3,057 research outputs found

    Identification of cost-effective pavement management systems strategies a reliable tool to enhance pavement management implementations

    Get PDF
    Modeling asset deterioration is a key business process within Transportation Asset Management. Road agencies should budget a large amount of public money to reduce the number of accidents and achieve a high level of service of the road system. Managing and preserving those investments is crucial, even more in the actual panorama of limiting funding. Therefore, roadway agencies have to increase their efforts on monitoring pavement networks and implementing data processing tools to promote cost-effective Pavement Management System (PMS) strategies. A comprehensive PMS database, in fact, ensures reliable decisions based on survey data and sets rules and procedures to analyze data systematically. However, the development of adequate pavement deterioration prediction models has proven to be difficult, because of the high variability and uncertainty in data collection and interpretation, and because of the large quantity of data information from a wide variety of sources to be processed. This research proposes a comprehensive methodology to design and implement pavement management strategies at the network level, based on road agency local conditions. Such methodology includes the identification of suitable indexes for the pavement condition assessment, the design of strategies to collect pavement data for the agency maintenance systems, the development of data quality and data cleansing criteria to support data processing and, at last, the implementation spatial location procedures to integrate pavement data involved in the comprehensive PMS. This work develops network-level pavement deterioration models, and reviews road agency preservation policies, to evaluate the effectiveness of maintenance treatment, which is essential for a cost-effective PMS. It is expected that the resulting methodology and the developed applications, product of this research, will constitute a reliable tool to support agencies in their effort to implement their PMS

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Robust adaptive synchronization of a class of uncertain chaotic systems with unknown time-delay

    Get PDF
    The pavement is a complex structure that is influenced by various environmental and loading conditions. The regular assessment of pavement performance is essential for road network maintenance. International roughness index (IRI) and pavement condition index (PCI) are well-known indices used for smoothness and surface condition assessment, respectively. Machine learning techniques have recently made significant advancements in pavement engineering. This paper presents a novel roughness-distress study using random forest (RF). After determining the PCI and IRI values for the sample units, the PCI prediction process is advanced using RF and random forest trained with a genetic algorithm (RF-GA). The models are validated using correlation coefficient (CC), scatter index (SI), and Willmott’s index of agreement (WI) criteria. For the RF method, the values of the three parameters mentioned were −0.177, 0.296, and 0.281, respectively, whereas in the RF-GA method, −0.031, 0.238, and 0.297 values were obtained for these parameters. This paper aims to fulfill the literature’s identified gaps and help pavement engineers overcome the challenges with the conventional pavement maintenance systems

    14th Conference on DATA ANALYSIS METHODS for Software Systems

    Get PDF
    DAMSS-2023 is the 14th International Conference on Data Analysis Methods for Software Systems, held in Druskininkai, Lithuania. Every year at the same venue and time. The exception was in 2020, when the world was gripped by the Covid-19 pandemic and the movement of people was severely restricted. After a year’s break, the conference was back on track, and the next conference was successful in achieving its primary goal of lively scientific communication. The conference focuses on live interaction among participants. For better efficiency of communication among participants, most of the presentations are poster presentations. This format has proven to be highly effective. However, we have several oral sections, too. The history of the conference dates back to 2009 when 16 papers were presented. It began as a workshop and has evolved into a well-known conference. The idea of such a workshop originated at the Institute of Mathematics and Informatics, now the Institute of Data Science and Digital Technologies of Vilnius University. The Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea, which gained enthusiastic acceptance from both the Lithuanian and international scientific communities. This year’s conference features 84 presentations, with 137 registered participants from 11 countries. The conference serves as a gathering point for researchers from six Lithuanian universities, making it the main annual meeting for Lithuanian computer scientists. The primary aim of the conference is to showcase research conducted at Lithuanian and foreign universities in the fields of data science and software engineering. The annual organization of the conference facilitates the rapid exchange of new ideas within the scientific community. Seven IT companies supported the conference this year, indicating the relevance of the conference topics to the business sector. In addition, the conference is supported by the Lithuanian Research Council and the National Science and Technology Council (Taiwan, R. O. C.). The conference covers a wide range of topics, including Applied Mathematics, Artificial Intelligence, Big Data, Bioinformatics, Blockchain Technologies, Business Rules, Software Engineering, Cybersecurity, Data Science, Deep Learning, High-Performance Computing, Data Visualization, Machine Learning, Medical Informatics, Modelling Educational Data, Ontological Engineering, Optimization, Quantum Computing, Signal Processing. This book provides an overview of all presentations from the DAMSS-2023 conference

    Data-driven algorithms for enhanced transportation infrastructure asset management

    Get PDF
    State highway agencies collect a considerable amount of digital data to document as well as support a variety of decision-making processes. This data is used to develop insights and extract information to enhance serval decision-making systems. However, digital data collected by highway agencies has been consistently underutilized especially in supporting data-driven or evidence-based decision-making systems. This underutilization is a result of a poor established connection between the data collected and its final possible usage. This study analyzes the digital data collected by highway agencies to enhance the reliability of decision-making systems by utilizing Geographic Information Systems (GIS) and data analytics. This study will a) develop an enhanced Life-Cycle Cost Analysis (LCCA) for pavement rehabilitation investment decisions by establishing a novel cost classification system , b) identifying the barriers and challenges faced by agencies to adopt a data-driven pavement performance evaluation process, and c) develop a dynamic pavement delineation algorithm that aggregates the pavement condition data at the distress level. In order to achieve these objectives, the study uses different digital dataset including a) pavement rehabilitation historical bid-data, b) pavement rehabilitation as-built drawings, c) pavement condition data, and d) pavement maintenance and rehabilitation geospatial data. The study developed an enhanced life-cycle cost analysis practice that would significantly improve the economic evaluation accuracy of investment decisions. Additionally, the study identified seven major barriers and challenges that hinder the adoption of a data-driven pavement performance evaluation. Finally, the study developed and automated a pavement delineation algorithm using Python programming language. This study is expected help highway agencies utilize their historical digital datasets to support a variety of decision-making systems. Furthermore, the study paves the way to adopting and implementing data-driven and evidence based decision-making processes

