝑖𝑟𝑒𝑡 and 𝑓𝑖𝑟𝑒𝑡+1 are the fire shape in time step t and time step t+1. DF is 

the DEVS-FIRE simulation model; 𝑇𝑀 𝑡  is the measurement variable, to apply the data 

assimilation in DEVS-FIRE simulation, they consider the measurement variables as the 

temperature data which collected from the ground temperature sensors deployed in the fire filed. 

MF is the measurement model that maps the fire front to the ground temperature sensors’ 

temperature data. 

The particle filter methods side, the algorithm is totally same as we shown in section 3.2. 

We have the fire front in time step t-1 and fed into the DEVS-FIRE simulation model, and then 

the output of the DEVS-FIRE simulation model gives the new fire front. In order to get the 

importance weights of these fire fronts, we calculate the difference between the temperature 

sensors data from those fire fronts and the real temperature sensors data. After the weight 

normalization, the weight will be used for resampling that draws a set of offspring samples 

which are used as the inputs for the next step t+1.  In this section, we will mainly review the 

sampling algorithm, weight computation algorithm and resampling algorithm about PF-based 

data assimilation for DEVS-FIRE spread simulation, also some experiments result will discussed 

as well. 

3.3.1 Sampling using DEVS-FIRE simulation 

The goal of the sampling algorithm is to generate a fire state sample for the next time step 

give the current fire state based on the distribution 𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1) [96]. First of all, we use 

DEVS-FIRE simulation starting from the fire state of each particle and run the simulation for one 

time step. The length of the time step is depending on how often the sensor data is collected. 

Moreover, let fire front 𝑓𝑖𝑟𝑒𝑡 denote the result of  𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡) and add the graph noise to it and 
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then reconstruct a new fire state from the noised fire front. In here, we let the reconstructed fire 

state as a sample of  𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1). 

The method of add the graph noise is: firstly, we divide the fire front into several 

segments and each segment consist the equal number of burning cell. Here, we use 𝐶1 represent 

the number of segments. Secondly, we introduce a noise denoted as 𝑑𝑖that defines the change 

inside or outside a cell along the direction from the ignition point to this cell. So, the different 

segments get the different noise, but the cells in same segments get the same noise. After this, 

every burning cell for each segment moving to the new position based on 𝑑𝑖 cells distains and the 

direction based on the ignition point to the cell. Finally, reconstructed all the cells one by one to 

a new fire front (before we divide the fire front, we record the cell location, after add the noise, 

we reconnect it according the location we recorded). We also need set all the cells which inside 

of the noised fire front to burned and obtain a noised fire state which considered as a sample 

of  𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1). The algorithm 3.1 shows the system transition density sampling. 

The sampling algorithm plays critical roles in the particle filter methods which modeled the 

simulation error and then generate a new and realistic noised fire front from the existing fire 

front. This can solve the problem which cause by imprecise fuel data, GIS data, weather 

condition, fire model error and other uncertain elements affecting fire spread. 
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Table 3.1 Algorithm 3.1 System Transition Density Sampling 

Algorithm 3.1 System Transition Density Sampling 

1. Let fire front  𝑓𝑖𝑟𝑒𝑡  = 𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡) 

2. Divide the fire front into 𝐶1 consecutive segments, represent as 𝑆𝐸𝐺1, 𝑆𝐸𝐺2 …𝑆𝐸𝐺𝑖. 

3. Generate noise 𝑑1, 𝑑2…𝑑𝑖 for each segment where 

𝑑𝑖~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝐸𝐺𝑖

𝐶2
 , 𝐶3) 

4. Move every burning cell in each segment 𝑆𝐸𝐺𝑖  based on the  𝑑𝑖 and which direction 

according the ignition point to this cell. 

5. Reconstruct each segment according the segment order before divide it to a closed fire front 

(noised fire front). And set all the cells on the noised fire front to burning status. Also set all 

the cell inside of noised fire front to burned status and all the cells outside of noised fire front 

to unburned; 

6. Return the fire state. 

3.3.2 Weight computation and resampling algorithm 

Based on the figure 3.3, we have the fire state 𝑓𝑖𝑟𝑒𝑡−1 in time step t-1 and fed it into the 

DEVS-FIRE simulation model. And then use algorithm 3.1 produce a sample for each particle in 

𝑓𝑖𝑟𝑒𝑡−1 based on  𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1) and get the result fire state set 𝑓𝑖𝑟𝑒𝑡
′. Next step is the weight 

computation, which evaluate how good about a simulated particle compare to the real wildfire. 

The method is comparing the difference of temperature between the fire state and the real sensor 

temperature data to get the importance weight. The detail about the measurement density can be 

finding in [96]. Then after weight normalization, use resampling algorithm to generate 𝑓𝑖𝑟𝑒𝑡  

which is the input for the next step. The algorithm 3.2 shows the particle filter method in wildfire 
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simulation. The algorithm 3.3 shows the multinomial resampling which use for implement the 

resampling algorithm in this work. 

Table 3.2 Algorithm 3.2 Particle filter method in wildfire simulation for one time step 

Algorithm 3.2 Particle filter method in wildfire simulation for one time step 

Input: The fire states and the corresponding importance weight at time step t-

1  ({𝑓𝑖𝑟𝑒𝑡−1
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡−1
(𝑖)
}
𝑖=1

𝑁

), and the measurement at time step 𝑡 (𝑚𝑡). 

Output: The fire states and the corresponding importance weight at time step t 

({𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡
(𝑖)
}
𝑖=1

𝑁

) 

1. Sampling 

For each fire state in {𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

 , draw a sample 𝑓𝑖𝑟𝑒′𝑡
(𝑖)
 from  𝑝(𝑓𝑖𝑟𝑒𝑡

(𝑖)
|𝑓𝑖𝑟𝑒𝑡−1

(𝑖)
) based on 

algorithm 3.1; 

2. Weight computation and normalization  

(a. For each fire state in {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

, update the weight: 𝑤′𝑡
(𝑖)
= 𝑤𝑡−1

(𝑖)
×   𝑝(𝑚𝑡|𝑓𝑖𝑟𝑒′𝑡

(𝑖)
)  

(b. Calculate the normalized weight: 𝑤′′𝑡
(𝑖)
= 

𝑤′𝑡
(𝑖)

∑ 𝑤′𝑡
(𝑖)𝑁

𝑖=1

 

3. Resampling 

(a. Draw N particles from {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

 and {𝑤′′𝑡
(𝑖)
}
𝑖=1

𝑁

: 

{𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

 = Algorithm 3.3({𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤′′𝑡
(𝑖)
}
𝑖=1

𝑁

); 

(b. Set the weights: 𝑤𝑡
(𝑖)

 = 1/N, i=1,2, …,N; 
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In algorithm 3.3, 𝑤𝑡
(𝑖)

 represents the normalized importance weight of the i-th particle at time 

step t and N is the total number of particles. At first, the cumulative sums of the normalized 

weight of N particles (𝑞̃𝑡
(1)

, 𝑞̃𝑡
(2)

, … , 𝑞̃𝑡
(𝑖)
, … , 𝑞̃𝑡

(𝑁)
) are computed, where 𝑞̃𝑡

(𝑖)
 = ∑ 𝑤𝑡

(𝑗)𝑖
𝑗=1 . Then 

we generate N random number between 0 to 1. Finally, we count the number of elements in 

{𝑢𝑘}𝑘=1
𝑁  that fall into the interval of 𝑞̃𝑡

(𝑖−1)
 and 𝑞̃𝑡

(𝑖)
. This number decides how many copies of the 

i-th particle will be selected. 

Table 3.3 Algorithm 3.3: Multinomial resampling 

Algorithm 3.3: Multinomial resampling 

Input: The fire states and the corresponding importance weight at time step t 

({𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡
(𝑖)
}
𝑖=1

𝑁

)  

Output: Resampled fire states at time step t {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

 

1. Compute the cumulative sums of the normalized weight of N particles 

(𝑞̃𝑡
(1)

, 𝑞̃𝑡
(2)

, … , 𝑞̃𝑡
(𝑖)
, … , 𝑞̃𝑡

(𝑁)
), where  𝑞̃𝑡

(𝑖)
 = ∑ 𝑤𝑡

(𝑗)𝑖
𝑗=1 ; 

2. Generate N ordered random numbers  {𝑢𝑘}𝑘=1
𝑁 , where 𝑢𝑘 ∈ (0,1] 

3. Generate 𝑛𝑖 copies of 𝑓𝑖𝑟𝑒𝑡
(𝑖)

, where 𝑛𝑖 is the number of 𝑢𝑘 ∈ (𝑞̃𝑡
(𝑖−1)

, 𝑞̃𝑡
(𝑖)
] ; 

4. Return the new generated fire states as {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

 

3.3.3 Experiments and analysis 

First of all, we use the identical-twin experiment, which has been widely used in data 

assimilation research, to evaluate the data assimilation system of DEVS-FIRE. The purpose of 

identical-twin experiments is to study the assimilation in ideal situations and evaluate the 

proximity of the prediction to the true states in a controlled manner. There are three different 

type fire results in identical-twin experiment” “real fire”, “simulated fire” and “filter fire”. In the 
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identical-twin experiment, a simulation is first run and the corresponding data is recorded. These 

simulation results are considered as “real”; therefore, the observation data obtained here is 

regarded as the real observation data (because they come from the “real” model). Consequently, 

we estimate the system states from the observation data using particle filter methods, and then 

check whether these estimated results are close to the “real” simulation results. So, the “real fire” 

is the simulated fire spread from which the real observation data are obtained. The “simulated 

fire” is the simulation result based on some “erroneous” data; the “erroneous” data means some 

data such as fuel data, GIS data, weather data which are different from those used in the real fire. 

The “filter fire” is the data assimilation enhanced simulation result based on the same 

“erroneous” data as in the simulated fire. Our goal is to show that a “filtered fire” gives more 

accurate simulation results by assimilating observation data from the “real fire” even if it uses 

the “error” data as in the simulated fire. 

The differences between a real fire and a simulated fire are due to the imprecise data such 

as wind speed, wind direction, GIS data, and fuel model, used in the simulation. In our 

experiments, we choose to use imprecise wind conditions (wind speed and wind direction) as the 

“erroneous” data. Table V shows the configurations of the set of experiments. The real wind 

speed and direction are 8 (mph) and 180 (degrees) with random variances added every 30 

minutes. The variances for the wind speeds are in the range of –2 to 2 (mph) (denoted as 8±2 in 

the table), and the variances for the wind direction are in the range of -20 to 20 (degrees) 

(denoted as 180±20 in the table). Our experiment introduces errors to the wind speeds, which are 

randomly generated based on the wind speed of 6 (mph) with variances added in the range of –2 

to 2 (mph) and also the wind direction of 130 (degrees) with added variances in the range of ±20 
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(degrees) in the same time. For wind directions, the degrees indicate the angle between the north 

directions clockwise to the direction from where the wind comes. 

Table 3.4 Experiment set of the wind factor 

         “Error” data              Real data 

Speed (mph) Direction(degrees)       Speed(mph) Direction(degrees) 

6±2 130±20 8±2 180±20 

In the experiment, simulations use the real-world GIS data and fuel data. The cell space 

dimension is 200×200 and the cell size is 20 (m). The GIS data are airborne LiDAR (Light 

Detection and Ranging) [99] raster-based terrain data. The fuel data was obtained by classifying 

a multispectral QuickBird (DigitalGlobal) image [100]. Those data were acquired from 

Huntsville area, Texas, during the leaf-off season in March 2004 by M7 Visual Intelligence of 

Houston, Texas. The ignition point is set to the point (90, 55) of the cell space for all of the 

simulations. The observation data (ground temperature sensor data) from the real fire are 

collected every 30 minutes. We use 6 PUs (every PU has 50 particles, total 300 particles) to run 

6 hours' simulation (12 steps and every step is 1,800 seconds) in all the experiments. Among 

these 6 PUs, one of them is functioned as a CU when completing the centralized resampling 

function for the global resampling step, otherwise a regular PU like others. All experiments are 

conducted under the supercomputer named Cheetah, which has 14 nodes, 160 computing cores, 

32 CPUs, and 264 GB system memory. 

Figure 3.4 shows the real fire spread with the real time data and the simulated fire with 

the imprecise wind data described in the above section. From the figure we can see the real fire 

(as shown in Figure 3. 4(a)) and the simulated fire (as shown in Figure 3.4(b)) are obviously 

different regarding the spread direction, and burned areas. After assimilating the real time data in 

the simulation, we expect the improved fire spread estimation. Figure 3.4(c) displays the real 
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fire, the simulated fire, and the filtered fire by assimilating the real data into wildfire spread 

simulation. In the figures, all the filtered fires (display in red) are close to the real fire (display in 

blue) although we run the data assimilation simulations with the error data. Figure 3.5 display the 

symmetric set differences for the simulated fire and the filter fire in every step. Compared to the 

simulated fires (display in black), all the simulation results are greatly improved. 

