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Abstract

A number of benign EEG patterns are often misinterpreted as interictal epileptiform discharges (IEDs)
because of their epileptiform appearances, one of them is wicket spike. Differentiating wicket spike from IEDs
may help in preventing epilepsy misdiagnosis. The temporal location of IEDs and wicket spike were chosen
from 143 EEG recordings. Amplitude, duration and angles were measured from the wave triangles and were
used as the variables. In this study, linear discriminant analysis is used to create the formula to differentiate
wicket spike from IEDs consisting spike and sharp waves. We obtained a formula with excellent accuracy. This
study emphasizes the need for objective criteria to distinguish wicket spike from IEDs to avoid misreading of
the EEG and misdiagnosis of epilepsy.
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1. INTRODUCTION

Scalp electroencephalography (EEG) is a recording technique for the spontaneous electrical activity of the
brain taken from the scalp, which is then correlated with to the underlying brain function [1]. Electroen-
cephalography (EEG) is the most frequently used test for epilepsy patients [2], [3]. This technique can be
used to diagnose epilepsy and determine the seizure disorder type and its place of origin [3].

Interictal Epileptiform Discharges (IEDs) has become the hallmark for epilepsy, with the ability to distinctly
identify cortical hyperexcitability and hypersynchrony, which are present in the interictal state [1], [4]. One
should be aware that in the evaluation of abnormalities in the EEG, many EEG transients that morphologically
resemble epileptiform discharges and that need to be distinguished from diagnostically crucial epileptiform
abnormalities to avoid overdiagnosis or misdiagnosis. These include benign epileptiform variants that must
be recognized. Although morphologically similar, they are non-epileptogenic with no established relationship
with the process responsible for generating epileptic seizures [1].

Misdiagnosis of epilepsy is relatively common. The main occurrence of misdiagnosis is the overinterpre-
tation of normal EEG patterns as epileptiform [5]. There is enough evidence showing misinterpretation of
benign EEG discharges, such as wicket spikes, which may result in misdiagnosis of epilepsy [6]. About 54%
of wicket rhythms were incorrectly interpreted as an epileptiform activity. Whereas interobserver reliability
is high in trained individuals, it is probably much less so in the real world, and EEG interpretation errors are
not uncommon [4].

Some algorithms created from mathematical design have found, automated detection of interictal spikes
with a positive predictive value of 92% and a sensitivity of 82% and different artifacts in the scalp EEG using
Walsh- transformed EEG signals [7], [8]. Seizure prediction also has been designed by using an automatic
Artificial Neural Network-Aided Diagnosis (ANNAD) system based on mathematical study for initial scalp
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EEG screening to establish whether a given subject is epileptic or not [9]. The mathematical design of
orthogonal operators based on the Walsh transform has also been made to detect the onset of epileptic
seizures in intracranial EEG recordings [10]. Puspita et al. (2017a) propose two models to classify IEDS as
spikes and sharp waves using the Bayesian approach based on the Walsh transformation profiles developed in
Adjouadi et al. (2004, 2005) and Tito et al. (2007). The identification of the two IEDs using Backpropagation
Neural Network based on the frequency and statistical features with different baselines on the upslope and
downslope of IEDs is also presented by Puspita et al. (2017c). Similar to Puspita et al. (2017c), Puspita et al.
(2017b) use frequency features with the same baseline for the upslope and downslope of the waves to identify
spikes, sharp and wicket spikes using Backpropagation Neural Network. But so far, there are no mathematics
formulas that were designed to differentiate interictal discharges and variants. The aim of our study is to
differentiate wicket from IEDs using simple mathematics formulas for quantitative pattern recognition. This
study uses the feature extraction simulation in Puspita et al. (2017b, 2017c) to measure the variables of the
formula, namely amplitude, duration and angles.

This article is organized as follows. The methods for patient selection and data acquisition as well as
the statistical analysis, are proposed in Section 2. Section 3 presents the results. The discussion is given in
Section 4. Finally, Section 5 gives the conclusions.

2. MATERIAL AND METHODS
2.1. Patient Selection and Data Acquisition

We retrospectively analyzed EEG’s Report of patients done in the EEG laboratory at Hasan Sadikin Hospital
Bandung Indonesia, between July 2010 and June 2014 by using one Vyasis NicoletOne V32 EEG machine.
All reports which contain IEDs in the form of spike and sharp waves and normal variant wicket spikes were
retrieved and reanalyzed. Out of 1358 EEG records of adult patients, 604 showed IEDs and wicket spikes.
Only EEGs of patients aged 30 years and above with temporal location of spikes and sharp waves, and wicket
spikes without interfering artefacts on the particular waves, were included in this study.

IEDs should meet at least the following criteria [1], [16], [17]:
1) They should be paroxysmal.
2) They have to include an abrupt change in polarity occurring over several milliseconds which results

in the sharp contour or “spikiness” of IED.
3) The duration of each transient should be less than 200 milliseconds. Spikes have a duration of less

than 70 milliseconds, and sharp waves have a duration between 70 and 200 milliseconds.
4) The discharge should have a physiological field. IEDs are of negative polarity at the scalp, and the

majority of IEDs are followed by a slow wave in the range of 2 to 4 Hz.
Wicket spikes are monophasic arciform discharges that appearing as single events or as brief runs at 6–11

Hz and recorded over the temporal head regions. Further they are characterized as unilateral or independently
bilateral surface negative signals of 60–210 mV amplitude [6].

