
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-18-2014

Distributed Particle Filters for Data Assimilation in
Simulation of Large Scale Spatial Temporal Systems
Fan Bai

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Bai, Fan, "Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems." Dissertation,
Georgia State University, 2014.
https://scholarworks.gsu.edu/cs_diss/89

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial

Temporal Systems

by

FAN BAI

Under the Direction of Prof. Xiaolin Hu

ABSTRACT

Assimilating real time sensor into a running simulation model can improve simulation

results for simulating large-scale spatial temporal systems such as wildfire, road traffic and

flood. Particle filters are important methods to support data assimilation. While particle filters

can work effectively with sophisticated simulation models, they have high computation cost due

to the large number of particles needed in order to converge to the true system state. This is

especially true for large-scale spatial temporal simulation systems that have high dimensional

state space and high computation cost by themselves. To address the performance issue of

particle filter-based data assimilation, this dissertation developed distributed particle filters and

applied them to large-scale spatial temporal systems. We first implemented a particle filter-based

data assimilation framework and carried out data assimilation to estimate system state and model

parameters based on an application of wildfire spread simulation. We then developed advanced

particle routing methods in distributed particle filters to route particles among the Processing

Units (PUs) after resampling in effective and efficient manners. In particular, for distributed

particle filters with centralized resampling, we developed two routing policies named minimal

transfer particle routing policy and maximal balance particle routing policy. For distributed PF

with decentralized resampling, we developed a hybrid particle routing approach that combines

the global routing with the local routing to take advantage of both. The developed routing

policies are evaluated from the aspects of communication cost and data assimilation accuracy

based on the application of data assimilation for large-scale wildfire spread simulations.

Moreover, as cloud computing is gaining more and more popularity; we developed a parallel and

distributed particle filter based on Hadoop & MapReduce to support large-scale data

assimilation.

INDEX WORDS: Large-scale spatial temporal systems, Distributed particle filters, Routing and

layout, Simulation performance, Hadoop & MapReduce.

DISTRIBUTED PARTICLE FILTERS FOR LARGE-SCALE SPATIAL TEMPORAL

SYSTEMS

by

FAN BAI

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2014

Copyright by

Fan Bai

2014

DISTRIBUTED PARTICLE FILTERS FOR LARGE-SCALE SPATIAL TEMPORAL

SYSTEMS

by

FAN BAI

Committee Chair: Xiaolin Hu

Committee: Anu Bourgeois

Yi Pan

Gengsheng Qin

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2014

DEDICATION

This dissertation is dedicated to my parents Guofu Bai and Cuirong Yuan for their

endless support, love and passion for my academics. I cannot finish my Ph.D. without your love

and encouragement. Also dedicated to my wife Wei Sun and all my family members, I love all of

you!

v

ACKNOWLEDGEMENTS

 Firstly, I would like to express my deep and sincere gratitude to my research supervisor,

Dr. Xiaolin Hu, for giving me the opportunity to do research and providing invaluable guidance

throughout this research at Georgia State University. His dynamism, vision, sincerity and

motivation have deeply inspired me. He has taught me the methodology to carry out the research

and to present the research works as clearly as possible. It was a great privilege and honor to

work and study under his guidance. I am extremely grateful for what he has offered me.

I would also like to thank my committee members, Dr. Anu Bourgeois, Dr. Yi Pan and

Dr. Gengsheng (Jeff) Qin for serving as my committee members even at hardship. I also want to

thank you for letting my defense be an enjoyable moment, and for your brilliant comments and

suggestions, thanks to you.

I would especially like to thank my colleagues from SIMS lab: Dr. Song Guo, Dr. Yi

Sun, Dr. Feng Gu, Minghao Wang, Haidong Xue, Yuan Long, Sanish Rai, Nicholas Keller, Dan

Jiang and Peisheng Wu for the useful discussion of research ideas.

Last but not least, my most sincere thanks as always, to my parents Guofu Bai and

Cuirong Yuan for their strong encouragement, unconditional love and belief in me. Thank you

for supporting me every step of the way and for constantly being there for me – I am greatly

indebted to you. I could not thank you enough for all that you have done for me and continue to

do. Special gratitude goes to my wife Wei Sun for the encouragement and support for my

research, I love you!!!

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

1 INTRODUCTION .. 1

1.1 Data assimilation for large scale spatial temporal simulations 1

1.2 Challenges for data assimilation for large scale spatial temporal simulations

 ... 4

1.3 Distributed particle filter and particle routing... 6

1.4 Problem statement... 8

1.5 My contributions ... 11

1.6 Organization of the dissertation .. 12

2 RELATED WORKS... 14

2.1 Data assimilation ... 14

2.1.1 Overview of data assimilation ... 14

2.1.2 Application of data assimilation ... 15

2.2 Sequential Monte Carlo methods (Particle Filters) 18

2.2.1 Overview of particle filters .. 18

2.2.2 Application of particle filters .. 21

2.3 Dynamic data driven application systems (DDDAS) 22

vii

2.3.1 Overview of DDDAS ... 22

2.3.2 Application of DDDAS.. 23

2.4 Distributed particle filters .. 24

2.4.1 The centralized distributed particle filters.. 24

2.4.2 Distributed resampling with proportional allocation 26

2.4.3 Distributed resampling with non-proportional allocation 29

2.4.4 Compressed distributed particle filter... 34

2.4.5 Distributed particle filter methods summary.. 35

3 PF-BASED DATA ASSIMILATION AND ITS APPLICATION TO WILDFIRE

SPREAD SIMULATION ... 37

3.1 Overview of DEVS-FIRE-based wildfire spread simulation 37

3.2 Overview of PF-based data assimilation framework 40

3.3 Data assimilation for wildfire spread simulation ... 43

3.3.1 Sampling using DEVS-FIRE simulation ... 44

3.3.2 Weight computation and resampling algorithm .. 46

3.3.3 Experiments and analysis ... 48

3.4 Data assimilation for parameter estimation ... 52

3.4.1 Particle filter based state estimation ... 53

3.4.2 Problem formulation for parameter estimation ... 57

3.4.3 Experiments and analysis ... 59

viii

3.4.4 Conclusions ... 66

4 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH

CENTRALIZED RESAMPLING ... 67

4.1 Introduction of particle routing ... 68

4.2 Particle Routing in Centralized Resampling .. 71

4.2.1 Overall architecture .. 71

4.2.2 Random particle routing policy .. 74

4.2.3 Minimal transfer particle routing policy .. 78

4.2.4 Maximal balance particle routing policy ... 84

4.3 Experimental Designs ... 89

4.4 Experimental results and analysis ... 90

4.5 Conclusions .. 96

5 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH

DECENTRALIZED RESAMPLING ... 97

5.1 Particle routing in decentralized resampling.. 97

5.2 Distributed resampling with local and global particle routing 98

5.3 Experiment designs ... 101

5.4 Experimental results and analysis ... 101

5.5 Discussions and conclusions ... 110

ix

6 CLOUD MAPREDUCE FOR DATA ASSIMILATION USING SEQUENTIAL

MONTE CARLO METHODS IN WILDFIRE SPREAD SIMULATION 111

6.1 Motivation .. 111

6.2 Overview of MapReduce and Hadoop .. 112

6.3 DEVS-FIRE & particle filter MapReduce approach................................... 114

6.4 Experiments and analysis ... 117

7 CONCLUSION AND DISCUSSIONS .. 122

7.1 Conclusions .. 122

7.2 Discussions and future work .. 123

REFERENCES .. 125

x

LIST OF TABLES

Table 2.1 Summarize first two parts of the different distributed PFs 36

Table 2.2 Summarize another two parts of the different distributed PFs 36

Table 3.1 Algorithm 3.1 System Transition Density Sampling .. 46

Table 3.2 Algorithm 3.2 Particle filter method in wildfire simulation for one time step . 47

Table 3.3 Algorithm 3.3: Multinomial resampling ... 48

Table 3.4 Experiment set of the wind factor ... 50

Table 3.5 Different combinations ... 65

Table 4.1 Random routing algorithm .. 75

Table 4.2 Minimal transfer routing algorithm .. 80

Table 4.3 Maximal balance routing algorithm .. 86

Table 5.1 Algorithm of distributed resampling with local and global particle routing 99

Table 6.1 Algorithm of DEVS-FIRE & particle filter MapReduce Approach 115

Table 6.2 Experiment sets of wind factor ... 117

xi

LIST OF FIGURES

Figure 1.1 Normalized weights of the three best particles (out of 100) 10

Figure 2.1 Particle filters algorithms of case study... 19

Figure 2.2 Architecture of the distributed particle filter ... 25

Figure 2.3 Sequence of operations performed for (a) centralized resampling and (b) RPA.

... 27

Figure 2.4 An example of particle exchange for the RPA algorithm 28

Figure 2.5 The example of RNA with regrouping .. 30

Figure 2.6 Example of RNA with adaptive regrouping .. 32

Figure 2.7 Example of RNA with local exchange .. 33

Figure 3.1 Structure of DEVS-FIRE model .. 38

Figure 3.2 Fire spread decomposition of DEVS-FIRE ... 39

Figure 3.3 PF-based data assimilation .. 43

Figure 3.4 Real fire, simulated fire and filter fire for the experiment 51

Figure 3.5 Symmetric set differences for simulated fire and filter fire 52

Figure 3.6 Fuel moisture content of case1 .. 61

Figure 3.7 Fuel moisture content of case2 .. 61

Figure 3.8 Fuel moisture content of case3 .. 62

Figure 3.9 FBD value of case4 ... 63

Figure 3.10 Fuel moisture content value of case4 .. 64

Figure 3.11 The final fire shape .. 65

Figure 4.1 Overall architecture of particle routing in the centralized resampling 72

Figure 4.2 Example of random particle routing policy part 1... 76

xii

Figure 4.3 Example of random particle routing policy part 2... 77

Figure 4.4 Example of minimal transfer particle routing policy part 1 82

Figure 4.5 Example of minimal transfer particle routing policy part 2 83

Figure 4.6 Example of maximal balance particle routing policy part 1............................ 87

Figure 4.7 Example of maximal balance particle routing policy part 2............................ 89

Figure 4.8 Comparisons of real fire, simulated fire, and filtered fire using different

routing policies. (a) Random routing policy. (b) Minimal transfer routing policy. (c) Maximal

balance routing policy ... 92

Figure 4.9 Symmetric set differences for simulated fire and filter fire with three different

routing policies.. 93

Figure 4.10 Number of particles to be transferred for the random routing policy, the

minimal transfer routing policy, and the maximal balance routing policy. 94

Figure 4.11 Total numbers of particles to be transferred for the random routing policy, the

minimal transfer routing policy, and the maximal balance routing policy 94

Figure 4.12 Total numbers of particles to be transferred for random transfer, minimal

transfer and maximal balance after increase the state size ... 95

Figure 4.13 Compare to the total time cost between before add the state size and after add

the state size for three different routing policies ... 96

Figure 5.1 The different between RNA and distributed resampling with local and global

particle routing method ... 100

Figure 5.2 Number of transferred states for the distributed RNA with the minimal transfer

routing policy and the distributed RNA with the maximal balance routing policy for step 4, 8,

and 12 .. 102

xiii

Figure 5.3 Total numbers of transferred states for the distributed RNA, the distributed

RNA with the minimal transfer routing policy, and the distributed RNA with the maximal

balance routing policy ... 103

Figure 5.4 Comparisons of real fire, simulated fire, and filtered fire using different

routing policies. (a) RNA (b) Centralized resampling. (c) RNA and Minimal transfer (d) RNA

and Maximal balance .. 104

Figure 5.5 Symmetric set differences for simulated fire and filter fire with centralized

resampling (minimal transfer) and filter fire with RNA ... 105

Figure 5.6 Symmetric set differences for the filtered fire with the centralized resampling

using the minimal transfer routing policy, and the filtered fire with the distributed RNA, the

filtered fire with the distributed RNA using the minimal transfer routing policy 106

Figure 5.7 Symmetric set differences for filtered fire using the distributed RNA, filtered

fire using the distributed RNA with the minimal transfer routing policy, and the filtered fire

using the distributed RNA with the maximal balance routing policy at time step 8 and 12 107

Figure 5.8 Symmetric set difference of the filtered fire using the distributed RNA and

filtered fire using the distributed RNA with the minimal transfer routing policy every 2 steps, 4

steps and 5 steps at time step 12 ... 108

Figure 5.9 Symmetric set differences of the filtered fire with the distributed RNA, and the

distributed RNA with the maximal balance routing policy every 2 steps, 4 steps and 5 steps at

time step 12 ... 109

Figure 5.10 Total numbers of transferred states of the distributed RNA with the minimal

transfer routing policy and the distributed RNA with the maximal balance routing policy for

every 2, 4, and 5 steps at time step 12 .. 110

xiv

Figure 6.1 MapReducePF algorithms of case study ... 116

Figure 6.2 Comparisons of real fire, simulated fires, and filtered fires 119

Figure 6.3 Execution time for single step ... 119

Figure 6.4 Execution time for five steps ... 120

1

1 INTRODUCTION

1.1 Data assimilation for large scale spatial temporal simulations

Large-scale spatial temporal systems such as wildfire, road traffic and flood evolve

system behavior in both space and time. Those systems have significant impact on both

ecosystems and human society. Wildfires cause massive losses of natural forest resources,

endangered species, properties, and even human lives. In the 2007 wildfire season, over 85,500

fires across the whole US burned more than 9.3 million acres of land. It cost 1.8 billion dollars in

effort to fight wildfires and a potential 2.5 billion dollars in insured loss for California alone [1].

The Insurance Council of Texas estimates that 2011 was the costliest year for wildfires in Texas

with insured losses estimated at more than $500 million. In addition, insured loss estimates from

the Bastrop Complex Wildfire in the state have reached $325 million due to the destruction of

more than 1,600 homes, becoming the costliest wildfire in the state’s history [2]. In 2012, 20

large wildfires were burning in eight Western states, from Idaho and Wyoming to California and

Arizona, according to reports from the U.S. Forest Service. Federal firefighting costs passed $1

billion for the first time in 2000 and have exceeded that mark every year but two. Together, the

Forest Service and Interior Department have averaged $1.54 billion in fire suppression in the

past decade. States pay another $1 billion to $2 billion annually, according to Headwaters

Economics, a Bozeman, Montana-based research group. Fires affected about 7.3 million acres a

year in the most recent decade, up 66 percent from the previous 10 years [3].

Road traffic has become a serious problem with rapid development of the economy. The

increasing traffic flow is resulting in serious congestion of urban road networks, which can

decrease flow rate, delay travel time, increase fuel consumption and travel costs, and create

negative environmental effects [4]. The Texas Transportation Institute estimated that, in 2000,

2

the 75 largest metropolitan areas experienced 3.6 billion vehicle-hours of delay, resulting in 5.7

billion U.S. gallons (21.6 billion liters) in wasted fuel and $67.5 billion in lost productivity, or

about 0.7% of the nation's GDP. It also estimated that the annual cost of congestion for each

driver was approximately $1,000 in very large cities and $200 in small cities. Traffic congestion

is increasing in major cities and delays are becoming more frequent in smaller cities and rural

areas [5]. Floods are one of the few disasters that have the most extensive influence, the most

frequent occurrence and the most severe losses [6]. The effects of floods include loss of life and

damage to buildings and other structures, including bridges, sewerage systems, roadways, and

canals. In order to effectively manage those systems, several major large-scale spatial temporal

systems simulation research investigations have been performed. For example, several major

models were developed for wildfire simulation, such as FARSITE [7], BehavePlus [8], and

DEVS-FIRE [9] and Hfire [10]. For road traffic simulation, the work of [11] propose a set of

methods aiming at extracting large scale features of road traffic, both spatial and temporal, based

on local traffic indexes computed either from fixed sensors or floating car data and the work of

[12] had shown the simulation of large spatial temporal system in flood risk estimation.

However, these systems are inherently difficult to study since the accuracy of large-scale

spatial temporal systems simulations depends on many factors, such as GIS data, fuel data,

weather data, and such. Moreover, due to their complex and dynamic behavior, it is very difficult

to obtain all these data with no error. For example, the GIS data and fuel data which are used in

simulation research contain discrepancies compared to the real data constrained by spatial

resolution. This is the same situation for other data like weather data, which changes by second

in the real world. Be that as it may, the weather data used in simulation models is typically

obtained from local weather stations in a time-based manner such as every ten minutes to thirty

3

minutes. Thus, the weather is considered as unchanged in the simulation model until the next

data arrives. With those kinds of errors, the predictions from the simulation model will be

different from what occurs in real large-scale spatial temporal systems. Therefore, without

assimilating data from the real large-scale spatial temporal systems and dynamically adjusting

the simulation, the difference between the simulation and the real large-scale spatial temporal

systems are likely to continue to grow.

Data assimilation is an analysis technique, in which the observed data is assimilated into

the model to produce a time sequence of estimated system states [13]. Although data assimilation

has been widely used in areas such as atmospheric, climate, and ocean modeling [14] [15],

assimilating data in larger-scale spatial temporal systems simulation is still difficult to study

because of the complexity of models. Additionally, the number of possible state variables and

model parameters is extremely large, and many of them are spatially dependent. Moreover,

another noteworthy complexity is associated with the nonlinear, non-Gaussian behavior of those

models which makes it ineffective to use conventional inference techniques such as Kalman

filter. Motivated by these problems, we select particle filter methods to support the data

assimilation of large-scale spatial temporal systems. Particle filters (PFs) are a set of simulation

based methods which provide a convenient and attractive approach to computing posterior

distributions [16]. Particle filter estimation requires no assumptions about the state distribution or

the state-space model components as nonlinear evolution and observation equations that have

non-normal error distributions are allowed [17]. There are three major operations in PF

processing: particle (or sample) generation, weight calculation, and resampling. Firstly, samples

are generated from the space of unobserved states, and then probability masses associated with

the particles are calculated. Finally, researchers undergo the process of removing particles with

4

small weights and replacing them with particles with large weight. Since PFs are very suitable

for non-linear and/or non-Gaussian applications and also show great promise in addressing a

wide variety of complex problems, they have already been widely used in many research areas

such as wireless communications [18], robotics [19], navigation [20] and tracking systems [21]

[22].

1.2 Challenges for data assimilation for large scale spatial temporal simulations

Particle filters provide a well-established methodology for generating samples from the

prediction and filter distributions without requiring assumptions about the state space model or

the state distributions. The evolution and observation equations can be nonlinear and the initial

state and noise distributions can take any form required. However, particle filters do not perform

very well when applied to high dimensional systems. Because weight disparity increases with

increasing state and likelihood dimension, leading to severe weight collapse. Weight collapse can

be mitigated by including a resampling step before weights become too uneven, but for high

dimensional systems weight collapse can occur in a single time-step, rendering resampling

completely ineffective [17]. When the observations are high dimension, the filter ensemble

collapses to a small number of distinct points, providing very poor estimates. For example,

geophysical systems such as the atmosphere or the oceans [23] are characterized by large state

spaces which are nonlinear, especially in high resolution applications. It is shown that direct

application of the basic particle filter, importance sampling using the former as the importance

density, does not work in high-dimensional systems, but several variants are shown to have

potential.

Moreover, the work of [24] also noticed that to avoid ensemble collapse, the particle

population needs to increase exponentially with increasing state dimensions. Based on their

5

result, a nonlinear estimation problem with zero-mean unit-variance Gaussian noise, the 1011

particles are required for a 200-dimensional state-space. In the work of [17], Jonathan Briggs

forced on the issue of high dimensional particle filtering in state-spaces where the noise

distribution is meta-elliptical and proposed a location-domain particle filter which created a

particle population for each component of the observation vector which greatly increased the

space and time complexity of the algorithm. From the experiment, his proposed filter took 2100

seconds compared to the generic particle filter which took 0.034 seconds for an observation

update on their test problem. When the number of observation vector components increased, the

time taken by the algorithm for each observation update would increase too. This is a significant

flaw since for their specific test problem with hundred observations a generic particle filter took

approximately 4 seconds to run, while their proposed location-domain particle filter took

approximately 60 hours [25]. This is also especially true for the wild fire simulation system

where a large number of particles are needed in order for the data assimilation methods to

converge to true system states. The state of wild fire simulation system is very expansive. This is

because the state of wild fire simulation system may include many data such as fuel data, GIS

data, weather data, etc. This will assuredly and significantly increase the computation costs and

communication costs when applying PFs in wild fire simulation system.

Based on the problems we point our above, some major types of methods dealing with

PF-based high dimensional data assimilation, like particle smoothers, have already discussed as

well. Particle smoothers are similar to particle filters except that they use observations available

before and after the current time point in making their state estimates. In the work of [17], the

author uses a particle smoother defined on a sequence of locations (rather than the traditional

sequence of time points) to carry out the Bayesian update. Considering only one location at a

6

time in the smoother reduces the dimensionality of the problem, avoiding filter ensemble

collapse. An experiment showed a particle smoother update was applied to the same BATS

model and observations as has been shown to lead to filter ensemble collapse (more details can

be found in [17]). Another method named The Merging Particle Filter which was introduced by

Nakano [26]; the main idea of this method is: linear combinations of the particles are taken at the

measurement time to reduce the variance in the weights. The author compared the performance

of the merging particle filter to the particle filter with resampling and to the EnKF for the Lorenz

63 and 96 models. They note that the EnKF works best with a low number of particles, but

increasing the number of particles the Merging Particle Filter takes over and only with a very

high number of particles is the particle filter with resampling superior [23]. Moreover, particle

filter methods are very flexible, easy to implement, parallelizable and applicable in a variety of

settings. Therefore, there are several distributed/parallel particle filters (DPFs) that have been

developed [27] [28] [29] [30]. In these algorithms, the distributed nature is achieved by either

transmitting local statistics of particles to a centralized unit or by using the message passing

method.

1.3 Distributed particle filter and particle routing

According to the particle filter’ processing, the first two parts, particle generation and

weight computation are simple to parallel and distribute, since every particle can work

independently. The bottleneck in real-time PF implementation is the resampling operation. That

is because resampling cannot be computed unless data from all particles are available. On the

other hand, the resampling step is very critical in every implementation of particle filtering

because the variance of particle weights quickly increases without it. Therefore, the particles can

be run independently on different working processor units (PUs) during the particle generation

7

step and weight computation step, but the PUs must be combined together in a central processor

unit (CU) in order to perform the resampling step. That means resampling creates a significant

amount of communication at every time step of filtering and prevents the particle filter from

being parallelized efficiently. After the resampling step, another important step to do is particle

routing. Particle routing is necessary because the numbers of particles on different PUs are

unbalanced after resampling. Thus, PUs that have a surplus of particles need to route the extra

particles to the PUs with a shortage of particles for the next iteration of computing. Particle

routing deals with selecting particles on some PUs and routing them to other PUs across the

network. In distributed PFs, routing particles among PUs can serve two different purposes: 1) to

help the “good” particles, i.e., particles with high weights, to propagate among the PUs and thus

potentially to lead to better estimation results; 2) to ensure that the different PUs have the same

number of particles (i.e., load balance) after resampling.

The traditional method to handle the parallel and/or distributed computing method for

particle filter required every detail, such as how to connect each PU and CU, what kind the

communication method used inside each PU and CU, what is the computer network protocol will

be used and etc. to be finished as well. Nowadays, a new technology can help us easily

parallel/distributed the PF-based work. “Cloud Computing” is a technology that uses the internet

and central remote servers to maintain data and applications. Cloud computing allows consumers

and businesses to use applications without installation and access their personal files at any

computer with internet access. “Cloud” refers to large Internet services running on tens of

thousands of machines such as Amazon S3, Google AppEngine, Microsoft Windows Azure, etc.

MapReduce is a software framework that allows developers to write programs that process

massive amounts of unstructured data in parallel across a distributed cluster of processors or

8

stand-alone computers. Also, MapReduce is a programming model for processing huge data sets

on certain kinds of distributable problems using a large number of computers (nodes),

collectively referred to as a cluster [31] [32]. There are many different implementations of the

MapReduce programming model, among which Apache’s Hadoop is the most well-known one

and it has been successfully applied for file based datasets.