 

(a)                                                  (b) 

 

                         (c) 

Figure 3.4 Real fire, simulated fire and filter fire for the experiment 
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Figure 3.5 Symmetric set differences for simulated fire and filter fire 

3.4 Data assimilation for parameter estimation 

Wildfire simulation models also rely on many parameters to model the structure and 

behavior of systems under study. To achieve accurate simulation results, a simulation model 

needs to use correct model parameters. However, it is common that during the modeling process 

the parameters are largely unknown, uncertain and/or vary with time or space. Therefore, it is 

critical to develop methods to decide or estimate the correct set of model parameters in order to 

achieve reliable simulation results. In the section 3.3, our work on data assimilation explored the 

possible applications of particle filters in wildfire spread simulation based on DEVS-FIRE 

model, and applied particles filters to assimilating temperature sensor data for estimating the 

dynamically evolving fire front of a spreading fire. This section’s work differs from the section 

3.3’s work by focusing on estimating the parameters of the wildfire spread simulation model in 

order to achieve better simulation results. In this section, we present a method to dynamically 

estimate model parameters by assimilating real time data using particle filter methods. We 

formulate the problem of single and multiple parameter estimations based on the context of 
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wildfire spread simulation. Preliminary results show that the developed method can be applied to 

parameter estimation in wildfire spread simulation to produce more accurate simulation results. 

The complexity and difficulties in multiple parameter estimation are discussed as well. 

3.4.1 Particle filter based state estimation 

Estimating model parameters of a simulation model is a challenging task. Different 

systems have different characteristics, which should be reflected in the chosen modeling 

parameters. For example, in a wildfire spread simulation, different study areas have different 

characteristics, such as different levels of fuel bed depth (FBD), which influence fire spread 

behavior. In practice, the values of these parameters are set based on experts’ opinions and/or 

experimental testing data, which are not always readily available. More challengingly, some 

parameters are “dynamic” in nature as the values of these parameters dynamically changing over 

time as the simulation proceeds. Consider the wildfire spread simulation example again, an 

important parameter is the fuel moisture content of the vegetation in the fire area. In general, the 

fuel moisture content fluctuates during different time of a day: it is higher in the evening and 

morning and becomes lower as the sun rises. Thus depending on which time the fire spread 

simulation starts and how long the simulation lasts, the fuel moisture content parameter (and its 

dynamic change) needs to be different in order to achieve accurate results. Therefore, it is 

essential to develop methods to estimate the dynamically changing parameters in order to fit the 

daily variable environment. 

Parameter estimation is widely used in many fields, such as image processing, chemical 

engineering, bio-molecular engineering, biochemical pathways and text analysis. In the fields of 

image processing, the authors [101] propose novel algorithms for total variation (TV) based 

image restoration and parameter estimation utilizing variational distribution approximations. 
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Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper-

parameters for the image prior and the noise are simultaneously estimated. Additionally, in the 

chemical engineering area, the parameter estimation problem for ordinary differential equations 

(ODE) is decomposed into two sub-problems [102]. And in the bio-molecular engineering area, 

one method is presented for deterministic global optimization in the estimation of parameters in 

models of dynamic systems [103]. The method can be implemented as a global algorithm, or, by 

use of the interval-Newton method, as an exact algorithm. A key feature of the method is the use 

of a new validated solver for parametric ODEs, which is used to produce guaranteed bounds on 

the solutions of dynamic systems with interval valued parameters, as well as on the first- and 

second-order sensitivities of the state variables with respect to the parameters.  In the text 

analysis area, the authors [104] present parameter estimation methods common with discrete 

probability distributions, which is of particular interest in text modeling. Starting with maximum 

likelihood, a posteriori and Bayesian estimation, central concepts like conjugate distributions and 

Bayesian networks are reviewed. 

Conventional methods for estimating parameters include statistical techniques, such as 

maximum likelihood technique [105], which rely on analyzing historic data. These conventional 

methods can neither automatically tune the parameters online for a specific study area, nor can it 

dynamically adjust the parameters as simulation proceeds. In here, we present a method to 

dynamically estimate model parameters by assimilating real time data collected from the system 

under study and we carry out this work within the context of wildfire spared simulations. We 

formulate the problem of parameter estimation based on particle filters for wildfire spread 

simulation using the DEVS-FIRE model [9] [106]. In our work, we consider two specific 
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parameters: fuel moisture content and fuel bed depth (FBD), in the wildfire spread model to 

demonstrate the developed method.  

The DEVS-FIRE model used in this work is a discrete event model for wildfire spread 

simulations. DEVS-FIRE models the forest as a cellular space where fire spreading is simulated 

as a propagation process between neighbor forest cells, whereby burning cells ignite their 

unburned neighbor cells. Each cell has input and output ports through which couplings are made 

for exchanging messages, and it is coupled to the eight adjacent neighbor cells. When ignited, a 

cell uses the Rothermel model to compute a one-dimension fire spread rate, which is then 

decomposed into two-dimensions based on an elliptical fire spread. In Rothermel model, the 

basic fire spread is equation (3.7) and equation (3.8): 

                                    𝑅 =
IR∗ξ∗(1+Φw+Φs)

𝜌𝑏∗ε∗Qig
                                                                  (3.7) 

                                      IR =Ѓ*wn*h*ηM*ηs                                                               (3.8) 

In equation(3.7), where R is the Rate of spread, IR is the reaction intensity, ξ is the propagating 

flux ratio, Φw  is the wind coefficient, Φs  the slope factor, 𝜌𝑏   is the ovendry bulk density, ε is 

the effective heating number and Qig  is the heat of pre-ignition. The reaction intensity IR  is 

computed according to equation (3.8), is the reaction intensity, where Ѓ is the optimum reaction 

velocity, wn  is the net fuel loading, h is the fuel particle low heat content, ηM is the moisture 

damping coefficient and ηs  is the mineral damping coefficient. The above description shows that 

the fire spread behavior depends on many different factors. Among them fuel moisture content is 

an important fuel characteristic affecting fire behavior [107] [108]. The fuel moisture content 

determines how much fuel is available for burning, and ultimately, how much is consumed 

[109]. According to [110], the factors that regulate fuel moisture differ among live and dead 

fuels. The primary determinants of live fuel moisture content include factors such as internal 
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factors that regulate diurnal and seasonal changes, climate, site factors that affect the fuel 

environment. For the dead fuels, fuel moisture depend on factors such as particle size, short and 

long-term weather changes, topography, decay class, and fuel composition. In Rothermel’s 

model, the fuel moisture content (denoted as Mf) is used to compute the moisture damping 

coefficient  ηM  (see Equation (3.8)) as shown in Equation (3.9): 

              ηM = 1 − 2.59 ∗ (
Mf

Mx
) +  5.11 ∗ (

Mf

Mx
)
2

−  3.52 ∗ (
Mf

Mx
)
3

                                          (3.9) 

where   𝑀x is the moisture of extinction, which is the moisture content of the fuel at which the 

fire will not spread. The moisture of extinction is a property of the fuel type, and is considered as 

a constant for a given type of fuel. 

Another important parameter influencing fire spread behavior is the fuel bed depth (FBD). The 

FBD is the accumulation of dead, woody residue on the forest floor. It begins at the top of the 

duff layer and above. It includes litter, dead limb wood and bole wood from tree species, as well 

as dead material from shrub, herbaceous, and grass species. In Rothermel model, the FBD related 

equations (3.10): 

                                         𝜌𝑏 =
wo

δ
                                                                               (3.10) 

In equation (3.10), where δ is the FBD, wo is ovendry fuel loading and 𝜌𝑏 is ovendry bulk 

density. 

                                       β =
𝜌𝑏

𝜌p
                                                                                    (3.11) 

               Ѓ = Ѓ𝑚𝑎𝑥 ∗ (
β

βop
)
𝐴

∗ exp [A ∗ (1 −
β

βop
)]                                                     (3.12) 

                             Φw = C ∗ U𝐵 ∗  (
β

βop
)
−𝐸

                                                                 (3.13) 
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In equation (3.11), (3.12) and (3.13), where β is the packing ratio, 𝜌𝑝 is the ovendry particle 

density, Ѓ𝑚𝑎𝑥   is maximum reaction velocity, βop  is the optimum packing ratio, C,U,B,E are 

experimentally defined constants. 

For a given fire spared scenario, the FBD can be treated as a static parameter and does 

not change over time. However, the fuel moisture content dynamically change over time (e.g., 

due to changes of temperature during the day. More information about the change of dead fuel 

moisture can be found in [111]). This asks for the need of estimating parameters that are both 

static and dynamically changing over time. Also notice that both the fuel moisture content and 

the FBD impact the fire spread behavior. This means multiple combinations of these two 

parameters may leads to the same (or similar) fire spread behavior. This poses difficulties to 

estimate the precise values of the two parameters when both of them need to be estimated. This 

is shown in our experiment results in Section 3.4.3. 

3.4.2 Problem formulation for parameter estimation 

To extend previous work in section 3.2 and 3.3 for supporting online parameter 

estimation, we formulate the parameter estimation problem as a joint state-parameter estimation 

and uncertainty assessment problem, which treats model parameters as stochastic state variables 

that need to be estimated. To apply particle filter methods to this problem, in addition to 

sampling of the state variables, sampling in the parameter space is also needed using some kind 

of proposal density. Specifically, in this work we treat the parameters to be estimated as 

stochastic variables and perturb the parameters at each time step. 

In order to estimate the parameters, we need to redefine the wildfire state by adding the 

parameters that need to be estimated as part of the state variables. Below we first consider the 
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case where there is only one parameter, the FBD, which needs to be estimated. With this 

parameter, we redefine the state and the state space model as follows equation (3.14): 

                       

{
 
 

 
 𝑠𝑡= [

𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

𝑠𝑡+1= [
𝐹𝑆𝑡+1
𝐹𝐵𝐷𝑡+1

] = [
DF 0
0 Gnoise

] [
𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

𝐷𝑇𝑡 = [𝑆𝑀, 0] [
𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

                                                    (3.14) 

 

where 𝑠𝑡  and 𝑠𝑡+1 is the new-defined state at time t and t+1. Note that this new-defined state 

includes the fire front FS and the parameter FBD. Same as before, DF is the DEVS-FIRE 

simulation model, DT is the measurement data, and SM is the measurement model that computes 

the sensor data based on the fire front. To perturb the FBD parameter, we add Gaussian noise to 

the FBD parameter in each step. This is represented by the Gnoise function in the above state 

space model. 

If multiple parameters need to be estimated, we can formulate the state space model in a 

similar way as shown above. Below we consider two parameters: fuel moisture content (denoted 

as moisture) and FBD, and formulate the problem as below equation (3.15):  

             

{
 
 
 
 

 
 
 
 𝑠𝑡= [

𝐹𝑆𝑡
𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

𝑠𝑡+1= [
𝐹𝑆𝑡+1

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡+1
𝐹𝐵𝐷𝑡+1

] = [
DF 0 0
0 Gnoise 0
0 0 Gnoise

] [
𝐹𝑆𝑡

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

𝑀𝑡 = [𝑆𝑀, 0, 0] [
𝐹𝑆𝑡

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

                              (3.15) 

As can be seen, we perturb both the FBD and fuel moisture content using a Gaussian noise 

function. This means during the sampling step of the particle filter method, we sample both the 

FBD and fuel moisture content parameters according to the Gaussian distribution. Note that in 
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our experiments presented below, the Gaussian distribution for the FBD has sigma 0.3 and the 

Gaussian distribution for the fuel moisture content has sigma 1.0. We chose a larger sigma for 

fuel moisture content because the fuel moisture content has more dynamics (e.g., due to 

temperature change during the day) compared to the FBD. 

