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Abstract: The introduction of pervasive and ubiquitous instrumentation within Internet of Things (IoT) leads 
to unprecedented real-time visibility (instrumentation), optimization and fault-tolerance of the 
power grid, traffic, transportation, water, oil & gas, to give some examples. Interconnecting those 
distinct physical, people, and business worlds through ubiquitous instrumentation, even though 
still in its embryonic stage, has the potential to create intelligent IoT solutions that are much 
greener, more efficient, comfortable, and safer.  An essential new direction to materialize this 
potential is to develop comprehensive models of such systems dynamically interacting with the 
instrumentation in a feed-back control loop.  We describe here opportunities in applying cognitive 
computing on interconnected and instrumented worlds (Cognitive Internet of Things  - CIoT) and 
call out the system-of-systems trend among distinct but interdependent worlds, and Dynamic Data-
Driven Application System (DDDAS)-based methods for advanced understanding, analysis, and 
real-time decision support capabilities with the accuracy of full-scale models. 

1 INTRODUCTION 

The rapid adoption of Internet of Things (IoT) together with unprecedented bandwidths and 

computational power in instrumentation devices have already produced ground-breaking real-

time or near real-time visibility and analysis across a broad spectrum of system environments 

[Atzori et al., 2010; Chang, 2017 a; Grandos, 2014; Gubbi et al., 2013, Karagiannis et al., 

2015; Riggins et al., 2015; Shang et. al., 2015]. These capabilities enable instant access and 

transfer of information about a system or device in both natural and engineered systems as 

well as in consumer and industrial environemnts  [Zhou and Chou, 2011, Wellbourne et al., 

2009; Zhai et al., 2016]. A few examples include: 

 personal environment (wearable devices and smart phones),  

 surrounding environment (bodycam),  
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 home environment (home security devices, appliances)   

 power grid (eMeters, Power Management Units (PMUs), other sensor and actuator in the 

power distribution systems)  

 traffic and transportation  ( traffic sensors on cars, busses, trains, roads, traffic lights,  

railroads, aerial/Unmanned Aerial Vehicles (UAVs), and congestion control devices) 

 structural health monitoring (bridges, buildings, vehicles, aerial platforms) 

 water systems (distribution grids, asset management and preventive maintenance; ambient 

environments) 

 oil & gas (intelligent oil field) 

 Interconnecting these distinct natural, engineered, people, and business worlds (as shown 

in Fig. 1) through ubiquitous instrumentation, even though still in its embryonic stage, has the 

potential to create an environment that can be greener, safer, more efficient, and more 

comfortable.  However, just a compedium and deluge of instrumentation data is insufficient  
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Figure 1: CIoT solutions will require interconnected and interdependent models representing the natural and 
engineered (physical) environment, business & IT, and individuals & communities. 



in achieving the ultimate objectives of a much better outcome for the system of interest and 

its environment [Li, 2005]. Cognitive representations (a.k.a. models) of these distinct natural, 

engineered, people, and business worlds are essential in understanding the complexity of these 

systems-of-systems,  predicting their trajectory and controlling their actual evolution. 

Furthermore, cognitive representation for our emerging service and analytics can create  

accurate decision support capabilities when maneuvering through uncertain environments 

whose conditions are not known a priori.  IoT combined with modeling is referred to as 

Cognitive IoT (CIoT) [Wu et al., 2014, Zaidi et al., 2015]. 

 Rich multi-fidelity and multimodal modeling and instrumentation have become keys for 

enabling the above referenced capabiltiues for physical world systems (natural, engineered) 

and human systems.  Beyond  present notions of CIoT [Wu et al., 2014; Zaidi et al., 2015], 

new capabilties derived through Dynamic Data Driven Applications Systems (DDDAS)-based 

methods, whereby modeling is dynamically and synergistically integrated with 

instrumentation in a feedback control loop, are emerging [Darema 2000, 2005;  Allaire et al. 

2014, Bazilevs et al. 2012, 2013;  Celik 2011, Celik et al. 2010].  The trend towards higher 

fidelity and (semi-)autonomy with humans in the loop is accelerating [Jense et al., 1997].  

Related methods and opportunities include fusing multiple world models can be used to extract 

insights and capturing  dynamic intelligent interactions in order to augment and enrich these 

in a CIoT environment as the connectivity and bandwidth could be severely challenged at 

times. This framework is validated through use cases such as load redistribution and disaster 

recovery for smart grid and structural health monitoring for intelligent aerial platforms (as for 

example discussed in [Darema 2000, 2005; Allaire et al. 2014, Bazilevs et al. 2012, 2013;  

Celik 2011, Celik et al. 2010]). interdependent world models. In addition, resilient IT 

infrastructures are essential for supporting the CIoT capabilities discussed above.  

 In this paper, we present a distributed framework for orchestrating both information and 

control flows within the instrumented environment based on interconnected cognitive models 

of these environments in order to achieve optimal outcome.   The primary contribution of this 

paper is the proposed outcome-driven orchestration framework for complex CIoT systems and 

solutions. In contrast to the traditional orchestration approach where a detailed script is 

provided, the proposed approach specifies the desired outcome and orchestrates the 



information and control flows, using the behavior model of the CIoT system. The behavior 

model is incrementally refined based on the continuous learning on the actual outcome with 

respect to the desired outcome. Furthermore, the orchestration is executed based on 

progressive data representation and operations using a distributed model, which is essential  

 The rest of the paper is organized as follows: Section 2 describes the overall architecture 

for a cognitive IoT solution. A comprehensive landscape of cognitive models is described in 

Section 3.  Section 4 discussed a number of use cases to illustrate the orchestration framework.  

The system and system software implications for designing a distributed orchestration 

framework are discussed in Section 5. Section 6 outlines the outcome-based distributed 

orchestration framework. A summary and potential future work is given in Section 7.   

