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S U M M A R Y
We present a neural network approach to invert surface wave data for a global model of crustal
thickness with corresponding uncertainties. We model the a posteriori probability distribution
of Moho depth as a mixture of Gaussians and let the various parameters of the mixture model
be given by the outputs of a conventional neural network. We show how such a network can be
trained on a set of random samples to give a continuous approximation to the inverse relation
in a compact and computationally efficient form. The trained networks are applied to real
data consisting of fundamental mode Love and Rayleigh phase and group velocity maps. For
each inversion, performed on a 2◦ × 2◦ grid globally, we obtain the a posteriori probability
distribution of Moho depth. From this distribution any desired statistic such as mean and
variance can be computed. The obtained results are compared with current knowledge of crustal
structure. Generally our results are in good agreement with other crustal models. However in
certain regions such as central Africa and the backarc of the Rocky Mountains we observe a
thinner crust than the other models propose. We also see evidence for thickening of oceanic
crust with increasing age. In applications, characterized by repeated inversion of similar data,
the neural network approach proves to be very efficient. In particular, the speed of the individual
inversions and the possibility of modelling the whole a posteriori probability distribution of
the model parameters make neural networks a promising tool in seismic tomography.

Key words: crustal structure, inversion, Moho discontinuity, surface waves, tomography.

1 I N T RO D U C T I O N

Crustal structure is an important global characteristic, which varies

greatly over small length scales and has significant effects on fun-

damental mode surface waves. In surface wave tomography it is,

therefore, common practice to remove the crustal contributions to

surface wave measurements by applying crustal corrections. The

computation of crustal corrections is still an issue of ongoing re-

search and is problematic as outlined by Zhou et al. (2005).

Whatever the approach to compute the crustal corrections, the

accuracy of the crustal thickness model is crucial. Crustal thickness

varies from 5 km beneath oceans to 80 km under continents. The

most widely used global crustal model is CRUST2.0 (Bassin et al.
2000) an updated model of CRUST5.1 (Mooney et al. 1998). This

model is based on refraction and reflection seismics as well as re-

ceiver function studies. As a consequence, resolution of CRUST2.0

is high in regions with good data coverage but in regions with poor

or no data coverage crustal thickness estimates are largely extrap-

olated. For the purpose of applying crustal corrections to surface

wave measurements this is far from ideal and it is desirable to have

∗ECOSSE (Edinburgh Collaborative of Subsurface Science and

Engineering).

a global crustal thickness model with a resolution similar to the data

sets used in surface wave tomography. To our knowledge no global

crustal thickness model solely constrained by surface waves exists.

This forms one of the key motivations of this study: to invert funda-

mental mode surface wave data for crustal thickness and to present

a global crustal thickness model.

Phase and group velocity measurements of fundamental mode

Rayleigh and Love waves are most commonly used to constrain

shear-velocity structure in the crust and upper mantle on a global

scale (e.g. Zhou et al. 2006) or on regional scale (e.g. Curtis &

Woodhouse 1997; Curtis et al. 1998; Ritzwoller & Levshin 1998;

Villaseñor et al. 2001). Only a few studies used surface wave data

to infer Moho thickness directly (Devilee et al. 1999; Das & Nolet

2001) on a regional scale and Shapiro & Ritzwoller (2002) globally.

The aim of this study is to investigate how well Moho depth can

be retrieved from current phase (Trampert & Woodhouse 2003) and

group velocity (Ritzwoller et al. 2002) maps without the use of

restrictive a priori constraints.

Inverting phase and group velocities for discontinuities within the

earth forms a non-linear inverse problem. Linearization techniques

around a reference model fail because: (1) non-linearities are too

strong (i.e. varying the depth of a discontinuity alters the structure

of the whole earth), (2) large variations in the depth of disconti-

nuities, Moho depth for example varies from 5 to 80 km, make it
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difficult to choose a reasonable reference model and (3) uncertain-

ties estimated using linearized methods are inaccurate in non-linear

problems. Montagner & Jobert (1988) demonstrated that variations

in Moho depth clearly have a non-linear effect on the resulting phase

and group velocity perturbations, and they proposed to use three dif-

ferent crustal reference models to remove most of this non-linearity.

However, several fully non-linear inversion methods are available

among which the most common ones are sampling based techniques

(e.g. Mosegaard & Tarantola 1995; Sambridge 1999a,b). We focus

on neural networks instead to solve the non-linear inverse problem,

inverting Moho depth from phase and group velocity measurements.