3.4.3 Experiments and analysis 

Similar as the previous experiment work, we continue use identical-twin experiment in 

this section’s experiment. We carry out the experiments in a stepwise fashion. In the first 

experiment, we consider the case where only one parameter (the fuel moisture content 

parameter) needs to be estimated. The to-be-estimated parameter is a static parameter, i.e., a 

constant that does not change. In the second experiment, we still consider only one parameter of 

fuel moisture content. However, this time the fuel moisture content dynamically changes over 

time. In the third experiment, we consider the case where both the fuel moisture content and 

FBD need to be estimated. 

In all our experiments, we employed a 200 by 200 cell space. We used regular sensor 

deployment schema where the 100 sensors are regularly deployed and the observation data 

(ground temperature sensor data) from the real fire was collected every 30 minutes. 

3.4.3.1 Estimating a single static parameter 

In this experiment, we consider only one parameter, the fuel moisture content parameter, 

which needs to be estimated. We carried out two experiment cases based on different GIS data. 

Case 1 uses a uniform GIS data and case 2 uses a real GIS data for an area in eastern Taxes. 

Case1 uses a uniform fuel model (fuel model 7) possessing zero slope and zero aspect, with 

simple wind flow along with a wind speed of 2 mph and a wind direction with a fixed value of 

180 degrees, having the fuel moisture content initialized with a random number which the range 
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is 0% to 100%. The real fuel moisture content (the fuel moisture content used in the real 

simulation) keeps a constant value of 50%. Note that this is the data that need to be estimated by 

the particle filters. Based on the real fuel moisture content data, we use DEVS-FIRE to run the 

simulations to obtain the fire fronts and their corresponding temperature sensor data every 30 

minutes. Our goal is to estimate the fuel moisture content data every 30 minutes by assimilating 

those sensor data using the developed method based on particle filters. The particle filters used 

120 particles and the simulation time is 6 hours. 

Case2 uses non-uniform GIS data, where cells have different fuel models, aspects, and 

slopes. The initial wind speed and wind direction are 1 mph and 180 degrees. And the real fuel 

moisture content also keeps a value of 50%. Figure 3.6 and Figure 3.7 display the values of fuel 

moisture content every 30 minutes for case 1 and case2. In the figures, ‘initialized value’ means 

the value of the fuel moisture content which is random generated and ‘particle filters’ means the 

fuel moisture content value which is estimated by particle filters. 

From figure 3.6 and figure 3.7, we can see that the estimated fuel moisture content have 

the same trend as those of the real fuel moisture content conditions. Therefore, in the practical 

applications, if we know the fuel moisture content condition every time period, we can estimate 

the fuel moisture content data each time slot between this time according to observed data by 

particle filters. 
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Figure 3.6 Fuel moisture content of case1 
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Figure 3.7 Fuel moisture content of case2 
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3.4.3.2 Estimating a single dynamic parameter 

In this experiment, we also consider only one parameter, but the fuel moisture parameter 

dynamically varied with time, which needs to be estimated. Case3 uses the same conditions with 

case1 except we change the real fuel moisture content every two hours: fuel moisture content is 

20% in first two hours, and then changed to 50% in next two hours and final change to 80% in 

last two hours. The particle filters still used 120 particles and the simulation time is 6 hours. 

Figure 3.8 displays the values of fuel moisture content every 30 minutes for case 3. We can see 

that the estimated fuel moisture content have the almost same trend as those of the real fuel 

moisture content conditions, even those real fuel moisture content conditions varied with time. 
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Figure 3.8 Fuel moisture content of case3 

3.4.3.3 Estimating multiple parameters 

In this experiment, we consider two parameters, the fuel moisture content and FBD, 

which are content parameters need to be estimated. Case4 uses almost the same experiment 

environment with case1 and the FBD initialized with a random number which the range is 
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between 0 to 3 meters. (The reason why we choose this range is the values of FBD normally are 

the static number, around 1.2m in real wildfire situation.) We also have the fuel moisture content 

initialized with a random number (0% ~ 100%). The real FBD keeps a value of 2.0 meters and 

the real fuel moisture content keeps a value of 50%. Note that this is the data that need to be 

estimated by the particle filters (both fuel moisture content and FBD). Our goal is to estimate 

both the FBD and fuel moisture content data every 30 minutes. The particle filters used 120 

particles and the simulation time is 6 hours. 

Figure 3.9 displays the values of FBD every 30 minutes for case 4. Figure3.10 displays 

the values of fuel moisture content every 30 minutes for case 4. 
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Figure 3.9 FBD value of case4 
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Figure 3.10 Fuel moisture content value of case4 

From Figure 3.9 and Figure 3.10, we can see the PF cannot estimate parameter correctly when 

combining two parameters together. Because these two parameters have the same effect to the 

fire spread result. We can explain the reason is: according the equations (3.7) ~ (3.13) in section 

3.4.1, we know both the fuel moisture content and FBD have the same effect to the final fire 

spread result and we cannot distinguish their exact values, because both of their effect in the 

same equations (equations (3.7) and (3.8) in section3.4.1). Therefore, there are many different 

combinations can get the same final fire spread result. From our experiment results, we found 

some fuel moisture content and FBD combinations can get the totally same result. For example: 

the FBD 2.0m with  fuel moisture content 50% has the same result with FBD 1.2m with fuel 

moisture content 80%. In our experiments, we obtained the more precise value of FBD, and then 

we calculated the burned area, fire perimeter and then we compared the final fire shapes. In table 

3.5, we show six different combinations using the DEVS-FIRE and we can get the same fire 
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spread results, which have the totally same burned area and fire perimeter. (Fuel Moisture 

Content is denoted as ‘FMC’ in Table 3.5) 

Table 3.5 Different combinations 

 FBD (m) FMC (%) Burned 

Area(ha) 

Fire 

Perim.(km) 

1 2.0 50 1057.77 1410.24 

2 2.5401 40 1057.77 1410.24 

3 1.6445 60 1057.77 1410.24 

4 1.3938 70 1057.77 1410.24 

5 1.2075 80 1057.77 1410.24 

6 1.0643 90 1057.77 1410.24 

 

In Figure 3.11, we show the final fire shapes with six different combinations (showed in table 

3.5) running under the DEVS-FIRE for 6 hours. 

 

Figure 3.11 The final fire shape 
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3.4.4 Conclusions 

In this section, we developed a method to dynamically estimate the parameters in DEVS-

FIRE spread simulation model based on SMC methods. We carried out experiments to estimate 

the fuel moisture content and FBD parameters used in the wildfire spread simulation. Experiment 

results show that the developed method can be applied to parameter estimation in wildfire spread 

simulation to produce more accurate simulation results. However, there are complexities and 

difficulties associated with multiple parameter estimation.  
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4 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH 

CENTRALIZED RESAMPLING 

A vital component of distributed particle filters is particle routing because non-optimized 

routing may lead to high communication overheads. This is especially true for high dimensional 

systems due to the complex state represented by particles. Unfortunately, while different 

distributed particle filters have been developed, less research is devoted to the particle routing 

itself. Therefore, in this chapter, we propose detailed particle routing policies for both the 

centralized resampling and the distributed resampling and evaluate their impacts on data 

assimilation for large-scale spatial temporal systems. We study the routing policies in distributed 

particle filters with both the centralized resampling schema and the distributed resampling 

schema. In the centralized resampling schema [85], the central unit (CU) has the full knowledge 

of the weight distribution of all particles on different PUs.  

Based on this global information we propose two efficient routing policies named as 

minimal transfer policy and maximal balance policy in section 4.2.3 and section 4.2.4. Moreover, 

in the distributed resampling schema (more specifically, the distributed RNA with Local 

Exchange in section 2.4.3.3), communications are constrained between neighboring PUs. This 

local communication schema supports a large degree of parallelism due to elimination of the 

centralized resampling step. However, it also results in slow propagation of high-weighted 

particles, and thus reduces the convergence rate of the particles. To address this issue, we 

propose a hybrid particle routing approach that combines the global routing with the local 

routing to take advantage of both. In this approach, we mainly use the local routing to ensure 

scalability and low communication costs, and occasionally invoke the global routing to support 

faster propagation of "good" particles. We evaluate and compare the different particle routing 
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methods based on the application of data assimilation for large-scale wildfire spread simulations 

[112]. The rest of this chapter is organized as follow. Section 4.1 introduces the particle routing 

and related work. Section 4.2 presents the proposed routing policies in centralized resampling, 

including the minimal transfer policy and the maximal balance policy. Section 4.3 shows the full 

design of the example and all the example results include the analysis will discussed in Section 

4.4. 

4.1 Introduction of particle routing 

To improve of the performance of data assimilation, distributed / parallel particle filters are 

need. In section 2.4 several distributed particle filtering algorithm have been discussed as well. 

These algorithms mainly differ in how the resampling is carried out. Nevertheless, they all 

involve using multiple processing units (PUs) to carry out sampling of particles, and after 

resampling routing particles among the PUs. Particle routing is necessary because the numbers of 

particles on different PUs are unbalanced after resampling. Thus PUs which have surplus of 

particles need to route the extra particles to the PUs with shortage of particles for the next 

iteration of computing. As the number of PUs increases, the communication overhead rises. The 

unbalanced particles on PUs are caused by the fact that particles have different importance 

weights. As a result, PUs hosting high weighted particles generates a lot more replicates in 

resampling and need to route a large number particles to others. The uneven distribution of 

particles’ weights is common in data assimilation using PFs for spatial temporal simulations. 

Therefore, efficient particle routing is critical for reducing the communication cost in distributed 

PFs. This is especially true for high dimensional spatial temporal simulations because the size of 

each particle is large due to the high dimensional state it represents [113]. 
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Particle routing deals with selecting particles on some PUs and routing them to other PUs 

across the network. In distributed PFs, routing particles among PUs can serve two different 

purposes: 1) to help the “good” particles, i.e., particles with high weights, to propagate among 

the PUs and thus potentially to lead to better estimation results; 2) to ensure that the different 

PUs have the same number of particles (i.e., load balance) after resampling. While several 

resampling algorithms such as the centralized resampling [86], the distributed RPA [86] and the 

distributed RNA [86] have been developed for distributed particle filters, less research has been 

conducted to investigate how to route particles among PUs after resampling in effective and 

efficient manners. 

In chapter 2, we have already overview the application of data assimilation and application 

of particle filters. For both of them, particle filters are used in data assimilation of various high 

dimensional systems including ocean systems, land surface systems, object tracking, and 

atmospheric systems. The work in [114] applied particle filters to Agulhas Current to test the 

data assimilation methods because of the highly nonlinear dynamics and the availability of high 

quality satellite measurement data. The dimension of the state space in this application reaches 

about 200,000.  Also, the work in [115] analyzed the performance of particle filters in a large-

scale nonlinear land surface data assimilation example, in which a total of 684 states were 

considered. The work of [116] presented particle algorithms for filtering in group object tracking 

with up to 40 states and demonstrated its performance and the work [117] adapted particle filters 

to one of high dimensional chaotic systems, an atmospheric model that mimics mid-latitude 

atmospheric dynamics with microscopic convective processes, in which 360 dimensions were 

present. In spite of the aforementioned work in data assimilation, much less research has been 

done to use particle filters in high dimensional systems compared to low dimensional systems. In 
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work [118], the authors pointed out the obstacles of applying particle filters in high dimensional 

systems. Particle filters suffer from the "curse of dimensionality" due to collapse of particles’ 

weights for high dimensional systems [119]. To avoid this large number of particles are needed, 

which leads to high computation cost. 