2. COGNITIVE IOT SOLUTOIN ARCHITECTURE 

 A Cognitive Internet of Things (CIoT) solution is a system with feedback control loop 

(or system of systems, since each individual component within this system could be a system 

by itself).  Figure 2 shows the system view of such a closed-loop CIoT solution: 

• Modeling & Orchestration Platform  

• Data & Measurement Platform 

• Control Platform  

A CIoT solution inlcudes the real world itself – whether it is a smart grid, a smart building, 

a smart supply chain, or a smart water system. The data and measurement platform provides 

mechanisms to capture, comprehend, and learn  from the real world (of varying levels of 

fidelity) to form the observed world.  The observed world can be described by a set of world 

models.   

Within the modeling and orchestration platform,  cognitive representations (or models) 

integrating data captured from the instrumented real world enable interpolation or 



extrapolation to those areas of the phase-space1 of the system, where there are no modeling 

data or where the instrumentation data could be noisy, unavailable, or corrupted. And in other 

cases, these models allow generation of the most plausible hypotheses to explain the available 

information through deduction, induction, or abduction reasoning.    

From these models, the possible outcomes are generated through simulation and/or 

predictive analysis.  Based on the what-if analysis conducted by the models, a course of actions 

is then chosen to optimize the potential outcome. This decision is then implemented through 

 
 
 
 
 
 
 
 
 
 
 
 

1 phase space of a dynamical system is a space in which all possible states of a system are represented, with 

each possible state corresponding to one unique point in the phase space. 
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Figure 2: Interconnected platforms provide data dynamic capture & integration into models, orchestration of 
behavioral models, and control for closed-loop prediction & response. 



the control platform to actuate the real world. The consequence in the real world, or the 

outcome, will be monitored through the data and measurement platform, and may result in 

more targeted data acquisition for more intelligent probing of the observed world, as well as 

adjustment on the course of actions. 

This cognitive IoT solution in reality is an instance of the closed-loop control system and 

is similar to the MAPE 2  loop of an autonomic system, with the exception that the role, 

influence and effects from human (individually or as a community) need to be included in the 

system.    

A CIoT solution requires optimal or near optimal orchestration of the control flow and 

information flow. (The music notes of the orchestration really came from the behavior models, 

which dynamically integrate real-world information, conduct what-if analysis, and choose the 

course of actions that is likely to optimize the business outcome). Consequently, developing 

models at the behavior levels, is necessary in order to enable optimal orchestration of both 

information and control flows [Bates, 1995]. The behavioral models are continuously updated 

by the dynamic data inputs, either to speed-up the execution (through substituting parts of the 

computation in the model with the actual data) or to impart additional information into the 

model, (as it is quite often that the model does not accurately or fully captures the system). 

The output of the behavior model controls the instrumentation in order to either refine data 

acquisition to improve the model accuracy or actuates the controllers to effect an action (on 

the system or by the system) guided by a comprehensive model of the system. This category 

of systems was referred to as the Dynamic Data-Driven Application Systems (DDDAS), which 

are based on the Infosymbiotics3 paradigm [Darema 2000, 2005, 2006, 2010]. The kinds of 

 
 
 
 
 
 
 
 
 
 
 
 

2 MAPE (Monitoring-Analysis-Planning-Execution) 
3 The terms InfoSymbiotics or InfoSymbiotic Systems are used to denote DDDAS-based methods and capabilities 



models of interest span numeric and non-numeric, agent- based and graph models, as well as 

statistical models. Examples will be given in the next section. 

3 MODELS 

  Cognitive representation (a.k.a. models) of the real world is the glue among data and 

measurement platform, modeling and orchestration platform, and the control platform.  There 

are multiple abstraction levels of models of the real world. The most abstract level is at the 

conceptual (theory or functional) level.  Conceptual level models can be represented in the 

form of ontology, rules, or knowledge graph.  Additional details are available at the structural 

level, which often captures the topological or spatial characteristics of the real world. 

Behavioral level models, which often describes the temporal or spatiotemporal evolution of a 

system, capture the most comprehensive aspects of the real world.  Multiple levels of fidelity 

may be used in describing the system at hand at both the structural and the behavioral level. 

The evolution of the abstraction levels of the model typically starts at the conceptual and/or 
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Figure 3: Examples of multiple abstraction levels of models of the world. 



functional levels. The evolution from conceptual/functional models to behavior models in 

almost every domain in the past has improved outcomes (e.g. in business) while maintaining 

manageable complexity and uncertainty, as shown in Fig. 3. 

During the development of Boeing 777, a dynamic behavior model of the aircraft was 

developed in addition to the traditional functional specification (at the function level) and 3D 

mechanical drawing (at the structural level). The dynamic behavior of the aircraft was 

evaluated within a simulation environment rather than going through numerous wind-tunnel 

testing [Abarbanel, 1996]. In a later section, we discuss new and more powerful methods 

(DDDAS-based) that not only allow optimal design of aircraft, but also use new modeling 

methods to enable optimized operational capabilities under dynamic conditions.  

Additional examples include the development of the IBM z10 chip. The z10 development 

effort started with the functional specifications and the design of the instruction set architecture 

(ISA) – both at the functional level. Based on the functional specification, the VHDL 

specification (VHSIC Hardware Description Language) for the overall design was created.   

The circuit layout, which is a structural representation of the z10 chip, is then synthesized from 

the VHDL specification.  Alternative structural representation, in the form of circuit schematic 

and netlist, is also synthesized from the VHDL specification. These VHDL and netlist 

representations of the z10 chip enable both logical and analog behavior of the z10 chip to be 

fully simulated within the simulation environment. The ability of fully capturing the IBM z10 

system at the behavior level enabled the system to be entirely operational on the first tape-out 

of the chip [Lets et al., 2009].    