Neural networks have been widely used in different geophysical

applications, a good overview is given by van der Baan & Jutten

(2000). Neural network techniques have been successfully applied

to logging problems (e.g. Benaouda et al. 1999; Aristodemou et al.
2005). Roth & Tarantola (1994) used a neural network to invert

seismic reflection data for 1-D velocity models and Devilee et al.
(1999) were the first to use a neural network to invert surface wave

velocities for Eurasian crustal thickness in a fully non-linear and

probabilistic manner. In various other fields neural networks were

successfully used to solve inverse problems. Thodberg (1996) for

example used a neural network to predict fat content in minced

meat from near infrared spectra, Cornford et al. (1999) retrieved

wind vectors from satellite scatterometer data, and Lampinen &

Vehtari (2001) investigated the use of neural networks in electrical

impedance tomography.

In the current study we further develop the methods of Devilee

et al. (1999), then invert surface wave data for global crustal thick-

ness on a 2◦ × 2◦ grid globally using a neural network. We show

that for this particular application where many repeated inversions

are required, the presented neural network approach significantly

outperforms conventional sampling based inversion techniques.

The neural network approach for solving inverse problems is best

summarized by three major steps: (1) proceed by randomly sampling

the model space and solve the forward problem for all visited models

(i.e. compute phase and group velocities for the sampled radially

symmetric earth models using normal mode theory). This results

in a collection of earth models and corresponding phase and group

velocities (called the training data set). (2) Design a neural network

structure that can accept phase and group velocities as input and

compute the earth model as output, then use the training data to

train the network (i.e. change the parameters of the network such that

the network output represents the desired output, the earth model).

(3) Once the network is trained it represents the non-linear inverse

mapping from phase and group velocities to earth structure. For any

observed dispersion curve the trained network will give an output

that is close to the ‘real earth’. Since the inverse mapping of this

particular problem is multivalued (i.e. there exist many models that

could produce the same specific dispersion curve), we propose to

model the posterior model parameter distribution rather than only

its mean and variance.

In what follows we first give a short introduction to neural net-

works, we show how neural networks can be used to model posterior

model parameter distributions in general, and how such networks

can be used to invert dispersion curves for a posteriori Moho depth

distribution in particular. A thorough analysis is presented on how

regularization is needed to train a network on a synthetic data set

that interpolates well with a real data set corrupted by noise. Fi-

nally we compare our global crustal model with two other global

crustal thickness models, CRUST2.0 from Bassin et al. (2000) and

the CUB2 model from Shapiro & Ritzwoller (2002), and discuss the

observed features.

2 N E U R A L N E T W O R K S

There is no precise agreed definition as to what a neural network

is. Originally neural networks were intended as an abstract model

of the brain, consisting of simple processing units—similar to neu-

rons in the human brain—connected together to form a network.

Obviously resemblance to a human brain is rather limited; there-

fore, we prefer to think of a neural network as a graphical notation

of a mathematical model defining a mapping from an input to an

output space. The basic idea behind neural networks is to represent

a non-linear function of many variables in terms of a composition of

multiple, relatively simple component functions of a single variable,

the so-called activation functions. Common choices for activation

functions include the logistic sigmoid or the hyperbolic tangent,

which result in equivalent mappings since these two functions only

differ through a linear transformation. In our simulations we use the

latter since it is often found that the hyperbolic tangent functions

give rise to faster convergence of training algorithms than logistic

functions.

The network diagram of the neural network we consider in this

work is shown in Fig. 1. This is an example of a two-layer, feed-

forward neural network often called a multilayer Perceptron (MLP).

There are two layers of adaptive parameters. Those of the first and

second layer are called weight matrices ẇi j and ẅ jk as well as the

biases of the hidden ḃ j and output b̈k units, respectively; information

flows only in the forward direction from the input to the output units.

The output of a MLP as illustrated in Fig. 1 for a given input vector

d can be computed as follows:

yk =
∑

j

ẅ jk z j + b̈k,

where

z j = tanh

(∑
i

ẇi j di + ḃ j

)
. (1)

Input Layer

d1

d2

di

wij wjk

bj
bk

Hidden Layer

z1

z2

z3

zj

y1

yk

Output Layer

1
1

Figure 1. A multilayer Perceptron (MLP) with i input units, one hidden

layer with j hidden units and k output units. There are two layers of adaptive

parameters the first layer weights ẇi j and bias ḃ j and the second layer weights

ẅ jk and bias b̈k , indicated by the connections between the different units.

The bias parameters ḃ j and b̈k are shown as weights from an extra input

having a fixed value 1. For one specific input vector d, first the activations

of the hidden units z j are computed followed by the output values yk .
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Figure 2. Output of a hidden unit as a function of its inputs. The first layer

weight matrix is ẇ = (0, 1) and the first layer bias term ḃ = 0.