To address the performance issue, different approaches have been proposed to solve 

problems in various applications including wireless sensor networks, traffic state tracking, 

robotic systems, signal processing, image processing, and target tracking. The work of [120] 

presented two parallelized particle filtering algorithms to estimate the state of the freeway traffic 

networks based on the topological partitioning of a traffic network into sub-networks, and 

compared the accuracy, the computational complexity, and the communication costs of the 

proposed algorithm and the centralized approach. The work of [121] proposed a strictly 

decentralized approach in which only nearby platforms exchange information to maximize the 

information flow and evaluated it in a robotic system for playing the game of laser tag. Their 

work illustrated the scaling capability to a large team of vehicles. Target tracking is one of the 

important applications for particle filters. The work of [122] developed a decentralized particle 

filtering algorithm for multiple targets tracking in wireless sensor networks, and compared their 

results to the optimal centralized solution. The work of [123] described two methodologies for 

distributed particle filters in wireless sensor networks, which are the parametric modeling 

approach and the adaptive encoding approach. From the mentioned work above, we can see that 

distributed particle filters are used in many applications, such as object tracking problems with 

wireless sensor networks. They have proliferated distributed sensor data as the measurement 

available. A lot of work mainly focused on the paradigm of the distributed particle filters and 

used the simple examples to evaluate the proposed methods. They used the centralized approach 
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as the base algorithm to compare with. We also notice that some distributed particle filters 

systems were partitioned into multiple subsystems and each subsystem used its local 

measurement data to estimate the partial state of the whole sys-tem state. Therefore, the state was 

decomposed and executed in parallel. In contrast, other systems used particle filters to predict the 

entire system state, in which different estimations were located on different processing units. In 

this case, the sample space was partitioned, and the resampling stage was the main focus since 

the global routing was needed. In our work, we focus on the sample partition and parallel 

execution. 

4.2 Particle Routing in Centralized Resampling 

4.2.1 Overall architecture 

In the general PF algorithms, three main steps are involved including sampling, weight 

computation, and resampling. Among them, resampling needs information of all the particles, 

and thus affects the parallelization of PFs. In the centralized resampling, two types of nodes are 

defined, the processing unit (PU) and the central unit (CU). Sampling and weight computation 

are implemented on PUs since they are independent for different particles. Resampling is 

performed on the CU due to its sequential nature. To carry out particle routing,  during the 

resampling stage the CU collects the weights of particles from all the PUs, performs the 

resampling, decides the routing information according to routing policies (described later), and 

then transfers particles between the CU and PUs according to the routing information. When 

transferring particles, PUs can send particles directly to each other. However, to simplify the 

overall system architecture, in our work we use CU as a hub to collect particles from source PUs 

and send the collected particles to destination PUs. Note that this design choice does not affect 

the different particle routing policies described in our work. 
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Figure 4.1 Overall architecture of particle routing in the centralized resampling 

The overall system architecture is illustrated in Figure 4.1. In the figure, there are4 PUs 

(PU1, PU2, PU3, and PU4) and one CU and in each particle filtering iteration, a PU carries out 

sampling for its particles, computes particles’ weights, and then sends the weights to the CU. 

After receiving all the weights, the CU normalizes the weights and performs the resampling 

algorithm. Consequently the CU carries out the routing procedure according to different policies 

(described below). According to the routing results, PUs with surplus of particles sends particles 

to the CU, and then the CU transfers them to the PUs with shortage of particles. After the routing 

completes, the system evolves to the next iteration. 

Assume there are n PUs and m particles on each of them. A particle is denoted as 𝑀𝑡
(𝑖,𝑗)

 ,  

i ∈{1,…,n} and j ∈{1,…,m}, where i is the index for the particle’s PU, and j is the particle’s local 

index on that PU. After the resampling step, m n copies of particles are selected. We use the set 

shown in equation (4.1) to represent the resampling result. 

𝑆𝑡 = { (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) : 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {1, … ,𝑚},𝑁𝑡
(𝑖,𝑗)

∈ {1,… ,𝑚𝑛}| ∑𝑁𝑡
(𝑖,𝑗)

∈ 𝑚𝑛}               

(4.1) 
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where t is the time step (or iteration step, used interchangeably in this paper), 𝑀𝑡
(𝑖,𝑗)

  is a selected 

particle and 𝑁𝑡
(𝑖,𝑗)

 is the associated number of copies for particle 𝑀𝑡
(𝑖,𝑗)

. Note that particles that 

are eliminated, i.e., having zero copy after resampling, are not included in 𝑆𝑡. Given the above 

information, the particle routing answers the following two questions: (1) How to select particles 

on PU with surplus of particles? (2) How to choose the destination PU for a selected particle? A 

routing policy will provide a solution to the above questions. An important feature of particle 

routing is that if multiple copies of the same particle need to be transferred across the network, 

only one copy of the particle plus a number indicating the duplicate number are transferred. This 

removal of duplicated particles reduces communication costs because the destination PU can 

easily make multiple copies of the received particle locally. 

The routing result can be defined by a set shown in equation (4.2): 

     𝑅𝑡 = { (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑘 , 𝑁𝑡
(𝑖,𝑗)

) : 𝑖, 𝑘 ∈ {1, … , 𝑛}, 𝑗 ∈ {1,… ,𝑚},  𝑆𝑁𝑡
(𝑖,𝑗,𝑘)

≤ 𝑁𝑡
(𝑖,𝑗)

| 𝑖 ≠ 𝑘                  

(4.2) 

where 𝑃𝑘 is a destination PU for 𝑀𝑡
(𝑖,𝑗)

 and  𝑆𝑁𝑡
(𝑖,𝑗,𝑘)

  is the number of copies for particle 𝑀𝑡
(𝑖,𝑗)

  

to be sent to 𝑃𝑘. Therefore, the routing problem can be defined as a function f: S→R, where S is 

the set containing the selected particles and their associated copies after resampling, and R is the 

set to store the routing result. Note that not all particles need to be routed to other PUs, thus the 

particles in R is a subset of the particles in S. The routing algorithm is composed of two main 

steps. (1) Particle selection: this step decides how to select particles on PUs with surplus of them. 

(2) Destination selection: for a selected particle, a destination PU is decided to route the particle 

to. The algorithm is executed in an iterative manner until all the particles that need to be routed 

out have a destination PU assigned. Afterwards, particles are transferred according to the routing 

result, with duplicated copies transferred only once. The following sections present three routing 



74 

algorithms based on three different particle routing policies, including the random routing policy, 

the minimal transfer routing policy, and the maximal balance routing policy. 

4.2.2 Random particle routing policy 

In the random routing policy, we randomly choose a particle from a PU with surplus of 

particles, and then select any PU with shortage of particles. Although the random routing policy 

may lead to large communication costs, it is still presented in this paper due to its easy 

implementation. We use this policy as the base to compare with other policies. Table 4.1 shows 

the random routing algorithm. To start the process, we first need to calculate the total numbers of 

copies of selected particles on each PU, and use that information to decide if a PU has surplus of 

particles or shortage of particles. If the total number of copies of a PU is larger than m, we save 

its information of the selected particles and associated number of copies in a set 𝑆1𝑡 as shown in 

equation (3). If a PU has less than m total copies of particles, we save this PU and its needed 

number of particles into a set 𝑆2𝑡 as shown in equation (4). Obviously 𝑆1𝑡  is a subset of  𝑆𝑡. 

𝑆1𝑡 =

{ (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) : 𝑖{1, … , 𝑛}, 𝑗{1, … ,𝑚},𝑁𝑡
(𝑖,𝑗){1, … ,𝑚𝑛}|∑𝑁𝑡

(𝑖,𝑗)
∈ 𝑚 for PU with index 𝑖}                            

(4.3) 

  𝑆2𝑡 = { (𝑃𝑡
𝑘, 𝑅𝑁𝑡

𝑘): 𝑘 ∈ {1,… , 𝑛}|𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
> 0 for PU with index 𝑘}                           

(4.4) 

We randomly choose a particle 𝑀𝑡
(𝑖,𝑗)

  in  𝑆1𝑡 and a PU with index k in 𝑆2𝑡 , add the route 

information (𝑀𝑡
(𝑖,𝑗)

  , 𝑃𝑡
𝑘 , 1) to the set 𝑅𝑡 , and then decrement  𝑁𝑡

(𝑖,𝑗)
, 𝑅𝑁𝑡

𝑘 , and ∑𝑁𝑡
(𝑖,𝑗)

. If  

∑𝑁𝑡
(𝑖,𝑗)

  = m or 𝑅𝑁𝑡
𝑘 = 0, we remove the information for the corresponding PU from 𝑆1𝑡 or 𝑆2𝑡.  
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Table 4.1 Random routing algorithm 

Main steps at time step t 

 

1. Calculate ∑𝑁𝑡
(𝑖,𝑗)

 for PU with index i, i=1, 2,..., n. 

2. If  ∑𝑁𝑡
(𝑖,𝑗)

  > m, save all the (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) for PU with the index i to the set 𝑆1𝑡. 

3. If  ∑𝑁𝑡
(𝑖,𝑗)

  < m, save (𝑃𝑡
𝑘 , 𝑅𝑁𝑡

𝑘), where 𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
 to the set 𝑆2𝑡. 

4. Randomly select a particle 𝑀𝑡
(𝑖,𝑗)

 in 𝑆1𝑡. 

5. Randomly select a PU with index k in 𝑆2𝑡. 

6. Append the route (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑡
𝑘 , 1) to the set 𝑅𝑡. If 

     𝑀𝑡
(𝑖,𝑗)

  and  𝑃𝑡
𝑘 already exist in 𝑅𝑡, increase the previous  𝑆𝑁𝑡

(𝑖,𝑗,𝑘)
  by one but do 

not add           (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑡
𝑘 , 1).   

         𝑁𝑡
(𝑖,𝑗)

- -, 𝑅𝑁𝑡
𝑘- -, and ∑𝑁𝑡

(𝑖,𝑗)
 - -; 

      if ∑𝑁𝑡
(𝑖,𝑗)

= m 

          Remove information of particles on PU with the index i from 𝑆1𝑡. 

       if  𝑅𝑁𝑡
𝑘  = 0 

          Remove information of PU with the index k from 𝑆2𝑡. 

7. Repeat Step 4 to 6 until both 𝑆1𝑡and 𝑆2𝑡are empty. 

 

Figure 4.2 and figure 4.3 show an illustrative example of the random particle routing 

policy. Figure 4.2 shows the first part of random particle routing policy that how to select the 

particles in each PU which have the surplus particles, and it will be transfer to the PU with 

shortage of particles and figure 4.3 shows how to routing the particles. In figure 4.2, there are 4 

PUs with the index P1, P2, P3 and P4 and each PU has 10 particles (K). Figure 4.2 (a) shows the 

selected particle index and its copy number. For example, for PU_01 has 2 copies of particle 

with the index 3  (𝑀(𝑃1,3) = (𝑃1,3) 𝑎𝑛𝑑 𝑁(𝑃1,3) = 2), and 4 copies of particle with the index 
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7  (𝑀(𝑃1,7) = (𝑃1,7) 𝑎𝑛𝑑 𝑁(𝑃1,7) = 4) and 10 copies of particle with the index 9   (𝑀(𝑃1,9) =

(𝑃1,9) 𝑎𝑛𝑑 𝑁(𝑃1,9) = 10).  

 

Figure 4.2 Example of random particle routing policy part 1 

Based on the resampling result, we know the PU_01 and PU_02 have the number of 

surplus particle is 6 (∑𝑁𝑃1,𝑖 − 𝐾 = 16 − 10 = 6) for PU_01 and 3 ( ∑𝑁𝑃2,𝑖 − 𝐾 = 13 − 10 =

3) for PU_02. Figure 4.2 (b) and figure 4.2(c) show how to select the particle from the PU_01 

and PU_04. Because it is the random routing policy, the entire select rule is totally random, that 

means we will random select six particles from the left side table in figure 4.2(b) and also 

random select ten particles from the left side table in figure 4.2(c).  4.2(d) shows the PUs with 
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shortage of particles and the number of particles it needs. Combine the (b), (c) and (d) we got the 

resampling results table in figure 4.2(e). The figure 4.3 shows the second part of random particle 

routing policy that how to routing the particle. 

 

Figure 4.3 Example of random particle routing policy part 2 

Continue from the last step of the part1 in figure 4.2 (e), in figure 4.3 (a) we need routing 

all nine particles in left side table to right side table. In random particle routing policy, the rule 

still is totally random. That means every time we random select one particle from the left side 

table for PU_03 or PU_04 until the particle in left side’s copy number equals zero. The figure 4.3 
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(b) shows an example when the first step random select the (P2, 5) and how to update the both 

table, then it needs record the routing information in blow. Figure 4.3(c) shows the last step of 

the example, which every particle’s copy number equals zero and the PU with shortage particle’s 

lack number also equals zero. Finally, combine all the routing information which shown in figure 

4.3 (d). From the example, we know the random particle routing policy used the random select 

method for every time’s select. So, this method will cause the large communication cost, which 

is why we introduce the minimal transfer routing policy.  