Similarly, the enterprise supply chain can be specified at the functional (supply chain scope), 

structural (supply chain configuration), and behavioral (process elements and performance 

attributes) levels. The ability to perform process design and optimization of a supply chain at 

the behavior levels saves multi-billion dollars annually for some of the enterprises [Min, 2002; 

Celik et al., 2010]. 

In general, the entire CIoT spectrum really includes natural and engineered worlds, business 

and IT worlds, and the human worlds, and can be further divided into at least six domains: 

natural and engineered (compute intensive), embedded (SCADA related), cyber, enterprise, 

community, and individuals. 



 

 

 

 

During the past few decades, cognitive models in each of these silos are evolving from 

functional to structural and now to behavioral level. In the foreseeable future, capturing and 

modeling the CIoT will happen at multiple levels of abstraction, multiple levels of fidelity, 

and from multiple vantage points.   

In the enterprise domain, CBM (component business model) [Chesbrough, 2010] and 

industry framework captures the functional aspect of a business.  Industry models (including 

data models, ontology models, knowledge graph models, process models, and service models) 

capture the structural levels of the business. Customer and workforce logistics and the 

enterprise risk models capture the behavioral levels of the business. 

In the cyber area, ITIL [Canon, 2011] can be viewed as belonging to the functional level 

while IT configuration model belong to the structural level and workload and network traffic 

belong to the behavior level. 

Congestion Pricing 

Healthcare 

Risk Models:  

Credit Risk 

Market Risk, … 

Facebook, 

LinkedIn 

Intelligent  Utility 

Network 

(IUN, AMR, AMI) 

eHealth 

Weather Model 

Transport:  

Traffic Flow Models 

Oil & Gas: 

Reservoir Models 

Interconnection and Interdependency Single Domain Ecosystem 

Systemic Risk 

 Financial Market 

 Power Grid 

 Transportation 

Pandemic 

Surveillance 

CBM 

Org Chart 

IT Config. Model 

Evidence Based 

Medicine 

Smarter City 

(Water, Energy) 

Current revenue 

Opportunity and experience base  

Crime Prevention  

(complaints, summons, 911, 

video surveillance, RTCC, …) 

 

w
/ F

u
n

c
tio

n
a
l         w

/ S
tru

c
tu

ra
l       w

/ B
e

h
a

v
io

ra
l 

Smarter Grid 

(weather, people, building,.) 

Smarter Cities 

(carbon, utility, transportation) 

Counter-party Risk 

Smarter City 

(Weather) 

Figure 4: Future CIoT solutions will require interconnected and orchestrated measurements and models across 
multiple domains. 



In human communities, social networks (including Google+, LinkedIn and Facebook) 

capture the structural level of human relationships.  Many of them evolve into capturing social 

or community behavior in real time during the recent past. From the individual (personal) side, 

individual profile belongs to the functional level while the purchase history belongs to the 

behavior level.  

The embedded systems domain includes examples such as instrumentation in the electric 

grid, transportation, dam, traffic lights, and manufacturing, where Supervisory Control And 

Data Acquisition (SCADA) systems [Boyer, 2009] are often deployed. This area is 

transforming itself at an extremely fast pace as increasingly more of such systems are 

connected to each other as well as to the internet, and through DDDAS-based models. This is 

also supporting a similar concept from Cheng et al. (2016) to allow intelligent manufacturing 

enabled by IoT. 

New insight is established when analyzing the existing and future CIoT solutions in the 

context of an end-to-end ecosystem as opposed to a single domain, as shown in Fig. 4. Many 

of the existing CIoT solutions fall into the category of single domain, and leveraging only 

structural models for static analysis. Emerging opportunities – whether they are in the smart 

Figure 5: Smart Grid solutions continuously optimize the expected outcome dynamic data driven behavior models. 
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grid (power grid) or smart cities – often require integrating behavior models from two or more 

interdependent domains. New capabilities have been continuously demonstrated along these 

directions (to be shown in the next section), and are likely ready for industry deployment 

during the next 2-5 years. 

4 CASE STUDIES 

 

 In this section, we will use a number of examples such as the smart grid and smart 

structures to illustrate the behavior-model-based orchestration in DDDAS-based CIoT 

solutions. The examples included here are only a subset of the capabilities that have been 

demonstrated in the recent past. 

 

(A) Energy related applications  

In a smart grid solution, intelligent utility networks (IUN) provide capabilities for real-time 

prediction of the onset of brown-outs or black-outs, and also provide optimized dynamic load 

management. The real-time instrumentation capability, often referred to as automatic meter 

reading (AMR) or automatic meter infrastructure (AMI), is based on measurements made by 

voltage amplitude phasor measurement unit (PMU) and other IoT sensors dynamically 

integrated with statistical and agent-based models. Dynamic load management within a Smart 

Grid solution activates mitigating actions prior to the onset of a brown-out or black-out to 

ensure differentiated support for critical and high-priority customers from multiple energy-

sources, including renewables - such as wind, solar, and hydro, and energy storage which acts 

as a generation source [Celik 2013, 2015]. This is the improvement based on enterprise storage 

solution from Chen et al., (2016). 

Other scenarios include incorporating weather data and weather prediction models in 

dynamic data driven behavior models of the power-grid to provide continual optimization of 

load redistribution during peak demand period (such as during summer) or restoration of the 

grid infrastructure after a weather induced failure (integrated outage management). Emerging 

scenarios for supporting electric vehicles already present a new demand class and potentially 

a generation source (through the use of the batteries of these vehicles).  Furthermore, demand-



response management can mitigate demand during peak hours through incentives such as 

dynamic pricing plan.   

With such capabilities, the utility companies will be able to provide much better assurance 

of the business outcome for their customers. The bottom line is to leverage the real-time 

visibility (instrumentation) and use DDDAS-based methods in order to build real-time 

behavioral models so that the business can optimize the expected outcome continuously. 