Here ẇi j is the weight on the connection between input i and hidden

unit j, similarly ẅ jk is the weight on the connection between hidden

unit j and output k, while ḃ j and b̈k are biases of the hidden and

output units, respectively. Note that it might be more convenient to

put the first and second layer weight and bias terms into a single

weight vector w. Writing y(d; w) means that the network output y is

a function of the input vector d and the network parameters w, which

we define to include the weight and bias terms of the first and second

layer. A geometrical interpretation of the weight and bias terms in

eq. (1) can be given by considering the output of each hidden unit z j ,

the hyperbolic tangent, as a surface over the input space. Each hidden

unit can then be regarded as a slope with orientation and steepness

determined by the weight values ẇi j , the bias ḃ j determines the

distance from the origin (Fig. 2). The second layer weight matrix

ẅ jk determines the relative importance of the individual slopes in

the summation and the bias b̈k corresponds to a constant offset. From

this perspective, a MLP is similar to a Fourier series where instead of

various sine and cosine terms the desired function is approximated

by summing up various hyperbolic tangents (although in this case

there is no requirement for the various hyperbolic tangents to be

linearly independent as in Fourier series).

Several people including Hornik et al. (1989) and Cybenko (1989)

have shown that such an MLP can approximate arbitrarily well any

continuous functional mapping from one finite-dimensional space

to another, provided the number of hidden units is sufficiently large.

However, interesting this property might be, what has attracted most

interest in using MLP’s is the possibility of learning a specific map-

ping from a finite data set. Learning in practice corresponds to the

minimization of a cost function, which measures the error between

the network output and the desired output. The problem then reduces

to finding the set of network parameters which minimize the cost

function. The back-propagation algorithm, introduced by Rumelhart

et al. (1986), allows the efficient computation of the derivatives of

the cost function with respect to the network parameters. Back-

propagation forms the basis of conventional iterative optimization

algorithms such as conjugate gradients and quasi-Newton methods.

In fact the huge popularity of neural network applications over the

last two decades can be traced back to the introduction of the back-

propagation algorithm.

The central goal of network training is to learn the relationship

between input and output parameters from a finite data set D = {dn ,

mn}, consisting of N data points, where d forms the network input

and m is the desired output. In our application the input d consists

of phase and group velocities at different periods and the desired

output m is the corresponding radially symmetric earth model. This

ordering is arbitrary and we can equally well design a network where

the role of network input and output are interchanged. The success-

fully trained network is then applied to new inputs d with unknown

outputs m. This can be regarded as a non-linear regression task,

where instead of polynomials or splines a neural network model is

used.

2.1 Neural networks for solving inverse problems

Since we are interested in solving an inverse problem, we first state

the solution of a general inverse problem within the probabilistic

framework and then show how different types of neural networks

can be used to provide statistical information about the solution.

According to Tarantola & Valette (1982) and Tarantola (2005) the

a posteriori state of information is given by the conjunction of a
priori information and information about the theoretical relationship

between models and data:

σ (d, m) = k
ρ(d, m)θ (d, m)

μ(d, m)
, (2)

where k is a normalization constant, ρ(d, m) represents the prior

knowledge on data d and model parameters m, θ (d, m) represents

the physical theory relating model parameters m to the observable

parameters d, μ(d, m) represents an objective reference state of

minimum information, and all quantities other than k in eq. (2) are

probability density functions (Tarantola & Valette 1982; Tarantola

2005). The solution of the general inverse problem is then given by

the marginal posterior distribution,

σ (m) =
∫

D
σ (d, m) dd, (3)

which in the classical Bayesian framework is a conditional proba-

bility density, conditional on the observed data (Tarantola 2005).

Eq. (3) performs the task of transferring the information con-

tained in the data to the model parameters. The solution of the

inverse problem for a specific observation may be approximately

represented by a set of models distributed according to σ (m). From

this set of models any desired statistic such as the mean and vari-

ance of any model parameter can be computed. Note, however, that

such statistics are most useful if the solution has a single dominant

maximum, and become less useful if the solution has many relevant

maxima. Instead of providing a set of samples, we propose to train

a neural network, whose outputs directly parametrize the form of

σ (m), providing fully probabilistic information about the solution.

2.1.1 Conventional use of neural networks

Assume that we have a data set D = {dn , mn}, shown as circles in

Fig. 3, where d is given by some function of m with added Gaussian

noise ε; d = g(m) + ε. As a consequence the conditional probability

distribution of d given m is Gaussian:

p(d | m) = 1

(2π )1/2σ
exp

(
− (d − g(m))2

2σ 2

)
, (4)

where the mean is given by g(m) and σ is the standard deviation

of ε.