1.4 Problem statement

The major difficulty of applying PFs to high dimensional data assimilation problems is its

high computation cost due to the large number of particles used, where each particle represents a

full-scale simulation to the next observation time. This is a huge problem especially for the

centralized particle filter method, since all the particles run the simulation on a single computer,

resulting in potential problems with CPU and memory costs. This is also especially true for

large-scale spatial temporal systems where a large number of particles are needed in order for the

data assimilation methods to converge to true system states. Also, the state of large-scale spatial

temporal systems is very expansive. This is because the state of large-scale spatial temporal

systems may include many data such as fuel data, GIS data, weather data, etc. This will assuredly

and significantly increase the computation costs and communication costs when applying PFs in

large-scale spatial temporal systems. In order to improve the performance of data assimilation,

distributed/parallel particle filters are necessary. Since some research exists on improving

resampling for parallel and distributed particle filter, we are authoring a literature review

focusing on distributed particle filter algorithms while including a quick overview of data

assimilation, particle filter and dynamic data driven application systems (DDDAS). Also, as we

mentioned before, particle routing is necessary because the numbers of particles on different PUs

are unbalanced after resampling. Thus, PUs that have a surplus of particles needs to route the

9

extra particles to the PUs with a shortage of particles for the next iteration of computing. As the

number of PUs increases, the communication overhead rises. The unbalanced particles on PUs

are caused by the fact that particles have different importance weights. As a result, PUs hosting

high weight particles generates a lot more replicates in resampling and need to route a large

number of particles to other PUs. The uneven distribution of particles’ weights is common in

data assimilation using PFs for spatial temporal simulations. Therefore, efficient particle routing

is critical for reducing the communication costs in distributed PFs.

Figure 1.1 illustrates this situation based on a run of the bootstrap algorithm for large-

scale wildfire spread simulation modeling. The figure shows the normalized weight of the three

best particles out of 100 particles in each step of the data assimilation. Based on the figure, we

can see the strong uneven distribution of particle’s weight in almost every step. Except the first

two or three steps, the three particles account for more than 80% of the overall weight of the 100

particles. (The reason why the first two or three steps did not have this same situation is because

every particle’s fire shape is very small in first two or three steps, so the weight of every particle

is almost the same). This means in a distributed environment the PUs hosting these high

weighted particles will generate a lot more replicates in resampling and need to route a large

number of particles to others. According to this information, how to route particles among PUs

after resampling in effective and efficient manners calls for more research.

10

Figure 1.1 Normalized weights of the three best particles (out of 100)

On the other hand, for the centralized resampling method, we have to face some issues

since we have the CU, since it still requires a complicated scheme for particle routing, and makes

a complex PU design and area increase when more PU are involved. But for cloud MapReduce

and Hadoop, we do not need configure every detail, such as how to connect each PU and CU,

what kind of the communication methods should be used inside, what are rules between every

machine, etc., because the Hadoop system can help us to do it. Our only work is finishing the PF-

based application code following the MapReduce’s key/value pairs rules. Moreover, the

advantage of developing map-reduce PF is like using other “cloud” servers, for example: you do

not need buy many machines yourself in advance; you just pay when you use the cloud’s

allocated machines. Also, you do not need upload your application work source (code)

everywhere because you can just upload it to the cloud and use it when you want to do test.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
o

rm
al

iz
e

d
 W

e
ig

h
t

Number of Steps

3rd largest weight

2nd largest weight

largest weight

11

1.5 My contributions

First of all, our work applied a particle filter-based data assimilation framework in

wildfire spread simulation for state estimation and parameter estimation. Our work on data

assimilation explored the possible applications of particle filters in wildfire spread simulation

based on DEVS-FIRE model, and applied particles filters to assimilating temperature sensor data

for estimating the dynamically evolving fire front of a spreading fire. On the other hand, the

simulation models of large-scale spatial temporal systems rely on many parameters to model the

structure and behavior of systems under study. To achieve accurate simulation results, a

simulation model needs to use correct model parameters. However, it is common that during the

modeling process the parameters are largely unknown, uncertain and/or vary with time or space.

Therefore, we used the DEVS-FIRE wildfire spread simulation model to show the results of data

assimilation based on PF for large-scale spatial temporal systems. We carried out experiments to

estimate the fuel moisture content and fuel bed depth parameters used in the wildfire spread

simulation.

Secondly, while several resampling algorithms [33] have been developed for distributed

particle filters, less research has been conducted to investigate how to route particles among PUs

after resampling in effective and efficient manners. In our work, we study the routing policies in

distributed particle filters with both the centralized resampling schema and the distributed

resampling schema. Based on the global information which the CU has full knowledge of the

weight distribution of all particles on different PUs in the centralized resampling schema, we

developed two efficient particle routing policies in distribution PF with centralized resampling,

named minimal transfer particle routing policy and maximal balance particle routing policy.

On the distributed resampling side, communications are constrained between neighboring PUs.

12

This local communication schema supports a large degree of parallelism due to elimination of

the centralized resampling step. However, it also results in slow propagation of high-weighted

particles, and thus reduces the convergence rate of the particles. To address this issue, we

propose a hybrid particle routing approach that combines global routing with local routing to

take advantage of both. In this approach, we mainly use local routing to ensure scalability and

low communication costs, and occasionally invoke global routing to support faster propagation

of "good" particles. We evaluate and compare the different particle routing methods based on the

application of data assimilation for large-scale wildfire spread simulations as well.

Moreover, using the technology of Cloud Computing, we developed a parallel and

distributed computing method that uses Hadoop & MapReduce to handle the data assimilation in

wildfire simulation based on particle filters. Our work build a foundation where future work can

be carried out and the main experiment results showed the MapReduce-PF and Hadoop

significantly increases the performance for data assimilation using large number particles.

1.6 Organization of the dissertation

Based on the structure of distributed PFs, the work will construct the entire system

consisting of all the components, which will be explained later. Chapter 2 introduces the related

work of data assimilation, sequential Monte Carlo methods (particle filters), dynamic data driven

application systems (DDDAS), and several distributed particle filtering algorithms that have

been developed in literature. Chapter 3 describes data assimilation based on PFs for large-scale

spatial temporal systems, which includes an overview of DEVS-FIRE-based wildfire spread

simulation and PF-based data assimilation framework. In Chapter 4 we detail the overall particle

routing architecture and then describe three different particle routing policies. The experiment

results and analysis for three different particle routing policies in distributed PFs with centralized

13

resampling will be discussed in this chapter as well. Chapter 5 will continue the introduction of

particle routing in distributed PFs with decentralized resampling. Distributed resampling with

local and global particle routing algorithms will be described in this chapter. In Chapter 6, based

on MapReduce and Hadoop, we design a cloud MapReduce for data assimilation using

sequential Monte Carlo methods in wildfire spread simulation. Finally, Chapter 7 contains

conclusions and future research implications.

14

2 RELATED WORKS

2.1 Data assimilation

2.1.1 Overview of data assimilation

Data assimilation is the process by which observations are incorporated into a computer

model of a real system [34]. The purpose of data assimilation is to use observation data to

improve state estimation of the system. The data assimilation methods try to minimize the errors

between the real system and the models. The data assimilation methods can be divided into three

main classes [35]: 1) Empirical methods, which include Successive Correction Method (SCM),

Nudging, Physical Initialization (PI) and Latent Heat Nudging (LHN). 2) Constant statistical

methods, such as: Optimal interpolation (OI), 3-dimensional variational data assimilation

(3DVar) and 4-dimensional variational data assimilation (4DVar). 3) Adaptive statistical

methods which include Extended Kalman filter (EKF) and Ensemble Kalman filter (EnFK).

There are two main data assimilation algorithms: sequential based and cost function based. The

sequential approaches are based on the Bayesian theories that combine the prior knowledge of

the state vector and the measurement to obtain the posterior distribution of the state [36]. Some

sequential data assimilation algorithms known as Kalman filters, Extended Kalman filter (EKF)

and Ensemble Kalman filter (EnKF). A Kalman filter is an optimal estimator, which shares the

static update with some of the variational techniques, but Kalman filter algorithms also explicitly

compute the error covariance through an additional matrix equation that propagates error

information from one update time to the next, subject to possibly uncertain model dynamics [37].

The EKF doesn’t need the linear model operator and/or observation operator. The EnKF

originated as a version of the Kalman filter for large problems and it is now an important data

assimilation component of ensemble forecasting. Moreover, Particle filter is also called

15

sequential data assimilation filter that based on particle representations of probability densities,

which can be applied to any state-space model and which generalize the traditional KF methods

[38] [39]. For the cost function-based methods, the typical algorithms include the shuffled

complex evolutionary (SCE) method [40] [41], a very fast simulated annealing (SA) algorithm

[42] [43], the differential evolutionary (DE) method [44], and the genetic algorithm (GA) [45].

The common weakness of these methods is their slow computational speed, the more advantage

and disadvantage can found in [36].

There are two basic approaches to data assimilation: sequential assimilation, that only

considers observation made in the past until the time of analysis, which is the case of real-time

assimilation systems, and non-sequential, or retrospective assimilation, where observation from

the future can be used, for instance in a reanalysis exercise [46] . But it needs a statistical

approach, because the Cressman analysis which is the one of simple analysis method has some

disadvantages. In the statistical approach, we try to use all the useful information, but don’t trust

them at all. We can find a strategy to minimize the average of the differences between the

analysis and the “truth” observation. In this sense, the analysis can be seen as the optimization

problem. All the related errors are assumed to be unknown and have known statistical properties

[47]. Note that the details of the most of algorithms above can be found in [46].

2.1.2 Application of data assimilation

Data assimilation has already widely used in many different fields, such as geosciences,

weather forecasting, atmospheric, oceanic, hydrologic and other environmental systems. For

example, data assimilation used for Global Positioning System (GPS) discussed as well in [48].

Hurricane initialization by data assimilation which used for National Centers for Environmental

Prediction (NCEP) official hurricane track forecasts for seven Atlantic hurricanes [49]. The 3-

16

dimensional variational data assimilation (3DVar) and 4-dimensional variational data

assimilation (4DVar) also widely used in data assimilation. The work of [50] gives some

diagnosis statistical results of the assimilation surface observations with the regional GRAPES

forecast and assimilation model. Chinese Meteorological Administration has developed a three

dimension variational data assimilation system (Global/Regional Assimilation and Prediction

System, shorten as Grapes 3Dvar), and with the ATOVS radiance data directly assimilated by

RTTOV as observation operator [51]. Also, the work of [52] proposed a data assimilation system

to improve ozone simulations in Mexico City basin using 3D-VAR that generated the optimal

estimate of the true atmospheric state during the analysis time. In [53], the four-dimensional

variational data assimilation technique (4D-VAR) is presented as a tool to forecast floods. The

study is limited to purely hydrological flows and supposes that the weather, here a big rain, has

been already forecasted by meteorological services. For adaptive statistical methods which

include Extended Kalman filter (EKF) and Ensemble Kalman filter (EnFK) also used in some

field such as data assimilation with an EKF for impact-produce shock-wave dynamics which

present study represents the first attempt of applying the extended Kalman filter method of data

assimilation to shock-wave dynamics induced by a high-speed impact [54].

The ensemble Kalman filter uses the nonlinear forecast model to transport the forecast-

error covariance from one analysis time to the next. It therefore constitutes not only an

approximation to, but also a nonlinear extension of, the standard Kalman filter. It represents a

promising approach toward the goal of developing a Kalman filter–based algorithm for

atmospheric data assimilation. However, for the technique to be feasible in an operational

setting, a computationally efficient analysis algorithm is required [55]. The work of [56]

discussed the application of the ensemble Kalman filter (EnFK) to hydrologic data assimilation

17

and in particular to the estimation of soil moisture from Lband microwave brightness

temperature observations and their mainly results shown the EnKF significantly underestimates

the forecast error variances for 100 ensemble members.

Data assimilation also widely used in the large-scale spatial temporal systems. For

example in wildfire area, the work [57], the authors present an effective proposal distribution for

SMC based wildfire data assimilation and in work [58] proposed an approach to estimate forest

fires based on sequential Monte Carlo methods from video images. Moreover, in order to

increase the accurate of the flood forecasting, [59] implement sequential data assimilation for

short-term flood forecasting and parameter uncertainty assessment using grid-based spatially

distributed hydrologic models. Data assimilation also used in agent based simulation, the work of

[60] present a method that assimilates real time sensor data into an agent-based simulation

model. The goal of data assimilation is to provide inference of people’s occupancy information

in the smart environment, and thus lead to more accurate simulation results. The author use

particle filters to carry out the data assimilation and present some experiment results, and discuss

how to extend this work for more advanced data assimilation in agent-based simulation of smart

environment. The work of [61] presents a framework of behavior pattern informed data

assimilation and describes the structure of this framework and focus on the task of behavior

pattern detection using Hidden Markov Model. The author apply behavior pattern detection to a

smart office case study example and discuss how the detected behavior pattern can inform the

data assimilation in agent-based simulation of smart environments.

18

2.2 Sequential Monte Carlo methods (Particle Filters)

2.2.1 Overview of particle filters

Sequential Monte Carlo (SMC) methods, also called particle filters, are a set of

simulation-based methods which provide a convenient and attractive approach to computing the

posterior distributions [62]. There are three major operations in particle filters processing:

particle (or sample) generation, weight calculation, and resampling. First of all, sampling from

the space of unobserved states, then probability masses associated with the particles. Finally,

process of removing particles with small weight and replace them with particles with large

weights.

We can more detail the major steps of particle filters based on sampling importance

resampling are described below:

Step 1: initialize N particles.

Step 2: calculate importance weights.

Step 3: normalize importance weights.

Step 4: resampling.

Step 5: predict new particles for future use.

Step 6: go to Step 2 to execute the next time step.

Based on the dynamic system, in the particle filter algorithm, step 1 initializes particles. With

time advances, step 2 to step 5 are executed as shown in Figure 2.1.

19

Particle initialization

End

Start

1 2 3 N

Resampling

States output

…….

No

Yes

Weight computation

Weight normalization

Observed data

Sampling

Figure 2.1 Particle filters algorithms of case study

For the general sequential importance sampling, we can formulate the sequential

importance sampling method in terms of updates to the smoothing density. Based on the theory

of particle filters, sample from a convenient proposal distribution q (𝑥1:𝑡 |𝑦1:𝑡), then use

importance sampling to modify weights [63]:

 ∫𝑝 (𝑥1:𝑡 |𝑦1:𝑡) 𝑓 (𝑥1:𝑡)𝑑𝑥1:𝑡 = ∫
𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡)
 𝑞 (𝑥1:𝑡 |𝑦1:𝑡) 𝑓 (𝑥1:𝑡)𝑑𝑥1:𝑡

 ≈ ∑𝑤𝑡
𝑖

𝑁

𝑖=1

 𝑓(𝑥1:𝑡
𝑖)

where

20

𝑥1:𝑡
𝑖 ~ 𝑞 (𝑥1:𝑡 |𝑦1:𝑡)

and

𝑤𝑡
𝑖 =

𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡)

So, we can define the un-normalized weight by:

�̃�𝑡
𝑖 =

𝑝 (𝑥1:𝑡 , 𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡)

than calculate approximation to 𝑝 (𝑦1:𝑡) get:

𝑝 (𝑦1:𝑡) ≈∑�̃�𝑡
𝑖

𝑁

𝑖=1

Continue do the weight normalization step, the normalized weight is:

𝑤𝑡
𝑖 =

𝑝 (𝑥1:𝑡 |𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡)
=
𝑝 (𝑥1:𝑡 ,𝑦1:𝑡)

𝑞 (𝑥1:𝑡 |𝑦1:𝑡)

1

𝑝 (𝑦1:𝑡)
 =

�̃�𝑡
𝑖

∑ �̃�𝑡
𝑖
𝑡

(𝑖)𝑁
𝑖=1

After we get the entire particle’s weight, we can start the resampling work. Resampling

is a critical operation in particle filters because with time, a small number of weights dominate

the remaining weights, thereby leading to poor approximation of the posterior density and

consequently to inferior estimates [64]. The idea of resampling is to remove the particle which

have small weights and replace it by the particle which have big weights, so, after the

resampling, the future particles are more concentrated in domains of higher posterior

probability. Resampling was first introduced in [65], and later proposed for SIS [66] [67].

Resampling 𝑗𝑡
(𝑛)

 ~ 𝑎𝑡
(𝑛)

, where 𝑎𝑡
(𝑛)

 is a suitable resampling function whose support is defined

by the particle 𝑥𝑡
(𝑛)

 [68].

21

2.2.2 Application of particle filters

Since particle filters are very suitable for non-linear and/or non-Gaussian applications,

and also show great promise in addressing a wide variety of complex problems, which have

already widely used in many research areas such as, tracking application, wireless

communications, robotics, mobile robot localization, computer vision and navigation. The book

of [69] apply particle filters to tracking a ballistic object, detection and tracking of stealthy

targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging

(bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of

ground vehicles, and group and extended object tracking. The work [70] introduced a new

method based on particle filters for multi-target tracking and data association in non-liner

systems. This work firstly uses UKF to implement the single target tracking and then use particle

filter for data association. The experiment result shown this method can reduce the algorithm

execution, because the UKF need less particles compare to the traditional particle filter.

The work [71] apply particle filters for solving the problem of simultaneous localization

of mobile nodes in wireless networks with correlated in time measurement noises. Several model

particle filters are developed in this paper and they also evaluated performance of those model

based on RSSIs by accounting for, but without considering the measurement noise time

correlation. In the same research area, the work [72] introduced the results of simulations of their

algorithm named ‘Monte Carlo Localization Boxed’. The paper use particle filters to improve the

localization accuracy and efficiency by making better use of the information a senor node gathers

which make Monte Carlo Localization more lightweight for use in wireless sensor networks. The

work [19] presents two examples of used Sequential Monte Carlo methods, one in the domain of

computer vision and the other in mobile robotics. The particle filter also used in image

22

processing area to improve the quality of the image [73]. In the biology research area, the work

[74] provided and application of particle filters which populations of compact long chain

polymers were created by the Monte Carlo methods to study the relationships between packing

density and chain length.

2.3 Dynamic data driven application systems (DDDAS)

2.3.1 Overview of DDDAS

As we discussed in chapter 2.1, the data assimilation is the process used to incorporate

observation into a simulation model of a real system. So, the DDDAS is an application or

simulation that employs data assimilation that can effect and change which model or scale is

used and in which the application can also steer how, when, and/or where data is collected [75].

There are three major components in a typical DDDAS: the model system, the measurement

model and the data assimilation methods. We can viewed the DDDAS as a methodology to

counterbalance incompleteness in model and capability to enhance the application models by

imparting additional information into the model as at runtime additional data are used to

selectively enhance or refine the original model. The DDDAS concept offers the promise of

improving application models and methods and augmenting the analysis and prediction

capabilities of application simulations and the effectiveness of measurement systems [76]. In

DDDAS, the data from the sensors is fed into the simulation model to make prediction of the real

systems which will treat as the measurement to evaluate the output and adjust states of the

model. According to those measurements, we can evaluate, choose, or analyze the system states

utilizing statistical tools, data processing, and numeric or non-numeric techniques to improve the

simulation results [47].

23

2.3.2 Application of DDDAS

The National Science Foundation held the DDDAS workshop every year since 2000,

which included numerous application scenarios which could advance both science and society by

incorporating these ideas. Application areas described at the workshop include engineering

(design and control), crisis management, medical, environment systems, manufacturing, business

and finance [77].

The engineering part includes aircraft, oil exploration, semiconductor mfg and computing

systems hardware and software design, etc. The crisis management includes transportation

systems (planning, the accident response), the weather the hurricanes and floods, the wildfire and

fire propagation. The medical includes customized radiation treatments, x-rays, NMR, surgery,

etc. Moreover, the other part includes Supply Chain (Production Planning and Control) and

Financial Trading (Stock Mkt, Portfolio Analysis). The work of [78] enable and promote active

health monitoring, failure prediction, aging assessment, informed crisis management and

decision support for complex and degrading structural engineering systems based on dynamic

data driven methods. The work of [79] applies the DDDAS to monitor and manage surface

transportation systems which composed of a heterogeneous collection of in vehicle, roadside and

traditional computation and sensor node that mush analyze current system states, predict future

states and rapidly adapt to unexpected disruptive event on short time scales. In work [80], a full

DDDAS is proposed for dynamically estimation a concentration plume and planning optimal

paths for unmanned aerial vehicles (UAVs) equipped with environmental sensors. The proposed

DDDAS framework also creates solutions for efficient data collection and real-time vehicle

control.

24

In work of [81] describes a DDDAS for coastal and environmental applications and the

author coupled the real time sensor information with the water circulation model to forecast the

emergency event of hurricane. The work [82] develop a dynamic data-driven planning and

control system for laser treatment of cancer which include a general mathematical framework

and a family of mathematical and computational models of bio-heat transfer, tissue damage, and

tumor viability. The methodologies to be implemented involve uncertainty quantification

methods designed to provide an innovative, data-driven, patient-specific approach to effective

cancer treatment. An application of DDDAS also applied for wildfire simulation in [83] which

the authors incorporate the real time data into the wildfire simulation model in order to improve

the simulation results. The DDDAS also can applied in business area, in work of [84] introduced

DDDAS concept to construct the model by the input data from the company which will give the

employees the multiple choose to make their decisions.

2.4 Distributed particle filters

2.4.1 The centralized distributed particle filters

Figure 2.2 shows the architecture of distributed particle filter. There are multiple working

processors units (PUs) and one central processor unit (CU) in distributed particle filter

architecture. In distributed particle filter, the first two parts: particle generation and weight

computation are simple to parallel and distribute, since every particle can work independently. In

this most of basic way, it used centralized resampling which particles generate and calculate the

weight in each PU then each PU have to send all the particle state and the weight to the CU in

order to do the resampling. Finally, CU need send back all the state to PU again to finish after

the resampling. So, this method will cause the huge communication cost between the PU and CU

since the entire particle’s state have to travel once between PU and CU in every step. Even in the

25

fully connected network, the scalability of the implementation is significantly affected by the

sequential resampling and particle routing. One version of centralized resampling which is

implemented on a network of personal computers is described in [33].

CU

PUPU

PU PU

Figure 2.2 Architecture of the distributed particle filter

This centralized resampling method also will cause a big problem for large-scale spatial

temporal systems. One feature of large-scale spatial temporal systems is that the state of these

systems is large and has high dimension. Thus the particles representing system state have large

size, and involve high communication cost when passed from one processing node to another.

So, the basic centralized distributed particle filter method will cause the huge communication

cost for the large-scale spatial temporal systems compare to the other systems. Therefore, to

achieve the minimum execution time, some works show that resampling can be distributed to PU

and that CU is then responsible only for a small portion of resampling [33][85][86][87][88]. In

this chapter, we will mainly review two of the important method: distributed resampling with

proportional allocation (RPA) and distributed resampling with now-proportional allocation

(RNA).

26

2.4.2 Distributed resampling with proportional allocation

Compare to the centralized distributed particle filter, the RPA [33] method divided the

sampling space to K disjoint areas at first, and each area corresponds to a PU. Since the

proportional allocation is used in each area, the more samples are drawn from the strata with

larger weights. In the CU side, the RPA do an extra work named “inter-resampling” which

means the number of particle replicates is computed use the method residual systematic

resampling (RSR) [88] after the weights of area are known. Under the inter-resampling method,

every PU can be treated as the single particles. Thus the input of CU in there is 𝑤𝑘 which means

the sum of weight for all the particles in each PU. This is the first different part compare to the

centralized distributed particle filter, because centralized distributed particle filter sends all the

particle’s weight and state to the CU. On the other hand, the output of the CU after inter-

resampling is the number of particles that each PU will produce after resampling. This is the

second different part compare to the centralized distributed particle filter, because centralized

distributed particle filter send all the state back to the PU. Since the RPA just send the 𝑤𝑘 to CU

side, thus this method has to do the resampling again in PU side named as “intra-resampling”.

The goal of intra-resampling is make the enough particle state according the number which the

CU gives the PU. Figure 2.3 shows the mainly different between centralized resampling (a) and

RPA (b). The abbreviations are: S-sampling, I-importance computation, R-resampling, PR-

particle routing.

27

S,I

R

PR

PR

S,I

Inter

R

Intra

R

PR

N w
eights

N re
plic

at
io

n

fa
ct

ors

N k

PR

wk

CU PU

(a) (b)

CU PU

Figure 2.3 Sequence of operations performed for (a) centralized resampling and (b) RPA.

There is an example shown how the RPA method worked and the particle exchange in

figure 2.4. According the RPA method, we divided the sampling space to four disjoint areas at

first, which means we use 4 PUs in this example, and we assume each PU has 100 particles.

After the sampling, the distribution of the normalized PU weights before resampling is shown in

the figure2.4 (a). Continue do the inter-resampling, based on the weight of each PU; the number

of particles that each PU will produce is 120, 120, 70 and 90. Therefore, PU_01 and PU_02 have

surpluses of particles. In this example, PU_02 sends 10 particles to both PU_03 and PU_04, and

PU_01 sends 20 particles to PU_03. Of course, the method also has another choose: PU_01

sends 10 particles to both PU_03 and PU_04, and PU_02 sends 20 particles to PU_03. The way

of sending the particle named “particle routing”, in this example, both ways are same idea and

have same communication cost, but particle routing is another side can reduce the

communication cost, we will discuss the particle routing work in chapter 5.