Other Smart Grid related areas such as wind farms pose new challenges and require new 

CIoT capabilities. These CIoT capabilities enable optimized operation to mitigate effects of 

the wake across stacked turbines [Perez 2015]. They can also reduce the wear and tear of 

turbine rotors and provide an adaptive maintenance schedule rather than conducting 

maintenance on all turbines on the same regular schedule [Ding 2006]. This has a similar 

concept to Wang et al. (2016), which has Cloud-based production system with the fusion with 

IoT. Together with the fusion model, it blends Waste Electrical and Electronic Equipment to 

maximize outputs. 

Accurate high resolution weather forecasts are central to predicting potential storm severity 

and its path. IBM Research’s Deep Thunder [Gallagher, 2012] can provide high resolution 

forecasts for a 48-hour horizon for areas (in a given county) that are most likely to have outage 

events (and quantify the uncertainty level for the event to occur). Other examples are cited in 

Section 4(D) below, while additional capabilities for adverse weather prediction are discussed 

in Section 4(C). The ability to estimate the likelihood and severity of damage in different 

regions allows for predictive planning in stationing crews for early repairs. Such predictions 

can provide a basis for planning the deployment of repair crews and trucks in an anticipatory 

mode. Optimizing work orders and repair crews scheduling enables maximizing the business 

outcome in terms of the number of customers that are brought back online at the earliest 

possible opportunity. In addition, such capabilities allow optimized emergency response for 

any ensuing harm and damage to humans, buildings, and other infrastructure.  

 

(B) Structural Health Monitoring, Energy Efficiencies, and Decision Support 

Aerial platforms (both civilian and military, human-operated and UAVs, aerial and space-

based) during flight are subject to dynamic stresses accentuated by turbulence-induced forces. 



Such stresses as well as the aging of materials can result in structural damage, manifested as 

cracks, disbonding, delamination, or waviness. All these conditions can cause disastrous 

results (such as airplane crashing, as indeed happened in the past, in a case of aileron 

detachment). Additional sensor malfunction situations (such as pitot-tubes freezing) also result 

in catastrophic failures. DDDAS-based modeling have shown advanced capabilities: (1) 

detection of the onset of damage (crack creation) [Prudentio et al., 2013; Bazilevs et al. 2012], 

(2) predicting the propagation of the damage and potential impact [Allaire et al., 2014], (3) 

application of component- or system-level models for time dependent control through 

coordination of multiple actuators to mitigate the propagation of the damage [Bazilevs et al., 

2012], (4) wing-level and aerial structure-wide structural health assessment, (5) multi-fidelity 

models dynamically driven by multiple levels of sensors (e.g. piezoelectric, optical, IR, 

ultrasonic) to assess platform health conditions in real-time [Bazilevs et al. 2012; Allaire et 

al., 2014], and (6) cognizant of environment (such as winds and wind-induced turbulence) to 

plan or re-plan in real-time to optimize the flight path and necessary maneuver to fulfill the 

mission. Such a decision support system leverages the accuracy of full-scale models during 

the optimization [Allaire et al., 2014]. It was demonstrated in [Varela 2013, 2014] that 

DDDAS-based methods enable detection and compensation for sensor failures; in this case, 

the output from a continually executing model of flight conditions is compared against the 

actual measurements from the pitot sensor. The model can take over in case of abrupt 

discrepancy with the measurement to allow time to readjust and switch over to other sensor 

modalities.  

 

(C) Atmospheric Contaminant Dispersion Monitoring 

 Adverse atmospheric contaminant conditions, either naturally induced such as volcanic 

eruptions or man-made harmful chemical emissions (accidental, or intentional - such as in 

terrorist attacks), can have significantly disruptive effects. The impact of such events is further 

exacerbated due to the lack of comprehensive models for accurately attributing the origin and 

predicting the subsequent dispersion pattern of the contaminant. The consequence includes 

severe limitation on the effectiveness of the mitigating actions for evacuating humans (and 

animals) from affected areas, plan for decontamination, and any other needed emergency 



response actions. As an example, the April 2010 Eyafjallajokull volcanic eruption caused a 7-

day shutdown of much of northern Europe’s air transportation system and affected many 

millions of passengers with an estimated cost between 1.5 and 2.5 billion of euro [Schmidt et 

al. 2011]. The traditional volcanic ash transport models over-predicted the ash spread in some 

areas and missed other areas where ash was actually dispersed, resulting in engine damages 

for aircraft flew over those regions. DDDAS-based modeling [Patra 2013; Stefanescu 2014], 

which also considered prevalent winds and dynamic incorporation of targeted satellite data (in 

this case used in a play-back fashion, as the referenced scientific work happened sometime 

after the actual event), showed improved accuracy in predicting the volcanic ash dispersion. 

The DDDAS-based modeling also demonstrated that ash presence in certain regions was 

missed due to misinterpretation of satellite images as it was difficult to distinguish between 

the reflections from ash particles and those from water vapor. Other DDDAS-based work 

[Peng et al. 2015, 2016] also provides improved contaminant plume tracking in an urban 

environment (the Manhattan cityscape) under air turbulence conditions from prevalent terrain-

induced winds. DDDAS-based methods were used to control where to send aerial mobile 

sensors, to regions of high-value data sampling (for example higher concentration of 

contaminant), while measuring winds and turbulence at the same time. Similar work on 

pollution transport was conducted by [Akcelik 2004, 2006] in open environments, and by 

[Carmichael 2003; Biswas 2014] on atmospheric pollution over the Pacific Ocean.  

 

 

(D) Adverse Atmospheric Weather and Space Weather 

 Adverse weather such as tornadic activity affects safety of humans and property. In the 

United States, tornadoes cause multimillion dollar damage and loss of human lives each year.  