4.2.3 Minimal transfer particle routing policy 

While the random routing policy is easy to implement, it does not exploit the global 

information of particles’ distribution among PUs to reduce communication costs. The minimal 

transfer routing policy exploits that information and aims to achieve the minimal number of 

particles to be sent across the network, given that replicated particles need to be sent only once 

between two PUs. An intuitive way to implement this is to start from selecting the particle with 

the most number of copies from 𝑆1𝑡, and send them to the PU that needs the most number of 

particles in 𝑆2𝑡. This reduces the overall number of transfers because the duplicated particles are 

transferred only once between PUs. Compared to the random routing policy, we sort the obtained 

set 𝑆1𝑡and 𝑆2𝑡based on the number of copies 𝑁𝑡
(𝑖,𝑗)

 and the needed number of particles 𝑅𝑁𝑡
𝑘  

respectively in the descending order. The sorted sets are denoted as 𝑆1𝑡′and 𝑆2𝑡′accordingly. In 

each iteration, we conduct the following three steps. 1) Select the first particle (denoted 

as  𝑀𝑡
(𝐹𝑖,𝐹𝑗)

) in 𝑆1𝑡
′   and its host (denoted as   𝑃𝑡

𝐹𝑖 ) as the source PU. 2) The destination PU 

(denoted as  𝑃𝑡
𝐹𝑘) is the first PU in  𝑆2𝑡′. 3) Rout a number of copies of particle 𝑀𝑡

(𝐹𝑖,𝐹𝑗)
 to  𝑃𝑡

𝐹. 

To calculate how many copies of 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

  to be routed to the destination PU 𝑃𝑡
𝐹𝑘 , we first 
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compare the number of copies 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

 of particle 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 with the total extra number of particles 

(∑𝑁𝑡
(𝐹𝑖,𝐹𝑗)

−𝑚) on the source PU 𝑃𝑡
𝐹𝑖, and select the smaller number (denoted as Q) between 

the two. We then compare Q with the needed number of particles (𝑅𝑁𝑡
𝐹𝑘) on the destination 

PU  𝑃𝑡
𝐹𝑘. If the former is smaller than the latter, we transfer Q copies of the  𝑀𝑡

(𝐹𝑖,𝐹𝑗)
 to  𝑃𝑡

𝐹𝑘, and 

then remove 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 from 𝑆1𝑡
′    and update the needed number of particles of 𝑃𝑡

𝐹𝑘 by subtracting 

Q. If the former is greater than or equal to the latter, we transfer the needed number (𝑅𝑁𝑡
𝐹𝑘) of 

particle 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 to  𝑃𝑡
𝐹𝑘 , update the number of copies of 𝑀𝑡

(𝐹𝑖,𝐹𝑗)
  by subtracting 𝑅𝑁𝑡

𝐹𝑘 , and 

remove 𝑃𝑡
𝐹𝑘 from 𝑆2𝑡

′   . In both cases, the corresponding route info is added to 𝑅𝑡. Afterwards we 

resort the updated 𝑆1𝑡
′   and 𝑆2𝑡

′   and execute the same steps for the next iteration. This continues 

until 𝑆2𝑡
′    is empty (which means all the PUs in 𝑆2𝑡

′    have received the needed number of 

particles). The algorithm is described in Table 4.2. 
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Table 4.2 Minimal transfer routing algorithm 

 

Main steps at time step t 

 

1. Calculate ∑𝑁𝑡
(𝑖,𝑗)

 for PU with index i, i=1, 2,..., n. 

2. If  ∑𝑁𝑡
(𝑖,𝑗)

  > m, save all the (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) for PU with the index i to the set 𝑆1𝑡. 

3. If  ∑𝑁𝑡
(𝑖,𝑗)

  < m, save (𝑃𝑡
𝑘 , 𝑅𝑁𝑡

𝑘), where 𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
 to the set 𝑆2𝑡. 

4. Sort the set  𝑆1𝑡 in the descending order by 𝑁𝑡
(𝑖,𝑗)

 to 𝑆1𝑡. 

5. Sort the set  𝑆2𝑡 in the descending order by 𝑅𝑁𝑡
𝑖 to 𝑆2𝑡. 

6. Select the first particle (𝑀𝑡
(𝐹𝑖,𝐹𝑗)

) in  𝑆1𝑡′ to be sent and its host PU as the source PU. 

7. Select the first PU (𝑃𝑡
𝐹𝑘) in  𝑆2𝑡′ as the destination PU. 

8. Compare 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

 with (∑𝑁𝑡
(𝐹𝑖,𝐹𝑗)

−𝑚)  and select the smaller number (denoted as Q) 

between the two. 

9. Compare Q with 𝑅𝑁𝑡
𝐹𝑘  : 

a. If  Q < 𝑅𝑁𝑡
𝐹𝑘  

PassNum 𝑆𝑁𝑡
(𝐹𝑖,𝐹𝑗,𝐹𝑘)

 = Q, 

then 𝑅𝑁𝑡
𝐹𝑘 =  𝑅𝑁𝑡

𝐹𝑘 − 𝑄, 

remove 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 from 𝑆1𝑡
′  

b. If  Q≥ 𝑅𝑁𝑡
𝐹𝑘  

PassNum 𝑆𝑁𝑡
(𝐹𝑖,𝐹𝑗,𝐹𝑘)

 = 𝑅𝑁𝑡
𝐹𝑘 , 

then 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

= 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

− 𝑅𝑁𝑡
𝐹𝑘  

remove 𝑃𝑡
𝐹𝑘 from 𝑆2𝑡

′  

10. Append the route info (𝑀𝑡
(𝐹𝑖,𝐹𝑗)

, 𝑃𝑡
𝐹𝑘, 𝑆𝑁𝑡

(𝐹𝑖,𝐹𝑗,𝐹𝑘)
) to the set  𝑅𝑡. 

11. Sort the set  𝑆1𝑡′ in the descending order by 𝑁𝑡
(𝑖,𝑗)

. 

12. Sort the set  𝑆2𝑡′ in the descending order by 𝑅𝑁𝑡
𝑖. 

13. Repeat step 6 to step 12 until  𝑆2𝑡′ is empty. 
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Figure 4.4 and figure 4.5 show an illustrative example of the minimal transfer particle 

routing policy. We use the sample example as shown in the example of random particle routing 

policy. Figure 4.4(b) shows the first step work is the descending sorting two PUs lists which 

have surplus of particles (PU_01 and PU_02).  

According to the minimal transfer routing algorithm, first of all, 𝑀(𝑃1,9)will be selected 6 

copies since it has the largest number of copies in PU_01 and 𝑀(𝑃2,5) will be selected 3 copies in 

PU_02 with the same reason. Figure 4.4 (e) shows the PU with shortage of particles and the 

number of particles it needs. Combine the (e) and the right side table of (c) and (d), we got the 

resampling result for the start of part 2. The first step of part 2 also is descending sort the both 

lists with surplus of particles and shortage of particles. So, based on the figure 4.5 (b), 𝑀(𝑃1,9) 

will be sent from PU_01 since it has the largest number of copies of 6 and its destination PU will 

be the PU_04 because it lock the largest number of particles. Then, we need update both table 

shows in figure 4.5 (c), because PU_04 just need 5 particles and (P1, 9) has 6 copies, so update 

the 𝑁(𝑃1,9) = 1, then remove the P4 in right table since the lock number of P4 already is zero and 

also record the route { (P1,9), 5, P4}. After updating the related information, we continue the 

process until we get the final routing set. 
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Figure 4.4 Example of minimal transfer particle routing policy part 1 
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Figure 4.5 Example of minimal transfer particle routing policy part 2 

One thing we want to mention in here is we will not descending the list again whatever 

for the surplus particle list or the lacked PU list. For example, in figure 4.5 (d), after update the 

information, the number of copies for (P1,9) is smaller than (P2,5), but we will continue follow 

this order to select the particle instead descend the list and then select the particle. Finally, after 

both 𝑁(𝑝,𝑖)  and 𝐿𝑙𝑎𝑐𝑘
𝑃  equals zero, we finish the routing part work and get the final particle 

routing result. In this example, based on the routing result overall three transfers occur because 

the duplicated particles only need to be transferred once.   
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4.2.4 Maximal balance particle routing policy 

Different from the minimal transfer policy that is de-signed only from the communication 

cost point of view, the maximal balance routing policy aims to achieve the maximal balance of 

the particles with the high weights among all PUs after particle routing. This makes sense 

because the "good" particles with high weights are more likely to survive in future iterations. A 

balanced distribution of these particles among all PUs may reduce the need of particle routing in 

future iterations. The basic idea of the maximal balance policy is to select "good" particles and 

evenly distribute them to all PUs. Towards this goal, we need to define a criterion to decide 

which particles are "good". In our work, we set the criteria based on the number of copies of 

particles after resampling (which essentially reflect the weights of the particles). Specifically, a 

particle is “good” if its number of copies is greater than or equal to a threshold T.  

Assuming the total number of “good” particles is G, each PU will receive no less than 

⌊𝐺/𝑛⌋  (the largest integer less than or equal to (G/n) and no more than ⌈𝐺/𝑛⌉ (the smallest 

integer greater than or equal to G/n) “good” particles. To ensure that after receiving the “good” 

particles the total number of particles does not exceed m, each PU needs to first allocate “empty” 

spaces for receiving the “good” particles. To support this, the maximal balance particle routing 

algorithm includes two stages. The first stage involves only the “non-good” particles. In this 

stage, PUs transfer particles to each other using the minimal transfer policy described in the 

previous section (in this stage each PU uses ⌊𝑚𝑛 − 𝐺/𝑛⌋ instead of m as the desired number of 

particles). After the first stage, all PUs have about the same number (with plus or minus 1 

difference if cannot be evenly divided) of “non-good” particles. The second stage is to distribute 

the “good” particles to all PUs. Specifically, we sort all the “good” particles in descending order 

in a set  𝑆1𝑡′  and complete the following steps. 1) Choose the first particle in 𝑆1𝑡′. 2) The 
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destination PU will be selected from all the PUs with indexes from 1 to n in turn. Every step, one 

copy of the first particle will be distributed to a PU by turn until all its copies are distributed. We 

remove this particle's information from  𝑆1𝑡′ and execute the same procedure for the next particle 

until all the "good" are distributed.   

Table 4.3 shows the maximal balance particle routing algorithm. We partition  𝑆𝑡  into 

two sets  𝑆1𝑡   and  𝑆2𝑡. In  𝑆1𝑡 the weights of all the selected particles are larger than or equal to 

the threshold T, and they are smaller than T in  𝑆2𝑡. Firstly we apply the minimal transfer routing 

policy to  𝑆2𝑡, and obtain the routing set  𝑆2𝑡. For  𝑆1𝑡  , we evenly distribute all the copies of the 

particles to all the PUs, and get the routing set  𝑅1𝑡 . The final routing set 𝑅𝑡 = 𝑅1𝑡 ∪ 𝑅2𝑡. If 

 𝑆1𝑡 is empty, which means no particles are considered as “good”, the maximal balance routing 

algorithm essentially gives the same result as the minimal transfer algorithm. 
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Table 4.3 Maximal balance routing algorithm 

 

Main steps at time step t 

 

1. Set a threshold T. 

2. Partition  𝑆𝑡 into two sets  𝑆1𝑡 (all the particles whose number of copies ≥ T) and  𝑆2𝑡 (all the 

particles whose number of copies< T). 

3. Apply the minimal transfer routing policy (table 4.2) to  𝑆2𝑡 to get the routing set 𝑅2𝑡. Note 

in this step, each PU uses ⌊𝑚𝑛 − 𝐺/𝑛⌋ instead of m as the desired number of particles. 

4. Sort  𝑆1𝑡 according to the number of copies of the particles in the descending order to 𝑆1𝑡′. If 

 𝑆1𝑡 is empty, use minimal transfer routing policy (table 4.2) to get the routing result. 