    Machine learning algorithms for monitoring pavement performance

    Get PDF
    ABSTRACT: This work introduces the need to develop competitive, low-cost and applicable technologies to real roads to detect the asphalt condition by means of Machine Learning (ML) algorithms. Specifically, the most recent studies are described according to the data collection methods: images, ground penetrating radar (GPR), laser and optic fiber. The main models that are presented for such state-of-the-art studies are Support Vector Machine, Random Forest, NaĂŻve Bayes, Artificial neural networks or Convolutional Neural Networks. For these analyses, the methodology, type of problem, data source, computational resources, discussion and future research are highlighted. Open data sources, programming frameworks, model comparisons and data collection technologies are illustrated to allow the research community to initiate future investigation. There is indeed research on ML-based pavement evaluation but there is not a widely used applicability by pavement management entities yet, so it is mandatory to work on the refinement of models and data collection methods

    AI-based framework for automatically extracting high-low features from NDS data to understand driver behavior

    Get PDF
    Our ability to detect and characterize unsafe driving behaviors in naturalistic driving environments and associate them with road crashes will be a significant step toward developing effective crash countermeasures. Due to some limitations, researchers have not yet fully achieved the stated goal of characterizing unsafe driving behaviors. These limitations include, but are not limited to, the high cost of data collection and the manual processes required to extract information from NDS data. In light of this limitations, the primary objective of this study is to develop an artificial intelligence (AI) framework for automatically extracting high-low features from the NDS dataset to explain driver behavior using a low-cost data collection method. The author proposed three novel objectives for achieving the study's objective in light of the identified research gaps. Initially, the study develops a low-cost data acquisition system for gathering data on naturalistic driving. Second, the study develops a framework that automatically extracts high- to low-level features, such as vehicle density, turning movements, and lane changes, from the data collected by the developed data acquisition system. Thirdly, the study extracted information from the NDS data to gain a better understanding of people's car-following behavior and other driving behaviors in order to develop countermeasures for traffic safety through data collection and analysis. The first objective of this study is to develop a multifunctional smartphone application for collecting NDS data. Three major modules comprised the designed app: a front-end user interface module, a sensor module, and a backend module. The front-end, which is also the application's user interface, was created to provide a streamlined view that exposed the application's key features via a tab bar controller. This allows us to compartmentalize the application's critical components into separate views. The backend module provides computational resources that can be used to accelerate front-end query responses. Google Firebase powered the backend of the developed application. The sensor modules included CoreMotion, CoreLocation, and AVKit. CoreMotion collects motion and environmental data from the onboard hardware of iOS devices, including accelerometers, gyroscopes, pedometers, magnetometers, and barometers. In contrast, CoreLocation determines the altitude, orientation, and geographical location of a device, as well as its position relative to an adjacent iBeacon device. The AVKit finally provides a high-level interface for video content playback. To achieve objective two, we formulated the problem as both a classification and time-series segmentation problem. This is due to the fact that the majority of existing driver maneuver detection methods formulate the problem as a pure classification problem, assuming a discretized input signal with known start and end locations for each event or segment. In practice, however, vehicle telemetry data used for detecting driver maneuvers are continuous; thus, a fully automated driver maneuver detection system should incorporate solutions for both time series segmentation and classification. The five stages of our proposed methodology are as follows: 1) data preprocessing, 2) segmentation of events, 3) machine learning classification, 4) heuristics classification, and 5) frame-by-frame video annotation. The result of the study indicates that the gyroscope reading is an exceptional parameter for extracting driving events, as its accuracy was consistent across all four models developed. The study reveals that the Energy Maximization Algorithm's accuracy ranges from 56.80 percent (left lane change) to 85.20 percent (right lane change) (lane-keeping) All four models developed had comparable accuracies to studies that used similar models. The 1D-CNN model had the highest accuracy (98.99 percent), followed by the LSTM model (97.75 percent), the RF model (97.71 percent), and the SVM model (97.65 percent). To serve as a ground truth, continuous signal data was annotated. In addition, the proposed method outperformed the fixed time window approach. The study analyzed the overall pipeline's accuracy by penalizing the F1 scores of the ML models with the EMA's duration score. The pipeline's accuracy ranged between 56.8 percent and 85.0 percent overall. The ultimate goal of this study was to extract variables from naturalistic driving videos that would facilitate an understanding of driver behavior in a naturalistic driving environment. To achieve this objective, three sub-goals were established. First, we developed a framework for extracting features pertinent to comprehending the behavior of natural-environment drivers. Using the extracted features, we then analyzed the car-following behaviors of various demographic groups. Thirdly, using a machine learning algorithm, we modeled the acceleration of both the ego-vehicle and the leading vehicle. Younger drivers are more likely to be aggressive, according to the findings of this study. In addition, the study revealed that drivers tend to accelerate when the distance between them and the vehicle in front of them is substantial. Lastly, compared to younger drivers, elderly motorists maintain a significantly larger following distance. This study's results have numerous safety implications. First, the analysis of the driving behavior of different demographic groups will enable safety engineers to develop the most effective crash countermeasures by enhancing their understanding of the driving styles of different demographic groups and the causes of collisions. Second, the models developed to predict the acceleration of both the ego-vehicle and the leading vehicle will provide enough information to explain the behavior of the ego-driver.Includes bibliographical references
    • 

    corecore