As an example, US Storm Prediction Center (SPC) reported a total of 1,285 tornado events 

during 2015 with 36 fatalities. Accurate and timely prediction of the onset of tornadic activity 

and of the path and extent of the tornado is of paramount importance to mitigate danger to 

human and animal lives as well as to improve preparedness and effective emergency response 

after tornadic events. Traditional modeling methods have now been replaced with DDDAS-

based modeling and instrumentation methods [Brotzge, 2004; Plale, 2005]. These new 



methods are able to predict tornadic activity indicators (such as the tornadic “hook” which 

often forecasts the onset of tornado) with much improved accuracy [Chang, 2017 b].  

 In the outer space, space-weather affects the drag on satellites and impacts the accuracy 

of GPS.  However, accurate modeling of the interdependency among various space weather 

phenomena in the ionotroposphere layer is very difficult as some aspects of the physics of 

these phenomena are not fully and accurately modeled yet.  Factors in understanding space-

weather include the chemistry, the turbulence, and the thermal conductivity in the 

ionotroposphere.  Among these three components, the thermal conductivity is most difficult 

to model accurately. DDDAS-based methods improved the model accuracy by leveraging the 

actual data to compensate for the model’s deficiency [Ali 2015]. This resulted in more accurate 

modeling of the thermal conductivity component in the ionotropospheric layer, as manifested 

by the more accurate prediction of NO (nitrous oxide), neutral density, photoelectron heating 

efficiency, and the eddy diffusion coefficient.   

 

(E) Software Cybersecurity 

 Opportunities for cyberattacks are increasing during the IoT era as wirelessly 

interconnected computing platforms and devices are proliferating.  End-to-end encryption, due 

to its increased communication bandwidth and power consumption requirements, may be 

practically less applicable in some of the IoT environments. Randomization approaches such 

as instruction randomization, data randomization, and memory randomization also incur high 

overheads. DDDAS-based methods minimize the overhead by conducting the randomization 

adaptively at the application programming and execution environments levels. Through 

continuous monitoring and detection of increased vulnerability, randomized variations of 

sections or components of the software are created – including changing the programming 

language, changing the OS and middleware services, and changing the hardware resources.  It 

was shown in [Hariri et al. 2015] that 4-way randomization guarantees zero probability of 

successful attack even for components with high probability (90% in the test case) of attack.  

 

(F) Intelligent Oil Field 



 The petroleum industry has consistently driven the adoption of advanced modeling and 

instrumentation methods to optimize both upstream (oil/gas exploration) and downstream 

(oil/gas extraction) operations. To develop comprehensive oil/gas reservoir models, it is often 

required to interpolate low spatial resolution (but wide spatial coverage) seismic/sonic 

measurements with high resolution (but small spatial coverage) electrical conductivity (FMI) 

and radiation (gamma-ray, neutron, and proton) measurements and related models.  Starting 

in early 2000s, DDDAS-based methods are used to enhance the modeling and instrumentation 

approaches discussed earlier to achieve improved efficiency in oil/gas discovery and recovery 

[Parashar 2005, 2006]. Similar approaches have also been pursued for intelligent fracking 

methods for exploration and recovery of oil & gas. 

 

(G) Public Health Surveillance 

Syndromic surveillance using inpatient and ambulatory clinical care electronic health 

record (EHR) data as well as other non-traditional data sources is a relatively new practice in 

public health. As an example, the Epi-SPIRE system [Li, 2005] monitored the behavioral 

changes of a population (IBM T. J. Watson Research Center, which consists two sites during 

2003 - Yorktown and Hawthorne, located in the Westchester County, New York) caused by 

the earliest stages of flu outbreak. Examples of such behavior changes include  

 Increased number of people reporting (on a daily basis) that they are not feeling well 

among 400 volunteers  

 increased absenteeism captured in the badge data for employee reporting to work,  

 increased inquiries for medical information captured by the firewall web log,  

 increased phone calls to make doctor appointments captured by the phone log,  

 changes in eating/drinking habits captured by the cafeteria transaction data,  

 increased coughing sound captured by the seminar recordings,  

 increased traffic for leaving the building early captured by the video surveillance, and  

 increased sewage generation as monitored by the facility.   

The alerts generated from these data sources are compared to the insurance claims (as ground 

truth) from the Westchester County. It was demonstrated that the early warnings generated by 

some of the data sources (survey and phone in particular) provides leading indicators (up to 



three days) as compared to those derived from the clinical data sources, in a statistical 

significant way. 

5 SYSTEM IMPLICATIONS FOR FOG COMPUTING DEPLOYMENT 

 

Figure 6: Providing aggregation, cleansing and fusion of Sensor Data closer to the Data Sources facilitates early response to 

critical events. 

 

 CIoT solutions often pose dynamic requirements for processing and analyzing data from 

sensors, derive decisions, and apply control through actuators. Figure 6 shows the value 

(potential business outcome) of the data for a CIoT solution as a function of time. The value 

of data is highest when real-time or near real-time decisions and proactive responses are 

possible.  When multiple data sources are used as dynamic inputs into the behavior models, 

the value could be even higher as additional data can help to make the model more accurate, 

speed-up the model, reduce the uncertainty and contribute to improved accuracy for predicting 

future condition and evolution of the system. The value of these data may monotonically 
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for metering, billing, auditing, and long term trend analysis. Many applications do leverage 

“historical”/archival data in conjunction with those data acquired in real-time. As a result, 

system architectures optimized for CIoT solutions need to accommodate latency requirements 

and prioritize computation and communication resources in order to maximize the value that 

can be derived from the sensor data as well as the long term archival requirements to facilitate 

long term trend analysis. 

 

 
Figure 7: Latency and throughput requirements often drive the need for pushing intelligence to the edge. 
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platforms. This trend suggests that deployment of CIoT solutions in traditional cloud 

(centralized) models is no longer adequate and necessitates the use of the nacent fog (or 

“edge”) computing models. 