5. Start with the first particle in  𝑆1𝑡′ and first PU and the following steps: 

a. Assign their copies to all the PUs only by one, and decrement its number of copies 𝑁𝑡
(𝑖,𝑗)

. 

b. Append this route in 𝑅2𝑡. 

c. If 𝑁𝑡
(𝑖,𝑗)

= 0, remove the particle from 𝑆1𝑡′. 

d. Repeat the e ~ c process until  𝑆1𝑡′ is empty. 

6. The final routing  𝑅𝑡 = 𝑅1𝑡 ∪ 𝑅2𝑡. 

Figure 4.6 and figure 4.7 show the illustrative example of the maximal balance routing 

policy. We use the sample example as shown in the example of random particle routing policy 

and minimal transfer particle routing policy.  First of all, different compare to the minimal 

transfer policy, we put all the resampling result together to a list at first (figure 4.6(b)), and then 

descending sort this list according to the value of  𝑁(𝑃,𝑖) . In this example, the predefined 

threshold T is 8. Therefore, the particle 𝑀(𝑃2,5)  and 𝑀(𝑃1,9)  are “good” particles and will be 

evenly distributed to all the PUs. 
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Figure 4.6 Example of maximal balance particle routing policy part 1 

 

In figure 4.6(d), the list divide to two parts, the first part is the “good” particles which 

will be evenly distributed to all the PUs, we note it as T1. The remaining particles will be routed 

by the minimal transfer routing policy and we note it as T2. Firstly, we need handle the T2 part, 

because we need make every PU have the almost evenly space to get the “good” particle. This is 

because we need ensure every PU after receiving the “good” particles the total number of 

particles does not exceed m, each PU needs to first allocate “empty” spaces for receiving the 

“good” particles. For process the T2, we need calculate the particle routing result without the 

“good” particles. Sum the total 𝑁(𝑃,𝑖)  but without the “good” particle, the ∑𝑁(𝑃,𝑖)′ =18 and 

divide it to 4 PUs. So, each PU the max size is 5,5,4,4 respectively. According to this, we get the 
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particle before routing result shown in figure 4.6 (e) and get the routing result in figure 4.6(f) by 

use minimal transfer policy.  

After finished the T2, for the T1 part, 12 copies 𝑀(𝑃2,5) and 10 copies of 𝑀(𝑃1,9) will be 

transferred to all the PUs one by one. Because each PU the max size is 5,5,4,4 in T2, so each 

PU’s lack number is 5,5,6,6 respectively. The figure 4.7 (b) and (c) show how to transfer the 

particle and update the information one by one, the rule is every time just only pass one particle 

in left side. Also, every time just sign the particle to one PU then change to the next PU one by 

one. Finally, combine the two routing results together which is the final routing result for the 

maximal balance particle routing policy. The maximal balance particle routing policy will 

transfer more particle compare to the minimal transfer particle routing policy (at least it is same 

when the entire particle’ 𝑁(𝑃,𝑖) < threshold), but since the particles with the high weights are 

appeared in every PU with almost evenly, it will bring maybe two advantages: 1) may bring the 

more accurate simulation result because the “good” particles evenly in every PU which can 

generate more probability. 2) it may reduce communication cost in future iterations, which 

because the “good” particles already survived in every PU, so it will not get the big difference in 

future iteration, the routing will decreased. 
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Figure 4.7 Example of maximal balance particle routing policy part 2 

4.3 Experimental Designs 

In our work, we evaluate the particle routing in distributed particle filter with centralized 

resampling based on the data assimilation system of large-scale wildfire spread simulation. The 

used model in this work is DEVS-FIRE which we have already introduced in section 3.1. For the 

experimental design we use the totally same experiment environment in section 3.3.3 which uses 

the real-world GIS data and fuel data. The cell space dimension is 200×200 and the cell size is 

20 (m). The GIS data are airborne LiDAR (Light Detection and Ranging) raster-based terrain 

data. The fuel data was obtained by classifying a multispectral QuickBird (DigitalGlobal) image. 

Those data were acquired from Huntsville area, Texas, during the leaf-off season in March 2004 
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by M7 Visual Intelligence of Houston, Texas. The ignition point is set to the point (90, 55) of the 

cell space for all of the simulations. The observation data (ground temperature sensor data) from 

the real fire are collected every 30 minutes. 

In our experiments, we still choose to use imprecise wind conditions which the wind speed 

and wind direction changed together. As we shown in Table 3.1, the real wind speed and 

direction are 8 (mph) and 180 (degrees) with random variances added every 30 minutes. The 

variances for the wind speeds are in the range of –2 to 2 (mph) (denoted as 8±2 in the table), and 

the variances for the wind direction are in the range of -20 to 20 (degrees) (denoted as 180±20 in 

the table). Our experiment introduces errors to the wind speeds, which are randomly generated 

based on the wind speed of 6 (mph) with variances added in the range of –2 to 2 (mph) and also 

the wind direction of 130 (degrees) with added variances in the range of ±20 (degrees) in the 

same time. For wind directions, the degrees indicate the angle between the north directions 

clockwise to the direction from where the wind comes.  

All the experiments use 6 PUs (every PU has 50 particles, total 300 particles) to run 6 

hours' simulation (12 steps and every step is 1,800 seconds) in all the experiments. Among these 

6 PUs, one of them is functioned as a CU when completing the centralized resampling function 

for the global resampling step, otherwise a regular PU like others. All experiments are conducted 

under the supercomputer named Cheetah, which has 14 nodes, 160 computing cores, 32 CPUs, 

and 264 GB system memory. 

4.4 Experimental results and analysis 

In this set of experiments, we conduct various experiments to show the simulation results 

using different routing policies including the random transfer policy, the minimal transfer routing 

policy, and the maximal balance routing policy. Figure 4.8 displays the real fire, the simulated 
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fire, and the filtered fire by assimilating the real data into wildfire spread simulation using the 

random routing policy, the minimal transfer routing policy, and the maximal balance routing 

transfer policy respectively. In the figures, all the filtered fires (display in red) are close to the 

real fire (display in blue) although we run the data assimilation simulations with the error data. 

Compared to the simulated fires (display in black), all the simulation results are greatly improved. 

To quantitatively examine the results, we choose the symmetric set difference as the metric to 

measure the similarity of the fires. In mathematics, the symmetric set difference of two sets is the 

set of elements in either set, but not in both. We use it to compare two fire fronts, which is the 

number of cells inside one of the fire front shapes, but not in both. The smaller the symmetric set 

difference, the more similar the two fire fronts are (the symmetric set difference of two same fire 

fronts is 0). Figure 4.9 shows the symmetric set differences of the simulated fire (compared to 

the real fire) and that of the filtered fire (compare to the real fire) using three routing policies 

including the random routing policy, the minimal transfer routing policy, and maximal balance 

routing policy. In the figure, the values of the filtered fires are the average of 6 independent runs. 

The horizontal axis represents the time step, and the vertical axis represents the symmetric set 

difference value in terms of the number of cells. 

 

(a)                                                    (b) 
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                                                       (c) 

Figure 4.8 Comparisons of real fire, simulated fire, and filtered fire using different 

routing policies. (a) Random routing policy. (b) Minimal transfer routing policy. (c) Maximal 

balance routing policy 

From the figures, it can be seen that the symmetric set differences of the filtered fires are 

smaller than those of the simulated fires after step 5. With the increase of the time step, (i.e., 

when more sensor data are assimilated), the difference between the simulated fire and the filtered 

fire becomes more and more notable. At step 12, the symmetric set difference of the filtered fire 

is more than half of the symmetric set difference of the simulated fire. Also, the simulation 

results which use three different routing policies can get the similar accurate result. From Figure 

4.8 and Figure 4.9 we conclude that the data assimilation using three different routing policies 

including the random routing policy, the minimal transfer routing policy, and the maximal 

balance routing policy all significantly improve the simulation results. There is little difference 

between the three polices from the simulation results point of view. This is expected because in 

the centralized resampling all particles are resampled in each step. The three policies differ only 

in how particles are routed after resampling and thus only impact the communication cost but 

have little impact on the data assimilation results. 
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Figure 4.9 Symmetric set differences for simulated fire and filter fire with three different 

routing policies 

To compare the communication cost of the three policies, Figure 4.10 shows the number 

of particles to be transferred in every step for the random routing policy, the minimal transfer 

routing policy, and the maximal balance routing policy. Figure 4.11 shows the total number of 

particles to be transferred for the random routing policy, the minimal transfer routing policy, and 

the maximal balance routing policy. From the figures we know that both the minimal transfer 

routing policy and the maximal balance routing policy significantly reduce the transfer number 

of the particle states and the minimal transfer routing policy has the lowest number of transfers. 
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Figure 4.10 Number of particles to be transferred for the random routing policy, the 

minimal transfer routing policy, and the maximal balance routing policy. 

 

Figure 4.11 Total numbers of particles to be transferred for the random routing policy, the 

minimal transfer routing policy, and the maximal balance routing policy 

For the high dimensional spatial temporal simulation because the size of each particle is 

large due to the high dimensional state it represents. So we intentionally increase the state size by 
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ourselves. We made one of the GIS data (aspect data used in this experiment) to be part of the 

particle state. So, the state of particle become to two parts: fire shape and aspect data. The size of 

the aspect data which we add to state is 15MB in this experiment. Figure 4.12 shows we get the 

totally same state transfer number after we increased the state compare to the state only just have 

fire shape. From the figure, we conclude increase the size of the state will not affect the number 

of state transfer in same experiment environment. 

 

Figure 4.12 Total numbers of particles to be transferred for random transfer, minimal 

transfer and maximal balance after increase the state size 

Figure 4.13 shows the execution time after we increase the state size. From the figure, we 

can see the total time is increased, but it did not increased too much, this is because we use the 
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Figure 4.13 Compare to the total time cost between before add the state size and after add 

the state size for three different routing policies 

4.5 Conclusions 

In this chapter, we propose two centralized particle routing policies named as the minimal 

transfer routing policy and the maximal balance routing policy and show their impacts on 

distributed particle filters with centralized resampling. We evaluate the proposed methods based 

on data assimilation of a large-scale wildfire spread simulation. Experimental results show that 

the minimal transfer policy is the best choice for the centralized resampling because it can 

achieve the same data assimilation results with the lowest number of state transfers compared to 

the random routing policy and the maximal balance routing policy. 
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5 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH 

DECENTRALIZED RESAMPLING 

5.1 Particle routing in decentralized resampling 

The centralized resampling schema faithfully implements the particle filtering algorithm. 

Nevertheless, it suffers from scalability issues because it relies on a CU. To support scalable PF-

based data assimilation, the distributed resampling is needed. Several distributed resampling 

schemas have been introduced, among which the distributed RNA uses a fully decentralized 

resampling schema. The main idea of the distributed RNA is no CU at all. A designer can define 

sub-groups among PUs and carry out full independent resampling only within the groups. The 

three distributed RNA methods distributed RNA with regrouping, distributed RNA with adaptive 

regrouping and distributed RNA with local exchange we have already discussed in section 2.4.3. 

Basically, the particle routing in decentralized resampling just happened between the two groups, 

expects there is three and more PUs in one group for distributed RNA with regrouping and 

distributed RNA with adaptive regrouping. That is because the RPA applied inside of group if 

three and more PUs in one group. So, we can continue apply the Minimal Transfer Particle 

Routing Policy and Maximal Balance Particle Routing Policy inside of the group when this 

group have three and more PUs. In this situation, the particle routing in decentralized resampling 

is totally same as the particle routing in centralized resampling since both of them have the CU 

and can apply the different routing policy. The distributed RNA with local exchange is a 

different method because every group only contains one PU. So the particle routing happened on 

a deterministic way only among the neighboring PUs and the routing is done through local 

communication in every step.  
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5.2 Distributed resampling with local and global particle routing 

Based on the work which the distributed RNA with local exchange where PUs exchanges 

particles with local neighbors. Specifically, PUs are arranged in a ring topology and in each 

iteration each PU passes a subset of randomly selected particles to its neighbor in the 

anticlockwise order, and then carries out resampling locally. This local resampling schema 

supports a large degree of parallelism due to data parallelism and elimination of the centralized 

resampling step. However, it gives rise to a large number of iterations until full resampling is 

achieved. To overcome this problem, the strict local communication principle should be relaxed. 