28

 Weight before resampling

PU_01 0.3

PU_02 0.3

PU_03 0.175

PU_04 0.225

SUM 1

(a)

PU_01

(120)

PU_02
(120)

PU_03
(70)

PU_04
(90)

20

10

10

(b)

Figure 2.4 An example of particle exchange for the RPA algorithm

Simply summarize the RPA method, there are two mainly different between centralized

resampling and RPA method, first of all, RPA only send the sum of the weight to CU and hold

the state in each PU, but centralized resampling will send all the weight and state information to

CU. So, RPA can significantly reduce the communication cost between the PU and CU because

it avoids send the state. Another different is the centralized resampling only do the resampling

once, but the RPA has to do twice resampling in order to make sure the number of particle’s state

is correct. The main advantage of distributed RPA over centralized resampling lies in reducing

29

the amount of deterministic communication and in the distributed resampling where the

resampling is executed concurrently in the PUs instead in the CU.

2.4.3 Distributed resampling with non-proportional allocation

Although the distributed RPA method has already reduced the communication cost as

well compare to the centralized distributed particle filter, it still required a complicated scheme

for particle routing. Also it will make a complex PU design and area increase when more PU

involve since it still needs the CU part. Moreover, the RPA is still a global pre-processing step

because it still use inter-resampling in CU side, which may cause the extra delay because the CU

have to get all the particle’s weight in order to do the resampling. Due to those problems, the

authors introduced the RNA algorithm to solve those problems. The main idea of RNA is use the

term group instead of PU and no “CU” at all during the whole algorithm. The designer can

deterministic and planned the particle routing, which means the term group where a group is

formed from one or more PUs and no CU exist in this method. In RPA, the number of particles

drawn is proportional to the weight of the stratum. On the other hand, in RNA the number of

particles within a group after resampling is fixed and equal to the number of particles per group.

So, full independent resampling is performed by each group. In this chapter, there are three RNA

methods reviewed as well: regrouping, adaptive regrouping and local exchange [85] [86].

2.4.3.1 Distributed RNA with regrouping

The first RNA method named “distributed RNA with regrouping”. First of all, the

method signs all PUs to several groups, which a group is formed from one or more PUs. The first

two steps particle generation and weight computation continue finished in each PU, and then

resampling and particle routing are done in each group, which means the full independent

resampling is performed by each group. At the next sampling instant, the PUs is rearranged so

30

that they form different groups. Therefore, after each time instant, regrouping is performed so

that particles are exchanged among PUs and the variance is reduced. An example shown in

figure 2.5, PU_01 and PU_02 form one group and PU_03 and PU_04 form another group at first

step. In here, the RPA algorithm is applied to both groups in order to reduce the communication

cost inside of each group, also, the particle routing just happened instead of each group. Next

step, the method need rearrange the group in order to make all the “good” particle can travel to

every PU. In this example, the new groups can be composed of PU_01 and PU_03in a group and

PU_02 and PU_04 in a group.

PU_02PU_01

PU_03 PU_04

PU_02PU_01

PU_03 PU_04

(a) (b)

Figure 2.5 The example of RNA with regrouping

Compare to the RPA, distributed RNA with regrouping can reduce the communication

cost since it does not need the CU at all, so the resampling and particle routing just need

happened instead of the group. But it is not always efficacy in all situations, because it depends

on the number of PUs. Because it is very difficult to decide how many PUs in a group and how

many group created when the number of PUs increased. First of all, from the example above, we

can easily create two groups and the two periods we can get the goal if we just have 4 PUs, since

the local controllers are simple because there is only one PU with surplus and one with shortage

of particles. But when we have more PUs, the situation becomes complicated, because if more

than three PUs be a group, the inside of group still have the high communication cost between

31

each PU since we used the RPA inside of every group. Nevertheless, if we keep every group just

maintain two or three PUs because we do not want to increase the communication cost inside of

each group. But we still have much PUs; we have no choice but create more groups. Under this

situation, we have to do more times regroup work in order to make sure the good particle can

travel to each PU. Therefore, choosing so small value for the number of PU in a group could

cause high distribution factor and large number of periods until full propagation of particles is

achieved. In the extreme case, all the non-zero weights particles are in one PU and we still have

much PUs, the distributed RNA with regrouping method will cost a long time to finish.

2.4.3.2 Distributed RNA with adaptive regrouping

Based on the distributed RNA with regrouping method, the author extend the method

because they the distributed RNA with regrouping method uses the predefined fixed rules to

form the groups. But omit a very important fact which we can get the distribution of the group

weights. So, the method of distributed RNA with adaptive regrouping is forming the PU which

has the largest weight and the PU which has the smallest weight to a group. Then the other group

is formed from the remaining PUs. For each group, the RPA algorithm still applied in order to

reduce the communication cost. Simply side, this method regroup the PU based every PU’s

weight, find the PU with the largest weight and PU with the smallest weight in every step and

form these two PU to a group, then put rest of PUs to a group. For example, in Figure 2.6, we

assume PU_01 and PU_04 have the largest and the smallest weights, so form that two to one

group and the other group is formed from the remaining PUs (in this example is PU_02 and

PU_03). The totally same rule applied in next around figure2.5 (b), we get the weight result after

the first step and we know the PU_01 and PU_02 have the largest and the smallest weights, so

form it to one group, and then form the rest of PU_03 and PU_04 to a group. The basic idea of

32

this method utilizes the Randez-Vouz load balancing algorithm [89], which is a simple greedy

algorithm that associates the heavily and the lightly loaded groups. This method has the same

disadvantage with distributed RNA with regrouping method, because if we face the much PUs,

there are only two groups in this method: the first group just has 2 PUs which the PU with the

largest weight and the PU with the smallest weight. But other group will have more than 3 PUs;

it will face the same communication cost problem since we still use RPA inside of the group.

PU_02

(lowest)

PU_01

(highest)

PU_03

(2nd)

PU_04

(3rd)

PU_02

(highest)

PU_01

(3rd)

PU_03

(2nd)

PU_04

(lowest)

Figure 2.6 Example of RNA with adaptive regrouping

2.4.3.3 Distributed RNA with local exchange

Although the RNA with regrouping and RNA with adaptive regrouping methods did not

have the CU in order to reduce the communication cost, it still apply the RPA algorithm worked

inside of each group. As we discussed the limitation of those two methods, it still faces the same

problem if more than 3PUs formed in one group. Moreover, those two methods also make the

particle routing process is still random which cause very difficult for pipelining between the

particle routing and sampling steps. So, based on those problems, the method of RNA with local

exchange is introduced. In RNA with local exchange method, every PU equals a group and no

RPA involved at all since only one PU in each group. So, the entire steps finished inside of the

PU include the resampling part. And then the particles are exchanged in a deterministic way only

among the neighboring PUs and the routing is done through local communication in every step.

33

Figure2.7 shows the example RNA with the local exchange. In this example, we assumed every

PU has 100 particles and it is exchanges the 50 particles to their neighbor with an anti-clockwise

direction after they did the resampling by themselves. The advantage of this method is the

communication between the PUs is only local, so it does not need a complex PU design and the

pipeline of particle routing is easy. But the local communication can increase the pass steps, the

good particle have to travel every PU in order to get the full resampling in the extreme case.

And this restricts the level of parallelism.

To sum of up, although the RNA solved the problem like make an easy CU design and no

extra delay happened since no CU between each group, it also has two main problems: firstly,

the efficacy of the RNA depend on the number of PUs. The efficacy will reduce with the more

PUs involve because the RPA algorithm still applied inside of the group. On the other hand, from

the simulation of result side, all the RNA method losing the accuracy, because those methods did

not do the resampling together in every step.

PU_01

PU_06

PU_05

PU_02

PU_03

PU_04

50 50

5050

5050

Figure 2.7 Example of RNA with local exchange

34

2.4.4 Compressed distributed particle filter

The work of [90] presents three schemes for distributing the computations of generic

particle filter: global distributed PF (GDPF), local distributed PF (LDPF) and compressed

distributed PF (CDPF). The GDPF basically same as the centralized distributed particle filter

method we mentioned in 2.4.1, which sampling in every PU independently and the weight

normalization and resampling performed at the CU. The LDPF has not formed to any group, the

all the step include the resampling part finished in every PU. But different with the RNA with

local exchange, the LDPF still has the CU exit, because each PU will sending only sufficient data

to CU which is then responsible for providing the filter estimate. The main point of [90] is

introducing the CDPF method. From the GDPF and LDPF method, the author found the GDPF

will not loss the accurate at all but it causes the huge communication cost increase. Furthermore,

the LDPF can reduce the communication cost since the resampling finished inside of every PU,

but LDPF will loss the accurate because there is no centralized resampling at all. Based on those

problems, the author introduced the CDPF method which can not only reduce the communication

cost and also maintain a good simulation result.

For CDPF, the sampling part still finished in every PU independently and the weight

normalization and resampling performed at the CU. However, the PU will not sending the entire

select particle to CU, instead just send a representative distribution of reduced size. And the CU

will do the resampling based on this representative distribution and send the information back to

every PU. Actually, the CDPF method attempts to bypass the necessary of sending large amounts

of repeated particles with representative datasets of non-repeated particles. It is based on the idea

of the so called “fast bootstrap” proposed in [91], so, the resampling way is use the fast bootstrap

method in CDPF. The CDPF method facilitates significantly less data exchange between the PU

35

and CU than direct parallelization, because this avoid to sending duplicate particles between the

PU and CU. But since CDPF won’t sending the whole information of select particle from PU to

CU and just send a representative distribution of reduced size, so this method still was generally

less accurate.

2.4.5 Distributed particle filter methods summary

Since the different distributed particle filter methods have the different properties such as

the resampling step finished in PU side or CU side, the different particle routing way and

performance is lose or not. So, we cannot say which method is always better than other one,

because different method has its own merits and demerits. One method is better or not depends

on several situations like the numbers of PU involved or what kind of application applied.

Therefore, in order to choose the appropriate methods it is very necessary to summarize the key

part properties of different distributed particle filter methods. In table 2.1 and table 2.2, we

summarizes the 4 parts of distributed particle filter methods, such as the weight pass method

from PU to CU, the resampling step finished in PU or CU (shown in table 2.1), the particle

routing information and the performance situation (shown in table 2.2). The abbreviations

shown in table are: CEDPF: centralized distributed particle filter; RNA-R: RNA with regroup;

RNA-AR: RNA with adaptive regrouping; RNA-LE: RNA with local exchange; CODPF:

compressed distributed particle filter; LDPF: local: distributed particle filter.

36

Table 2.1 Summarize first two parts of the different distributed PFs

 The weight pass method from PU to CU Resampling finished in which side

PU CU

CEDPF Passed the weight of all particle CU

RPA Passed the sum of weight of all particle Intra-resampling Inter-resampling

RNA-R Passed the weight in own group PU, no CU

RNA-AR Passed the weight in selected group PU, no CU

RNA-LE No weight passed PU, no CU

CODPF Passed the sum of the weight PU

LDPF No weight passed PU

Table 2.2 Summarize another two parts of the different distributed PFs

 Particle routing information

Performance loss

CEDPF From PU to CU, then from CU back to PU No

RPA The PU with extra send the surplus particle to PU with

shortage particles

No

RNA-R Between their own group Yes

RNA-AR Between their own group Yes

RNA-LE Fixed with their neighbor Yes

CODPF From PU to CU, then from CU back to PU but without

duplicate particles

Yes

LDPF From PU to CU than from CU back to PU Yes

37

3 PF-BASED DATA ASSIMILATION AND ITS APPLICATION TO WILDFIRE

SPREAD SIMULATION

In this chapter, we evaluate the data assimilation based on PF for large-scale temporal

systems as the wildfire spread simulation. Wildfire simulation is a very important research area

in large-scale spatial temporal systems. Every year, wildfires incur sudden and rapid damages to

and losses of natural forest resources, endangered species, human lives, and properties.

Simulation of wildfire can provide an important tool for studying and predicting wildfire spread.

Over the years, several major wildfire spread simulation models have been developed, such as

FARSITE [7], BehavePlus [8], and DEVS-FIRE [9] and Hfire [10]. The used model in our work

is DEVS-FIRE, an integrated wildfire spread and suppression simulation model built on Discrete

Event System Specification (DEVS) formalism [92]. We will overview the DEVS-FIRE based

wildfire spread simulation and go through the PF-based data assimilation framework. Then we

will discuss how to apply the data assimilation for wildfire spread simulation, during which the

detail steps like sampling, weight computation and resampling using DEVS-FIRE simulation are

discussed and some main results also shown as well.

3.1 Overview of DEVS-FIRE-based wildfire spread simulation

DEVS-FIRE is a discrete event system specification (DEVS) model for simulating

wildfire spread and suppression. Before we discuss the DEVS-FIRE model, we would better to

take a look the DEVS formalism. There are two kinds of models in DEVS: atomic model and

coupled model. The elements of an atomic model include: input events, output events, state

variables and state transition functions, output function and time advance function. There are two

different transitions in state transition functions: external transition, internal transition and

confluent transition. The DEVS is a structure shown in equation (3.1):

38

 M=<X, S, Y,𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑡, 𝛿𝑐𝑜𝑛, 𝜆, ta> (3.1)

which X is the set of input values and S is a set of states, Y is the set of output values, 𝛿𝑖𝑛𝑡: S→S

is the internal transition function. 𝛿𝑒𝑥𝑡: Q × 𝑋𝑏 →S is the external transition function, where

𝑄 ∈ {(𝑠, 𝑒)|𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠)} is the total state set, e is the time elapsed since last transition,

𝑋𝑏 denotes the collection of bags over X. And𝛿𝑐𝑜𝑛 : S × 𝑆𝑏 →S is the confluent transition

function: S→ 𝑌𝑏 is the output function, ta:𝑆 → 𝑅0,∞
+ is the time advance function.

The DEVS-FIRE model is based on the DEVS formalism and supports discrete event

simulation of wildfire behavior and fire suppression tactics [9]. Figure 3.1 shows the architecture

of the DEVS-FIRE.

Fire Spread Model

(Cellular space)

Behave model

(Rothermel)

Fire

fighting

Weather data Fuel data GIS data

Visualization

Figure 3.1 Structure of DEVS-FIRE model

Based on the structure of DEVS-FIRE model, we can see the core of DEVS-FIRE model

is fire spread model which is modeled as a cellular space model containing individual cells

coupled together. First of all, the cellular space model get the necessary information such as

weather data, fuel data and GIS data (aspect data and slope data). When ignited, each cell uses

the Rothermel model [93] to computer a one-dimension fire spread which include the fire speed

and fire direction, then decomposed into two-dimensions based on an elliptical fire spread. The

39

visualization component displays the simulation results which changes the display color of a cell

whenever the cell’s state changes. From the left side of the structure, we can see the DEVS-FIRE

also supports fire suppression simulation. This can be achieved by adding interactions between

the fire spread model and the firefighting model. The work of [94] presents an integrated

framework and demonstrates how fire spread simulation, firefighting resource optimization, and

fire suppression simulation can effectively work together for wildfire containment, the more

work about fire suppression were discuss very in [94] and omit in here.

N

NE

Ignition point

E

SE

S

NW

W

SW

Maximum rate of speed

Figure 3.2 Fire spread decomposition of DEVS-FIRE

In the DEVS-FIRE model, the fuel data, GIS data and weather data within individual

forest cells are assumed to be constants. Each cell has an ID(x, y) denote its location in the cell

spaces, cell are coupled with their neighbors acceding to the Moore neighborhood, in which a

central cell has eight surrounding cells, and its fire spread behavior is modeled by the Rothermel

model. The entire cell space is a coupled model by connecting input ports and output ports

between neighboring cells, so a cell can send messages to ignite its neighbor cells. Each cell is a

40

DEVS atomic model and transitions through different states like unburned, burning and burned.

At first, the state of all the cells are unburned, once the cell receives and ignition message and

also its fire line intensity is greater than the burning threshold, the state of this cell become to

burning and the cell from burning to burned when its burn delay time has elapsed. In DEVS-

FIRE, the rate of spread decomposed into eight directions including North, Northeast, East,

Southeast, South, Southwest, West, and Northwest from the ignition point according to an

elliptical shape as illustrated in figure 3.2, the method which calculate the spread rates can be

find in[95].

3.2 Overview of PF-based data assimilation framework

In order to improve the simulation result, the real time data is assimilated into the

simulation model. To apply particle filter methods for data assimilation, the system model and

the measurement model need to be defined as well. Because particle filter methods are sample-

based methods that use Bayesian inference and stochastic sampling techniques to recursively

estimate the state of dynamic systems from some given observations [96] [47], a dynamic system

is formulated as discrete dynamic state-space model, which is composed of the system model

and the measurement model in equation (3.2) and (3.3) [97] as shown blow:

 𝑠𝑡+1 = 𝑓(𝑠𝑡, 𝑡) + 𝑣𝑡 (3.2)

 𝑚𝑣𝑡 = 𝑔(𝑠𝑡, 𝑡) + 𝑤𝑡 (3.3)

In these equations, t is time step, 𝑠𝑡 and 𝑚𝑡 are the state variable and the measurement variable

respectively, the functions of f and g define the evolutions of the state variable and the

measurement variable. The 𝑣𝑡 and 𝑤𝑡 are two independent random variable to generate the state

noise and the measurement noise. So, based on the simulation model, we formulate a non-linear

state-space model as equation (3.4) and (3.5).

41

 𝑠𝑡𝑎𝑡𝑒𝑡+1 = 𝑆𝐹(𝑠𝑡𝑎𝑡𝑒𝑡 , 𝑡) + 𝑣𝑡 (3.4)

 𝑚𝑣𝑡 = 𝑀𝐹(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑡) + 𝑤𝑡 (3.5)

which 𝑠𝑡𝑎𝑡𝑒𝑡 and 𝑠𝑡𝑎𝑡𝑒𝑡+1 are the system state variables of simulation state at time step t and

t+1; SF is the system transition function, 𝑚𝑣𝑡 is the measurement variable, in our work we

consider the measurement variables as the date obtained by the sensors deployed in the different

filed. The 𝑣𝑡 and 𝑤𝑡 refer to the noises of the system state and those of the measurement data

respectively. The system model and the measurement model are the essential components of the

data assimilation system. The measurement model converts the output from the system model

into the measurement data, which is used to compare with the real time data.

Because the sequential importance sampling has the limitation which the whole process

relies on the initially generated sampling, so the particle filter methods used in here implement

the sequential importance sampling with resampling (SISR) principle. The SISR forms the basic

structure of particle filter methods which has been shown that a large number of particles are

able to converge to the true posterior density even in non-Gaussian, non-linear dynamic systems

[98]. For systems with strongly non-linear behaviors, particle filter methods are more effective

than the widely used Kalman filter and its various extensions. More details about the algorithm

can be found in [99]. A basic particle filter algorithm that implements the SISR procedure goes

through multiple iterations. In each iteration, the algorithm receives a sample (particle) set

𝑠𝑡𝑎𝑡𝑒𝑡−1 and an observation𝑚𝑣𝑡 . Each sample in 𝑠𝑡𝑎𝑡𝑒𝑡−1 is used to predict the next state in

the importance sampling step. The importance weight of each particle is then updated and

normalized. In the resampling step, N offspring samples are drawn with a probability

proportional to the normalized sample weights. These samples represent the posterior belief of

the system state and are used for the next iteration.

42

The figure 3.3 shows the structure of particle filter methods and the procedure of the data

assimilation algorithm. In the figure, the rectangle boxes represent the major components and the

circles and rounded rectangles represent the data or variables. The data assimilation algorithm

runs in a stepwise fashion. The state from time step t-1 are fed into the system transition model,

the result state set then denoted as 𝑠𝑡𝑎𝑡𝑒𝑡
′ . In order to computer the importance weight for

each 𝑠𝑡𝑎𝑡𝑒𝑡
′, the sensor data is computed according to the measurement function which denoted

as 𝑀𝑡
′. Then compare to the real observation data which collected from real time sensors, we can

finish the weight calculation and weight normalization. After that, a resampling algorithm is

applied to generate 𝑠𝑡𝑎𝑡𝑒𝑡 and it is the input for t+1 for next step. For the algorithm of particle

filter methods, the set of states is represented by a set of particles.

The algorithm starts by initializing N particles representing the initial states and each

particle’s weight is initialized to 1/N. The algorithm goes through multiple iterations, every of

which includes the sampling step, weight computation step (weight update) and resampling. In

the sampling step, all the particles go through the system transition model to obtain their

corresponding state of the next time step. In the weight update step, we can get the importance

weights of the particle according to calculate the difference between the sensor data computed

from the measurement model and the real sensor data. Finally, in resampling step, we select the

particles based on their normalized weights to form a new set of particles. And we will use those

particles and assign their new weight to 1/N to continue go the next iteration.

43

Statet-1

System Transition Model

(Sampling)

Measurement Function

Weight Updating

Resampling

State’t

Statet

Data from real time

sensors

Step t-1

Step t

Step t+1

Time

Sensor Deployment

Schema

Figure 3.3 PF-based data assimilation

3.3 Data assimilation for wildfire spread simulation

Based on the information we shown in section 3.2, we can easily summarize the data

assimilation for wildfire spread simulation work. Based on the DEVS-FIRE simulation model,

we formulate a non-linear state-space model as show in equation (3.6).

 {
𝑓𝑖𝑟𝑒𝑡+1 = 𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡) + 𝑣𝑡
𝑇𝑀 𝑡 = 𝑀𝐹(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑡) + 𝑤𝑡

 (3.6)

which we define the state is the fire shape, because the fire front is the most important

information in a wildfire spread simulation. However, the state in large-scale spatial temporal

systems can include many parts such as the fuel data, slope data, aspect data and weather data,

44

etc. In equation (3.6), 𝑓𝑖𝑟𝑒𝑡 and 𝑓𝑖𝑟𝑒𝑡+1 are the fire shape in time step t and time step t+1. DF is

the DEVS-FIRE simulation model; 𝑇𝑀 𝑡 is the measurement variable, to apply the data

assimilation in DEVS-FIRE simulation, they consider the measurement variables as the

temperature data which collected from the ground temperature sensors deployed in the fire filed.

MF is the measurement model that maps the fire front to the ground temperature sensors’

temperature data.

The particle filter methods side, the algorithm is totally same as we shown in section 3.2.

We have the fire front in time step t-1 and fed into the DEVS-FIRE simulation model, and then

the output of the DEVS-FIRE simulation model gives the new fire front. In order to get the

importance weights of these fire fronts, we calculate the difference between the temperature

sensors data from those fire fronts and the real temperature sensors data. After the weight

normalization, the weight will be used for resampling that draws a set of offspring samples

which are used as the inputs for the next step t+1. In this section, we will mainly review the

sampling algorithm, weight computation algorithm and resampling algorithm about PF-based

data assimilation for DEVS-FIRE spread simulation, also some experiments result will discussed

as well.

3.3.1 Sampling using DEVS-FIRE simulation

The goal of the sampling algorithm is to generate a fire state sample for the next time step

give the current fire state based on the distribution 𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1) [96]. First of all, we use

DEVS-FIRE simulation starting from the fire state of each particle and run the simulation for one

time step. The length of the time step is depending on how often the sensor data is collected.

Moreover, let fire front 𝑓𝑖𝑟𝑒𝑡 denote the result of 𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡) and add the graph noise to it and

45

then reconstruct a new fire state from the noised fire front. In here, we let the reconstructed fire

state as a sample of 𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1).

The method of add the graph noise is: firstly, we divide the fire front into several

segments and each segment consist the equal number of burning cell. Here, we use 𝐶1 represent

the number of segments. Secondly, we introduce a noise denoted as 𝑑𝑖that defines the change

inside or outside a cell along the direction from the ignition point to this cell. So, the different

segments get the different noise, but the cells in same segments get the same noise. After this,

every burning cell for each segment moving to the new position based on 𝑑𝑖 cells distains and the

direction based on the ignition point to the cell. Finally, reconstructed all the cells one by one to

a new fire front (before we divide the fire front, we record the cell location, after add the noise,

we reconnect it according the location we recorded). We also need set all the cells which inside

of the noised fire front to burned and obtain a noised fire state which considered as a sample

of 𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1). The algorithm 3.1 shows the system transition density sampling.

The sampling algorithm plays critical roles in the particle filter methods which modeled the

simulation error and then generate a new and realistic noised fire front from the existing fire

front. This can solve the problem which cause by imprecise fuel data, GIS data, weather

condition, fire model error and other uncertain elements affecting fire spread.

46

Table 3.1 Algorithm 3.1 System Transition Density Sampling

Algorithm 3.1 System Transition Density Sampling

1. Let fire front 𝑓𝑖𝑟𝑒𝑡 = 𝐷𝐹(𝑓𝑖𝑟𝑒𝑡, 𝑡)

2. Divide the fire front into 𝐶1 consecutive segments, represent as 𝑆𝐸𝐺1, 𝑆𝐸𝐺2 …𝑆𝐸𝐺𝑖.

3. Generate noise 𝑑1, 𝑑2…𝑑𝑖 for each segment where

𝑑𝑖~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝐸𝐺𝑖

𝐶2
 , 𝐶3)

4. Move every burning cell in each segment 𝑆𝐸𝐺𝑖 based on the 𝑑𝑖 and which direction

according the ignition point to this cell.