One hundred and forty-three EEGs were eligible for this study. However, only a few wicket spikes were
found, thus all wicket spikes will be used in this study. We used 143 wicket spike data, 155 spike data, and
242 sharp data. Referential to average montage was used to choose the highest peak. The data were then
converted to EEG Digital Format (EDF) files within the EEG machine itself, and then to American Standard
Code for Infromation Intrechange (ASCII) files using Polyman Software. Amplitude (A), duration (T , ∆T1,
and ∆T2) and angles (α and β) were measured from the wave triangles, as proposed in Puspita et al. (2017c),
seen in Figure 1 and were taken as variables.

Two stages of analysis were performed, first to create the formula and second to see the goodness of the
model based on the performance measures. Therefore, the collected data from each group were divided into
training datasets (80%) and testing datasets (the remaining 20%).

2.2. Statistical Analysis
R software was used for all statistical analyses. Spearman correlation was used to measure the strength

of the relationship between two variables. Further, Saphiro-Wilk normality test was performed to see the
distribution of each variable in each group. Linear discriminant analysis was performed to create the formula
for differentiating spike, sharp and wicket spike. Furthermore, we can compute the mean value of the
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Figure 1: Illustration of variables measurement with a baseline.

discriminant function for each group in the training datasets, which is denoted by µi, for i = 1, 2, 3 represent
spike, sharp, and wicket spike, respectively. This mean values are needed to calculate the cut-off scores.
Cut-off score is the mean of the group centroid to classify the testing datasets into groups. The optimal
cut-off score between groups 1 and 2 if the group sizes are equal is as follows:

CSopt =
N1Z2 +N2Z1

N1 +N2
, (1)

where N1, N2 are sizes of group 1 and 2, respectively, and Z1, Z2 are centroids of group 1 and 2, respectively
[14]. In this case, the centroid is defined by µj , for a group j. Let f(X) be the linear discrimiant function
defined as follows:

f(X) = c0 + c1X1 + c2X2 + ...+ cnXn (2)

where X = (X1, X2, ..., Xn) is independent or predictor variable and ci, for i = 0, 1, 2..., n, is the dis-
criminant coefficient for predictor variable, with n denotes the number of predictor variables [15]. If the
discriminant function value, f(X), is bigger than cut-off score, CSopt, then the corresponding data is classified
as group 1 and if it is less than cut-off score, then the corresponding data is classified as group 2 [15].

3. RESULTS
In this study, we require datasets with equal numbers of spike, sharp, and wicket spike waves. Thus, the

spike and wicket spike data will be taken randomly until the number of spike and wicket spike data equal
to sharp data. Figure 2 shows the correlation coefficient of all variables for each group using Spearman
correlation. It can be seen that there are variables that give a high correlation coefficient value in one group,
but not in the other group, such as the relationship between amplitude and α angle in the spike group.
Therefore, all waves’ variables will be used in this study.

The Saphiro-Wilks analysis showed a not normal distribution for all waves’ variables because of the
p− value < 0.05, as presented in Table 1. Thus, we transformed the value of all waves’ variables using log-
transform based on the skewness coefficient value, where a negative value means the distribution is negatively
skewed and a positive value means the distribution is positively skewed. On the other hand, transformed data
may also improve the classification accuracy. The Saphiro-Wilk normality test for transformed data is shown
in Table 2. The variables that are still not normal do not significantly affect the resulting formula.

We divided the transformed data into 582 of training data to create the formula that can distinguish spike,
sharp, and wicket spike waves, and 144 of testing data to validate the formula, randomly. Then, we applied
the linear discriminant analysis method. To evaluate the performance of the resulting formula, accuracy
was considered. We performed this procedure with ten repetitions to see the consistency of accuracy of the
resulting formula. The accuracy for ten repetitions are shown in Table 3. The accuracy ranged between 91
and 97%.
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Figure 2: Spearman correlation of variable of (a) spike wave; (b) sharp wave; and (c) wicket spike wave.
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Table 1: Saphiro-Wilk Normality Test and Skewness Coefficient.

Type Wave Variable Skewness p-value Distribution
Spike ∆T1 0.046 9.413 × 10−4 Not normal

∆T2 0.413 7.973 × 10−4 Not normal
Duration (T ) -0.345 4.58 × 10−5 Not normal
Amplitude (A) 2.043 3.142 × 10−16 Not normal
α angle -0.289 9.234 × 10−6 Not normal
β angle -0.570 3.966 × 10−4 Not normal

Sharp ∆T1 0.614 6.136 × 10−9 Not normal
∆T2 0.954 2.663 × 10−8 Not normal
Duration (T ) 0.995 2.17 × 10−10 Not normal
Amplitude (A) 2.430 < 2.2 × 10−16 Not normal
α angle -0.352 5.843 × 10−5 Not normal
β angle -0.475 5.324 × 10−3 Not normal

Wicket spike ∆T1 0.267 1.905 × 10−2 Not normal
∆T2 0.542 3.607 × 10−5 Not normal
Duration (T ) 0.788 2.667 × 10−9 Not normal
Amplitude (A) 1.584 2.278 × 10−13 Not normal
α angle -0.0170 3.845 × 10−2 Not normal
β angle -0.304 1.325 × 10−2 Not normal

Table 2: Saphiro-Wilk Normality Test of Transformed Data.