Based on this idea, we propose using both local and global particle routing methods. The global 

particle routing is the same as in the centralized resampling algorithm described in Chapter 4, i.e., 

a CU is used to collect particles' weights and decide how to route the particles by using the two 

different particle routing method: Minimal Transfer Particle Routing Policy and Maximal 

Balance Particle Routing Policy.  The goal of the global routing is to take advantage of the full 

knowledge of all particles’ weights to quickly and efficiently route the “good” particles to all 

PUs. To avoid impairing the scalability of the distributed resampling, the global routing is 

invoked only occasionally, e.g., once in every K steps. Table 5.1 shows the algorithm of the 

distributed resampling with local and global particle routing on both the PU side and the CU side. 
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Table 5.1 Algorithm of distributed resampling with local and global particle routing 

Main steps at time step t 

 PU side:   

     For all the PUs (in parallel) 

1. Give a predefined integer K.  

2. Run the sampling step. 

3. Calculate the importance weights of particles. 

4. If t % K =0, go to step5 (start the global resampling and routing procedure), otherwise go 

to step 10 (start the local routing and resampling procedure). 

5. Send all weights to the CU. 

6. Receive routing information from the CU.  

7. If having surplus of particles, send the selected particles (based on the received routing 

information from CU) to the CU. 

8. If having shortage of particles, receive particles from CU. 

9.  End.  

10. Pass a subset of particles (and associated weights) to its neighbor. 

11. Normalize and resampling locally.  

12. End. 

CU side: 

1. Give the same predefined integer K as PUs.  

2. If t % K =0, go to step3 (activate the global resampling and routing). Otherwise skip this 

iteration. 

3. Receive particles’ weights from all PUs. 

4. Normalize and resampling.  

5. Compute routing information by applying the minimal transfer routing policy or the 

maximal balance routing policy. 

6. Send the routing information to PUs. 

7. Receive particles from PUs that have surplus of particles. 

8. Send particles according to the routing information to the PUs that has shortage of 

particles.  
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9. End.       

 

Figure 5.1 shows the RNA (a) and distributed resampling with local and global particle 

routing method (b). The main different are we give a predefined number K at first. That means 

the global routing only happened every K step. Before we start every step, we calculate the time 

step t% K at first, if t% K =0, we do the global particle routing. In that time, one of the PU also 

plays the CU’s role ( for example, PU_01 also is a CU in figure 5.1) which receives the particle’s 

weight from all other PUs and does the resampling, then compute routing information by 

applying the minimal transfer routing policy or the maximal balance routing policy inside.  
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Figure 5.1 The different between RNA and distributed resampling with local and global 

particle routing method 

If the t% K! =0, the rule is totally same as RNA method, every PU just pass a subset of particles 

and associated weights to its neighbor. Then normalize and resampling locally. 
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5.3 Experiment designs 

We evaluate the particle routing in distributed particle filter with local and global particle 

routing method based on the data assimilation system of large-scale wildfire spread simulation. 

The used model in this work still is DEVS-FIRE which we have already introduced in section 

3.1. For the experimental design we use the totally same experiment environment in section 3.3.3 

and section 4.3 which uses the real-world GIS data and fuel data. For the weather data, we still 

choose to use imprecise wind conditions which the wind speed and wind direction changed 

together as we shown in Table 3.1. We do the same experiment using the distributed RNA, the 

distributed RNA with the minimal transfer routing policy, and the distributed RNA with the 

maximal balance routing policy. For the distributed RNA policy, each PU passes 10 particles to 

its neighbor in the anticlockwise order. For the latter two policies, we call the centralized 

resampling (the minimal transfer routing policy or the maximal balance routing policy) every 4 

steps, and remove the duplicate particles. However, we don't do this in the distributed RNA 

policy, so its number of state transfer is 60 for 6 PUs in each step. 

5.4 Experimental results and analysis 

Figure 5.2 displays the number of transferred states of the three policies of the distributed 

RNA, the distributed RNA with the minimal transfer routing policy, and the distributed RNA 

with the maximal balance routing policy for step 4, step 8, and step 12 respectively. Figure 5.3 

shows the total number of transferred states of the three policies of the distributed RNA, the 

distributed RNA with the minimal transfer routing policy, and the distributed RNA with the 

maximal balance routing policy. Note that all the values are the average of 6 independent runs. 

Note that the numbers of transferred particles are the same for all the steps except step 4, step 8, 

and step12. This is because we apply the minimal transfer routing policy or the maximal balance 
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routing policy every four steps, and the distributed RNA is used for other steps. For the steps 

where the minimal transfer routing policy or the maximal balance routing policy is applied, the 

numbers of the transferred states are greatly decreased, and they are reduced more by the 

distributed RNA with the minimal transfer routing policy. However, there is less obvious 

difference between the distributed RNA with the minimal transfer routing policy and the 

distributed RNA with the maximal balance routing policy regarding the total number of 

transferred states. 

 

Figure 5.2 Number of transferred states for the distributed RNA with the minimal transfer 

routing policy and the distributed RNA with the maximal balance routing policy for step 4, 8, 

and 12 
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Figure 5.3 Total numbers of transferred states for the distributed RNA, the distributed 

RNA with the minimal transfer routing policy, and the distributed RNA with the maximal 

balance routing policy 

 

Figure 5.4 display the real fire, the simulated fire, and the filtered fire by assimilating the real 

data into wildfire spread simulation using the RNA, centralized resampling, RNA and minimal 

transfer and RNA and maximal balance.  
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(a)                                                       (b) 

 

(c)                                                   (d) 

Figure 5.4 Comparisons of real fire, simulated fire, and filtered fire using different 

routing policies. (a) RNA (b) Centralized resampling. (c) RNA and Minimal transfer (d) RNA 

and Maximal balance 

In figure 5.4, all the filtered fires (display in red) are close to the real fire (display in blue) 

although we run the data assimilation simulations with the error data. Compared to the simulated 

fires (display in black), all the simulation results are greatly improved. But, we can see the RNA 

get the worst filter result, but the result get better after we applied the minimal transfer and 

maximal balance with RNA together. For the accurate of simulation result, we continue use 

symmetric set differences to show it. Figure 5.5 shows the symmetric set difference of the 
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simulated fire, filter fire with centralized resampling with the minimal transfer routing policy and 

filter fire with RNA. We can see the result of RNA is worse than filter fire with centralized 

resampling.  

Continue, the figure 5.6 shows the symmetric set differences between the real fire and the 

filtered fire using the centralized resampling with the minimal transfer routing policy, and the 

filtered fire using the distributed RNA respectively, the filtered fire using the distributed RNA 

with the minimal transfer routing policy, and the filtered fire using the distributed RNA with the 

maximal balance routing policy respectively for step 7 to 12. This is because the fire is small in 

the earlier steps and thus the difference is small too. We zoom in the later steps in order to better 

show the results. Although all of them have much less symmetric set differences than the 

simulated fire mentioned above, the distributed RNA has the worse results since it is a purely 

distributed resampling and suffers from the local resampling. 

 

Figure 5.5 Symmetric set differences for simulated fire and filter fire with centralized 

resampling (minimal transfer) and filter fire with RNA 
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Figure 5.6 Symmetric set differences for the filtered fire with the centralized resampling 

using the minimal transfer routing policy, and the filtered fire with the distributed RNA, the 

filtered fire with the distributed RNA using the minimal transfer routing policy 

 

Figure 5.7 displays the symmetric set differences for the distributed RNA, the distributed 
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slightly more total number of transferred states compared to the distributed RNA with the 

minimal transfer routing policy. 

 

Figure 5.7 Symmetric set differences for filtered fire using the distributed RNA, filtered 

fire using the distributed RNA with the minimal transfer routing policy, and the filtered fire 

using the distributed RNA with the maximal balance routing policy at time step 8 and 12 
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5 steps. 2) The distributed RNA with the minimal transfer routing policy for every 5 steps get the 

worst result (even worse than RNA). This is not only because it just did twice centralized 

resampling, but also it did not finish the centralized resampling in last step. 

 

Figure 5.8 Symmetric set difference of the filtered fire using the distributed RNA and 

filtered fire using the distributed RNA with the minimal transfer routing policy  every 2 steps, 4 

steps and 5 steps at time step 12 
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and the local routing, the distributed RNA with the maximal balance routing policy every 5 steps 

even has the worse results since it only does the global routing twice and doesn't do it at this step. 

 

Figure 5.9 Symmetric set differences of the filtered fire with the distributed RNA, and the 

distributed RNA with the maximal balance routing policy every 2 steps, 4 steps and 5 steps at 

time step 12 
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Figure 5.10 Total numbers of transferred states of the distributed RNA with the minimal 

transfer routing policy and the distributed RNA with the maximal balance routing policy for 

every 2, 4, and 5 steps at time step 12 

5.5 Discussions and conclusions 

In this chapter, we propose a hybrid approach that uses both local and global particle 
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minimal transfer routing policy and the maximal balance routing policy can be used in the global 

routing step and their impacts on performance and accuracy of particle filtering. We evaluate the 

proposed methods based on data assimilation of a large-scale wildfire spread simulation. 

Experiment results shows, for the hybrid approach of particle routing in distributed resampling 

with RNA, the maximal balance routing policy is preferred in the global routing step because it 

can gain the best data assimilation results with slightly more number of state transfers compared 

to the minimal transfer routing policy. 
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6 CLOUD MAPREDUCE FOR DATA ASSIMILATION USING SEQUENTIAL 

MONTE CARLO METHODS IN WILDFIRE SPREAD SIMULATION  

6.1 Motivation  

Above chapters, we discussed develop a parallel and/or distributed computing method for 

particle filter-based data assimilation in DEVS-FIRE spread simulation for large-scale temporal 

systems with the tradition method. For the centralized resampling method, we have to face some 

issues since we have the CU exist, such as it still required a complicated scheme for particle 

routing, it make a complex PU design and area increase when more PU involve. Also, we need 

100% know about our configuration such as how many machines we have, since we need coding 

them based on our design and put the simulation model in every PU.  

“Cloud Computing” is a technology that uses the internet and central remote servers to 

maintain data and applications. Cloud computing allows consumers and businesses to use 

applications without installation and access their personal files at any computer with internet 

access. “Cloud” refers to large Internet services running on 10,000s of machines such as Amazon 

S3, Google AppEngine, Microsoft Windows Azure, etc.  In cloud, the user do not need buy any 

machines, that means no upfront capital costs building data centers, buying servers, etc. Only do 

two things: 1) design the user own cloud application, 2) pay it when you use it. Therefore, if we 

use the cloud method for our data assimilation using sequential Monte Carlo Methods in wildfire 

spread simulation, we can get more accurate simulation result because we can use more 

machines but do not need buy more machines.  

MapReduce is a software framework that allows developers to write programs that 

process massive amounts of unstructured data in parallel across a distributed cluster of 
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processors or stand-alone computers. Also MapReduce is a programming model for processing 

huge data sets on certain kinds of distributable problems using a large number of computers 

(nodes), collectively referred to as a cluster [31] [32]. In the MapReduce programming model, 

the computation takes a set of input key/value pairs, and produces a set of output key/value pairs. 

Users of the MapReduce library express their computation as two functions: Map and Reduce, 

which are then automatically executed in parallel by the underlying MapReduce framework. 

There are many different implementations of the MapReduce programming model, among which 

Apache’s Hadoop is the most well-known one and it has been successfully applied for file based 

datasets. In this chapter, we propose a parallel and distributed computing method that uses 

Hadoop MapReduce to handle the data assimilation in wildfire simulation based on particle 

filters. 

6.2 Overview of MapReduce and Hadoop 

Followed by Google’s work, many implementations of MapReduce emerged and lots of 

traditional methods combined with MapReduce have been presented until now [124]. 

• Implementations of MapReduce 

Apache Hadoop is a software framework that helps constructing the reliable, scalable, distributed 

systems 

[125]. Phoenix is a shared-memory implementation of Google’s MapReduce model for data-

intensive processing tasks [126]. Mars is a MapReduce framework on graphic processors (GPUs) 

[127]. Twister is a lightweight and Iterative MapReduce runtime system [128]. 