5. Reconstruct each segment according the segment order before divide it to a closed fire front

(noised fire front). And set all the cells on the noised fire front to burning status. Also set all

the cell inside of noised fire front to burned status and all the cells outside of noised fire front

to unburned;

6. Return the fire state.

3.3.2 Weight computation and resampling algorithm

Based on the figure 3.3, we have the fire state 𝑓𝑖𝑟𝑒𝑡−1 in time step t-1 and fed it into the

DEVS-FIRE simulation model. And then use algorithm 3.1 produce a sample for each particle in

𝑓𝑖𝑟𝑒𝑡−1 based on 𝑝(𝑓𝑖𝑟𝑒𝑡|𝑓𝑖𝑟𝑒𝑡−1) and get the result fire state set 𝑓𝑖𝑟𝑒𝑡
′. Next step is the weight

computation, which evaluate how good about a simulated particle compare to the real wildfire.

The method is comparing the difference of temperature between the fire state and the real sensor

temperature data to get the importance weight. The detail about the measurement density can be

finding in [96]. Then after weight normalization, use resampling algorithm to generate 𝑓𝑖𝑟𝑒𝑡

which is the input for the next step. The algorithm 3.2 shows the particle filter method in wildfire

47

simulation. The algorithm 3.3 shows the multinomial resampling which use for implement the

resampling algorithm in this work.

Table 3.2 Algorithm 3.2 Particle filter method in wildfire simulation for one time step

Algorithm 3.2 Particle filter method in wildfire simulation for one time step

Input: The fire states and the corresponding importance weight at time step t-

1 ({𝑓𝑖𝑟𝑒𝑡−1
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡−1
(𝑖)
}
𝑖=1

𝑁

), and the measurement at time step 𝑡 (𝑚𝑡).

Output: The fire states and the corresponding importance weight at time step t

({𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡
(𝑖)
}
𝑖=1

𝑁

)

1. Sampling

For each fire state in {𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

 , draw a sample 𝑓𝑖𝑟𝑒′𝑡
(𝑖)
 from 𝑝(𝑓𝑖𝑟𝑒𝑡

(𝑖)
|𝑓𝑖𝑟𝑒𝑡−1

(𝑖)
) based on

algorithm 3.1;

2. Weight computation and normalization

(a. For each fire state in {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

, update the weight: 𝑤′𝑡
(𝑖)
= 𝑤𝑡−1

(𝑖)
× 𝑝(𝑚𝑡|𝑓𝑖𝑟𝑒′𝑡

(𝑖)
)

(b. Calculate the normalized weight: 𝑤′′𝑡
(𝑖)
=

𝑤′𝑡
(𝑖)

∑ 𝑤′𝑡
(𝑖)𝑁

𝑖=1

3. Resampling

(a. Draw N particles from {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

 and {𝑤′′𝑡
(𝑖)
}
𝑖=1

𝑁

:

{𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

 = Algorithm 3.3({𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤′′𝑡
(𝑖)
}
𝑖=1

𝑁

);

(b. Set the weights: 𝑤𝑡
(𝑖)

 = 1/N, i=1,2, …,N;

48

In algorithm 3.3, 𝑤𝑡
(𝑖)

 represents the normalized importance weight of the i-th particle at time

step t and N is the total number of particles. At first, the cumulative sums of the normalized

weight of N particles (�̃�𝑡
(1)

, �̃�𝑡
(2)

, … , �̃�𝑡
(𝑖)
, … , �̃�𝑡

(𝑁)
) are computed, where �̃�𝑡

(𝑖)
 = ∑ 𝑤𝑡

(𝑗)𝑖
𝑗=1 . Then

we generate N random number between 0 to 1. Finally, we count the number of elements in

{𝑢𝑘}𝑘=1
𝑁 that fall into the interval of �̃�𝑡

(𝑖−1)
 and �̃�𝑡

(𝑖)
. This number decides how many copies of the

i-th particle will be selected.

Table 3.3 Algorithm 3.3: Multinomial resampling

Algorithm 3.3: Multinomial resampling

Input: The fire states and the corresponding importance weight at time step t

({𝑓𝑖𝑟𝑒𝑡
(𝑖)
}
𝑖=1

𝑁

, {𝑤𝑡
(𝑖)
}
𝑖=1

𝑁

)

Output: Resampled fire states at time step t {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

1. Compute the cumulative sums of the normalized weight of N particles

(�̃�𝑡
(1)

, �̃�𝑡
(2)

, … , �̃�𝑡
(𝑖)
, … , �̃�𝑡

(𝑁)
), where �̃�𝑡

(𝑖)
 = ∑ 𝑤𝑡

(𝑗)𝑖
𝑗=1 ;

2. Generate N ordered random numbers {𝑢𝑘}𝑘=1
𝑁 , where 𝑢𝑘 ∈ (0,1]

3. Generate 𝑛𝑖 copies of 𝑓𝑖𝑟𝑒𝑡
(𝑖)

, where 𝑛𝑖 is the number of 𝑢𝑘 ∈ (�̃�𝑡
(𝑖−1)

, �̃�𝑡
(𝑖)
] ;

4. Return the new generated fire states as {𝑓𝑖𝑟𝑒′𝑡
(𝑖)
}
𝑖=1

𝑁

3.3.3 Experiments and analysis

First of all, we use the identical-twin experiment, which has been widely used in data

assimilation research, to evaluate the data assimilation system of DEVS-FIRE. The purpose of

identical-twin experiments is to study the assimilation in ideal situations and evaluate the

proximity of the prediction to the true states in a controlled manner. There are three different

type fire results in identical-twin experiment” “real fire”, “simulated fire” and “filter fire”. In the

49

identical-twin experiment, a simulation is first run and the corresponding data is recorded. These

simulation results are considered as “real”; therefore, the observation data obtained here is

regarded as the real observation data (because they come from the “real” model). Consequently,

we estimate the system states from the observation data using particle filter methods, and then

check whether these estimated results are close to the “real” simulation results. So, the “real fire”

is the simulated fire spread from which the real observation data are obtained. The “simulated

fire” is the simulation result based on some “erroneous” data; the “erroneous” data means some

data such as fuel data, GIS data, weather data which are different from those used in the real fire.

The “filter fire” is the data assimilation enhanced simulation result based on the same

“erroneous” data as in the simulated fire. Our goal is to show that a “filtered fire” gives more

accurate simulation results by assimilating observation data from the “real fire” even if it uses

the “error” data as in the simulated fire.

The differences between a real fire and a simulated fire are due to the imprecise data such

as wind speed, wind direction, GIS data, and fuel model, used in the simulation. In our

experiments, we choose to use imprecise wind conditions (wind speed and wind direction) as the

“erroneous” data. Table V shows the configurations of the set of experiments. The real wind

speed and direction are 8 (mph) and 180 (degrees) with random variances added every 30

minutes. The variances for the wind speeds are in the range of –2 to 2 (mph) (denoted as 8±2 in

the table), and the variances for the wind direction are in the range of -20 to 20 (degrees)

(denoted as 180±20 in the table). Our experiment introduces errors to the wind speeds, which are

randomly generated based on the wind speed of 6 (mph) with variances added in the range of –2

to 2 (mph) and also the wind direction of 130 (degrees) with added variances in the range of ±20

50

(degrees) in the same time. For wind directions, the degrees indicate the angle between the north

directions clockwise to the direction from where the wind comes.

Table 3.4 Experiment set of the wind factor

 “Error” data Real data

Speed (mph) Direction(degrees) Speed(mph) Direction(degrees)

6±2 130±20 8±2 180±20

In the experiment, simulations use the real-world GIS data and fuel data. The cell space

dimension is 200×200 and the cell size is 20 (m). The GIS data are airborne LiDAR (Light

Detection and Ranging) [99] raster-based terrain data. The fuel data was obtained by classifying

a multispectral QuickBird (DigitalGlobal) image [100]. Those data were acquired from

Huntsville area, Texas, during the leaf-off season in March 2004 by M7 Visual Intelligence of

Houston, Texas. The ignition point is set to the point (90, 55) of the cell space for all of the

simulations. The observation data (ground temperature sensor data) from the real fire are

collected every 30 minutes. We use 6 PUs (every PU has 50 particles, total 300 particles) to run

6 hours' simulation (12 steps and every step is 1,800 seconds) in all the experiments. Among

these 6 PUs, one of them is functioned as a CU when completing the centralized resampling

function for the global resampling step, otherwise a regular PU like others. All experiments are

conducted under the supercomputer named Cheetah, which has 14 nodes, 160 computing cores,

32 CPUs, and 264 GB system memory.

Figure 3.4 shows the real fire spread with the real time data and the simulated fire with

the imprecise wind data described in the above section. From the figure we can see the real fire

(as shown in Figure 3. 4(a)) and the simulated fire (as shown in Figure 3.4(b)) are obviously

different regarding the spread direction, and burned areas. After assimilating the real time data in

the simulation, we expect the improved fire spread estimation. Figure 3.4(c) displays the real

51

fire, the simulated fire, and the filtered fire by assimilating the real data into wildfire spread

simulation. In the figures, all the filtered fires (display in red) are close to the real fire (display in

blue) although we run the data assimilation simulations with the error data. Figure 3.5 display the

symmetric set differences for the simulated fire and the filter fire in every step. Compared to the

simulated fires (display in black), all the simulation results are greatly improved.

(a) (b)

 (c)

Figure 3.4 Real fire, simulated fire and filter fire for the experiment

52

Figure 3.5 Symmetric set differences for simulated fire and filter fire

3.4 Data assimilation for parameter estimation

Wildfire simulation models also rely on many parameters to model the structure and

behavior of systems under study. To achieve accurate simulation results, a simulation model

needs to use correct model parameters. However, it is common that during the modeling process

the parameters are largely unknown, uncertain and/or vary with time or space. Therefore, it is

critical to develop methods to decide or estimate the correct set of model parameters in order to

achieve reliable simulation results. In the section 3.3, our work on data assimilation explored the

possible applications of particle filters in wildfire spread simulation based on DEVS-FIRE

model, and applied particles filters to assimilating temperature sensor data for estimating the

dynamically evolving fire front of a spreading fire. This section’s work differs from the section

3.3’s work by focusing on estimating the parameters of the wildfire spread simulation model in

order to achieve better simulation results. In this section, we present a method to dynamically

estimate model parameters by assimilating real time data using particle filter methods. We

formulate the problem of single and multiple parameter estimations based on the context of

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14

Simulated fire Filter fire

53

wildfire spread simulation. Preliminary results show that the developed method can be applied to

parameter estimation in wildfire spread simulation to produce more accurate simulation results.

The complexity and difficulties in multiple parameter estimation are discussed as well.

3.4.1 Particle filter based state estimation

Estimating model parameters of a simulation model is a challenging task. Different

systems have different characteristics, which should be reflected in the chosen modeling

parameters. For example, in a wildfire spread simulation, different study areas have different

characteristics, such as different levels of fuel bed depth (FBD), which influence fire spread

behavior. In practice, the values of these parameters are set based on experts’ opinions and/or

experimental testing data, which are not always readily available. More challengingly, some

parameters are “dynamic” in nature as the values of these parameters dynamically changing over

time as the simulation proceeds. Consider the wildfire spread simulation example again, an

important parameter is the fuel moisture content of the vegetation in the fire area. In general, the

fuel moisture content fluctuates during different time of a day: it is higher in the evening and

morning and becomes lower as the sun rises. Thus depending on which time the fire spread

simulation starts and how long the simulation lasts, the fuel moisture content parameter (and its

dynamic change) needs to be different in order to achieve accurate results. Therefore, it is

essential to develop methods to estimate the dynamically changing parameters in order to fit the

daily variable environment.

Parameter estimation is widely used in many fields, such as image processing, chemical

engineering, bio-molecular engineering, biochemical pathways and text analysis. In the fields of

image processing, the authors [101] propose novel algorithms for total variation (TV) based

image restoration and parameter estimation utilizing variational distribution approximations.

54

Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper-

parameters for the image prior and the noise are simultaneously estimated. Additionally, in the

chemical engineering area, the parameter estimation problem for ordinary differential equations

(ODE) is decomposed into two sub-problems [102]. And in the bio-molecular engineering area,

one method is presented for deterministic global optimization in the estimation of parameters in

models of dynamic systems [103]. The method can be implemented as a global algorithm, or, by

use of the interval-Newton method, as an exact algorithm. A key feature of the method is the use

of a new validated solver for parametric ODEs, which is used to produce guaranteed bounds on

the solutions of dynamic systems with interval valued parameters, as well as on the first- and

second-order sensitivities of the state variables with respect to the parameters. In the text

analysis area, the authors [104] present parameter estimation methods common with discrete

probability distributions, which is of particular interest in text modeling. Starting with maximum

likelihood, a posteriori and Bayesian estimation, central concepts like conjugate distributions and

Bayesian networks are reviewed.

Conventional methods for estimating parameters include statistical techniques, such as

maximum likelihood technique [105], which rely on analyzing historic data. These conventional

methods can neither automatically tune the parameters online for a specific study area, nor can it

dynamically adjust the parameters as simulation proceeds. In here, we present a method to

dynamically estimate model parameters by assimilating real time data collected from the system

under study and we carry out this work within the context of wildfire spared simulations. We

formulate the problem of parameter estimation based on particle filters for wildfire spread

simulation using the DEVS-FIRE model [9] [106]. In our work, we consider two specific

55

parameters: fuel moisture content and fuel bed depth (FBD), in the wildfire spread model to

demonstrate the developed method.

The DEVS-FIRE model used in this work is a discrete event model for wildfire spread

simulations. DEVS-FIRE models the forest as a cellular space where fire spreading is simulated

as a propagation process between neighbor forest cells, whereby burning cells ignite their

unburned neighbor cells. Each cell has input and output ports through which couplings are made

for exchanging messages, and it is coupled to the eight adjacent neighbor cells. When ignited, a

cell uses the Rothermel model to compute a one-dimension fire spread rate, which is then

decomposed into two-dimensions based on an elliptical fire spread. In Rothermel model, the

basic fire spread is equation (3.7) and equation (3.8):

 𝑅 =
IR∗ξ∗(1+Φw+Φs)

𝜌𝑏∗ε∗Qig
 (3.7)

 IR =Ѓ*wn*h*ηM*ηs (3.8)

In equation(3.7), where R is the Rate of spread, IR is the reaction intensity, ξ is the propagating

flux ratio, Φw is the wind coefficient, Φs the slope factor, 𝜌𝑏 is the ovendry bulk density, ε is

the effective heating number and Qig is the heat of pre-ignition. The reaction intensity IR is

computed according to equation (3.8), is the reaction intensity, where Ѓ is the optimum reaction

velocity, wn is the net fuel loading, h is the fuel particle low heat content, ηM is the moisture

damping coefficient and ηs is the mineral damping coefficient. The above description shows that

the fire spread behavior depends on many different factors. Among them fuel moisture content is

an important fuel characteristic affecting fire behavior [107] [108]. The fuel moisture content

determines how much fuel is available for burning, and ultimately, how much is consumed

[109]. According to [110], the factors that regulate fuel moisture differ among live and dead

fuels. The primary determinants of live fuel moisture content include factors such as internal

56

factors that regulate diurnal and seasonal changes, climate, site factors that affect the fuel

environment. For the dead fuels, fuel moisture depend on factors such as particle size, short and

long-term weather changes, topography, decay class, and fuel composition. In Rothermel’s

model, the fuel moisture content (denoted as Mf) is used to compute the moisture damping

coefficient ηM (see Equation (3.8)) as shown in Equation (3.9):

 ηM = 1 − 2.59 ∗ (
Mf

Mx
) + 5.11 ∗ (

Mf

Mx
)
2

− 3.52 ∗ (
Mf

Mx
)
3

 (3.9)

where 𝑀x is the moisture of extinction, which is the moisture content of the fuel at which the

fire will not spread. The moisture of extinction is a property of the fuel type, and is considered as

a constant for a given type of fuel.

Another important parameter influencing fire spread behavior is the fuel bed depth (FBD). The

FBD is the accumulation of dead, woody residue on the forest floor. It begins at the top of the

duff layer and above. It includes litter, dead limb wood and bole wood from tree species, as well

as dead material from shrub, herbaceous, and grass species. In Rothermel model, the FBD related

equations (3.10):

 𝜌𝑏 =
wo

δ
 (3.10)

In equation (3.10), where δ is the FBD, wo is ovendry fuel loading and 𝜌𝑏 is ovendry bulk

density.

 β =
𝜌𝑏

𝜌p
 (3.11)

 Ѓ = Ѓ𝑚𝑎𝑥 ∗ (
β

βop
)
𝐴

∗ exp [A ∗ (1 −
β

βop
)] (3.12)

 Φw = C ∗ U𝐵 ∗ (
β

βop
)
−𝐸

 (3.13)

57

In equation (3.11), (3.12) and (3.13), where β is the packing ratio, 𝜌𝑝 is the ovendry particle

density, Ѓ𝑚𝑎𝑥 is maximum reaction velocity, βop is the optimum packing ratio, C,U,B,E are

experimentally defined constants.

For a given fire spared scenario, the FBD can be treated as a static parameter and does

not change over time. However, the fuel moisture content dynamically change over time (e.g.,

due to changes of temperature during the day. More information about the change of dead fuel

moisture can be found in [111]). This asks for the need of estimating parameters that are both

static and dynamically changing over time. Also notice that both the fuel moisture content and

the FBD impact the fire spread behavior. This means multiple combinations of these two

parameters may leads to the same (or similar) fire spread behavior. This poses difficulties to

estimate the precise values of the two parameters when both of them need to be estimated. This

is shown in our experiment results in Section 3.4.3.

3.4.2 Problem formulation for parameter estimation

To extend previous work in section 3.2 and 3.3 for supporting online parameter

estimation, we formulate the parameter estimation problem as a joint state-parameter estimation

and uncertainty assessment problem, which treats model parameters as stochastic state variables

that need to be estimated. To apply particle filter methods to this problem, in addition to

sampling of the state variables, sampling in the parameter space is also needed using some kind

of proposal density. Specifically, in this work we treat the parameters to be estimated as

stochastic variables and perturb the parameters at each time step.

In order to estimate the parameters, we need to redefine the wildfire state by adding the

parameters that need to be estimated as part of the state variables. Below we first consider the

58

case where there is only one parameter, the FBD, which needs to be estimated. With this

parameter, we redefine the state and the state space model as follows equation (3.14):

{

 𝑠𝑡= [

𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

𝑠𝑡+1= [
𝐹𝑆𝑡+1
𝐹𝐵𝐷𝑡+1

] = [
DF 0
0 Gnoise

] [
𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

𝐷𝑇𝑡 = [𝑆𝑀, 0] [
𝐹𝑆𝑡
𝐹𝐵𝐷𝑡

]

 (3.14)

where 𝑠𝑡 and 𝑠𝑡+1 is the new-defined state at time t and t+1. Note that this new-defined state

includes the fire front FS and the parameter FBD. Same as before, DF is the DEVS-FIRE

simulation model, DT is the measurement data, and SM is the measurement model that computes

the sensor data based on the fire front. To perturb the FBD parameter, we add Gaussian noise to

the FBD parameter in each step. This is represented by the Gnoise function in the above state

space model.

If multiple parameters need to be estimated, we can formulate the state space model in a

similar way as shown above. Below we consider two parameters: fuel moisture content (denoted

as moisture) and FBD, and formulate the problem as below equation (3.15):

{

 𝑠𝑡= [

𝐹𝑆𝑡
𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

𝑠𝑡+1= [
𝐹𝑆𝑡+1

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡+1
𝐹𝐵𝐷𝑡+1

] = [
DF 0 0
0 Gnoise 0
0 0 Gnoise

] [
𝐹𝑆𝑡

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

𝑀𝑡 = [𝑆𝑀, 0, 0] [
𝐹𝑆𝑡

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡
𝐹𝐵𝐷𝑡

]

 (3.15)

As can be seen, we perturb both the FBD and fuel moisture content using a Gaussian noise

function. This means during the sampling step of the particle filter method, we sample both the

FBD and fuel moisture content parameters according to the Gaussian distribution. Note that in

59

our experiments presented below, the Gaussian distribution for the FBD has sigma 0.3 and the

Gaussian distribution for the fuel moisture content has sigma 1.0. We chose a larger sigma for

fuel moisture content because the fuel moisture content has more dynamics (e.g., due to

temperature change during the day) compared to the FBD.

3.4.3 Experiments and analysis

Similar as the previous experiment work, we continue use identical-twin experiment in

this section’s experiment. We carry out the experiments in a stepwise fashion. In the first

experiment, we consider the case where only one parameter (the fuel moisture content

parameter) needs to be estimated. The to-be-estimated parameter is a static parameter, i.e., a

constant that does not change. In the second experiment, we still consider only one parameter of

fuel moisture content. However, this time the fuel moisture content dynamically changes over

time. In the third experiment, we consider the case where both the fuel moisture content and

FBD need to be estimated.

In all our experiments, we employed a 200 by 200 cell space. We used regular sensor

deployment schema where the 100 sensors are regularly deployed and the observation data

(ground temperature sensor data) from the real fire was collected every 30 minutes.

3.4.3.1 Estimating a single static parameter

In this experiment, we consider only one parameter, the fuel moisture content parameter,

which needs to be estimated. We carried out two experiment cases based on different GIS data.

Case 1 uses a uniform GIS data and case 2 uses a real GIS data for an area in eastern Taxes.

Case1 uses a uniform fuel model (fuel model 7) possessing zero slope and zero aspect, with

simple wind flow along with a wind speed of 2 mph and a wind direction with a fixed value of

180 degrees, having the fuel moisture content initialized with a random number which the range

60

is 0% to 100%. The real fuel moisture content (the fuel moisture content used in the real

simulation) keeps a constant value of 50%. Note that this is the data that need to be estimated by

the particle filters. Based on the real fuel moisture content data, we use DEVS-FIRE to run the

simulations to obtain the fire fronts and their corresponding temperature sensor data every 30

minutes. Our goal is to estimate the fuel moisture content data every 30 minutes by assimilating

those sensor data using the developed method based on particle filters. The particle filters used

120 particles and the simulation time is 6 hours.

Case2 uses non-uniform GIS data, where cells have different fuel models, aspects, and

slopes. The initial wind speed and wind direction are 1 mph and 180 degrees. And the real fuel

moisture content also keeps a value of 50%. Figure 3.6 and Figure 3.7 display the values of fuel

moisture content every 30 minutes for case 1 and case2. In the figures, ‘initialized value’ means

the value of the fuel moisture content which is random generated and ‘particle filters’ means the

fuel moisture content value which is estimated by particle filters.

From figure 3.6 and figure 3.7, we can see that the estimated fuel moisture content have

the same trend as those of the real fuel moisture content conditions. Therefore, in the practical

applications, if we know the fuel moisture content condition every time period, we can estimate

the fuel moisture content data each time slot between this time according to observed data by

particle filters.

61

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 Initialized value

 Particle filters

T
h

e
 v

a
lu

e
 o

f
m

o
is

tu
re

Time step(every 30 mins)

50%

Figure 3.6 Fuel moisture content of case1

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

1.0 Initialized value

 Particle filters

T
h

e
 v

a
lu

e
 o

f
m

o
it
u

re

Time step(every 30 mins)

50%

Figure 3.7 Fuel moisture content of case2

62

3.4.3.2 Estimating a single dynamic parameter

In this experiment, we also consider only one parameter, but the fuel moisture parameter

dynamically varied with time, which needs to be estimated. Case3 uses the same conditions with

case1 except we change the real fuel moisture content every two hours: fuel moisture content is

20% in first two hours, and then changed to 50% in next two hours and final change to 80% in

last two hours. The particle filters still used 120 particles and the simulation time is 6 hours.

Figure 3.8 displays the values of fuel moisture content every 30 minutes for case 3. We can see

that the estimated fuel moisture content have the almost same trend as those of the real fuel

moisture content conditions, even those real fuel moisture content conditions varied with time.

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

1.0
 Initialized value

 Particle filters

T
h

e
 v

a
lu

e
 o

f
m

o
is

tu
re

Time step(every 30 mins)

Figure 3.8 Fuel moisture content of case3

3.4.3.3 Estimating multiple parameters

In this experiment, we consider two parameters, the fuel moisture content and FBD,

which are content parameters need to be estimated. Case4 uses almost the same experiment

environment with case1 and the FBD initialized with a random number which the range is

63

between 0 to 3 meters. (The reason why we choose this range is the values of FBD normally are

the static number, around 1.2m in real wildfire situation.) We also have the fuel moisture content

initialized with a random number (0% ~ 100%). The real FBD keeps a value of 2.0 meters and

the real fuel moisture content keeps a value of 50%. Note that this is the data that need to be

estimated by the particle filters (both fuel moisture content and FBD). Our goal is to estimate

both the FBD and fuel moisture content data every 30 minutes. The particle filters used 120

particles and the simulation time is 6 hours.