In conventional neural network applications the mean corre-

sponding to the forward function g(m), is approximated by a neural

network model y(mn ; w) and the network parameters w are inferred
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Figure 3. Two-parameter example of a network mapping which approximates the conditional average of the output parameter. (left) Single valued forward

function; (right) multivalued inverse function obtained by interchanging the role of input and output variables. Circles indicate the training data and the solid

line corresponds to the output of a trained MLP network with 10 hidden units.

from the data set D. This can be achieved by maximizing the like-

lihood of the data set D (or equivalently by minimizing its negative

logarithm), which gives rise to the conventional least-square error

measure (Bishop 1995),

E = 1

2

N∑
n=1

(y(mn ; w) − dn)2, (5)

where the sum runs over the number of data points N in the training

set.

Network training involves the minimization of eq. (5) with re-

spect to the network parameters w. Having found the optimal set of

network parameters w∗ which minimizes eq. (5), the neural network

y(m; w∗) approximates the mean of p(d | m), shown as the solid

line in Fig. 3 (left), which indeed is a good approximation of the

underlying function g(m).

Imagine now that the roles of input and output parameters are

interchanged (Fig. 3, right). Training a network by minimization of

eq. (5) implicitly assumes that the conditional probability distribu-

tion p(m | d), the solution to the inverse problem as stated in eq. (3),

is Gaussian:

p(m | d) = 1

(2π )1/2σ
exp

(
− (m − g−1(d))2

2σ 2

)
, (6)

with mean given by the inverse function g−1(d).

Obviously the Gaussian assumption is violated, especially in the

multivalued region (between [0.1, 0.5]). The trained network y(d;

w∗) still approximates the mean of p(m|d) as shown by the solid

line in Fig. 3 (right). The mean of a multimodal distribution is,

however, of limited significance (the average of various solutions

is not necessarily itself a solution). This indicates that as long as

σ (m) the solution to the inverse problem for a specific observation as

stated in eq. (3) is Gaussian or at least unimodal with a representative

mean, the minimization of eq. (5) may be appropriate. If, however,

σ (m) is multimodal, the output of a trained network that minimizes

an equation similar to eq. (5) is likely to give misleading results

(Fig. 3, right).

2.1.2 The mixture density network

Devilee et al. (1999) introduced the Histogram and Median network,

which provide a finite discretization of σ (m). The k outputs of a His-

togram network give an equidistantly sampled approximation of the

solution whereas the k outputs of a Median network subdivide the so-

lution into equal probability mass, but the required network outputs

of such networks grow exponentially with increasing dimensionality

of the solution distribution. We generalize their ideas and propose

to model the solution as a mixture of Gaussians. This leads to the

concept of the more compact mixture density network (MDN), a

framework for modelling arbitrary probability distributions (in the

same way as a conventional MLP can represent arbitrary functions

(Bishop 1995)). The basic idea behind the MDN is to model the

solution of the inverse problem as defined in eq. (3) as a sum of

various Gaussians,

σ (m) =
M∑

j=1

α j (d)� j (m|d), (7)

where M is the number of Gaussian kernels, α j are the mixing

coefficients and can be interpreted as the relative importance of the

j th kernel, and � j are the Gaussian kernels given by

� j (m) = 1

(2π )(c/2)σ c
j (d)

exp

{
− (m − μ j (d))2

2σ 2
j (d)

}
, (8)

where c is the dimensionality of m. The parameters of this model

such as the mixing coefficients α j , the mean μ j and variance σ 2
j of

the M Gaussians are taken to be the outputs of a conventional MLP.

The total number of network outputs is (c + 2) × M as compared

with the kc outputs of a histogram network. The more complex the

solution distribution we want to model, the more Gaussian kernels

are required. A detailed description of the MDN is found in Bishop

(1995).

Having decided on the specific parametric form of the probability

distribution we want to model (eq. 7), the next stage is to use a data

set D = {dn , mn} to find the appropriate values of the network

parameters and hence the parameters of the mixture model. From

the principle of maximum likelihood, the following error measure

is obtained (Bishop 1995):

E = −
N∑

n=1

ln

{
M∑

j=1

α j (d
n)� j (m

n | dn)

}
. (9)

The same data set as in the above example is used to train a

MDN network on the forward and the inverse mapping, respectively.
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Figure 4. Contour plot of the solution distribution for various inputs. (left) of a MDN trained on the forward function and (right) of a MDN trained on the

inverse. Both networks have three Gaussian kernels and 10 hidden units.

