414 research outputs found

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Quantitative Measure to Differentiate Wicket Spike from Interictal Epileptiform Discharges

    Get PDF
    A number of benign EEG patterns are often misinterpreted as interictal epileptiform discharges (IEDs) because of their epileptiform appearances, one of them is wicket spike. Differentiating wicket spike from IEDs may help in preventing epilepsy misdiagnosis. The temporal location of IEDs and wicket spike were chosen from 143 EEG recordings. Amplitude, duration and angles were measured from the wave triangles and were used as the variables. In this study, linear discriminant analysis is used to create the formula to differentiate wicket spike from IEDs consisting spike and sharp waves. We obtained a formula with excellent accuracy. This study emphasizes the need for objective criteria to distinguish wicket spike from IEDs to avoid misreading of the EEG and misdiagnosis of epilepsy

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syvĂ€oppimisella lĂ€hestymistavalla. TiivistelmĂ€. Epilepsia on yleisin aivosairaus, joka Maailman terveysjĂ€rjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikĂ€ on virhealtista ja aikaa vievÀÀ. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vĂ€hentÀÀ diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmĂ€t tukeutuvat pÀÀasiassa piirteisiin, jotka asiantuntijat ovat mÀÀritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta mÀÀrĂ€stĂ€ EEG-dataa. LisĂ€ksi, EEG on epĂ€stationÀÀrinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten vĂ€lillĂ€ ja EEG-data sisĂ€ltÀÀ aina useita kohinatyyppejĂ€, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. NĂ€ihin haasteisiin vastaamiseksi tĂ€ssĂ€ diplomityössĂ€ tarkastellaan soveltuvatko syvĂ€oppivat menetelmĂ€t epilepsian havaitsemiseen EEG-tallenteista. Aineistona kĂ€ytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). TĂ€mĂ€n työn tutkimus sisĂ€ltÀÀ kolme koeryhmÀÀ, jotka eroavat toisistaan esikĂ€sittelyvaiheiden osalta: aikasarja-EEG-data esikĂ€siteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja nĂ€in esikĂ€sitelty signaali segmentoitiin epookkeihin. Kukin koeryhmĂ€ sisĂ€ltÀÀ 3–4 koetta, jotka eroavat menetelmiltÀÀn ja tavoitteiltaan. Kussakin niistĂ€ epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. TĂ€ssĂ€ tutkimuksessa tutkittiin ja verrattiin keskenÀÀn EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriĂ€. NĂ€in saatuja aika- ja taajuusalueen signaaleja kĂ€ytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tĂ€llöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstĂ€ riippuvaisella EEG-datalla. VGG yhdessĂ€ amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstĂ€ riippumattoman luokittelijan opettamiseksi

    Musical hallucinations and their relation with epilepsy

    Get PDF
    Musical hallucinations are poorly understood phenomena. Their relation with epilepsy was first described over a century ago, but never systematically explored. We, therefore, reviewed the literature, and assessed all descriptions of musical hallucinations attributed to epileptic activity. Our search yielded 191 articles, which together describe 983 unique patients, with 24 detailed descriptions of musical hallucinations related to epilepsy. We also describe six of our own patients. Based on the phenomenological descriptions and neurophysiological data, we distinguish four subgroups of epilepsy-related musical hallucination, comprising auras/ictal, inter-ictal and post-ictal phenomena, and phenomena related to brain stimulation. The case descriptions suggest that musical hallucinations in epilepsy can be conceptualised as lying on a continuum with other auditory hallucinations, including verbal auditory hallucinations, and—notably—tinnitus. To account for the underlying mechanism we propose a Bayesian model involving top-down and bottom-up prediction errors within the auditory network that incorporates findings from EEG and MEG studies. An analysis of phenomenological characteristics, pharmacological triggers, and treatment effects suggests wider ramifications for understanding musical hallucinations. We, therefore, conclude that musical hallucinations in epilepsy open a window to understanding these phenomena in a variety of conditions.Stress and Psychopatholog

    Noncanonical spike-related BOLD responses in focal epilepsy

    Get PDF
    Till now, most studies of the Blood Oxygen Level-Dependent (BOLD) response to interictal epileptic discharges (IED) have assumed that its time course matches closely to that of brief physiological stimuli, commonly called the canonical event-related haemodynamic response function (canonical HRF). Analyses based on that assumption have produced significant response patterns that are generally concordant with prior electroclinical data. In this work, we used a more flexible model of the event-related response, a Fourier basis set, to investigate the presence of other responses in relation to individual IED in 30 experiments in patients with focal epilepsy. We found significant responses that had a noncanonical time course in 37% of cases, compared with 40% for the conventional, canonical HRF-based approach. In two cases, the Fourier analysis suggested activations where the conventional model did not. The noncanonical activations were almost always remote from the presumed generator of epileptiform activity. In the majority of cases with noncanonical responses, the noncanonical responses in single-voxel clusters were suggestive of artifacts. We did not find evidence for IED-related noncanonical HRFs arising from areas of pathology, suggesting that the BOLD response to IED is primarily canonical. Noncanonical responses may represent a number of phenomena, including artefacts and propagated epileptiform activity

    Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG

    Get PDF
    Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up

    Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients

    Get PDF
    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients
    • 

    corecore