Figure 3.9 displays the values of FBD every 30 minutes for case 4. Figure3.10 displays

the values of fuel moisture content every 30 minutes for case 4.

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Initialized value

Particle filters

T
h

e
 v

a
lu

e
 o

f
fu

e
l
b

e
d

 d
e

p
th

(m
e

te
r)

Time step(every 30 mins)

2.0m

Figure 3.9 FBD value of case4

64

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

1.0
 Initialized value

 Particle filters

T
h

e
 v

a
lu

e
 o

f
m

o
is

tu
re

Time step(every 30 mins)

50%

Figure 3.10 Fuel moisture content value of case4

From Figure 3.9 and Figure 3.10, we can see the PF cannot estimate parameter correctly when

combining two parameters together. Because these two parameters have the same effect to the

fire spread result. We can explain the reason is: according the equations (3.7) ~ (3.13) in section

3.4.1, we know both the fuel moisture content and FBD have the same effect to the final fire

spread result and we cannot distinguish their exact values, because both of their effect in the

same equations (equations (3.7) and (3.8) in section3.4.1). Therefore, there are many different

combinations can get the same final fire spread result. From our experiment results, we found

some fuel moisture content and FBD combinations can get the totally same result. For example:

the FBD 2.0m with fuel moisture content 50% has the same result with FBD 1.2m with fuel

moisture content 80%. In our experiments, we obtained the more precise value of FBD, and then

we calculated the burned area, fire perimeter and then we compared the final fire shapes. In table

3.5, we show six different combinations using the DEVS-FIRE and we can get the same fire

65

spread results, which have the totally same burned area and fire perimeter. (Fuel Moisture

Content is denoted as ‘FMC’ in Table 3.5)

Table 3.5 Different combinations

 FBD (m) FMC (%) Burned

Area(ha)

Fire

Perim.(km)

1 2.0 50 1057.77 1410.24

2 2.5401 40 1057.77 1410.24

3 1.6445 60 1057.77 1410.24

4 1.3938 70 1057.77 1410.24

5 1.2075 80 1057.77 1410.24

6 1.0643 90 1057.77 1410.24

In Figure 3.11, we show the final fire shapes with six different combinations (showed in table

3.5) running under the DEVS-FIRE for 6 hours.

Figure 3.11 The final fire shape

66

3.4.4 Conclusions

In this section, we developed a method to dynamically estimate the parameters in DEVS-

FIRE spread simulation model based on SMC methods. We carried out experiments to estimate

the fuel moisture content and FBD parameters used in the wildfire spread simulation. Experiment

results show that the developed method can be applied to parameter estimation in wildfire spread

simulation to produce more accurate simulation results. However, there are complexities and

difficulties associated with multiple parameter estimation.

67

4 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH

CENTRALIZED RESAMPLING

A vital component of distributed particle filters is particle routing because non-optimized

routing may lead to high communication overheads. This is especially true for high dimensional

systems due to the complex state represented by particles. Unfortunately, while different

distributed particle filters have been developed, less research is devoted to the particle routing

itself. Therefore, in this chapter, we propose detailed particle routing policies for both the

centralized resampling and the distributed resampling and evaluate their impacts on data

assimilation for large-scale spatial temporal systems. We study the routing policies in distributed

particle filters with both the centralized resampling schema and the distributed resampling

schema. In the centralized resampling schema [85], the central unit (CU) has the full knowledge

of the weight distribution of all particles on different PUs.

Based on this global information we propose two efficient routing policies named as

minimal transfer policy and maximal balance policy in section 4.2.3 and section 4.2.4. Moreover,

in the distributed resampling schema (more specifically, the distributed RNA with Local

Exchange in section 2.4.3.3), communications are constrained between neighboring PUs. This

local communication schema supports a large degree of parallelism due to elimination of the

centralized resampling step. However, it also results in slow propagation of high-weighted

particles, and thus reduces the convergence rate of the particles. To address this issue, we

propose a hybrid particle routing approach that combines the global routing with the local

routing to take advantage of both. In this approach, we mainly use the local routing to ensure

scalability and low communication costs, and occasionally invoke the global routing to support

faster propagation of "good" particles. We evaluate and compare the different particle routing

68

methods based on the application of data assimilation for large-scale wildfire spread simulations

[112]. The rest of this chapter is organized as follow. Section 4.1 introduces the particle routing

and related work. Section 4.2 presents the proposed routing policies in centralized resampling,

including the minimal transfer policy and the maximal balance policy. Section 4.3 shows the full

design of the example and all the example results include the analysis will discussed in Section

4.4.

4.1 Introduction of particle routing

To improve of the performance of data assimilation, distributed / parallel particle filters are

need. In section 2.4 several distributed particle filtering algorithm have been discussed as well.

These algorithms mainly differ in how the resampling is carried out. Nevertheless, they all

involve using multiple processing units (PUs) to carry out sampling of particles, and after

resampling routing particles among the PUs. Particle routing is necessary because the numbers of

particles on different PUs are unbalanced after resampling. Thus PUs which have surplus of

particles need to route the extra particles to the PUs with shortage of particles for the next

iteration of computing. As the number of PUs increases, the communication overhead rises. The

unbalanced particles on PUs are caused by the fact that particles have different importance

weights. As a result, PUs hosting high weighted particles generates a lot more replicates in

resampling and need to route a large number particles to others. The uneven distribution of

particles’ weights is common in data assimilation using PFs for spatial temporal simulations.

Therefore, efficient particle routing is critical for reducing the communication cost in distributed

PFs. This is especially true for high dimensional spatial temporal simulations because the size of

each particle is large due to the high dimensional state it represents [113].

69

Particle routing deals with selecting particles on some PUs and routing them to other PUs

across the network. In distributed PFs, routing particles among PUs can serve two different

purposes: 1) to help the “good” particles, i.e., particles with high weights, to propagate among

the PUs and thus potentially to lead to better estimation results; 2) to ensure that the different

PUs have the same number of particles (i.e., load balance) after resampling. While several

resampling algorithms such as the centralized resampling [86], the distributed RPA [86] and the

distributed RNA [86] have been developed for distributed particle filters, less research has been

conducted to investigate how to route particles among PUs after resampling in effective and

efficient manners.

In chapter 2, we have already overview the application of data assimilation and application

of particle filters. For both of them, particle filters are used in data assimilation of various high

dimensional systems including ocean systems, land surface systems, object tracking, and

atmospheric systems. The work in [114] applied particle filters to Agulhas Current to test the

data assimilation methods because of the highly nonlinear dynamics and the availability of high

quality satellite measurement data. The dimension of the state space in this application reaches

about 200,000. Also, the work in [115] analyzed the performance of particle filters in a large-

scale nonlinear land surface data assimilation example, in which a total of 684 states were

considered. The work of [116] presented particle algorithms for filtering in group object tracking

with up to 40 states and demonstrated its performance and the work [117] adapted particle filters

to one of high dimensional chaotic systems, an atmospheric model that mimics mid-latitude

atmospheric dynamics with microscopic convective processes, in which 360 dimensions were

present. In spite of the aforementioned work in data assimilation, much less research has been

done to use particle filters in high dimensional systems compared to low dimensional systems. In

70

work [118], the authors pointed out the obstacles of applying particle filters in high dimensional

systems. Particle filters suffer from the "curse of dimensionality" due to collapse of particles’

weights for high dimensional systems [119]. To avoid this large number of particles are needed,

which leads to high computation cost.

To address the performance issue, different approaches have been proposed to solve

problems in various applications including wireless sensor networks, traffic state tracking,

robotic systems, signal processing, image processing, and target tracking. The work of [120]

presented two parallelized particle filtering algorithms to estimate the state of the freeway traffic

networks based on the topological partitioning of a traffic network into sub-networks, and

compared the accuracy, the computational complexity, and the communication costs of the

proposed algorithm and the centralized approach. The work of [121] proposed a strictly

decentralized approach in which only nearby platforms exchange information to maximize the

information flow and evaluated it in a robotic system for playing the game of laser tag. Their

work illustrated the scaling capability to a large team of vehicles. Target tracking is one of the

important applications for particle filters. The work of [122] developed a decentralized particle

filtering algorithm for multiple targets tracking in wireless sensor networks, and compared their

results to the optimal centralized solution. The work of [123] described two methodologies for

distributed particle filters in wireless sensor networks, which are the parametric modeling

approach and the adaptive encoding approach. From the mentioned work above, we can see that

distributed particle filters are used in many applications, such as object tracking problems with

wireless sensor networks. They have proliferated distributed sensor data as the measurement

available. A lot of work mainly focused on the paradigm of the distributed particle filters and

used the simple examples to evaluate the proposed methods. They used the centralized approach

71

as the base algorithm to compare with. We also notice that some distributed particle filters

systems were partitioned into multiple subsystems and each subsystem used its local

measurement data to estimate the partial state of the whole sys-tem state. Therefore, the state was

decomposed and executed in parallel. In contrast, other systems used particle filters to predict the

entire system state, in which different estimations were located on different processing units. In

this case, the sample space was partitioned, and the resampling stage was the main focus since

the global routing was needed. In our work, we focus on the sample partition and parallel

execution.

4.2 Particle Routing in Centralized Resampling

4.2.1 Overall architecture

In the general PF algorithms, three main steps are involved including sampling, weight

computation, and resampling. Among them, resampling needs information of all the particles,

and thus affects the parallelization of PFs. In the centralized resampling, two types of nodes are

defined, the processing unit (PU) and the central unit (CU). Sampling and weight computation

are implemented on PUs since they are independent for different particles. Resampling is

performed on the CU due to its sequential nature. To carry out particle routing, during the

resampling stage the CU collects the weights of particles from all the PUs, performs the

resampling, decides the routing information according to routing policies (described later), and

then transfers particles between the CU and PUs according to the routing information. When

transferring particles, PUs can send particles directly to each other. However, to simplify the

overall system architecture, in our work we use CU as a hub to collect particles from source PUs

and send the collected particles to destination PUs. Note that this design choice does not affect

the different particle routing policies described in our work.

72

CU

1.Resampling

2.Particle routing

PU_02PU_01

PU_03 PU_04

Particle transfer

N weights

Partic
le tra

nsfer

N weights

Partic
le tra

nsfer
N w

eights

Particle transfer

N weights

Figure 4.1 Overall architecture of particle routing in the centralized resampling

The overall system architecture is illustrated in Figure 4.1. In the figure, there are4 PUs

(PU1, PU2, PU3, and PU4) and one CU and in each particle filtering iteration, a PU carries out

sampling for its particles, computes particles’ weights, and then sends the weights to the CU.

After receiving all the weights, the CU normalizes the weights and performs the resampling

algorithm. Consequently the CU carries out the routing procedure according to different policies

(described below). According to the routing results, PUs with surplus of particles sends particles

to the CU, and then the CU transfers them to the PUs with shortage of particles. After the routing

completes, the system evolves to the next iteration.

Assume there are n PUs and m particles on each of them. A particle is denoted as 𝑀𝑡
(𝑖,𝑗)

 ,

i ∈{1,…,n} and j ∈{1,…,m}, where i is the index for the particle’s PU, and j is the particle’s local

index on that PU. After the resampling step, m n copies of particles are selected. We use the set

shown in equation (4.1) to represent the resampling result.

𝑆𝑡 = { (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) : 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {1, … ,𝑚},𝑁𝑡
(𝑖,𝑗)

∈ {1,… ,𝑚𝑛}| ∑𝑁𝑡
(𝑖,𝑗)

∈ 𝑚𝑛}

(4.1)

73

where t is the time step (or iteration step, used interchangeably in this paper), 𝑀𝑡
(𝑖,𝑗)

 is a selected

particle and 𝑁𝑡
(𝑖,𝑗)

 is the associated number of copies for particle 𝑀𝑡
(𝑖,𝑗)

. Note that particles that

are eliminated, i.e., having zero copy after resampling, are not included in 𝑆𝑡. Given the above

information, the particle routing answers the following two questions: (1) How to select particles

on PU with surplus of particles? (2) How to choose the destination PU for a selected particle? A

routing policy will provide a solution to the above questions. An important feature of particle

routing is that if multiple copies of the same particle need to be transferred across the network,

only one copy of the particle plus a number indicating the duplicate number are transferred. This

removal of duplicated particles reduces communication costs because the destination PU can

easily make multiple copies of the received particle locally.

The routing result can be defined by a set shown in equation (4.2):

 𝑅𝑡 = { (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑘 , 𝑁𝑡
(𝑖,𝑗)

) : 𝑖, 𝑘 ∈ {1, … , 𝑛}, 𝑗 ∈ {1,… ,𝑚}, 𝑆𝑁𝑡
(𝑖,𝑗,𝑘)

≤ 𝑁𝑡
(𝑖,𝑗)

| 𝑖 ≠ 𝑘

(4.2)

where 𝑃𝑘 is a destination PU for 𝑀𝑡
(𝑖,𝑗)

 and 𝑆𝑁𝑡
(𝑖,𝑗,𝑘)

 is the number of copies for particle 𝑀𝑡
(𝑖,𝑗)

to be sent to 𝑃𝑘. Therefore, the routing problem can be defined as a function f: S→R, where S is

the set containing the selected particles and their associated copies after resampling, and R is the

set to store the routing result. Note that not all particles need to be routed to other PUs, thus the

particles in R is a subset of the particles in S. The routing algorithm is composed of two main

steps. (1) Particle selection: this step decides how to select particles on PUs with surplus of them.

(2) Destination selection: for a selected particle, a destination PU is decided to route the particle

to. The algorithm is executed in an iterative manner until all the particles that need to be routed

out have a destination PU assigned. Afterwards, particles are transferred according to the routing

result, with duplicated copies transferred only once. The following sections present three routing

74

algorithms based on three different particle routing policies, including the random routing policy,

the minimal transfer routing policy, and the maximal balance routing policy.

4.2.2 Random particle routing policy

In the random routing policy, we randomly choose a particle from a PU with surplus of

particles, and then select any PU with shortage of particles. Although the random routing policy

may lead to large communication costs, it is still presented in this paper due to its easy

implementation. We use this policy as the base to compare with other policies. Table 4.1 shows

the random routing algorithm. To start the process, we first need to calculate the total numbers of

copies of selected particles on each PU, and use that information to decide if a PU has surplus of

particles or shortage of particles. If the total number of copies of a PU is larger than m, we save

its information of the selected particles and associated number of copies in a set 𝑆1𝑡 as shown in

equation (3). If a PU has less than m total copies of particles, we save this PU and its needed

number of particles into a set 𝑆2𝑡 as shown in equation (4). Obviously 𝑆1𝑡 is a subset of 𝑆𝑡.

𝑆1𝑡 =

{ (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) : 𝑖{1, … , 𝑛}, 𝑗{1, … ,𝑚},𝑁𝑡
(𝑖,𝑗){1, … ,𝑚𝑛}|∑𝑁𝑡

(𝑖,𝑗)
∈ 𝑚 for PU with index 𝑖}

(4.3)

 𝑆2𝑡 = { (𝑃𝑡
𝑘, 𝑅𝑁𝑡

𝑘): 𝑘 ∈ {1,… , 𝑛}|𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
> 0 for PU with index 𝑘}

(4.4)

We randomly choose a particle 𝑀𝑡
(𝑖,𝑗)

 in 𝑆1𝑡 and a PU with index k in 𝑆2𝑡 , add the route

information (𝑀𝑡
(𝑖,𝑗)

 , 𝑃𝑡
𝑘 , 1) to the set 𝑅𝑡 , and then decrement 𝑁𝑡

(𝑖,𝑗)
, 𝑅𝑁𝑡

𝑘 , and ∑𝑁𝑡
(𝑖,𝑗)

. If

∑𝑁𝑡
(𝑖,𝑗)

 = m or 𝑅𝑁𝑡
𝑘 = 0, we remove the information for the corresponding PU from 𝑆1𝑡 or 𝑆2𝑡.

75

Table 4.1 Random routing algorithm

Main steps at time step t

1. Calculate ∑𝑁𝑡
(𝑖,𝑗)

 for PU with index i, i=1, 2,..., n.

2. If ∑𝑁𝑡
(𝑖,𝑗)

 > m, save all the (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) for PU with the index i to the set 𝑆1𝑡.

3. If ∑𝑁𝑡
(𝑖,𝑗)

 < m, save (𝑃𝑡
𝑘 , 𝑅𝑁𝑡

𝑘), where 𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
 to the set 𝑆2𝑡.

4. Randomly select a particle 𝑀𝑡
(𝑖,𝑗)

 in 𝑆1𝑡.

5. Randomly select a PU with index k in 𝑆2𝑡.

6. Append the route (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑡
𝑘 , 1) to the set 𝑅𝑡. If

 𝑀𝑡
(𝑖,𝑗)

 and 𝑃𝑡
𝑘 already exist in 𝑅𝑡, increase the previous 𝑆𝑁𝑡

(𝑖,𝑗,𝑘)
 by one but do

not add (𝑀𝑡
(𝑖,𝑗)

, 𝑃𝑡
𝑘 , 1).

 𝑁𝑡
(𝑖,𝑗)

- -, 𝑅𝑁𝑡
𝑘- -, and ∑𝑁𝑡

(𝑖,𝑗)
 - -;

 if ∑𝑁𝑡
(𝑖,𝑗)

= m

 Remove information of particles on PU with the index i from 𝑆1𝑡.

 if 𝑅𝑁𝑡
𝑘 = 0

 Remove information of PU with the index k from 𝑆2𝑡.

7. Repeat Step 4 to 6 until both 𝑆1𝑡and 𝑆2𝑡are empty.

Figure 4.2 and figure 4.3 show an illustrative example of the random particle routing

policy. Figure 4.2 shows the first part of random particle routing policy that how to select the

particles in each PU which have the surplus particles, and it will be transfer to the PU with

shortage of particles and figure 4.3 shows how to routing the particles. In figure 4.2, there are 4

PUs with the index P1, P2, P3 and P4 and each PU has 10 particles (K). Figure 4.2 (a) shows the

selected particle index and its copy number. For example, for PU_01 has 2 copies of particle

with the index 3 (𝑀(𝑃1,3) = (𝑃1,3) 𝑎𝑛𝑑 𝑁(𝑃1,3) = 2), and 4 copies of particle with the index

76

7 (𝑀(𝑃1,7) = (𝑃1,7) 𝑎𝑛𝑑 𝑁(𝑃1,7) = 4) and 10 copies of particle with the index 9 (𝑀(𝑃1,9) =

(𝑃1,9) 𝑎𝑛𝑑 𝑁(𝑃1,9) = 10).

Figure 4.2 Example of random particle routing policy part 1

Based on the resampling result, we know the PU_01 and PU_02 have the number of

surplus particle is 6 (∑𝑁𝑃1,𝑖 − 𝐾 = 16 − 10 = 6) for PU_01 and 3 (∑𝑁𝑃2,𝑖 − 𝐾 = 13 − 10 =

3) for PU_02. Figure 4.2 (b) and figure 4.2(c) show how to select the particle from the PU_01

and PU_04. Because it is the random routing policy, the entire select rule is totally random, that

means we will random select six particles from the left side table in figure 4.2(b) and also

random select ten particles from the left side table in figure 4.2(c). 4.2(d) shows the PUs with

77

shortage of particles and the number of particles it needs. Combine the (b), (c) and (d) we got the

resampling results table in figure 4.2(e). The figure 4.3 shows the second part of random particle

routing policy that how to routing the particle.

Figure 4.3 Example of random particle routing policy part 2

Continue from the last step of the part1 in figure 4.2 (e), in figure 4.3 (a) we need routing

all nine particles in left side table to right side table. In random particle routing policy, the rule

still is totally random. That means every time we random select one particle from the left side

table for PU_03 or PU_04 until the particle in left side’s copy number equals zero. The figure 4.3

78

(b) shows an example when the first step random select the (P2, 5) and how to update the both

table, then it needs record the routing information in blow. Figure 4.3(c) shows the last step of

the example, which every particle’s copy number equals zero and the PU with shortage particle’s

lack number also equals zero. Finally, combine all the routing information which shown in figure

4.3 (d). From the example, we know the random particle routing policy used the random select

method for every time’s select. So, this method will cause the large communication cost, which

is why we introduce the minimal transfer routing policy.

4.2.3 Minimal transfer particle routing policy

While the random routing policy is easy to implement, it does not exploit the global

information of particles’ distribution among PUs to reduce communication costs. The minimal

transfer routing policy exploits that information and aims to achieve the minimal number of

particles to be sent across the network, given that replicated particles need to be sent only once

between two PUs. An intuitive way to implement this is to start from selecting the particle with

the most number of copies from 𝑆1𝑡, and send them to the PU that needs the most number of

particles in 𝑆2𝑡. This reduces the overall number of transfers because the duplicated particles are

transferred only once between PUs. Compared to the random routing policy, we sort the obtained

set 𝑆1𝑡and 𝑆2𝑡based on the number of copies 𝑁𝑡
(𝑖,𝑗)

 and the needed number of particles 𝑅𝑁𝑡
𝑘

respectively in the descending order. The sorted sets are denoted as 𝑆1𝑡′and 𝑆2𝑡′accordingly. In

each iteration, we conduct the following three steps. 1) Select the first particle (denoted

as 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

) in 𝑆1𝑡
′ and its host (denoted as 𝑃𝑡

𝐹𝑖) as the source PU. 2) The destination PU

(denoted as 𝑃𝑡
𝐹𝑘) is the first PU in 𝑆2𝑡′. 3) Rout a number of copies of particle 𝑀𝑡

(𝐹𝑖,𝐹𝑗)
 to 𝑃𝑡

𝐹.

To calculate how many copies of 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 to be routed to the destination PU 𝑃𝑡
𝐹𝑘 , we first

79

compare the number of copies 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

 of particle 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 with the total extra number of particles

(∑𝑁𝑡
(𝐹𝑖,𝐹𝑗)

−𝑚) on the source PU 𝑃𝑡
𝐹𝑖, and select the smaller number (denoted as Q) between

the two. We then compare Q with the needed number of particles (𝑅𝑁𝑡
𝐹𝑘) on the destination

PU 𝑃𝑡
𝐹𝑘. If the former is smaller than the latter, we transfer Q copies of the 𝑀𝑡

(𝐹𝑖,𝐹𝑗)
 to 𝑃𝑡

𝐹𝑘, and

then remove 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 from 𝑆1𝑡
′ and update the needed number of particles of 𝑃𝑡

𝐹𝑘 by subtracting

Q. If the former is greater than or equal to the latter, we transfer the needed number (𝑅𝑁𝑡
𝐹𝑘) of

particle 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 to 𝑃𝑡
𝐹𝑘 , update the number of copies of 𝑀𝑡

(𝐹𝑖,𝐹𝑗)
 by subtracting 𝑅𝑁𝑡

𝐹𝑘 , and

remove 𝑃𝑡
𝐹𝑘 from 𝑆2𝑡

′ . In both cases, the corresponding route info is added to 𝑅𝑡. Afterwards we

resort the updated 𝑆1𝑡
′ and 𝑆2𝑡

′ and execute the same steps for the next iteration. This continues

until 𝑆2𝑡
′ is empty (which means all the PUs in 𝑆2𝑡

′ have received the needed number of

particles). The algorithm is described in Table 4.2.

80

Table 4.2 Minimal transfer routing algorithm

Main steps at time step t

1. Calculate ∑𝑁𝑡
(𝑖,𝑗)

 for PU with index i, i=1, 2,..., n.

2. If ∑𝑁𝑡
(𝑖,𝑗)

 > m, save all the (𝑀𝑡
(𝑖,𝑗)

, 𝑁𝑡
(𝑖,𝑗)

) for PU with the index i to the set 𝑆1𝑡.

3. If ∑𝑁𝑡
(𝑖,𝑗)

 < m, save (𝑃𝑡
𝑘 , 𝑅𝑁𝑡

𝑘), where 𝑅𝑁𝑡
𝑘 = 𝑚 − ∑𝑁𝑡

(𝑖,𝑗)
 to the set 𝑆2𝑡.

4. Sort the set 𝑆1𝑡 in the descending order by 𝑁𝑡
(𝑖,𝑗)

 to 𝑆1𝑡.

5. Sort the set 𝑆2𝑡 in the descending order by 𝑅𝑁𝑡
𝑖 to 𝑆2𝑡.

6. Select the first particle (𝑀𝑡
(𝐹𝑖,𝐹𝑗)

) in 𝑆1𝑡′ to be sent and its host PU as the source PU.