Having found the set of network parameters w∗ which minimizes

eq. (9), the a posteriori probability distribution of the output param-

eter can be computed for any given input according to eq. (7). This

gives a far more complete description of the solution than the mean

value alone. In Fig. 4 the probability density of the forward (left)

and inverse (right) mapping is contoured. Note that the multivalued

nature of the inverse mapping (in the region between [0.1, 0.5]) has

been captured by the MDN. In the region (between [0, 0.1]) where

no training data is available an extrapolation error is committed.

From the outputs of a MDN network any desired statistic such as

mean and variance can be computed. In this perspective the MLP

network can be regarded as a special case of the more general MDN

network. Compared to the Histogram and Median networks pro-

posed by Devilee et al. (1999) which provide a finite discretization

of the solution, the MDN gives a continuous approximation of the

solution distribution.

2.2 Network training

As already mentioned network training corresponds to the mini-

mization of an appropriate cost function (e.g. eqs 5 and 9). These

cost functions are highly non-linear functions of the network param-

eters. Despite the complicated structure of the error surface good

solutions are often found using gradient-based optimization meth-

ods. Gradient-based optimization algorithms proceed in an iterative

way, starting from a user defined starting point. Obviously the start-

ing values must be reasonably chosen in order to converge to a useful

solution. Since we are using the hyperbolic tangent as the activation

function, the summed inputs to the hidden units should be of order

unity. Otherwise the activation functions are saturated and as a con-

sequence the error surface becomes almost flat. In order to achieve

this, it is common practice to normalize the input variables to have

zero mean and standard deviation one. The network parameters are

then drawn from a Gaussian with zero mean and standard devia-

tion scaled by the number of input units feeding into each hidden

unit for the first layer weights, and scaled by the number of hidden

units feeding into each output unit for the second layer weights,

respectively (Bishop 1995).

For the MDN as we consider it, the network parameters are ini-

tialized such that the solution σ (m) in eq. (7) corresponds to the

prior probability distribution ρ(m). This ensures faster convergence

and avoids ending up in poor local minima (Nabney 2002). Still

each training run is sensitive to the initial set of network parame-

ters. Therefore, it is common practice to train a particular network

using different weight initializations.

In all our simulations we used the scaled conjugate gradient al-

gorithm (Moller 1993), a recent variant of the conjugate gradient

algorithm which avoids the expensive line-search procedure of con-

ventional conjugate gradients. Conjugate gradient methods as well

as quasi-Newton methods make use of second order information

about the error surface and are, therefore, more efficient than simple

gradient descent. Using quasi-Newton methods would require the

storage of the inverse Hessian, which requires O(w2) storage, while

conjugate gradients algorithm require only O(w) storage. Since in

our applications the number of network parameters w is rather large

we opted for the latter.

3 I N V E RT I N G S U R FA C E WAV E DATA

F O R C RU S TA L T H I C K N E S S

In the previous section it was shown how neural networks can be

used to learn a specific mapping from a finite training data set. We

demonstrated the pitfalls of training a conventional MLP using the

least-square error when the distribution of the output parameter is

not Gaussian. Additionally we introduced the MDN network which

allows to model any probability distribution as a sum of Gaussians.

In this section we focus on the specific problem of using a MDN

network to invert dispersion curves for Moho depth. In what follows

we explicitly define the prior knowledge on data and model param-

eters as well as the theoretical relationship between model and data

parameters. The solution to the inverse problem as stated in eq. (3)

can then be given in a more explicit form.

3.1 A priori information

In this section the a priori information on data and model param-

eters are defined. By definition, the a priori information on model

parameters is independent of the observations (Tarantola 2005). The

joint probability density as in eq. (2) can thus be decomposed,

ρ(d, m) = ρ(d)ρ(m). (10)

In what follows the a priori probability densities of the data d
and model parameters m are defined.
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Figure 5. Measurement uncertainties of Rayleigh and Love phase and group

velocities.

3.1.1 Data

In this study we consider fundamental mode Rayleigh and Love

wave phase and group velocity models, respectively. The phase ve-

locity models are from Trampert & Woodhouse (2003); the group

velocity models from Ritzwoller et al. (2002). From these global

phase and group velocity maps dispersion curves at discrete periods

are constructed on a 2◦ × 2◦ grid globally. Phase and group ve-

locities are measured differently and thus provide two independent

pieces of information to constrain crustal thickness.

