42 research outputs found

    Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver fibrosis progression is commonly found in patients with CHB. Liver biopsy is a gold standard for identifying the extent of liver fibrosis, but has many draw-backs. It is essential to construct a noninvasive model to predict the levels of risk for liver fibrosis. It would provide very useful information to help reduce the number of liver biopsies of CHB patients.</p> <p>Methods</p> <p>339 chronic hepatitis B patients with HBsAg-positive were investigated retrospectively, and divided at random into 2 subsets with twice as many patients in the training set as in the validation set; 116 additional patients were consequently enrolled in the study as the testing set. A three-layer artificial neural network was developed using a Bayesian learning algorithm. Sensitivity and ROC analysis were performed to explain the importance of input variables and the performance of the neural network.</p> <p>Results</p> <p>There were 329 patients without significant fibrosis and 126 with significant fibrosis in the study. All markers except gender, HB, ALP and TP were found to be statistically significant factors associated with significant fibrosis. The sensitivity analysis showed that the most important factors in the predictive model were age, AST, platelet, and GGT, and the influence on the output variable among coal miners were 22.3-24.6%. The AUROC in 3 sets was 0.883, 0.884, and 0.920. In the testing set, for a decision threshold of 0.33, sensitivity and negative predictive values were 100% and all CHB patients with significant fibrosis would be identified.</p> <p>Conclusions</p> <p>The artificial neural network model based on routine and serum markers would predict the risk for liver fibrosis with a high accuracy. 47.4% of CHB patients at a decision threshold of 0.33 would be free of liver biopsy and wouldn't be missed.</p

    How to Combine Variational Bayesian Networks in Federated Learning

    Full text link
    Federated Learning enables multiple data centers to train a central model collaboratively without exposing any confidential data. Even though deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications. Different from deterministic models, probabilistic models such as Bayesian neural networks are relatively well-calibrated and able to quantify uncertainty alongside their competitive prediction accuracy. Both of the approaches appear in the federated learning framework; however, the aggregation scheme of deterministic models cannot be directly applied to probabilistic models since weights correspond to distributions instead of point estimates. In this work, we study the effects of various aggregation schemes for variational Bayesian neural networks. With empirical results on three image classification datasets, we observe that the degree of spread for an aggregated distribution is a significant factor in the learning process. Hence, we present an investigation on the question of how to combine variational Bayesian networks in federated learning, while providing benchmarks for different aggregation settings

    Identification and classification of high risk groups for Coal Workers' Pneumoconiosis using an artificial neural network based on occupational histories: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coal workers' pneumoconiosis (CWP) is a preventable, but not fully curable occupational lung disease. More and more coal miners are likely to be at risk of developing CWP owing to an increase in coal production and utilization, especially in developing countries. Coal miners with different occupational categories and durations of dust exposure may be at different levels of risk for CWP. It is necessary to identify and classify different levels of risk for CWP in coal miners with different work histories. In this way, we can recommend different intervals for medical examinations according to different levels of risk for CWP. Our findings may provide a basis for further emending the measures of CWP prevention and control.</p> <p>Methods</p> <p>The study was performed using longitudinal retrospective data in the Tiefa Colliery in China. A three-layer artificial neural network with 6 input variables, 15 neurons in the hidden layer, and 1 output neuron was developed in conjunction with coal miners' occupational exposure data. Sensitivity and ROC analyses were adapted to explain the importance of input variables and the performance of the neural network. The occupational characteristics and the probability values predicted were used to categorize coal miners for their levels of risk for CWP.</p> <p>Results</p> <p>The sensitivity analysis showed that influence of the duration of dust exposure and occupational category on CWP was 65% and 67%, respectively. The area under the ROC in 3 sets was 0.981, 0.969, and 0.992. There were 7959 coal miners with a probability value < 0.001. The average duration of dust exposure was 15.35 years. The average duration of ex-dust exposure was 0.69 years. Of the coal miners, 79.27% worked in helping and mining. Most of the coal miners were born after 1950 and were first exposed to dust after 1970. One hundred forty-four coal miners had a probability value ≥0.1. The average durations of dust exposure and ex-dust exposure were 25.70 and 16.30 years, respectively. Most of the coal miners were born before 1950 and began to be exposed to dust before 1980. Of the coal miners, 90.28% worked in tunneling.</p> <p>Conclusion</p> <p>The duration of dust exposure and occupational category were the two most important factors for CWP. Coal miners at different levels of risk for CWP could be classified by the three-layer neural network analysis based on occupational history.</p

    Act as You Learn: Adaptive Decision-Making in Non-Stationary Markov Decision Processes

    Full text link
    A fundamental (and largely open) challenge in sequential decision-making is dealing with non-stationary environments, where exogenous environmental conditions change over time. Such problems are traditionally modeled as non-stationary Markov decision processes (NSMDP). However, existing approaches for decision-making in NSMDPs have two major shortcomings: first, they assume that the updated environmental dynamics at the current time are known (although future dynamics can change); and second, planning is largely pessimistic, i.e., the agent acts ``safely'' to account for the non-stationary evolution of the environment. We argue that both these assumptions are invalid in practice -- updated environmental conditions are rarely known, and as the agent interacts with the environment, it can learn about the updated dynamics and avoid being pessimistic, at least in states whose dynamics it is confident about. We present a heuristic search algorithm called \textit{Adaptive Monte Carlo Tree Search (ADA-MCTS)} that addresses these challenges. We show that the agent can learn the updated dynamics of the environment over time and then act as it learns, i.e., if the agent is in a region of the state space about which it has updated knowledge, it can avoid being pessimistic. To quantify ``updated knowledge,'' we disintegrate the aleatoric and epistemic uncertainty in the agent's updated belief and show how the agent can use these estimates for decision-making. We compare the proposed approach with the multiple state-of-the-art approaches in decision-making across multiple well-established open-source problems and empirically show that our approach is faster and highly adaptive without sacrificing safety.Comment: Accepted for publication at the International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 202

    Bayesian neural networks for bridge integrity assessment

    Get PDF
    In recent years, neural network models have been widely used in the Civil Engineering field. Interesting enhancements may be obtained by re-examining this model from the Bayesian probability logic viewpoint. Using this approach, it will be shown that the conventional regularized learning approach can be derived as a particular approximation of the Bayesian framework. Network training is only a first level where Bayesian inference can be applied to neural networks. It can also be utilized in another three levels in a hierarchical fashion: for the optimization of the regularization terms, for data-based model selection, and to evaluate the relative importance of different inputs. In this paper, after a historical overview of the probability logic approach and its application in the field of neural network models, the existing literature is revisited and reorganized according to the enunciated four levels. Then, this framework is applied to develop a two-step strategy for the assessment of the integrity of a long-suspension bridge under ambient vibrations. In the first step of the proposed strategy, the occurrence of damage is detected and the damaged portion of the bridge is identified. In the second step, the specific damaged element is recognized and the intensity of damage is evaluated. The Bayesian framework is applied in both steps and the improvements in the results are discussed
    corecore