7. Select the first PU (𝑃𝑡
𝐹𝑘) in 𝑆2𝑡′ as the destination PU.

8. Compare 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

 with (∑𝑁𝑡
(𝐹𝑖,𝐹𝑗)

−𝑚) and select the smaller number (denoted as Q)

between the two.

9. Compare Q with 𝑅𝑁𝑡
𝐹𝑘 :

a. If Q < 𝑅𝑁𝑡
𝐹𝑘

PassNum 𝑆𝑁𝑡
(𝐹𝑖,𝐹𝑗,𝐹𝑘)

 = Q,

then 𝑅𝑁𝑡
𝐹𝑘 = 𝑅𝑁𝑡

𝐹𝑘 − 𝑄,

remove 𝑀𝑡
(𝐹𝑖,𝐹𝑗)

 from 𝑆1𝑡
′

b. If Q≥ 𝑅𝑁𝑡
𝐹𝑘

PassNum 𝑆𝑁𝑡
(𝐹𝑖,𝐹𝑗,𝐹𝑘)

 = 𝑅𝑁𝑡
𝐹𝑘 ,

then 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

= 𝑁𝑡
(𝐹𝑖,𝐹𝑗)

− 𝑅𝑁𝑡
𝐹𝑘

remove 𝑃𝑡
𝐹𝑘 from 𝑆2𝑡

′

10. Append the route info (𝑀𝑡
(𝐹𝑖,𝐹𝑗)

, 𝑃𝑡
𝐹𝑘, 𝑆𝑁𝑡

(𝐹𝑖,𝐹𝑗,𝐹𝑘)
) to the set 𝑅𝑡.

11. Sort the set 𝑆1𝑡′ in the descending order by 𝑁𝑡
(𝑖,𝑗)

.

12. Sort the set 𝑆2𝑡′ in the descending order by 𝑅𝑁𝑡
𝑖.

13. Repeat step 6 to step 12 until 𝑆2𝑡′ is empty.

81

Figure 4.4 and figure 4.5 show an illustrative example of the minimal transfer particle

routing policy. We use the sample example as shown in the example of random particle routing

policy. Figure 4.4(b) shows the first step work is the descending sorting two PUs lists which

have surplus of particles (PU_01 and PU_02).

According to the minimal transfer routing algorithm, first of all, 𝑀(𝑃1,9)will be selected 6

copies since it has the largest number of copies in PU_01 and 𝑀(𝑃2,5) will be selected 3 copies in

PU_02 with the same reason. Figure 4.4 (e) shows the PU with shortage of particles and the

number of particles it needs. Combine the (e) and the right side table of (c) and (d), we got the

resampling result for the start of part 2. The first step of part 2 also is descending sort the both

lists with surplus of particles and shortage of particles. So, based on the figure 4.5 (b), 𝑀(𝑃1,9)

will be sent from PU_01 since it has the largest number of copies of 6 and its destination PU will

be the PU_04 because it lock the largest number of particles. Then, we need update both table

shows in figure 4.5 (c), because PU_04 just need 5 particles and (P1, 9) has 6 copies, so update

the 𝑁(𝑃1,9) = 1, then remove the P4 in right table since the lock number of P4 already is zero and

also record the route { (P1,9), 5, P4}. After updating the related information, we continue the

process until we get the final routing set.

82

Figure 4.4 Example of minimal transfer particle routing policy part 1

83

Figure 4.5 Example of minimal transfer particle routing policy part 2

One thing we want to mention in here is we will not descending the list again whatever

for the surplus particle list or the lacked PU list. For example, in figure 4.5 (d), after update the

information, the number of copies for (P1,9) is smaller than (P2,5), but we will continue follow

this order to select the particle instead descend the list and then select the particle. Finally, after

both 𝑁(𝑝,𝑖) and 𝐿𝑙𝑎𝑐𝑘
𝑃 equals zero, we finish the routing part work and get the final particle

routing result. In this example, based on the routing result overall three transfers occur because

the duplicated particles only need to be transferred once.

84

4.2.4 Maximal balance particle routing policy

Different from the minimal transfer policy that is de-signed only from the communication

cost point of view, the maximal balance routing policy aims to achieve the maximal balance of

the particles with the high weights among all PUs after particle routing. This makes sense

because the "good" particles with high weights are more likely to survive in future iterations. A

balanced distribution of these particles among all PUs may reduce the need of particle routing in

future iterations. The basic idea of the maximal balance policy is to select "good" particles and

evenly distribute them to all PUs. Towards this goal, we need to define a criterion to decide

which particles are "good". In our work, we set the criteria based on the number of copies of

particles after resampling (which essentially reflect the weights of the particles). Specifically, a

particle is “good” if its number of copies is greater than or equal to a threshold T.

Assuming the total number of “good” particles is G, each PU will receive no less than

⌊𝐺/𝑛⌋ (the largest integer less than or equal to (G/n) and no more than ⌈𝐺/𝑛⌉ (the smallest

integer greater than or equal to G/n) “good” particles. To ensure that after receiving the “good”

particles the total number of particles does not exceed m, each PU needs to first allocate “empty”

spaces for receiving the “good” particles. To support this, the maximal balance particle routing

algorithm includes two stages. The first stage involves only the “non-good” particles. In this

stage, PUs transfer particles to each other using the minimal transfer policy described in the

previous section (in this stage each PU uses ⌊𝑚𝑛 − 𝐺/𝑛⌋ instead of m as the desired number of

particles). After the first stage, all PUs have about the same number (with plus or minus 1

difference if cannot be evenly divided) of “non-good” particles. The second stage is to distribute

the “good” particles to all PUs. Specifically, we sort all the “good” particles in descending order

in a set 𝑆1𝑡′ and complete the following steps. 1) Choose the first particle in 𝑆1𝑡′. 2) The

85

destination PU will be selected from all the PUs with indexes from 1 to n in turn. Every step, one

copy of the first particle will be distributed to a PU by turn until all its copies are distributed. We

remove this particle's information from 𝑆1𝑡′ and execute the same procedure for the next particle

until all the "good" are distributed.

Table 4.3 shows the maximal balance particle routing algorithm. We partition 𝑆𝑡 into

two sets 𝑆1𝑡 and 𝑆2𝑡. In 𝑆1𝑡 the weights of all the selected particles are larger than or equal to

the threshold T, and they are smaller than T in 𝑆2𝑡. Firstly we apply the minimal transfer routing

policy to 𝑆2𝑡, and obtain the routing set 𝑆2𝑡. For 𝑆1𝑡 , we evenly distribute all the copies of the

particles to all the PUs, and get the routing set 𝑅1𝑡 . The final routing set 𝑅𝑡 = 𝑅1𝑡 ∪ 𝑅2𝑡. If

 𝑆1𝑡 is empty, which means no particles are considered as “good”, the maximal balance routing

algorithm essentially gives the same result as the minimal transfer algorithm.

86

Table 4.3 Maximal balance routing algorithm

Main steps at time step t

1. Set a threshold T.

2. Partition 𝑆𝑡 into two sets 𝑆1𝑡 (all the particles whose number of copies ≥ T) and 𝑆2𝑡 (all the

particles whose number of copies< T).

3. Apply the minimal transfer routing policy (table 4.2) to 𝑆2𝑡 to get the routing set 𝑅2𝑡. Note

in this step, each PU uses ⌊𝑚𝑛 − 𝐺/𝑛⌋ instead of m as the desired number of particles.

4. Sort 𝑆1𝑡 according to the number of copies of the particles in the descending order to 𝑆1𝑡′. If

 𝑆1𝑡 is empty, use minimal transfer routing policy (table 4.2) to get the routing result.

5. Start with the first particle in 𝑆1𝑡′ and first PU and the following steps:

a. Assign their copies to all the PUs only by one, and decrement its number of copies 𝑁𝑡
(𝑖,𝑗)

.

b. Append this route in 𝑅2𝑡.

c. If 𝑁𝑡
(𝑖,𝑗)

= 0, remove the particle from 𝑆1𝑡′.

d. Repeat the e ~ c process until 𝑆1𝑡′ is empty.

6. The final routing 𝑅𝑡 = 𝑅1𝑡 ∪ 𝑅2𝑡.

Figure 4.6 and figure 4.7 show the illustrative example of the maximal balance routing

policy. We use the sample example as shown in the example of random particle routing policy

and minimal transfer particle routing policy. First of all, different compare to the minimal

transfer policy, we put all the resampling result together to a list at first (figure 4.6(b)), and then

descending sort this list according to the value of 𝑁(𝑃,𝑖) . In this example, the predefined

threshold T is 8. Therefore, the particle 𝑀(𝑃2,5) and 𝑀(𝑃1,9) are “good” particles and will be

evenly distributed to all the PUs.

87

Figure 4.6 Example of maximal balance particle routing policy part 1

In figure 4.6(d), the list divide to two parts, the first part is the “good” particles which

will be evenly distributed to all the PUs, we note it as T1. The remaining particles will be routed

by the minimal transfer routing policy and we note it as T2. Firstly, we need handle the T2 part,

because we need make every PU have the almost evenly space to get the “good” particle. This is

because we need ensure every PU after receiving the “good” particles the total number of

particles does not exceed m, each PU needs to first allocate “empty” spaces for receiving the

“good” particles. For process the T2, we need calculate the particle routing result without the

“good” particles. Sum the total 𝑁(𝑃,𝑖) but without the “good” particle, the ∑𝑁(𝑃,𝑖)′ =18 and

divide it to 4 PUs. So, each PU the max size is 5,5,4,4 respectively. According to this, we get the

88

particle before routing result shown in figure 4.6 (e) and get the routing result in figure 4.6(f) by

use minimal transfer policy.

After finished the T2, for the T1 part, 12 copies 𝑀(𝑃2,5) and 10 copies of 𝑀(𝑃1,9) will be

transferred to all the PUs one by one. Because each PU the max size is 5,5,4,4 in T2, so each

PU’s lack number is 5,5,6,6 respectively. The figure 4.7 (b) and (c) show how to transfer the

particle and update the information one by one, the rule is every time just only pass one particle

in left side. Also, every time just sign the particle to one PU then change to the next PU one by

one. Finally, combine the two routing results together which is the final routing result for the

maximal balance particle routing policy. The maximal balance particle routing policy will

transfer more particle compare to the minimal transfer particle routing policy (at least it is same

when the entire particle’ 𝑁(𝑃,𝑖) < threshold), but since the particles with the high weights are

appeared in every PU with almost evenly, it will bring maybe two advantages: 1) may bring the

more accurate simulation result because the “good” particles evenly in every PU which can

generate more probability. 2) it may reduce communication cost in future iterations, which

because the “good” particles already survived in every PU, so it will not get the big difference in

future iteration, the routing will decreased.

89

Figure 4.7 Example of maximal balance particle routing policy part 2

4.3 Experimental Designs

In our work, we evaluate the particle routing in distributed particle filter with centralized

resampling based on the data assimilation system of large-scale wildfire spread simulation. The

used model in this work is DEVS-FIRE which we have already introduced in section 3.1. For the

experimental design we use the totally same experiment environment in section 3.3.3 which uses

the real-world GIS data and fuel data. The cell space dimension is 200×200 and the cell size is

20 (m). The GIS data are airborne LiDAR (Light Detection and Ranging) raster-based terrain

data. The fuel data was obtained by classifying a multispectral QuickBird (DigitalGlobal) image.

Those data were acquired from Huntsville area, Texas, during the leaf-off season in March 2004

90

by M7 Visual Intelligence of Houston, Texas. The ignition point is set to the point (90, 55) of the

cell space for all of the simulations. The observation data (ground temperature sensor data) from

the real fire are collected every 30 minutes.

In our experiments, we still choose to use imprecise wind conditions which the wind speed

and wind direction changed together. As we shown in Table 3.1, the real wind speed and

direction are 8 (mph) and 180 (degrees) with random variances added every 30 minutes. The

variances for the wind speeds are in the range of –2 to 2 (mph) (denoted as 8±2 in the table), and

the variances for the wind direction are in the range of -20 to 20 (degrees) (denoted as 180±20 in

the table). Our experiment introduces errors to the wind speeds, which are randomly generated

based on the wind speed of 6 (mph) with variances added in the range of –2 to 2 (mph) and also

the wind direction of 130 (degrees) with added variances in the range of ±20 (degrees) in the

same time. For wind directions, the degrees indicate the angle between the north directions

clockwise to the direction from where the wind comes.

All the experiments use 6 PUs (every PU has 50 particles, total 300 particles) to run 6

hours' simulation (12 steps and every step is 1,800 seconds) in all the experiments. Among these

6 PUs, one of them is functioned as a CU when completing the centralized resampling function

for the global resampling step, otherwise a regular PU like others. All experiments are conducted

under the supercomputer named Cheetah, which has 14 nodes, 160 computing cores, 32 CPUs,

and 264 GB system memory.

4.4 Experimental results and analysis

In this set of experiments, we conduct various experiments to show the simulation results

using different routing policies including the random transfer policy, the minimal transfer routing

policy, and the maximal balance routing policy. Figure 4.8 displays the real fire, the simulated

91

fire, and the filtered fire by assimilating the real data into wildfire spread simulation using the

random routing policy, the minimal transfer routing policy, and the maximal balance routing

transfer policy respectively. In the figures, all the filtered fires (display in red) are close to the

real fire (display in blue) although we run the data assimilation simulations with the error data.

Compared to the simulated fires (display in black), all the simulation results are greatly improved.

To quantitatively examine the results, we choose the symmetric set difference as the metric to

measure the similarity of the fires. In mathematics, the symmetric set difference of two sets is the

set of elements in either set, but not in both. We use it to compare two fire fronts, which is the

number of cells inside one of the fire front shapes, but not in both. The smaller the symmetric set

difference, the more similar the two fire fronts are (the symmetric set difference of two same fire

fronts is 0). Figure 4.9 shows the symmetric set differences of the simulated fire (compared to

the real fire) and that of the filtered fire (compare to the real fire) using three routing policies

including the random routing policy, the minimal transfer routing policy, and maximal balance

routing policy. In the figure, the values of the filtered fires are the average of 6 independent runs.

The horizontal axis represents the time step, and the vertical axis represents the symmetric set

difference value in terms of the number of cells.

(a) (b)

92

 (c)

Figure 4.8 Comparisons of real fire, simulated fire, and filtered fire using different

routing policies. (a) Random routing policy. (b) Minimal transfer routing policy. (c) Maximal

balance routing policy

From the figures, it can be seen that the symmetric set differences of the filtered fires are

smaller than those of the simulated fires after step 5. With the increase of the time step, (i.e.,

when more sensor data are assimilated), the difference between the simulated fire and the filtered

fire becomes more and more notable. At step 12, the symmetric set difference of the filtered fire

is more than half of the symmetric set difference of the simulated fire. Also, the simulation

results which use three different routing policies can get the similar accurate result. From Figure

4.8 and Figure 4.9 we conclude that the data assimilation using three different routing policies

including the random routing policy, the minimal transfer routing policy, and the maximal

balance routing policy all significantly improve the simulation results. There is little difference

between the three polices from the simulation results point of view. This is expected because in

the centralized resampling all particles are resampled in each step. The three policies differ only

in how particles are routed after resampling and thus only impact the communication cost but

have little impact on the data assimilation results.

93

Figure 4.9 Symmetric set differences for simulated fire and filter fire with three different

routing policies

To compare the communication cost of the three policies, Figure 4.10 shows the number

of particles to be transferred in every step for the random routing policy, the minimal transfer

routing policy, and the maximal balance routing policy. Figure 4.11 shows the total number of

particles to be transferred for the random routing policy, the minimal transfer routing policy, and

the maximal balance routing policy. From the figures we know that both the minimal transfer

routing policy and the maximal balance routing policy significantly reduce the transfer number

of the particle states and the minimal transfer routing policy has the lowest number of transfers.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

e
r

o
f

ce
lls

Time Step

Random transfer Minimal transfer

Maximum balance Simulated fire

94

Figure 4.10 Number of particles to be transferred for the random routing policy, the

minimal transfer routing policy, and the maximal balance routing policy.

Figure 4.11 Total numbers of particles to be transferred for the random routing policy, the

minimal transfer routing policy, and the maximal balance routing policy

For the high dimensional spatial temporal simulation because the size of each particle is

large due to the high dimensional state it represents. So we intentionally increase the state size by

0

15

30

45

60

75

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

e
r

o
f

p
ar

ti
lc

e
 t

ra
n

sf
e

re
d

Time step

Random transfer Minimal transfer Maximum balance

0

100

200

300

400

500

600

700

Total number of particle transferred

To
ta

l n
u

m
b

e
r

o
f

p
ar

ti
cl

e
 t

ra
n

sf
e

rr
e

d

Random transfer Minimal transfer Maximum balance

95

ourselves. We made one of the GIS data (aspect data used in this experiment) to be part of the

particle state. So, the state of particle become to two parts: fire shape and aspect data. The size of

the aspect data which we add to state is 15MB in this experiment. Figure 4.12 shows we get the

totally same state transfer number after we increased the state compare to the state only just have

fire shape. From the figure, we conclude increase the size of the state will not affect the number

of state transfer in same experiment environment.

Figure 4.12 Total numbers of particles to be transferred for random transfer, minimal

transfer and maximal balance after increase the state size

Figure 4.13 shows the execution time after we increase the state size. From the figure, we

can see the total time is increased, but it did not increased too much, this is because we use the

super computer (cheetah) is very fast and it is also share the memory and desk.

0

100

200

300

400

500

600

700

Total number of particle transferred

To
ta

l n
u

m
b

e
r

o
f

p
ar

ti
cl

e
 t

ra
n

sf
e

rr
e

d

Random transfer Minimal transfer Maximum balance

96

Figure 4.13 Compare to the total time cost between before add the state size and after add

the state size for three different routing policies

4.5 Conclusions

In this chapter, we propose two centralized particle routing policies named as the minimal

transfer routing policy and the maximal balance routing policy and show their impacts on

distributed particle filters with centralized resampling. We evaluate the proposed methods based

on data assimilation of a large-scale wildfire spread simulation. Experimental results show that

the minimal transfer policy is the best choice for the centralized resampling because it can

achieve the same data assimilation results with the lowest number of state transfers compared to

the random routing policy and the maximal balance routing policy.

710

720

730

740

750

760

770

780

790

800

810

820

Random Minimal transfer Maximum balance

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

)

Routing policy

Before increase the state size After increase the state size

97

5 PARTICLE ROUTING IN DISTRIBUTED PARTICLE FILTERS WITH

DECENTRALIZED RESAMPLING

5.1 Particle routing in decentralized resampling

The centralized resampling schema faithfully implements the particle filtering algorithm.

Nevertheless, it suffers from scalability issues because it relies on a CU. To support scalable PF-

based data assimilation, the distributed resampling is needed. Several distributed resampling

schemas have been introduced, among which the distributed RNA uses a fully decentralized

resampling schema. The main idea of the distributed RNA is no CU at all. A designer can define

sub-groups among PUs and carry out full independent resampling only within the groups. The

three distributed RNA methods distributed RNA with regrouping, distributed RNA with adaptive

regrouping and distributed RNA with local exchange we have already discussed in section 2.4.3.

Basically, the particle routing in decentralized resampling just happened between the two groups,

expects there is three and more PUs in one group for distributed RNA with regrouping and

distributed RNA with adaptive regrouping. That is because the RPA applied inside of group if

three and more PUs in one group. So, we can continue apply the Minimal Transfer Particle

Routing Policy and Maximal Balance Particle Routing Policy inside of the group when this

group have three and more PUs. In this situation, the particle routing in decentralized resampling

is totally same as the particle routing in centralized resampling since both of them have the CU

and can apply the different routing policy. The distributed RNA with local exchange is a

different method because every group only contains one PU. So the particle routing happened on

a deterministic way only among the neighboring PUs and the routing is done through local

communication in every step.

98

5.2 Distributed resampling with local and global particle routing

Based on the work which the distributed RNA with local exchange where PUs exchanges

particles with local neighbors. Specifically, PUs are arranged in a ring topology and in each

iteration each PU passes a subset of randomly selected particles to its neighbor in the

anticlockwise order, and then carries out resampling locally. This local resampling schema

supports a large degree of parallelism due to data parallelism and elimination of the centralized

resampling step. However, it gives rise to a large number of iterations until full resampling is

achieved. To overcome this problem, the strict local communication principle should be relaxed.

Based on this idea, we propose using both local and global particle routing methods. The global

particle routing is the same as in the centralized resampling algorithm described in Chapter 4, i.e.,

a CU is used to collect particles' weights and decide how to route the particles by using the two

different particle routing method: Minimal Transfer Particle Routing Policy and Maximal

Balance Particle Routing Policy. The goal of the global routing is to take advantage of the full

knowledge of all particles’ weights to quickly and efficiently route the “good” particles to all

PUs. To avoid impairing the scalability of the distributed resampling, the global routing is

invoked only occasionally, e.g., once in every K steps. Table 5.1 shows the algorithm of the

distributed resampling with local and global particle routing on both the PU side and the CU side.

99

Table 5.1 Algorithm of distributed resampling with local and global particle routing

Main steps at time step t

 PU side:

 For all the PUs (in parallel)

1. Give a predefined integer K.

2. Run the sampling step.

3. Calculate the importance weights of particles.

4. If t % K =0, go to step5 (start the global resampling and routing procedure), otherwise go

to step 10 (start the local routing and resampling procedure).

5. Send all weights to the CU.

6. Receive routing information from the CU.

7. If having surplus of particles, send the selected particles (based on the received routing

information from CU) to the CU.

8. If having shortage of particles, receive particles from CU.

9. End.

10. Pass a subset of particles (and associated weights) to its neighbor.

11. Normalize and resampling locally.

12. End.

CU side:

1. Give the same predefined integer K as PUs.

2. If t % K =0, go to step3 (activate the global resampling and routing). Otherwise skip this

iteration.

3. Receive particles’ weights from all PUs.

4. Normalize and resampling.

5. Compute routing information by applying the minimal transfer routing policy or the

maximal balance routing policy.

6. Send the routing information to PUs.

7. Receive particles from PUs that have surplus of particles.

8. Send particles according to the routing information to the PUs that has shortage of

particles.

100

9. End.

Figure 5.1 shows the RNA (a) and distributed resampling with local and global particle

routing method (b). The main different are we give a predefined number K at first. That means

the global routing only happened every K step. Before we start every step, we calculate the time

step t% K at first, if t% K =0, we do the global particle routing. In that time, one of the PU also

plays the CU’s role (for example, PU_01 also is a CU in figure 5.1) which receives the particle’s

weight from all other PUs and does the resampling, then compute routing information by

applying the minimal transfer routing policy or the maximal balance routing policy inside.

PU_01 (CU)

PU_06

PU_05

PU_02

PU_03

PU_04

50 50

5050

5050t % K =0

t % K =0

t % K =0

t % K =0

t % K =0

PU_01

PU_06

PU_05

PU_02

PU_03

PU_04

50 50

5050

5050

(a) (b)

Figure 5.1 The different between RNA and distributed resampling with local and global

particle routing method

If the t% K! =0, the rule is totally same as RNA method, every PU just pass a subset of particles

and associated weights to its neighbor. Then normalize and resampling locally.

101

5.3 Experiment designs

We evaluate the particle routing in distributed particle filter with local and global particle

routing method based on the data assimilation system of large-scale wildfire spread simulation.

The used model in this work still is DEVS-FIRE which we have already introduced in section

3.1. For the experimental design we use the totally same experiment environment in section 3.3.3

and section 4.3 which uses the real-world GIS data and fuel data. For the weather data, we still

choose to use imprecise wind conditions which the wind speed and wind direction changed

together as we shown in Table 3.1. We do the same experiment using the distributed RNA, the

distributed RNA with the minimal transfer routing policy, and the distributed RNA with the

maximal balance routing policy. For the distributed RNA policy, each PU passes 10 particles to

its neighbor in the anticlockwise order. For the latter two policies, we call the centralized

resampling (the minimal transfer routing policy or the maximal balance routing policy) every 4

steps, and remove the duplicate particles. However, we don't do this in the distributed RNA

policy, so its number of state transfer is 60 for 6 PUs in each step.

5.4 Experimental results and analysis

Figure 5.2 displays the number of transferred states of the three policies of the distributed

RNA, the distributed RNA with the minimal transfer routing policy, and the distributed RNA

with the maximal balance routing policy for step 4, step 8, and step 12 respectively. Figure 5.3

shows the total number of transferred states of the three policies of the distributed RNA, the

distributed RNA with the minimal transfer routing policy, and the distributed RNA with the

maximal balance routing policy. Note that all the values are the average of 6 independent runs.

Note that the numbers of transferred particles are the same for all the steps except step 4, step 8,

and step12. This is because we apply the minimal transfer routing policy or the maximal balance

102

routing policy every four steps, and the distributed RNA is used for other steps. For the steps

where the minimal transfer routing policy or the maximal balance routing policy is applied, the

numbers of the transferred states are greatly decreased, and they are reduced more by the

distributed RNA with the minimal transfer routing policy. However, there is less obvious

difference between the distributed RNA with the minimal transfer routing policy and the

distributed RNA with the maximal balance routing policy regarding the total number of

transferred states.