Like all physical measurements the obtained dispersion curves are

subject to uncertainties. We assume the uncertainties to be Gaussian

and each dispersion curve can thus be represented as a probability

density

ρ(d) = 1

(2π )c/2|CD|1/2
exp

{
− 1

2
(dobs − d)T C−1

D (dobs − d)

}
, (11)

where c is the dimensionality of d, dobs is the observed dispersion

curve, and d is the mean value of the distribution (i.e. the noiseless

response of the unknown real Earth). A critical parameter is the

covariance Matrix CD ; we choose a diagonal covariance matrix (i.e.

uncorrelated noise) with σ RP, σ LP, σ RG and σ LG as shown in Fig. 5,

where the indices R, L, P and G refer to Rayleigh and Love waves

and Phase and Group velocities, respectively. The error estimates

for phase and group velocity maps are from Shapiro & Ritzwoller

(2002).

3.1.2 Model parametrization

We tested various parametrizations and found that as long as we

over-parametrize the model (given the potential resolving power of

the data) the obtained solutions do not change. Thus, using an over-

parametrized model does not introduce any implicit prior informa-

tion and ensures that all the prior information is defined explicitly

by defining the bounds of variations of all the model parameters.

On each model parameter (mk
min ≤ mk ≤ mk

max) hard bounds are im-

posed and further we assume that there exist no a priori correlations

between individual model parameters.

Our model parametrization consists of 29 free parameters in-

dicated by arrows in Fig. 6. Surface waves probe deeper parts of

the Earth with increasing period. Dispersion curves in the period
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Figure 6. Model parametrization.

range considered in this study (from 18 s up to 145 s) are sensi-

tive to Earth structure down to a depth of approximately 400 km.

Therefore, below 400 km depth all model parameters are fixed to

PREM (Dziewonski & Anderson 1981). From the Moho down to the

400 km discontinuity we use the same parametrization as PREM.

From 220 km down to a depth of 400 km ρ, v p and v s are allowed

to vary. These parameters are varied ±5 per cent from PREM at

the top and the bottom of this zone. Within this zone the depth pro-

files are then obtained by linear interpolation. The resulting depth

profiles are linear with varying gradients. Within the anisotropic

zone vpv, vph, v sv, v sh and η are allowed to vary. These five pa-

rameters are drawn at the top, the bottom and at varying depths

within that zone. Variations up to ±10 per cent from PREM result

in depth profiles consisting of two linear sections with varying gra-

dients and intersection at varying depths. The 220 km discontinuity

is allowed to vary ±20 km. In Fig. 6 all the relevant parameters of

the model parametrization are indicated by arrows. We distinguish

between continental and oceanic models, below the Moho these two

models are identical. The continental crust as well as the oceanic

crust consist of three equally thick layers. In each of the three layers

v p , v s and ρ are allowed to vary within a certain range. Since the

oceanic crust is younger and more homogeneous than the continental

crust the allowed range of variation is smaller for the oceanic mod-

els. The prior constraints on the crustal parameters were obtained

by analysing CRUST2.0 (Bassin et al. 2000) an updated model of

CRUST5.1 (Mooney et al. 1998). Additionally every second conti-

nental model has a sedimentary layer with varying thickness on top.

The Moho depth and the topography are allowed to vary as well. For

a summary of the explicit prior constraints on the model parameters

see Table 1. All model parameters are drawn independently from

a uniform distribution and each model realization m can be inter-

preted as a realization of the prior probability distribution over the

model space ρ(m). Note that in each successive realization all the

model parameters are allowed to vary.

In Fig. 7 the partial derivatives of phase and group velocities

with respect to Moho depth variations are plotted as a function of
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Table 1. A priori information on model parameters as in CRUST2.1 within continental (top) and oceanic

(bottom) crust.

P wave [m s−1] S wave [m s−1] Density [g cm−3]

Continental crust:

Sedimentary layer 2850–3150 1700–1800 2295–2380

Top layer 5700–6300 3400–3600 2700–2800

Middle layer 6300–6600 3600–3800 2800–2900

Bottom layer 6600–7400 3600–4000 2900–3000

Oceanic crust:

Sedimentary layer – – –

Top layer 4950–5050 2500–2600 2600–2700

Middle layer 6500–6600 3600–3700 2800–2900

Bottom layer 7100–7200 3900–4000 3000–3100

Topography [km] Moho depth [km] Thickness of
sed. layer [km]

Continental: 0–8 10–100 1–10

Oceanic: 0–8 0–40 –

(Below sea level)
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Figure 7. Sensitivity of Rayleigh and Love, phase and group velocities to

variations in Moho depth as a function of period. Moho depth of our con-

tinental reference model is perturbed ±0.5 km and the fractional variations

in phase and group velocities are shown. The indices R, L, P and G refer to

Rayleigh and Love waves and Phase and Group velocities, respectively.

period for the continental reference model. An increase in Moho

depth leads generally to a decrease in phase and group veloci-

ties. The shorter the period the more sensitive phase and group

velocities become to variation in Moho depth. Group velocities

have generally a higher sensitivity than phase velocities and Love

waves a higher sensitivity than Rayleigh waves except for short pe-

riods (<30 s) where Rayleigh waves are more sensitive than Love

waves.