Fog computing [Bonomi 2012] is an architecture that uses end-user clients or near-user 

edge of the network devices to carry out a substantial amount of storage, communication, 

control, configuration, measurement and management.  Additional literature on fog computing 

addresses challenges to support such objectives [Cisco, 2015; Zaidi, 2014; Stojmenovic, 

2014]. Compared to the initial notions of cloud computing, fog computing emphasizes  

• proximity to end-users and client objectives,  

• dense geographical distribution and local resource pooling,  

• latency reduction for quality of service (QoS) and edge analytics/stream mining. 

Fog computing seeks to provide superior user experience and overall system redundancy in 

case of failure.  It emphasizes the notions of information processing to generate the knowledge 

nearer the entity that needs it, regardless whether the entity is a human or an engineered device 

(or collections thereof). A CIoT solution, when either latency or throughput is critical (as 

indicated in the upper left, upper right, and lower right quadrants of Fig 7), could substantially 

benefit from exploiting fog computing concepts. It should be noted however that while the 

term fog computing concept was introduced in 2012, the concepts of distributed computing 

and distributed resource management – across a range of platforms, including computing at 

the edges (e.g. mobile devices, personal portable devices, sensors, etc) were ideas articulated 

many years before that [Darema, 1998, 2005], and will be discussed more in the next section.  

Also, to note that in the mid- to late-90s, Grid computing concepts [Foster, et.al. 1999] 

provided the impetus for moving from client-server computing to more general distributed 

computing (or metacomputing – a term coined in 1987 by Larry Smarr [Smarr1987]).  Grid 

computing emphasized the coordination of multiple distributed computation, storage and 

communication resources. It has successfully demonstrated interoperability across multiple 

computational platforms used to support the runtime of a given application, as well as multiple 

applications executing concurrently. It should also be noted that the notion of virtualization, 

emphasized in cloud computing, was never precluded in the Grid concept. And, cloud 

computing has evolved over the years from a homogeneous centralized services concept to a 



more (geographically and otherwise) distributed and heterogeneous collections of platforms, 

with concomitant challenges of interoperability as were present in Grid computing.  It is likely 

that Fog computing (or edge computing) may also evolve towards a hybrid and heterogeneous 

environment similar to cloud computing.  

 In summary, the fusion of the fog computing based deployment of the CIoT systems and 

solutions is likely to be heavily dependent on the latency and bandwidth requirement of the 

systems and solutions, and most likely be a hybrid and heterogeneous environment.   Those 

system components (data acquisition, comprehension, and control actuation) residing outside 

of the lower left quadrants of Fig. 7 will likely leverage the low latency and high bandwidth 

offered by the fog computing.  Those system components require the access of large amount 

of historical data and large amount of computation power (model construction, training and 

planning) is likely to stay in the cloud computing center, resulting a heterogeneous and hybrid 

environment.   

 

5.1 Systems Software and Cyber Infrastructure: Support and Tools  

 There is a rapid convergence between the computational and instrumentation platforms 

for various CIoT solutions. Such integrated platforms are necessary to support DDDAS 

environments [Darema 1998; 2000; 2005; 2007], resulting in new systems software and 

cyberinfrastructure requirements, such as: 

 Application programming models that support both high-end and real-time components 

of the application; 

 Runtime support, which includes embedding the compiler into the runtime, allows 

mapping (and remapping) application components onto heterogeneous computing 

resources in optimized ways based on the architecture and capacity of the underlying 

computation, memory, communication and I/O resources.  This support should span both 

high-end and the real-time environments, and be able to discover and match resources 

depending on the changing workload requirements of the executing application, such as in 

DDDAS-based application models. The software defined computing concept that 

originated from enabling simultaneous agility and optimal resource utilization in cloud 



computing could potentially play an increasingly important role for the runtime support.  

Software Defined Environments [Li, 2014], which include software defined networking, 

storage, and compute, decouple the control and management planes of these resources 

from the data planes so that they are no longer vertically integrated as in traditional 

compute, storage or switch systems and can be deployed anywhere within a computing 

environment. 

 Application composition at runtime that supports dynamic selection of models based on 

(1) data streamed into the executing application, (2) application model interfaces, and (3) 

application knowledge based systems. 

 Application data interfaces, which includes application-measurement interfaces and data 

models. 

 Dynamic application execution support environments: System software is required to 

dynamically select application components and embody algorithms suitable for the 

specific solution approaches, cognizant of the varying underlying resources and 

application requirements. 

 Dynamic computing and resource requirements: CIoT solutions require employing 

heterogeneous platform environments for data-collection, distributed high-performance 

simulations, and pre/post processing of data. Such environments require dynamic 

discovery of computational resources by system software to ensure fault tolerance and 

Quality of Service (QoS) in spite of changing workload conditions. 

6    OUTCOME BASED DISTRIBUTED ORCHESTRATION 

Outcome-based delivery model [Ng, 2013], in contrast to the input-based or output-based 

service delivery models, has generated substantial interests and adoption in multiple industries 

during the past decade, and is playing an increasingly important role in CIoT solutions.    

In a service delivery model, the producers consume the input to produce output and result 

in outcome for the consumer: 



 Inputs:  Include all of the resources (time and materials) used to produce and deliver the 

required output product or services. Examples of inputs include available full-time 

equivalents (FTEs), funds, time, equipment, raw materials, etc. 

 Output:  Include all of the products and services produced from the input.  This could also 

involve business outputs, such as healthcare policy quote generation or enrollment 

processing, and IT outputs, such as test case creation and execution.   

 Outcome: Measurable impacts delivered by providers of products or services that can be 

assessed objectively by services buyers. This could include business outcomes, such as 

improvement in the enrollment rate of a healthcare plan, or IT outcomes, such as reduced 

spending on quality assurance as a percentage of the IT budget. 