Figure 5.2 Number of transferred states for the distributed RNA with the minimal transfer

routing policy and the distributed RNA with the maximal balance routing policy for step 4, 8,

and 12

0

2

4

6

8

10

12

4 8 12

N
u

m
b

e
r

o
f

st
at

e
 t

ra
n

sf
e

rr
e

d

Time step

RNA+Minimal transfer RNA+Maximum balance

103

Figure 5.3 Total numbers of transferred states for the distributed RNA, the distributed

RNA with the minimal transfer routing policy, and the distributed RNA with the maximal

balance routing policy

Figure 5.4 display the real fire, the simulated fire, and the filtered fire by assimilating the real

data into wildfire spread simulation using the RNA, centralized resampling, RNA and minimal

transfer and RNA and maximal balance.

0

100

200

300

400

500

600

700

800

The sum of 12 steps

N
u

m
b

e
r

o
f

st
at

e
 t

ra
n

sf
e

RNA RNA+Minimal transfer RNA+Maximum balance

104

(a) (b)

(c) (d)

Figure 5.4 Comparisons of real fire, simulated fire, and filtered fire using different

routing policies. (a) RNA (b) Centralized resampling. (c) RNA and Minimal transfer (d) RNA

and Maximal balance

In figure 5.4, all the filtered fires (display in red) are close to the real fire (display in blue)

although we run the data assimilation simulations with the error data. Compared to the simulated

fires (display in black), all the simulation results are greatly improved. But, we can see the RNA

get the worst filter result, but the result get better after we applied the minimal transfer and

maximal balance with RNA together. For the accurate of simulation result, we continue use

symmetric set differences to show it. Figure 5.5 shows the symmetric set difference of the

105

simulated fire, filter fire with centralized resampling with the minimal transfer routing policy and

filter fire with RNA. We can see the result of RNA is worse than filter fire with centralized

resampling.

Continue, the figure 5.6 shows the symmetric set differences between the real fire and the

filtered fire using the centralized resampling with the minimal transfer routing policy, and the

filtered fire using the distributed RNA respectively, the filtered fire using the distributed RNA

with the minimal transfer routing policy, and the filtered fire using the distributed RNA with the

maximal balance routing policy respectively for step 7 to 12. This is because the fire is small in

the earlier steps and thus the difference is small too. We zoom in the later steps in order to better

show the results. Although all of them have much less symmetric set differences than the

simulated fire mentioned above, the distributed RNA has the worse results since it is a purely

distributed resampling and suffers from the local resampling.

Figure 5.5 Symmetric set differences for simulated fire and filter fire with centralized

resampling (minimal transfer) and filter fire with RNA

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

e
r

o
f

ce
lls

Time step

Simulated fire Centralized RNA

106

Figure 5.6 Symmetric set differences for the filtered fire with the centralized resampling

using the minimal transfer routing policy, and the filtered fire with the distributed RNA, the

filtered fire with the distributed RNA using the minimal transfer routing policy

Figure 5.7 displays the symmetric set differences for the distributed RNA, the distributed

RNA with the minimal transfer routing policy, and the distributed RNA with the maximal

balance routing policy at time step 8 and 12 respectively. At these two steps, both the distributed

RNA with the minimal transfer routing policy and the distributed RNA with the maximal balance

routing policy have smaller symmetric set differences than the distributed RNA, and the

distributed RNA with the maximal balance routing policy has better results than the distributed

RNA and the distributed RNA with the minimal transfer routing policy. This is because the

maximal balance routing policy evenly distributes the copies of particles with high weights to all

the PUs during the routing process. To summarize, the distributed RNA with the maximal

balance routing policy has the best simulation results among all the routing policies above with

2000

2500

3000

3500

4000

4500

7 8 9 10 11 12 13

N
U

m
b

e
r

o
f

ce
lls

Time step

RNA RNA+Minimal transfer

RNA+Maximum balance Cemtralized

107

slightly more total number of transferred states compared to the distributed RNA with the

minimal transfer routing policy.

Figure 5.7 Symmetric set differences for filtered fire using the distributed RNA, filtered

fire using the distributed RNA with the minimal transfer routing policy, and the filtered fire

using the distributed RNA with the maximal balance routing policy at time step 8 and 12

The frequency of applying the centralized resampling to the decentralized sampling is an

important factor. It is the tradeoff between the communication cost and the precision of the

simulation results. We do the centralized resampling every 4 steps in all our experiments above,

now we want to see the impact if we do the centralized resampling for shorter or longer step with

different routing policy. Firstly, we change do the centralized resampling every 2 steps and every

5 steps. Figure 5.8 shows at time step 12, the symmetric set difference of the filtered fire using

the distributed RNA, filtered fire using the distributed RNA with the minimal transfer routing

policy for every 2 steps, 4 steps and 5 steps. From the figure, we can be seen: 1) the distributed

RNA with the minimal transfer routing policy for every 2 steps get the best simulation result.

This is because it did more centralized resampling compare with for the every 4 steps and every

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

N
u

m
b

e
r

o
f

ce
lls

 (
th

o
u

sa
n

d
)

Step 8 Step 12

RNA RNA and minimal transfer RNA and maximal balance

108

5 steps. 2) The distributed RNA with the minimal transfer routing policy for every 5 steps get the

worst result (even worse than RNA). This is not only because it just did twice centralized

resampling, but also it did not finish the centralized resampling in last step.

Figure 5.8 Symmetric set difference of the filtered fire using the distributed RNA and

filtered fire using the distributed RNA with the minimal transfer routing policy every 2 steps, 4

steps and 5 steps at time step 12

Continue we apply the same shorter or longer step for the filtered fire using the

distributed RNA with the maximal balance routing policy. Figure 5.9 displays the symmetric set

differences of the filtered fire using the distributed RNA and the distributed RNA with the

maximal balance routing policy for every 2 steps, 4 steps and 5 steps at time step 12. From the

figure we know that the distributed RNA with the maximal balance routing policy every 2 steps

has the smallest symmetric set difference and thus has the best simulation results. This is because

the global routing is applied more often. Among the hybrid approaches with the global routing

3600

3800

4000

4200

4400

4600

4800

5000

Symmetric set difference in 12th step

N
u

m
b

e
r

o
f

ce
lls

RNA RNA+MT-2 steps RNA+MT-4 steps RNA+MT-5 steps

109

and the local routing, the distributed RNA with the maximal balance routing policy every 5 steps

even has the worse results since it only does the global routing twice and doesn't do it at this step.

Figure 5.9 Symmetric set differences of the filtered fire with the distributed RNA, and the

distributed RNA with the maximal balance routing policy every 2 steps, 4 steps and 5 steps at

time step 12

Figure 5.10 displays the total number of transferred states for the distributed RNA with the

minimal transfer routing policy and the distributed RNA with the maximal balance routing

policy for every 2, 4, and 5 steps. From the figure we can see that if more centralized resampling

steps are added, more numbers of state transfers are needed. However, for the same number of

added centralized resampling steps, the distributed RNA with the minimal transfer routing policy

has less number of state transfers. This is consistent with the previous observations.

4000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

Symmetric set difference in 12th step

N
u

m
b

e
r

o
f

ce
lls

RNA RNA+MB-2 steps RNA+MB-4 steps RNA+MB-5 steps

110

Figure 5.10 Total numbers of transferred states of the distributed RNA with the minimal

transfer routing policy and the distributed RNA with the maximal balance routing policy for

every 2, 4, and 5 steps at time step 12

5.5 Discussions and conclusions

In this chapter, we propose a hybrid approach that uses both local and global particle

routing in the distributed resampling with non-proportional allocation (RNA). We show how the

minimal transfer routing policy and the maximal balance routing policy can be used in the global

routing step and their impacts on performance and accuracy of particle filtering. We evaluate the

proposed methods based on data assimilation of a large-scale wildfire spread simulation.

Experiment results shows, for the hybrid approach of particle routing in distributed resampling

with RNA, the maximal balance routing policy is preferred in the global routing step because it

can gain the best data assimilation results with slightly more number of state transfers compared

to the minimal transfer routing policy.

0

10

20

30

40

50

60

2 steps 4 steps 5 steps

N
u

m
b

e
r

o
f

tr
an

sf
e

rs

RNA with minimal transfer RNA with maximal balance

111

6 CLOUD MAPREDUCE FOR DATA ASSIMILATION USING SEQUENTIAL

MONTE CARLO METHODS IN WILDFIRE SPREAD SIMULATION

6.1 Motivation

Above chapters, we discussed develop a parallel and/or distributed computing method for

particle filter-based data assimilation in DEVS-FIRE spread simulation for large-scale temporal

systems with the tradition method. For the centralized resampling method, we have to face some

issues since we have the CU exist, such as it still required a complicated scheme for particle

routing, it make a complex PU design and area increase when more PU involve. Also, we need

100% know about our configuration such as how many machines we have, since we need coding

them based on our design and put the simulation model in every PU.

“Cloud Computing” is a technology that uses the internet and central remote servers to

maintain data and applications. Cloud computing allows consumers and businesses to use

applications without installation and access their personal files at any computer with internet

access. “Cloud” refers to large Internet services running on 10,000s of machines such as Amazon

S3, Google AppEngine, Microsoft Windows Azure, etc. In cloud, the user do not need buy any

machines, that means no upfront capital costs building data centers, buying servers, etc. Only do

two things: 1) design the user own cloud application, 2) pay it when you use it. Therefore, if we

use the cloud method for our data assimilation using sequential Monte Carlo Methods in wildfire

spread simulation, we can get more accurate simulation result because we can use more

machines but do not need buy more machines.

MapReduce is a software framework that allows developers to write programs that

process massive amounts of unstructured data in parallel across a distributed cluster of

112

processors or stand-alone computers. Also MapReduce is a programming model for processing

huge data sets on certain kinds of distributable problems using a large number of computers

(nodes), collectively referred to as a cluster [31] [32]. In the MapReduce programming model,

the computation takes a set of input key/value pairs, and produces a set of output key/value pairs.

Users of the MapReduce library express their computation as two functions: Map and Reduce,

which are then automatically executed in parallel by the underlying MapReduce framework.

There are many different implementations of the MapReduce programming model, among which

Apache’s Hadoop is the most well-known one and it has been successfully applied for file based

datasets. In this chapter, we propose a parallel and distributed computing method that uses

Hadoop MapReduce to handle the data assimilation in wildfire simulation based on particle

filters.

6.2 Overview of MapReduce and Hadoop

Followed by Google’s work, many implementations of MapReduce emerged and lots of

traditional methods combined with MapReduce have been presented until now [124].

• Implementations of MapReduce

Apache Hadoop is a software framework that helps constructing the reliable, scalable, distributed

systems

[125]. Phoenix is a shared-memory implementation of Google’s MapReduce model for data-

intensive processing tasks [126]. Mars is a MapReduce framework on graphic processors (GPUs)

[127]. Twister is a lightweight and Iterative MapReduce runtime system [128].

• Traditional methods combined with MapReduce

113

Apache Mahout can help to produce implementations of scalable machine-learning

algorithms on Hadoop platform [129]. Menon et al. gave a rapid parallel genome indexing with

MapReduce [130]. Blanas et al. proposed crucial implementation details of a number of well-

known join strategies for log processing in MapReduce [131]. Ene et al. developed fast

clustering algorithms using MapReduce with constant factor approximation guarantees [132].

Lin et al. presented three design patterns for efficient graph algorithms in MapReduce [133].

Moreover, MapReduce is rarely employed in the field of Systems Biology. In [134], the authors

investigate whether a MapReduce approach utilizing on-demand resources from a Cloud is

suitable to perform simulation tasks in the area of Metabolic Flux Analysis (MFA). Also, the

authors introduced an implementation of a simple MapReduce method for performing fault-

tolerant Mont Carlo computations in a massively-parallel cloud computing environment shown

in [135].

The MapReduce architectural pattern has evolved as a generic, domain-independent

processing method for large amounts of data. Two functions: map and reduce, are required to be

implemented by the user with the following prototypes [32]:

map (k1, v1) → list (k2, v2)

reduce (k2, list(v2)) → list (v2)

Which list denotes a list of objects, k1 and k2 represent key types, v1 and v2 are value types. The

input key/value pairs (k1, v1) are pairwise independent, thus, map can be invoked in parallel for

all pairs, yielding an intermediate list of mapped (k2, v2) pairs. As an outstanding feature,

MapReduce jobs may be defined by using native libraries such as C++ and Java. For our work,

all the experiments use Java. More information about MapReduce can be found in [31] [32].

114

6.3 DEVS-FIRE & particle filter MapReduce approach

Based on the major step of particle filters shown in Figure 2.1 and the basic MapReduce

prototypes, we introduce our new definition of MapReduce framework application of particle

filters in DEVS-FIRE. The Algorithm 6.1 shows the map part, where key is the index of the

particle, the value include all the necessary data, such as the GIS data, weather data (wind speed

and wind direction), ignition points and sensor data. The Algorithm 2 shows the reduce part. In

our method, we use the reduce part to do nothing, that means we parallelize the sampling and

weight computation steps in map part, then do nothing in reduce part and put weight

normalization and resampling parts. The reason why we cannot parallelize the weight

normalization and resampling parts is the sampler requires information of all the particles for the

systematic resampling. Also, the reduce part allows one to combine results produced in the map

function based on the key. In our work, the key is particle’s index, and all the information needed

for each particle has already been produced in the map function. Thus there is no need to use the

reduce function.

115

Table 6.1 Algorithm of DEVS-FIRE & particle filter MapReduce Approach

Algorithm6.1: Map (key, value)

Input:

//key: Particle index

//value: S= {GIS data, Weather data, Ignition Points, Senor Data}

Output:

//key’: Particle index

//value’: {Fire front, weight}

1 begin

2 let key’ = key = Particle index

3 let value as the input of DEVS-FIRE

4 Sampling: run DEVSFIRESpread simulation and add the graph noise

5 Weight computation

6 value’ = the fire sharp and the particle weight

7 output.collect (key’ ,value’);

1 end

Algorithm 6.2: Reduce (key, V)

Input: //key’: Particle index

 //value’: {Fire front, weight}

Output: //key’: Particle index

 //value’: {Fire front, weight}

Do nothing

Figure 6.1 shown the MapReduce particle filter (MapReducePF) algorithm: run the

DEVSFIRE spread simulation in different node (computer), also sampling and weight

computation in same node, all those parts are parallel worked. Then as we mentioned before,

116

since the resampling part have to get the information about all the particles, we put the weights

normalization and resampling parts in one single node.

Particle initialization

End

Start

1 2 3 N

Main node: Observed data

Node01

MapReduce

(key, value)

Sampling

Weight

computation

Node02

MapReduce

(key, value)

Sampling

Weight

computation

Node N

MapReduce

(key, value)

Sampling

Weight

computation

Main node: Weight normalization

Main node: Resampling

States output

…….

…….

No

YesYes

Figure 6.1 MapReducePF algorithms of case study

117

6.4 Experiments and analysis

We continue used the identical-twin experiment to evaluate the data assimilation system

of DEVS-FIRE. In our experiments, we intended to show a filtered fire gave more accurate

simulation results by assimilating observation data from the real fire even it still used the “error”

data. In this experiment, we chose to use the “error” wind conditions as the “error” data. The real

wind speed and direction are 8 (m/s) and 180 degrees (from south to north) with random

variances added every 10 minutes. The variances for the wind speeds are in the range of –2 to

2(m/s) and the wind direction to be exactly the same as the real wind direction (Table 6.2). For

the sensor deployment, we employed a regular sensor deployment schema and design our

experiment as follow, use a uniform fuel model (fuel model 7) and zero slope and aspect. The

simulations are run for 5 steps (hours), the weather changed every 30 minutes.

Table 6.2 Experiment sets of wind factor

 “Error” data Real data

Speed Direction Speed Direction

case 6±2 No error 8±2 180±20

Secondly, all experiments run under the super computer named Cheetah, which has 14

nodes, 160 computing cores, 32 CPUs and 264 GB system memory. 7 nodes equipped with

NVIDIA GTX 285, 485, or Tesla c2075 Graphic processing units for CUDA development 6TB

disk storage [136]. The software package which we use is Apache Hadoop Cloud Computing

Software. Hadoop version 1.0.1 and Java 1.6.0.12 are used as MapReduce system. Finally, In

order to test the performance, we use four nodes for MapReducePF and one of those four nodes

for CentralizedPF, we use the particle number is: 50 particles, 100 particles and 200 particles.

118

The Figure 6.2 display the filtered fires (displayed in yellow) after 5 steps of simulation,

compared with the real fire (displayed in red), and the simulated fires (displayed in blue). The

particle number used for this experiment is 100 particles.

Figure 6.3 display the result performance for the single step (1 hour) DEVS-FIRE spread

simulation based on SMC method use different particle numbers: 50 particles, 100 particles, 200

particles, 500 particles and 800 particles. We can see the simulation time almost same when we

just use 50 particles (CentralizedPF: 120 seconds and MapReducePF 122 seconds), but with

increase the number of particle, the simulation time of MapReducePF getting better and better:

the simulation time for MapReducePF are less than half of the simulation time for CentralizedPF

when using 200 particles (CentralizedPF: 1002 seconds and MapReducePF 436 seconds). And in

our single node, the machine will appear “out of memory” problem when we run more than 250

particles. But for the MapReducePF, we can continue running the particle number to 800

particles (even more), and the simulation time for MapReducePF using 800 particle are less than

double of the simulation time for CentralizedPF using 200 particles (CentralizedPF: 1002

seconds and MapReducePF 1960seconds).

119

Figure 6.2 Comparisons of real fire, simulated fires, and filtered fires

Figure 6.3 Execution time for single step

Figure 6.4 display the result performance for the five steps (5 hour) DEVS-FIRE spread

simulation based on SMC method use different particle numbers: 50 particles, 100 particles, 200

particles, 500 particles and 800 particles. Start from using 50 particles, the simulation time of

MapReducePF are less than half of the simulation time for CentralizedPF using 50 particles

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900

E
x
ec

u
ti

o
n

 t
im

e
(

S
ec

o
n

d
s)

The number of Particles

Execution time for single step

CentralizedPF MapReducePF

120

(CentralizedPF: 942 seconds and MapReducePF 2065 seconds). And the simulation time for

CentralizedPF are great more than four times compare to the simulation time for MapReducePF

when using 200 particles (CentralizedPF: 9162 seconds and MapReducePF 2631 seconds). The

machine will still appear “out of memory” problem when we run more than 250 particles on the

single node. In MapReducePF, the simulation time for MapReducePF when using 800 particle is

just a litter bit longer than the simulation time for CentralizedPF using 200 particles

(CentralizedPF: 9162 seconds and MapReducePF 9984 seconds).

Figure 6.4 Execution time for five steps

The experiment results showed the MapReducePF significantly increases the performance for

data assimilation using large number particles. Although in our current experiment we used up to

200 particles, we expect the performance will be further improved for larger number of particles.

This work builds a foundation where future work can be carried out. Future work includes

develop new ways that utilize the MapReduce programming model for further improving the

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900

Ex
ec

u
ti

o
n

 t
im

e
(

Se
co

n
d

s)

The number of Particles

Execution time for five steps

CentralizedPF MapReducePF

121

data assimilation performance, and to build a framework for parallel particle filtering based on

MapReduce for general applications other than the wildfire application considered.

122

7 CONCLUSION AND DISCUSSIONS

7.1 Conclusions

In this work, we developed distributed PFs for larger-scale spatial temporal systems in

order to improve the performance of data assimilation. We reviewed several distributed particle

filtering algorithms that have already developed in literature, and discussed the merits and

demerits of these algorithms based on the different steps of the PF algorithm. Although these

algorithms have already attained a good performance, they mainly differ in how the resampling

is carried out, and less research has been conducted to investigate how to route particles among

PUs after resampling. Efficient particle routing is highly critical for reducing the communication

costs in distributed PFs, due to the following reasons: 1) Particle routing is necessary because the

numbers of particles on different PUs are unbalanced after resampling. 2) As the number of PUs

increases, the communication overhead rises. The unbalanced particles on PUs are caused by the

fact that particles have different importance weights. 3) The size of each particle is very large

due to the high dimensional state it represents in high dimensional spatial temporal simulations.

Therefore, we developed two efficient particles routing policies named minimal transfer particle

routing policy and the maximal balance particle routing policy, and showed their impacts on

distributed PFs with centralized resampling. We evaluated the proposed methods based on data

assimilation of a large-scale wildfire spread simulation. Experimental results showed that the

minimal transfer particle routing policy is the best choice for centralized resampling, since it can

achieve the same data assimilation results with the lowest number of state transfers as compared

to the random routing policy and the maximal balance routing policy.

In the distributed resampling schema (more specifically, the distributed RNA),

communications are constrained between neighboring PUs. This local communication schema

123

supports a large degree of parallelism due to elimination of the centralized resampling step.

However, it also results in slow propagation of high weight particles, and thus reduces the

convergence rate of the particles. To address this issue, we develop a hybrid particle routing

approach that uses both local and global particle routing in distributed resampling with non-

proportional allocation (RNA). In this approach, we mainly use local routing to ensure scalability

and low communication costs, and occasionally invoke global routing to support faster

propagation of "good" particles. We showed how the minimal transfer particle routing policy and

the maximal balance routing policy can be used in the global routing step, and their impacts on

the performance and accuracy of particle filtering. We also evaluated and compared the different

particle routing methods based on the application of data assimilation for large-scale wildfire

spread simulations.

For the hybrid approach of particle routing in distributed resampling with RNA, maximal

balance particle routing policy is preferred in the global routing step because it can attain the best

data assimilation results with a slightly higher number of state transfers compared to the minimal

transfer routing policy. Moreover, our work used cloud MapReduce and Hadoop to provide

another solution to improve the performance of data assimilation for larger-scale spatial temporal

systems based on PFs. Our work built the foundation algorithm by using MapReduce and

Hadoop to improve the performance of data assimilation for larger-scale spatial temporal

systems. The experiment results showed that the MapReducePF and Hadoop can significantly

increase performance for data assimilation by using 200 particles, 500 particles and 800 particles.

7.2 Discussions and future work

We developed two efficient particle routing policies in particle routing according to the

PF algorithm, and showed their impacts on distributed PFs for larger-scale spatial temporal

124

systems. We implemented both the minimal transfer particle routing policy and maximal balance

particle routing policy in an intuitive manner without formally proving that the algorithms will

always guarantee the best results. A formal analysis of these algorithms wills an imminent task in

our future work. The experimental results shown in this work are based on a specific application

of data assimilation of wildfire spread simulations. These results provide a guideline for

choosing different particle routing policies for other applications. In general, the performances of

different particle routing policies are dependent on the distribution of particles’ weights among

PUs. If all PUs has a balanced distribution of particles’ weights, the different policies will not

lead to results that are much different, since there is little need to transfer particles between PUs.

On the other hand, if all the high weight particles are concentrated on a single PU, the different

policies will not lead to very different results either, since they all result in transferring particles

from the dominant PU to others. Systematically and formally analyzing in what conditions the

different routing policies perform the best is another task that we plan to carry out in future

research.

Moreover, the creation of a cloud MapReduce and Hadoop builds a foundation where

future investigation can be carried out. Future tasks include developing new ways to utilize the

MapReduce programming model in order to further improve data assimilation performance, and

building a framework for parallel particle filtering based on MapReduce for general applications

other than the wildfire application considered.

125

REFERENCES

1. Grossi, P. 2007. The 2007 U.S. wildfire season lessons from southern California. Last

accessed in Aug. 2009 fromhttp://www.rms.com/Publications/2007_US_Wildfire_Season.pdf.

2. Source(s): Insurance Institute for Business and Home Safety (IBHS). Date: 2nd
,
May, 2012.

3. http://www.bloomberg.com/news/2014-07-03/climate-driven-wildfires-consume-forest-

service-budget.html.

4. Jun Bi, Can Chang and Yang Fan. Particle Filter for Estimating Freeway Traffic State in

Beijing. Mathematical Problems in Engineering, Volume 2013 (2013), Article ID 382042.

5. http://en.wikipedia.org/wiki/Traffic_congestion.

6. Dongling Ma ; Ning Ding ; Jingwei Wang ; Jian Cui, Research on flood submergence

analysis system based on ArcEngine component library. Agro-Geoinformatics (Agro-

Geoinformatics), 2012 First International Conference on Digital Object Identifier:

10.1109/Agro-Geoinformatics.2012.6311730.

7. FINNEY, M.A. 1998. FARSITE: fire area simulator–model development and evaluation.

United States Department of Agriculture Forest Service Rocky Mountain Research Station

Research Paper, RMRS-RP-4 Revised March 1998, revised February 2004.