3.2 Forward problem

In our particular application the forward problem consists of com-

puting dispersion curves for a heterogeneous 3-D Earth. Instead of

dispersion curves a neural network could equally well be trained

on synthetic seismograms. Computing synthetic seismograms

for a heterogeneous 3-D Earth using spectral-element methods

(Komatitsch & Vilotte 1998; Komatitsch & Tromp 2002a,b) is

computationally possible, but still a challenge for the large num-

ber needed for network training. Instead, we assume that a disper-

sion curve at a specific location is the result of a radially symmet-

ric Earth and compute the corresponding dispersion curves using

normal mode theory. For this normal mode approach, we use an

algorithm developed by Woodhouse (1988) which allows the com-

putation of Rayleigh and Love, phase and group velocities in a 1-D

model. In terms of probability densities assuming an exact theory

we obtain,

θ (d, m) = δ(d − G(m))μ(m), (12)

where δ is the delta-function and G is the non-linear forward operator

which computes synthetic data d for a specific radially symmetric

Earth model m. Note that by assuming an exact theory we implicitly

assume that the inaccuracies in the forward relation are negligible

compared to the uncertainties of the measurements.

3.3 The solution

So far our method does not differ from any sampling based inversion

technique (e.g. Mosegaard & Tarantola 1995; Shapiro & Ritzwoller

2002). The prior knowledge on data and model parameters as well

as the information about the physics relating data and model param-

eters were defined. Performing the integration in eq. (3) and using

eqs (11) and (12) we obtain

σ (m) = kρ(m) exp

{
− 1

2
(dobs − G(m))T C−1

D (dobs − G(m))

}
.

(13)

This equation tells us how probable an earth model is, having

made a specific observation. As already mentioned instead of using

a sampling based approach we parametrize σ (m) using a MDN as

described in Section 2.1.2 The parameters of the MDN are learned

from a finite synthetic data set, the training data. For this purpose

we generate a data set of 500 000 continental and 500 000 oceanic

models, drawn from the prior model distribution ρ(m), and com-

pute their corresponding dispersion curves. We assume that our prior
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information for categorizing a location as oceanic or continental is

100 per cent accurate. A location is oceanic if water is present ac-

cording to CRUST2.0. For this reason we train two networks, a

continental and a oceanic one. Note that the synthetic dispersion

curves contain the variations of all the model parameters. To simu-

late realistic measurement conditions, noise is added to the synthetic

dispersion curves according to eq. (11) (see discussion below). Since

we are only interested in Moho depth we ignore all the parameters

except Moho depth from the sampled models and tabulate the result-

ing training set in terms of dispersion curves and the corresponding

Moho depths. This can be seen as the marginalization step, inte-

grating out all model parameters except Moho depth in eq. (13).

One of the advantages of this approach is that once the parame-

ters of the MDN are known, σ (moho) can be evaluated for any

Moho depth and any observation without the need of (re)sampling

model space and solving the forward problem for every visited

model.

3.4 Efficiency of the MDN inversion

Inverting dispersion curves on a 2◦ × 2◦ globally for Moho depth

using a trained network solving 16 200 independent inverse prob-

lems takes only 2 s on a AMD Opteron(tm) Processor 242. The

time-consuming part is the network training, i.e. the minimization

of the error function. Since the contributions of each training pattern

to the error and the gradient are independent it is straightforward

to parallelize the training algorithm and achieved speed-ups scale

almost linearly with the number of processors. On 50 processors

training a MDN on 500 000 patterns takes 27 min.

Alternatively, the same training data could be used for a classical

Monte Carlo inversion based on eq. (13). This involves comparing

each of the 500 000 training patterns to the observed dispersion

curve at each of the 16 200 locations of the 2◦ × 2◦ grid and making

a histogram. A single inversion performed that way takes 5 s on

the same machine. Performing 16 200 individual inversions would

then take 22.5 hr. This indicates that in this particular application,

where 16 200 repeated inversions with similar prior information

are required, the neural network approach significantly outperforms

sampling based techniques.