• Traditional methods combined with MapReduce 
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Apache Mahout can help to produce implementations of scalable machine-learning 

algorithms on Hadoop platform [129]. Menon et al. gave a rapid parallel genome indexing with 

MapReduce [130]. Blanas et al. proposed crucial implementation details of a number of well-

known join strategies for log processing in MapReduce [131]. Ene et al. developed fast 

clustering algorithms using MapReduce with constant factor approximation guarantees [132]. 

Lin et al. presented three design patterns for efficient graph algorithms in MapReduce [133]. 

Moreover, MapReduce is rarely employed in the field of Systems Biology. In [134], the authors 

investigate whether a MapReduce approach utilizing on-demand resources from a Cloud is 

suitable to perform simulation tasks in the area of Metabolic Flux Analysis (MFA). Also, the 

authors introduced an implementation of a simple MapReduce method for performing fault-

tolerant Mont Carlo computations in a massively-parallel cloud computing environment shown 

in [135]. 

The MapReduce architectural pattern has evolved as a generic, domain-independent 

processing method for large amounts of data. Two functions: map and reduce, are required to be 

implemented by the user with the following prototypes [32]: 

map (k1, v1) →  list (k2, v2) 

reduce (k2, list(v2))  → list (v2) 

Which list denotes a list of objects, k1 and k2 represent key types, v1 and v2 are value types. The 

input key/value pairs (k1, v1) are pairwise independent, thus, map can be invoked in parallel for 

all pairs, yielding an intermediate list of mapped (k2, v2) pairs. As an outstanding feature, 

MapReduce jobs may be defined by using native libraries such as C++ and Java. For our work, 

all the experiments use Java. More information about MapReduce can be found in [31] [32]. 



114 

6.3 DEVS-FIRE & particle filter MapReduce approach 

Based on the major step of particle filters shown in Figure 2.1 and the basic MapReduce 

prototypes, we introduce our new definition of MapReduce framework application of particle 

filters in DEVS-FIRE. The Algorithm 6.1 shows the map part, where key is the index of the 

particle, the value include all the necessary data, such as the GIS data, weather data ( wind speed 

and wind direction), ignition points and sensor data. The Algorithm 2 shows the reduce part. In 

our method, we use the reduce part to do nothing, that means we parallelize the sampling and 

weight computation steps in map part, then do nothing in reduce part and put weight 

normalization and resampling parts. The reason why we cannot parallelize the weight 

normalization and resampling parts is the sampler requires information of all the particles for the 

systematic resampling. Also, the reduce part allows one to combine results produced in the map 

function based on the key. In our work, the key is particle’s index, and all the information needed 

for each particle has already been produced in the map function. Thus there is no need to use the 

reduce function. 
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Table 6.1 Algorithm of DEVS-FIRE & particle filter MapReduce Approach 

Algorithm6.1: Map (key, value) 

Input: 

//key: Particle index 

//value: S= {GIS data, Weather data, Ignition Points, Senor Data} 

Output: 

//key’: Particle index 

//value’: {Fire front, weight} 

1 begin 

2         let key’ = key = Particle index 

3         let value as the input of DEVS-FIRE 

4     Sampling: run DEVSFIRESpread simulation and add the graph noise 

5         Weight computation 

6         value’ = the fire sharp and the particle weight 

7         output.collect (key’ ,value’); 

1 end 

Algorithm 6.2: Reduce (key, V) 

Input: //key’: Particle index 

          //value’: {Fire front, weight} 

Output: //key’: Particle index 

              //value’: {Fire front, weight} 

Do nothing 

Figure 6.1 shown the MapReduce particle filter (MapReducePF) algorithm: run the 

DEVSFIRE spread simulation in different node (computer), also sampling and weight 

computation in same node, all those parts are parallel worked. Then as we mentioned before, 
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since the resampling part have to get the information about all the particles, we put the weights 

normalization and resampling parts in one single node. 
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Figure 6.1 MapReducePF algorithms of case study 
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6.4 Experiments and analysis 

We continue used the identical-twin experiment to evaluate the data assimilation system 

of DEVS-FIRE. In our experiments, we intended to show a filtered fire gave more accurate 

simulation results by assimilating observation data from the real fire even it still used the “error” 

data. In this experiment, we chose to use the “error” wind conditions as the “error” data. The real 

wind speed and direction are 8 (m/s) and 180 degrees (from south to north) with random 

variances added every 10 minutes. The variances for the wind speeds are in the range of –2 to 

2(m/s) and the wind direction to be exactly the same as the real wind direction (Table 6.2). For 

the sensor deployment, we employed a regular sensor deployment schema and design our 

experiment as follow, use a uniform fuel model (fuel model 7) and zero slope and aspect. The 

simulations are run for 5 steps (hours), the weather changed every 30 minutes. 

Table 6.2 Experiment sets of wind factor 

 “Error” data Real data 

Speed Direction Speed Direction 

case 6±2 No error 8±2 180±20 

Secondly, all experiments run under the super computer named Cheetah, which has 14 

nodes, 160 computing cores, 32 CPUs and 264 GB system memory. 7 nodes equipped with 

NVIDIA GTX 285, 485, or Tesla c2075 Graphic processing units for CUDA development 6TB 

disk storage [136]. The software package which we use is Apache Hadoop Cloud Computing 

Software. Hadoop version 1.0.1 and Java 1.6.0.12 are used as MapReduce system. Finally, In 

order to test the performance, we use four nodes for MapReducePF and one of those four nodes 

for CentralizedPF, we use the particle number is: 50 particles, 100 particles and 200 particles.  
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The Figure 6.2 display the filtered fires (displayed in yellow) after 5 steps of simulation, 

compared with the real fire (displayed in red), and the simulated fires (displayed in blue). The 

particle number used for this experiment is 100 particles. 

Figure 6.3 display the result performance for the single step (1 hour) DEVS-FIRE spread 

simulation based on SMC method use different particle numbers: 50 particles, 100 particles, 200 

particles, 500 particles and 800 particles. We can see the simulation time almost same when we 

just use 50 particles (CentralizedPF: 120 seconds and MapReducePF 122 seconds), but with 

increase the number of particle, the simulation time of MapReducePF getting better and better: 

the simulation time for MapReducePF are less than half of the simulation time for CentralizedPF 

when using 200 particles (CentralizedPF: 1002 seconds and MapReducePF 436 seconds). And in 

our single node, the machine will appear “out of memory” problem when we run more than 250 

particles. But for the MapReducePF, we can continue running the particle number to 800 

particles (even more), and the simulation time for MapReducePF using 800 particle are less than 

double of the simulation time for CentralizedPF using 200 particles (CentralizedPF: 1002 

seconds and MapReducePF 1960seconds). 
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Figure 6.2 Comparisons of real fire, simulated fires, and filtered fires 

 

Figure 6.3 Execution time for single step 
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(CentralizedPF: 942 seconds and MapReducePF 2065 seconds). And the simulation time for 

CentralizedPF are great more than four times compare to the simulation time for MapReducePF 

when using 200 particles (CentralizedPF: 9162 seconds and MapReducePF 2631 seconds). The 

machine will still appear “out of memory” problem when we run more than 250 particles on the 

single node. In MapReducePF, the simulation time for MapReducePF when using 800 particle is 

just a litter bit longer than the simulation time for CentralizedPF using 200 particles 

(CentralizedPF: 9162 seconds and MapReducePF 9984 seconds). 

 

Figure 6.4 Execution time for five steps 

The experiment results showed the MapReducePF significantly increases the performance for 

data assimilation using large number particles. Although in our current experiment we used up to 

200 particles, we expect the performance will be further improved for larger number of particles. 

This work builds a foundation where future work can be carried out. Future work includes 

develop new ways that utilize the MapReduce programming model for further improving the 
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data assimilation performance, and to build a framework for parallel particle filtering based on 

MapReduce for general applications other than the wildfire application considered. 
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7 CONCLUSION AND DISCUSSIONS 

7.1 Conclusions 

In this work, we developed distributed PFs for larger-scale spatial temporal systems in 

order to improve the performance of data assimilation. We reviewed several distributed particle 

filtering algorithms that have already developed in literature, and discussed the merits and 

demerits of these algorithms based on the different steps of the PF algorithm. Although these 

algorithms have already attained a good performance, they mainly differ in how the resampling 

is carried out, and less research has been conducted to investigate how to route particles among 

PUs after resampling. Efficient particle routing is highly critical for reducing the communication 

costs in distributed PFs, due to the following reasons: 1) Particle routing is necessary because the 

numbers of particles on different PUs are unbalanced after resampling. 2) As the number of PUs 

increases, the communication overhead rises. The unbalanced particles on PUs are caused by the 

fact that particles have different importance weights. 3) The size of each particle is very large 

due to the high dimensional state it represents in high dimensional spatial temporal simulations. 

Therefore, we developed two efficient particles routing policies named minimal transfer particle 

routing policy and the maximal balance particle routing policy, and showed their impacts on 

distributed PFs with centralized resampling. We evaluated the proposed methods based on data 

assimilation of a large-scale wildfire spread simulation. Experimental results showed that the 

minimal transfer particle routing policy is the best choice for centralized resampling, since it can 

achieve the same data assimilation results with the lowest number of state transfers as compared 

to the random routing policy and the maximal balance routing policy. 

In the distributed resampling schema (more specifically, the distributed RNA), 

communications are constrained between neighboring PUs. This local communication schema 
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supports a large degree of parallelism due to elimination of the centralized resampling step. 

However, it also results in slow propagation of high weight particles, and thus reduces the 

convergence rate of the particles. To address this issue, we develop a hybrid particle routing 

approach that uses both local and global particle routing in distributed resampling with non-

proportional allocation (RNA). In this approach, we mainly use local routing to ensure scalability 

and low communication costs, and occasionally invoke global routing to support faster 

propagation of "good" particles. We showed how the minimal transfer particle routing policy and 

the maximal balance routing policy can be used in the global routing step, and their impacts on 

the performance and accuracy of particle filtering. We also evaluated and compared the different 

particle routing methods based on the application of data assimilation for large-scale wildfire 

spread simulations.  

For the hybrid approach of particle routing in distributed resampling with RNA, maximal 

balance particle routing policy is preferred in the global routing step because it can attain the best 

data assimilation results with a slightly higher number of state transfers compared to the minimal 

transfer routing policy. Moreover, our work used cloud MapReduce and Hadoop to provide 

another solution to improve the performance of data assimilation for larger-scale spatial temporal 

systems based on PFs. Our work built the foundation algorithm by using MapReduce and 

Hadoop to improve the performance of data assimilation for larger-scale spatial temporal 

systems. The experiment results showed that the MapReducePF and Hadoop can significantly 

increase performance for data assimilation by using 200 particles, 500 particles and 800 particles. 

7.2 Discussions and future work 

We developed two efficient particle routing policies in particle routing according to the 

PF algorithm, and showed their impacts on distributed PFs for larger-scale spatial temporal 
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systems. We implemented both the minimal transfer particle routing policy and maximal balance 

particle routing policy in an intuitive manner without formally proving that the algorithms will 

always guarantee the best results. A formal analysis of these algorithms wills an imminent task in 

our future work. The experimental results shown in this work are based on a specific application 

of data assimilation of wildfire spread simulations. These results provide a guideline for 

choosing different particle routing policies for other applications. In general, the performances of 

different particle routing policies are dependent on the distribution of particles’ weights among 

PUs. If all PUs has a balanced distribution of particles’ weights, the different policies will not 

lead to results that are much different, since there is little need to transfer particles between PUs. 

On the other hand, if all the high weight particles are concentrated on a single PU, the different 

policies will not lead to very different results either, since they all result in transferring particles 

from the dominant PU to others. Systematically and formally analyzing in what conditions the 

different routing policies perform the best is another task that we plan to carry out in future 

research. 

Moreover, the creation of a cloud MapReduce and Hadoop builds a foundation where 

future investigation can be carried out. Future tasks include developing new ways to utilize the 

MapReduce programming model in order to further improve data assimilation performance, and 

building a framework for parallel particle filtering based on MapReduce for general applications 

other than the wildfire application considered.  
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