8. ANDREWS, P.L., BEVINS, C.D., AND SELI, R.C. 2005. BehavePlus fire modeling system,

version 3.0: User’s Guide Gen. Tech. Rep. RMRS-GTR-106WWW Revised. Ogden, UT:

Department of Agriculture, Forest Service, Rocky Mountain Research Station, 132.

9. X. Hu, Y. Sun, L. Ntaimo, DEVS-FIRE: Design and Application of Formal Discrete Event

Wildfire Spread and Suppression Models, SIMULATION, Vol. 88, No. 3, pp. 259-279, 2012.

http://en.wikipedia.org/wiki/Traffic_congestion

126

10. MORAIS, M. 2001. Comparing spatially explicit models of fire spread through Chaparral

fuels: A new model based upon the Rothermel fire spread equation. MA Thesis, University of

California, Santa Barbara.

11. Furtlehner, C.; Yufei Han; Lasgouttes, J.-M. ; Martin, V.; Marchal, F. Spatial and temporal

analysis of traffic states on large scale networks. ; Moutarde, F.Intelligent Transportation

Systems (ITSC), 2010 13th International IEEE Conference.

12. H. S. Wheater, R. E. Chandler, C. J. Onof, V. S. Isham, E. Bellone, C. Yang, D. Lekkas, G.

Lourmas, M.-L. Segond. Spatial-temporal rainfall modelling for flood risk estimation.

Stochastic Environmental Research and Risk Assessment, December 2005, Volume 19, Issue

6, pp 403-416.

13. BOUTTIER, F. AND COURTIER, P. 1999. Data assimilation concepts and methods.

Training course notes of ECMWF.

14. DALEY, R. 1991. Atmospheric data analysis. Cambridge University Press.

15. KALNAY, E. 2003. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge

University Press.

16. Doucet, A., N. D. Freitas, N. Gordon (eds.).2001.Sequential Monte Carlo methods in

practice. New York: Springe-Verlag.

17. Jonathan Briggs, Particle Filters for High Dimensional Spatial Systems, Masters Theses, The

University of Auckland, 2011.

18. Lyudmila Mihaylova, Donka Angelova, Anna Zvikhachevskaya. Sequential Monte Carlo

Methods for Localization in Wireless Networks.

19. Frank Dellaert, A Sample of Monte Carlo Methods in Robotics and Vision, Georgia Institute

of Technology.

127

20. Soták, M., Sopata, M., & Kmec. Navigation Systems Using Monte Carlo Method, F. 6th

International ESA Conference on Guidance, Navigation and Control Systems, held 17-20

October 2005 in Loutraki, Greece.

21. Zigang Yang; Xiaodong Wang, Joint mobility tracking and hard handoff in cellular networks

via sequential Monte Carlo filtering, INFOCOM 2002. Twenty-First Annual Joint

Conferences of the IEEE Computer and Communications Societies.

22. Fan Lin-bo; Kang Li; Wu Ying-cheng; Zhao Ming. Study of Multi-target Tracking and Data

Association Based on Sequential Monte Carlo Algorithm. Future BioMedical Information

Engineering, 2008. FBIE '08.

23. Van Leeuwen, P.J. Particle filtering in geophysical systems. Monthly Weather Review,

137:4089-4114, 2009M. J. Coates, “Distributed particle filtering for sensor networks,” in

Proc. of Int. Symp. Information Processing in Sensor Networks (IPSN), Berkeley, CA, April

2004.

24. C. Snyder, T. Bengtsson, P. Bickel, J. Anderson. Obstacles to High-Dimensional Particle

Filtering. American Meteorological Society. May 2008.

25. Muhammad Shakir Hussain, Real-Coded Genetic Algorithm Particle Filters for High-

Dimensional State Spaces, dissertation, University College London.

26. Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data

assimilation, Nonlin. Processes Geophys., 14, 395-408.

27. M. J. Coates, “Distributed particle filtering for sensor networks,” in Proc. of Int. Symp.

Information Processing in Sensor Networks (IPSN), Berkeley, CA, April 2004.

128

28. Y. Sheng, X. Hu, and P. Ramanathan, “Distributed particle filter with GMM approximation

for multiple targets localization and tracking in wireless sensor networks,” in Proc. of the

4th Int. Symposium on Information Processing in Sensor Networks, Apr. 2005.

29. L. Zuo, K. Mehrotra, P. Varshney, and C. Mohan, “Bandwidth-efficient target tracking in

distributed sensor networks using particle filters,” in Proc. of 14th European Signal

Processing Conference EURASIP2006, Florence, Italy, Sept. 2006.

30. A. S. Bashi, V. P. Jilkov, X. R. Li, and H. Chen, “Distributed implementations of particle

filters,” in Proc. 2003 International Conf. Information Fusion, Cairns, Australia, July 2003,

pp. 1164–1171.

31. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in:

Proceedings of Operating Systems Design and Implementation (OSDI), San Francisco, CA,

2004, pp. 137–150.

32. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,

Communications of the ACM 51 (2008) 107–113.

33. M. Boli ć, Architectures for Efficient Implementation of Particle Filters, Ph.D. thesis, State

University of New York at Stony Brook, 2004.

34. http://en.wikipedia.org/wiki/Data_assimilation.

35. Xiang-Yu Huang and Henrik Vedel. AN INTRODUCTION TO DATA ASSIMILATION.

Danish Meteorological Institute, Lyngbyvej 100, DK-2100 København Ø, Denmark.

36. Rui Li ; Cunjun Li ; Feng Liu ; Xiaodong Yang ; Jihua Wang. Methods and algorithms of

data assimilation and its application in agriculture. World Automation Congress (WAC),

2010.

129

37. G Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model using

Monte Carlo methods to forecast statistics”, Geophysics. Res. 99(C5):10143–10162.

38. B.Ristic, S.Aruampalam, N.Gordon, Beyond the Kalman Filter [M], Artech

House,Boston/London,2004.

39. A. Smith, A. Doucet, N.D. Freitas, N. Gordon, Sequential Monte Carlo methods in practice

[M], Springer,New York, 2005.

40. Q.Y.Duan, S.Sorooshian, V.K.Gupta, “Effective and efficient global optimization for

conceptual rainfall-runoff models “. Water Resource Research. 1992. 28(4):1015–1031.

41. Q.Y. Duan, V.K. Gupta, Sorooshian S, “Shuffled complex evolution approach for effective

and efficient global minimization”, J. Optim. Theor. Appl, 1993.76(3):501–521.

42. L.Ingber ,”Very fast simulated re-annealing”, Math. Comput. Model, 1989, 12(8): 967–973.

43. X. Li, T. Koike, Pathmathevan M., “A very fast simulated re-annealing (VFSA) approach for

land data assimilation”. Computer and Geoscience, 2004, 30(3):239–248.

44. R. Storn, K. Price. “Differential Evolution – a simple and efficient heuristic for global

optimization over continuous space”. J. Global Optim. 1997, 11:341–359.

45. D.E.Goldberg, Genetic algorithms in search, optimization and machine learning [M],

Addison Wesley, Reading, MA, 1989.

46. Bouttier, F., and Courtier, P. 1999. Data assimilation concepts and methods. Training

course notes of ECMWF.

47. F. Gu, Dissertations: Dynamic Data Driven Application System for Wildfire Spread

Simulation, Dept. Computer Science, Georgia State University, December 2010.

130

48. Zou X, Vandenberghe F, Wang B, Gorbunov ME, Kuo Y-H, Sokolovskiy S, Chang JC, Sela

JG, Anthes RA. 1999. A ray-tracing operator and its adjoint for the use of GPS/MET

refraction angle measurements. Journal of Geophysical Research. 104(D18):22301-22318.

49. Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments of

Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118,

2185–2198.

50. Xulin Ma; Xiaolei Zou ; Gang Li. Diagnosis of surface data assimilation with GRAPES 3D-

VAR, Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International

Conference on. Digital Object Identifier.

51. Qifeng Lu ; Xuebao Wu ; Peng Zhang ; Songyan Gu ; Chaohua Dong ; Jiandong Gong ;

Xueshun Shen ; Chenli Qi ; Gang Ma; Assimilating FY-3A VASS data into Chinese 3Dvar

assimilation system (Grapes 3Dvar). Geoscience and Remote Sensing Symposium, 2009

IEEE International, IGARSS 2009.

52. BEI, N., DE FOY, B., LEI, W., ZAVALA, M., AND MOLINA, L.T. 2008. Using 3DVAR data

assimilation system to improve ozone simulations in the Mexico City Basin. Atmos. Chem.

Phys. 8, 7353-7366.

53. Eric Be ĺanger, Alain Vincent, Data assimilation (4D-VAR) to forecast flood in shallow-

waters with sediment erosion. Journal of Hydrology 300 (2005) 114–125.

54. Jim Kao, Dawn Flicker, Rudy Henninger , Sarah Frey, Michael Ghil, Kayo Ide, Data

assimilation with an extended Kalman filter for impact-produced shock-wave dynamics,

Journal of Computational Physics 196 (2004) 705–723.

55. P. L. Houtekamer AND Herschel L. Mitchell, A Sequential Ensemble Kalman Filter for

Atmospheric Data Assimilation MONTHLY WEATHER REVIEW JANUARY 2001.

131

56. Rolf H. Reichle, Dennis B. Mclaughlin, and Dara Entekhabi, R e i c h l e e t a l. Hydrologic

Data Assimilation with the Ensemble Kalman Filter, JANUARY 2002.

57. Haidong Xue ; Xiaolin Hu ,An effective proposal distribution for sequential Monte Carlo

methods-based wildfire data assimilation, Simulation Conference (WSC), 2013 Winter.

58. BRADLEY, J.M. 2007. Particle filter based mosaicking for forest fire tracking. Master thesis,

Brigham Young University.

59. Flood forecasting and uncertainty assessment with sequential data assimilation using a

distributed hydrologic model, Seong Jin Noh ; Tachikawa, Y. ; Kyoungjun Kim ; Shiiba, M. ;

Yeonsu Kim Information Fusion (FUSION), 2013 16th International Conference.

60. M. Wang, X. Hu, Data Assimilation in Agent Based Simulation of Smart Environment, Proc.

2013 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS),

2013.

61. S. Rai, X. Hu, Behavior Pattern Detection for Data Assimilation in Agent-Based Simulation

of Smart Environments, Proc. 2013 IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (IAT-13), 2013.

62. Arnaud Doucet, Nando de Freitas and Neil Gordon.An Introduction to Sequential Monte

Carlo Methods.

63. N. J. Gordon. Beyond the Kalman Filter:Particle filters for tracking applications. Tracking

and Sensor Fusion Group Intelligence, Surveillance and Reconnaissance Division Defence

Science and Technology Organisation.

64. Hong Sangjin, Petar M. Djurić, Bolić Miodrag. Resampling Algorithms for Particle Filters:

A Computational Complexity Perspective. EURASIP Journal on Advances in Signal

Processing 01/2004;

132

65. D. B. Rubin, J. M. Bernardo and M. H. De Groot and D. V. Lindley and A. F. M. Smith,

“Bayesian Statistics 3,” Oxford: University Press, pp 395-402, 1988.

66. A. Kong and J.S Liu and W.H. Wong, “Sequential Imputations and Bayesian Missing Data

Problems,” Journal of American Statistical Association, Vol. 89, no. 425, pp. 278- 288,

1994.

67. J. S. Liu and R. Chen, “Blind deconvolution via sequential imputations,” Journal of the

American Statistical Association, vol. 90, pp. 567- 576, 1995.

68. J. S. Liu, R. Chen, and T. Logvinenko, “A Theoretical Framework for Sequential Importance

Sampling and Resampling,” in Sequential Monte Carlo Methods in Practice, A. Doucet, N.

de Freitas, and N. Gordon, Eds., New York: Springer Verlag, 2001.

69. B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for

Tracking Applications, Artech House, 2004.

70. Fan Lin-bo; Kang Li; Wu Ying-cheng; Zhao Ming. Study of Multi-target Tracking and Data

Association Based on Sequential Monte Carlo Algorithm. Future BioMedical Information

Engineering, 2008. FBIE '08.

71. Lyudmila Mihaylova, Donka Angelova, Anna Zvikhachevskaya. Sequential Monte Carlo

Methods for Localization in Wireless Networks,

72. Aline Baggio and Koen Langendoen. Monte-Carlo Localization for Mobile Wireless Sensor

Networks. Ad Hoc Networks. Volume 6, Issue 5, July 2008, Pages 718–733.

73. Azzabou, N., Paragios, N., and Guichard, F. Application of particle filtering to image

enhancement. CERTIS 05-18, 2005.

133

74. Zhang, J., Chen, R., Tang, C., and Liang, J. Origin of scaling behavior of protein packing

density: A sequential Monte Carlo study of compact long chain polymers. Journal of

Chemical Physics, 118(13): 5102-610.

75. http://www.dddas.org/

76. Frederica Darema, Fellow, IEEE. Grid Computing and Beyond: The Context of Dynamic

Data Driven Applications Systems. Invited paper.

77. Darema, F. 2000. Dynamic data driven application systems (Symbiotic measurement &

simulation systems): A new paradigm for application simulations and a new paradigm for

measurement systems. NSF sponsored workshop.

78. Farhat, C., Michopoulos, J., Chang, F.K., Guibas, L.J., and Lew, A.J. 2006. Towards a

dynamic data driven system for structural and material health monitoring. International

Conference on Computational Science (3) 2006:456-464.

79. Fujimoto, R.M., Guensler, R., Hunter, M., Kim, H.K., Lee, J., Leonard, J., Palekar, M.,

Schwan, K., and Seshasayee, B. 2006. Dynamic data driven application simulation of surface

transportation systems. International Conference on Computational Science (3) 2006:425-

432.

80. Liqian Peng ·Doug Lipinski·Kamran Mohseni, Dynamic Data Driven Application System for

Plume Estimation Using UAVs, J Intell Robot Syst (2014) 74:421–436.

81. Allen, G. 2007. Building a dynamic data driven application system for hurricane forecasting.

International Conference on Computational Science (1) 2007:1034-1041.

82. Oden, J.T., Diller, K.R., Bajaj, C.L., Browne, J.C., Hazle, J., Babuska, I., Bass, J.,

Demkowicz, L.F., Feng, Y., Fuentes, D., Prudhomme, S., Rylander, M.N., Stafford, R.J., and

134

Zhang. Y. 2006. Development of a computational paradigm for laser treatment of cancer.

International Conference on Computational Science (3) 2006:530-537.

83. X. Yan, F. Gu, X. Hu, S. Guo, A Dynamic Data Driven Application System for Wildfire

Spread Simulation, Proc. 2009 Winter Simulation Conference (WSC09), 2009.

84. Particle Filters for High Dimensional Spatial Systems, Jonathan Briggs, Masters Theses, The

University of Auckland, 2011

85. Bolic, Miodrag ; Djuric, P.M. ; Sangjin Hong. Resampling algorithms and architectures for

distributed particle filters, Signal Processing, IEEE Transactions on Volume: 53, Issue: 7,

2005, Page(s): 2442 – 2450.

86. Bolic, M.; Djuric, P.M.; Sangjin Hong. New resampling algorithms for particle filters.

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE

International Conference.

87. Joaqu´ın M´ıguez. Analysis of Parallelizable Resampling Algorithms for Particle Filtering.

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).

88. M. Boli´c, P. M. Djuri´c, and S. Hong, “Resampling Algorithms for Particle Filters: A

Computational Complexity Perspective,” submitted to the EURASIP Journal of Applied

Signal Processing, 2003.

89. J. L. Dekeyser, C. Fonlupt, and P. Marquet, “Analysis of synchronous dynamic load

balancing algorithms,” Advances in Parallel Computing, vol 11, pp. 455-462, 1995.

90. Bashi, A. S., et al Distributed implementations of particle filters Proceedings of the Sixth

International Conference on Information Fusion, vol. 2, Cairns, Australia, July 2003,1164—

1171.

135

91. M. Boli´c, P. M. Djuri´c, and S. Hong,“Resampling Algorithms for Particle Filters: A

Computational Complexity Perspective,” submitted to the EURASIP Journal of Applied

Signal Processing, 2003.

92. B.P. Zeigler, H. Praehofer, and T.G. Kim, Theory of Modeling and Simulation (2nd edition).

Academic Press, UT: Salt Lake City, 2000.

93. Rothermel, Richard C. 1972. A mathematical model for predicting fire spread in wildland

fuels. Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service,

Intermountain Forest and Range Experiment Station. 40 p.

94. X. Hu, and L. Ntaimo, Integrated Simulation and Optimization for Wildfire Containment, The

ACM Transactions on Modeling and Computer Simulation (TOMACS), Vol. 19, No. 4, 2009

95. Finney, M. A. 1998. "FARSITE, Fire Area Simulator--Model Development and Evaluation."

In Research paper RMRS, RP-4. Ogden, UT (324 25th St., Ogden 84401): U.S. Dept. of

Agriculture, Forest Service, Rocky Mountain Research Station.

96. H. Xue, F. Gu, X. Hu, Data Assimilation Using Sequential Monte Carlo Methods in Wildfire

Spread Simulation, The ACM Transactions on Modeling and Computer Simulation

(TOMACS), Vol. 22, No. 4, Article No. 23, 2012.

97. CRISAN, D. 2001. Particle filters—A theoretical perspective. Sequential Monte Carlo

Methods in Practice (eds A. Doucet, J. F. G. de Freitas and N. J. Gordon). New York:

Springer-Verlag.

98. GORDON, N.J., SALMOND, D.J., AND SMITH, A.F.M. 1993. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings on Radar and Signal

Processing 140, 107-113.

136

99. W. Wagner, A. Ulrich, T. Melzer, C. Briese, and K. Kraus, "From Single-Pulese to Full-

Waveform Airborne Laser Scanners: Potential and Practical Challenges," International

Archivies of the Photogrammetry, Remoe Sensing, and Geoinformation Sciences, pp. 414-

419, 2004.

100. M. Mutlu, S.C. Popescu, C. Stripling, and T. Spencer, "Assessing Surface Fuel Models

Using LiDAR and Multispectral Data Fusion," Remote Sensing of Enviroment, vol. 112, no.

1, pp. 274-285, 2008.

101. S. Derin Babacan. Parameter Estimation in TV Image Restoration Using Variational

Distribution Approximation. IEEE VOL. 17, NO. 3 MARCH 2008.

102. V. Dua. A Decomposition Approach for Parameter Estimation of System of Ordinary

Differential Equations. – ESCAPE20.

103. Y.Lin and M.A.Stadtherr. Deterministic Global Optimization for Parameter Estimation of

Dynamic Systems.

104. G.Heinrich, Parameter estimation for text analysis.

105. A.John (1997). "R. A. Fisher and the making of maximum likelihood 1912–1922".

Statistical Science 12 (3): 162–176.

106. Natimo, L., X. Hu, and Y. Sun. 2008. “DEVS-FIRE:Towards an Integrated Simulation

Environment for Surface Wildfire Spread and Containment,” SIMULATION:, Vol. 84, Issue

4,April 2008, pp 137-155.

107. Byram, G. M. 1959. Combustion of forest fuels. In: Davis, K. P., ed. Forest Fire: Control

and Use. New York: McGraw Hill.

108. Pyne, S.J.; Andrews, P.L.; Laven, R.D. 1996. Introduction to wildland fire. 2nd ed. New

York, NY: John Wiley & Sons. 808

137

109. Miller, M. 1994. Fuels. Fire Effects Guide. National Wildfire Coordinating Group,

NFES.

110. http://www.forestencyclopedia.net/p/p509

111. http://www.fire.org/downloads/farsite/WebHelp/technicalreferences/tech_dead_fuel_moi

sture.htm

112. Ntaimo, X. Hu, and Y. Sun. "DEVS-FIRE: Towards an Integrated Simulation

Environment for Surface Wildfire Spread and Containment," Simulation, vol. 84, no. 4, pp.

137-155, 2008.

113. F. Bai, F. Gu, X. Hu, Particle Routing in Distributed Particle Filters for Large-Scale

Spatial Temporal Systems, IEEE Transactions on Parallel and Distributed Systems (TPDS),

under review, 2014.

114. P.J. van Leeuwen, “A Variance-minimizing Filter for Large-Scale Applications,"

Monthly Weather Review, vol. 131, pp. 2071-2084, 2003.

115. Y. Zhou, D. McLaughlin, and D. Entekhabi, "Accessing the Performance of the Ensemble

Kalman Filter for Land Surface Data Assimilation," Monthly Weather Review, vol. 134,

2128-2142, 2006.

116. L. Mihaylova and A. Carmi, "Particle Algorithm for Filtering in High Dimensional State

Spaces: A Case Study Example in Group Object Tracking," 2011 IEEE International

Conference on Acoustic, Speech and Signal Processing, pp. 5932-5935, 2011.

117. N. Lingala, N.S. Namachchivaya, N. Perkowski, and H.C. Yeong, "Particle Filtering in

High-diemensional Chaotic Sys-tems," Chaos: An interdisciplinary Journal of Nonlinear

Science, vol. 22, no. 4, pp. 047509-1-047509-18, 2012.

138

118. C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, "Obstacles to High-Dimensional

Particle Filtering,", Monthly Weather Review, vol. 136, pp. 4629-4640, 2008.

119. B.W. Silverman, Density Estimation for Statistics and Data Analysis. London: Chapman

and Hall, pp. 175, 1986.

120. A. Hegiy, L. Mihaylova, R. Boel, and L. Lendek, "Parallellized Particle Filtering for

Freeway Traffic State Tracking," 9th European Control Conference, 2007.

121. M. Rosencrantz, G. Gordon, and S. Thrun, "Decentralized Sensor Fusion with

Distributed Particle Filters," Proceedings of the Nineteenth Conference on Uncertainty in

Artificial Intelligence, pp. 493-500, 2002.

122. L.-L. Ong, T. Bailey, H. Durrant-Whyte, and B. Upcroft, "Decentralised Particle

Filtering for Multiple Target Tracking in Wireless Sensor Networks," 2008 11th

International Conference on Information Fusion, pp. 1-8, 2008.

123. M. Coates, "Distributed Particle Filters for Sensor Networks," Proceedings of the 3rd

International Symposium on Information Processing in Sensor Networks, pp. 99-107, 2004.

124. Junbo Zhang, Tianrui Li, Yi Pan, Parallel rough set based knowledge acquisition using

MapReduce from big data. August 2012. Proceedings of the 1st International Workshop on

Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming

Models and Applications ACM.

125. Hadoop: Open source implementation of MapReduce,

<http://hadoop.apache.org/mapreduce/ >.

126. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating

mapreduce for multi-core and multiprocessor systems. In Proceedings of the 2007 IEEE 13th

139

International Symposium on High Performance Computer Architecture, HPCA’07, pages

13–24, Washington, DC, USA, 2007. IEEE Computer Society.

127. B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a mapreduce

framework on graphics processors. In Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, PACT’08, pages 260–269, New York, NY,

USA, 2008. ACM.

128. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a

runtime for iterative mapreduce. In Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, HPDC’10, pages 810–818, New York, NY,

USA, 2010. ACM.

129. Mahout: Scalable machine learning and data mining, < http : //mahout.apache.org/>

130. R. K. Menon, G. P. Bhat, and M. C. Schatz. Rapid parallel genome indexing with

mapreduce. In Proceedings of the second international workshop on MapReduce and its

applications, MapReduce’11, pages 51–58, New York, NY, USA, 2011. ACM.

131. S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A comparison of

join algorithms for log processing in mapreduce. In Proceedings of the 2010 international

conference on Management of data, SIGMOD’10, pages 975–986, New York, NY, USA,

2010. ACM.

132. A. Ene, S. Im, and B. Moseley. Fast clustering using mapreduce. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD’11, pages 681–689, New York, NY, USA, 2011. ACM.

133. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating

mapreduce for multi-core and multiprocessor systems. In Proceedings of the 2007 IEEE 13th

140

International Symposium on High Performance Computer Architecture, HPCA’07, pages

13–24, Washington, DC, USA, 2007. IEEE

134. Cloud MapReduce for Monte Carlo bootstrap applied to Metabolic Flux Analysis Tolga

Dalman, Tim Dörnemann, Ernst Juhnke, Michael Weitzel , Wolfgang Wiechert , Katharina

Nöha, Bernd Freisleben. Future Generation Computer Systems. Volume 29, Issue 2,

February 2013, Pages 582–590

135. Monte Carlo simulation of photon migration in a cloud computing environment with

MapReduce. Guillem Pratx and Lei Xing, Journal of Biomedical Optics 16(12), 125003

(December 2011).

136. http://cs.gsu.edu/?q=cheetah

	Georgia State University
	ScholarWorks @ Georgia State University
	12-18-2014

	Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems
	Fan Bai
	Recommended Citation

	MANUSCRIPT TITLE