Ideally, full provenance should be established so that all required inputs can be traced through 

the outputs and the outcomes. Business models in terms of how to price the products or 

services rendered have evolved based on input, output, outcome, or combinations of the above:  

 Input-based delivery model:  The producer charges the consumers based on the time and 

materials (and margin) needed to produce the products or services. The consumer often 

needs to assume most of the risk for the potential variation of the product or services 

received.   

 Output-based delivery model:  The producer charges the consumer based on the output 

products or services rendered.   In this case, the producer assumes some amount of the risk 

arising from the variation of time and materials needed to develop the product and services, 

while the consumer also assumes certain amount of risk arising from the variation of the 

consequence resulting from the product or services.      

 Outcome-based delivery model: The consumer is charged based on the actual business 

outcome from the products or services received. The producer needs to assume most or 

the entire risk for producing the desired outcome at the consumer.     

There are multiple examples of such evolution. In the internet advertisement industry, there is 

a gradual evolution from pay per impression (prior to 2000), to pay per click (around 2000), 

to pay per action (around 2001), to revenue sharing (from 2001 onwards), and eventually to 

profit sharing (since 2010 in certain circumstances). In the healthcare industry, there is also a 



significant trend in recent years that the healthcare providers are being compensated from 

procedure based to patient health outcome based. 

 Outcome based delivery model has been considered as the most promising delivery model 

to integrate CIoT solutions into various industries. Model-based orchestration in CIoT 

solutions enables these solutions to continuously deliver the desired outcome. The outcome-

based concept can be illustrated using those case studies in Section 4: 

 Smart Grid solution: the business outcome for CIoT-based smart grid solutions refers to 

the cost saving for the customers; reduced maintenance cost for the operators; reduced or 

eliminated brown-out and black-out events; or reduced mean time to restore after a major 

weather event. 

 Intelligent oil field solution: the business outcome refers to the reduced maintenance cost; 

or improved oil production throughput due to reduced down time. 

 Intelligent traffic system: the business outcome refers to the reduced congestion, injuries 

and deaths due to accidents, and improved traffic flow. 

 Software cybersecurity: the business outcome refers to the reduced or eliminated cyber 

perimeter penetration or data loss events. 

 Cognitive syndromic surveillance: the business outcome refers to the reduced mortality 

and healthcare cost due to various infectious diseases. 

 

Outcome-based orchestration of a CIoT solution shown in Fig. 2 requires orchestrating 

information and control flows through interconnected platforms. The fundamental challenge 

for a scalable CIoT solution is to address the centralized nature of orchestration. An outcome-

based distributed orchestration framework, as shown in Fig. 8, is described in this section 

using outbreak risk prediction for Hantavirus Pulmonary Syndrome (HPS) [Glass 2002] as an 

example. HPS is a potentially fatal respiratory disease caused by infection with a rodent-born 

hantavirus. First reported in 1993, the case fatality rate was 50%+ initially and has come down 

during recent years. The risk prediction model used the combination of remotely sensed data 

from satellite and elevation map on the ground to assess the likely population change of the 

rodents due to global vegetation change resulting from global climate change (e.g. El Niño 

followed by La Niña). Within this outcome-based framework, the orchestration is based on 



distributed observation, evaluation, and actuation of the real world. The key pillars that enable 

outcome-based orchestration are progressively represented data and models, as described in 

the following two subsections.   

 

Figure 8: Distributed Outcome-based Orchestration framework for CIoT Solution using HPS outbreak risk prediction as an 

example. 

6.1 Progressive Data Representations 

Progressive 4  data representation is critical to progressive data acquisition, progressive 

transmission, and distributed model orchestration. Progressive representations enable the 

underlying phenomenon to be represented at multiple levels of abstraction (raw data, features, 

concepts), and multiple levels of fidelities, with trade-offs exist between fidelity (or accuracy) 

and data volume at each level.   

 
 
 
 
 
 
 
 
 
 
 
 

4 The term “progressive” is introduced here to denote time-dependent adaptivity in data and models, represented at multiple 

levels of abstraction, multiple levels of fidelity, and multiple modalities   



Two orthogonal dimensions – fidelity and abstraction - exist for generating progressive 

data representations.  Multi-resolution representations, such as those based on discrete wavelet 

transformation (DWT), can be used to provide rough approximations of information at low 

resolutions (low data volumes), with more detailed views at higher resolutions. Most of the 

existing multi-resolution representation usually starts with the data already captured at its full 

resolution with homogeneous spatial and temporal sampling. In this paper, we propose to 

generalize such representations to include non-uniform acquisition, as it may be quite useful 

to selectively acquire higher resolutions only in selected "areas of interest". In contrast, 

multiple abstraction level representations relying on the fact that raw information can be 

processed into alternate formulations such as features and semantics that require lower data 

volumes at the expense of possible lower fidelity. For example, contours can be computed 

from a data array, allowing for very rapid identification of areas with low or high parameter 

values, but with a loss of accuracy. 

6.2 Progressive Models 

Progressive models are designed to enable real-time distributed orchestration of the models. 

Each instance of model executions in this distributed environment provides an estimate of the 

overall model predictions to be generated. In the case of data and measurement platforms, the 

distributed execution of the progressive models enables data acquisition density to be higher 

for regions of higher interests, and transmitted down sooner.  Consequently, progressive model 

executions provide distributed prediction of optimal acquisition and transmission schedule 

within the data and measurement platforms.   Progressive models usually involve the 

generation of coarse representations of the same model. Using the HPS risk prediction as an 

example [Glass, 2002], the linear regression model for predicting the risk of disease occurring 

at location (x,y) and time t is 

 

R(x,y,t) = a1 x1(x,y,t) + a2 x2 (x,y,t)+ a3 x3 (x,y,t) + a4 R(x, y, t-1)      (1) 

where xi(x,y,t) is the reading from the ith remote sensing instrument at location (x,y) and 

time t.  If |a1,a2| >> |a3, a4| then, a coarser representation of the model for R (x,y,t) will be 

 



R*(x,y,t) ~ a1 x1(x,y,t) + a2 x2 (x,y,t)               (2) 

 

In general, the generation of progressively coarser representation of a model can be 

accomplished by analysing the relative contribution of each parameter to the overall model.    