Type Wave Variable p-value Distribution
Spike ∆T1 9.553 × 10−6 Not normal

∆T2 1.085 × 10−5 Not normal
Duration (T ) < 2.2 × 10−16 Not normal
Amplitude (A) 2.642 × 10−5 Not normal
α angle 6.301 × 10−9 Not normal
β angle 4.665 × 10−10 Not normal

Sharp ∆T1 9.958 × 10−10 Not normal
∆T2 0.15 Normal
Duration (T ) 7.431 × 10−7 Not normal
Amplitude (A) 3.958 × 10−5 Not normal
α angle 9.612 × 10−8 Not normal
β angle 3.315 × 10−9 Not normal

Wicket spike ∆T1 0.010 Not normal
∆T2 0.052 Normal
Duration (T ) 1.754 × 10−7 Not normal
Amplitude (A) 1.204 × 10−8 Not normal
α angle 2.224 × 10−10 Not normal
β angle 2.346 × 10−10 Not normal
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Table 3: Accuracy.

Repetition Accuracy
1 91.67%
2 97.22%
3 95.14%
4 93.06%
5 97.22%
6 95.83%
7 95.14%
8 95.83%
9 94.44%

10 94.44%

Table 4: Canonical Linear Discriminant Function Coefficients.

Variable LD 1 LD 2
∆T1 13.031 -12.062
∆T2 13.920 -0.844
T 5.178 2.763
Amplitude (A) -23.607 20.588
α angle -8.787 11.439
β angle -7.891 3.982
Proportion of trace 0.940 0.060
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Figure 4: Histogram of (a) the first discriminant function’s values (LD 1); (b) the second discriminant function’s values
(LD 2).
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We choose the best formula based on the highest accuracy in Table 3. Therefore, the variable coefficient
of linear discriminant function can be seen in Table 4. The trace proportion value represents the percentage
separation achieved by each linear discriminant function. Thus, the first linear discriminant function (LD
1) can be used to achieve a good separation of the three groups. In addition, the histogram in Figure 4
shows that the wicket spike group is well separated from the IEDs group (spike and sharp) by the first linear
discriminant function. Therefore, we obtain a formula to differentiate spike, sharp and wicket spike waves
as follows

f(X∗) = 13.031∆T1 + 13.920∆T2 + 5.178T − 23.607A− 8.787α− 7.891β, (3)

where X∗ = (∆T ∗
1 ,∆T

∗
2 , T

∗, A∗, α∗, β∗) is a wave profile data. We also obtain the mean value of spike,
sharp, and wicket spike based on the value of formula (3) to calculate the cut-off scores, with µ1 = −3.522,
µ2 = −1.008, and µ3 = 4.530. Thus, the following cut-off scores are obtained,

CS1 =
µ1 + µ2

2
= −2.265

CS2 =
µ2 + µ3

2
= 1.761.

where the three groups have the same number of data. The cut-off score to distinguish spike and sharp waves
is CS1, where if f(X∗) ≤ CS1 then X∗ is classified as spike, otherwise as sharp. Meanwhile, CS2 is used
as cut-off score to differentiate sharp from wicket spike, where f(X∗) ≤ CS2 then X∗ is classified as sharp,
otherwise as wicket spike. Therefore, we have the classification rules determined by the two cut-off scores
are as follows:
• if f(X∗) ≤ CS1, then the wave with profile X∗ will be considered as spike;
• if CS1 < f(X∗) ≤ CS2 then it will be considered as sharp; and
• if f(X∗) > CS2 then it will be considered as wicket spike.

4. DISCUSSION
An EEG interpreter must have clear criteria for distinguishing relevant epileptiform discharges from sharply

contoured background activity or benign variants. But wicket spikes still present a diagnostic challenge to
nonepileptologists [1], [5]. The definition of spikes and sharp waves from the International Federation of
Societies of clinical Neurophysiology is in fact, purely a morphological description of waveforms [16].
Differentiating normal variants from meaningful spikes and sharp waves can, at times, be challenging,
applicable rules have been described. Unfortunately, they are only well known by EEG and epilepsy specialists,
and in practices, most EEGs are read by general neurologists [5].

5. CONCLUSION
We have successfully constructed simple and applicable formula that can differentiate wicket spike from

IEDs consisting of spikes and sharp waves with good accuracy. Linear discriminant analysis is applied to
construct this formula using a wave variable consisting of amplitude, duration, and angles formed from the
wave triangle based on a selected baseline. In this study, variable data transformation is needed to improve
the classification accuracy of the resulting formula.
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