This is similar to query planning issues in cost-based query optimization for object-relational 

databases. However, query planning usually rearrange the execution order so that operations 

achieving maximal filtering will be executed earlier. In contrast, outcome-based execution of 

progressive models will select operations that are most relevant to the final results (outcome) 

to be executed first. 

6.3 Outcome-based Orchestration 

Within the data and measurement platforms, the information will be progressively and 

proactively captured, processed and then transmitted to the modeling and orchestration 

platforms. The orchestration aims at achieving highest model prediction quality and business 

outcome by the modelling and orchestration platform at any given time, hence takes into 

account of the progressive data representation and model execution.  This implies that the end 

results need to be superior at any time to all of the other possible data acquisition alternatives.  

The value of progressive data acquisition lies in the identification of interested regions 

through progressive model processing, which can be executed anywhere, including the data 

and measurement platforms or the control platforms. Distributed processing at the edge of the 

network is necessary since it provides real-time feedback and control of the instruments, which 

is infeasible from a remote datacenter due to potentially long round-trip delay and 

transmission-processing lag.  

Associated with the issue of prediction accuracy is the optimal balance of two-types of 

errors. The first type of errors is often referred to as “false alarms” or “false positives” when 

the low-risk areas are incorrectly identified as high-risk areas. The second type of errors is 

referred as “misses” or “false negatives” when the high-risk areas are identified as low-risk 

areas. In most cases, misses and false alarms cannot be simultaneously reduced [Daubie et al, 

2002; Leonard et al., 2004; Chang, 2014; 2015]. Depending on the application requirements, 



an optimal allocation of misses and false alarms may be derived from model predictions to 

generate a progressive acquisition schedule. 

The concept of progressive transmission may be formally defined as an optimization 

problem. Suppose u(t) is the utility function of the received data until time t. This utility 

function is a measure of the sum of the outbreak likelihood of received image regions until 

time t, with additional weighting factors taking into account population density, age 

distribution, environmental readiness, etc. Progressive transmission should order the regions 

in such a way that u(t) is maximized for any t. This implies small regions with the most 

contribution to the utility will be transmitted first. The intuition is that high-utility areas shall 

receive attention from decision functions as early as possible. Low-utility areas yield in the 

schedule because those areas may have less impact for the decision functions. In the simplest 

case with only one model parameter to acquire, a greedy scheme that orders the most valued 

to the least valued region generates the best schedule based upon the above criterion.  

While discussions thus far only involve simple examples of single parameter acquisition, 

multiple parameters and more than one models with shared parameters may be constantly 

monitored by the CIoT solution. For example, mosquito-born diseases in public health 

surveillance solutions are often characterized by environmental factors like temperature and 

moisture. Depending on particular species of mosquitoes, temperature and moisture thresholds 

may vary. A satellite may be given several approximate models that share some parameters. 

In such case, progressive data acquisition and transmission scheduling become a sophisticated 

multi-parametric optimization problem. A parameter with strong influence on model 

prediction precision may be shared by three models while another parameter with weak 

influence on prediction precision is shared by five models. Both parameters’ data acquisition 

compete for instruments, processing, storage, transmission capacity as well as other resources. 

However, their relative priority is not strict and is likely to vary depending on the acquired 

region.  

 It should be noted that specific behavior models are often difficult to be generalized as 

they are often tightly coupled with the data specific analytic environment. More general levels 

of abstraction of data and models are addressed through DDDAS/Infosymbiotics paradigm 



which provides a clear methodology of the value of dynamic integration of models and data 

in a feedback control loop.  

7 CONCLUSIONS 

The introduction of pervasive and ubiquitous instrumentation leads to unprecedented real-

time visibility in many application areas such as the power grid, traffic, transportation, water, 

and oil & gas areas. Interconnecting and harnessing those distinct natural, engineered, people, 

and business worlds through ubiquitous instrumentation, even though still in its embryonic 

stage, is rapidly progressing and has started demonstrating the potential to engender 

capabilities for an environment that is greener, efficient, safer, and more comfortable.   

 In this paper, we presented an outcome-based framework for orchestrating both 

information and control flows within CIoT systems and solutions based on interconnected 

cognitive models of these environments. In contrast to the traditional prescriptive orchestration 

approach where a detailed script is provided, the proposed approach specifies the desired 

outcome and orchestrates information and control flows, using the behavior model of the CIoT 

system. The orchestration is executed based on progressive data (dynamic data) acquisition 

and representation, and schedules the operations for the CIoT systems and solutions 

progressively using a distributed model. This framework is validated through use cases such 

as load shedding and disaster recovery for smart grid, structural health monitoring for 

intelligent aerial platforms, public health surveillance, and cybersecurity. It has become 

increasingly crucial that cognitive representations of these distinct worlds (a.k.a. models, 

dynamically integrated with instrumentation, such as in DDDAS-based methods) need to be 

created as a pre-requisite for assessing and intelligently managing the complexity, 

maneuvering through uncertain environments and eventually achieving the optimized 

outcomes. We expect the proposed outcome-based framework will contribute to the 

development of emerging services and analytics for Cognitive Internet of Things (CIoT) based 

solutions, as well as serving as the foundation for enterprises using outcome-based business 

models for their products and services. 

 The primary challenges in the next few years are likely to closely track the progress 

made in the cognitive computing area in terms of encoding domain specific knowledge 



in specific knowledge representations, automatic knowledge-based construction 

(AKBC), integrating knowledge driven and data driven approaches together on common 

behavior level models.   Most importantly, the focus is likely to be centered on the linkage 

between the business outcome and the outcome accomplished by the CIoT systems and 

solutions.    
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