4 R E G U L A R I Z AT I O N

An important question is to investigate the implications of adding

noise to the dispersion curves on the network mapping. We wish

to derive an approximation to the inverse mapping which is valid

at data points not necessarily contained in the training set D—the

problem of generalization (interpolation). Obviously, the more flex-

ible the network the smaller the discrepancy between network out-

put and observations. However, this does not necessarily mean that

a more flexible network interpolates better to unseen data points.

This is generally known as the bias/variance trade off (Geman et al.
1992). If the network is not sufficiently flexible in terms of its ability

to model non-linear relationships our approximation will exhibit a

large bias (i.e. a systematic error); if on the other hand the network

is too flexible the training data will be fit perfectly but interpolation

performance will be poor (i.e. high variance). For this reason the ef-

fective complexity of the network has to be controlled. This can be

done through the use of regularization which involves the addition

of a penalty term to the error function

Ẽreg = E + λEr , (14)

where E is the usual error measure, λ the regularization parameter

describing the amount of regularization and E r is the regularization

term.

Within the Bayesian framework regularization corresponds to

making specific assumptions about the prior distribution of the net-

work parameters. The introduction of the Bayesian paradigm for

neural network learning (e.g. MacKay 1992a,b; Neal 1996) offers an

interesting view on regularization: the well-known minimum norm

or weight decay regularization for example can be derived in the

following way. Assume that the prior distribution of the network

parameters is Gaussian with zero mean and variance 1/λ

p(w) = 1

(2π/λ)W/2
exp

{
− λ

2
||w||2

}
, (15)

taking the negative logarithm gives

− ln p(w) = λ
1

2

W∑
i=1

w2
i ,

= λEr , (16)

where W is the number of network parameters. Eq. (16) shows

that making the Gaussian assumption about the prior distribution of

network weights results in the well-known minimum norm regular-

ization where the regularization parameter λ is given by the inverse

variance. By using this sort of regularization the network param-

eters are constrained to be of minimum norm. Neal (1996) shows

that bigger network parameters w result in more complex network

mappings. Constraining the network parameters to be small results

as a consequence in a smoother mapping. In our case the network

does not only have to interpolate between data points but addition-

ally the data points are corrupted with noise. Because of the noise a

regularizer is needed which constrains the mapping to be insensitive

to variations in the input curves which are of the order of the noise.

Webb (1994) shows that the effect of noise on the input data can

be compensated for by training a neural network on synthetic data

by minimizing a regularized error measure. Under the assumption of

uncorrelated Gaussian noise with zero mean and sufficiently small

variance, the regularization term involves second order derivatives

of the network output with respect to the inputs where the amount

of regularization is governed by the noise variance. Computing the

gradient of this modified error function with respect to the network

parameters, is computationally too expensive to form the basis of a

suitable training algorithm (involves third order terms). In a similar

study Bishop (1995) shows that for the purpose of network training

an equivalent regularizer can be derived which only depends on first

order derivatives of the network outputs with respect to the inputs:

Ẽn
reg = En + σ 2

i

(
∂yn

k

∂dn
i

)2

, (17)

where σ i are the standard deviations of the assumed measurements

error (i.e. standard deviations of the phase and group velocities at

different periods (eq. 11)). The regularization term for the nth pattern

in eq. (17) is given by the squared derivative of the network output

with respect to the network input and constrains the network map-

ping to be less sensitive to variations in the input data. In the same

study Bishop (1995) shows that for small σ i , adding uncorrelated

Gaussian noise to the input data and minimizing the conventional

least-square error function has the same effect as training a net-

work on exact data but minimizing the regularized error function

eq. (17). In what follows we perform synthetic tests to check if these

two approaches are indeed similar.
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4.1 Training with noise versus explicit regularization

In order to assess the generalization performance of different net-

works we generate a synthetic test set, consisting of 10 000 earth

models and the corresponding synthetic dispersion curves. This test

set was not included in the training set. Since we know the true Moho

depth corresponding to each dispersion curve we can compare how

well the trained network interpolates to unseen data points. In order

to simulate the measurement errors we add uncorrelated Gaussian

noise as described in eq. (11) to the synthetic dispersion curves

of the test set. We consider three different networks: (I) a network

trained on noiseless synthetic data, minimizing the conventional

least-square error measure; (II) a network trained on noisy synthetic

data, minimizing the conventional least-square error measure; (III)

a network trained on noiseless synthetic data, minimizing the regu-

larized error function eq. (17).

We test the interpolation performance of the three networks on

(a) noiseless synthetic dispersion curves and (b) on noisy synthetic

dispersion curves (i.e. simulating measurement errors). In Fig. 8

the mean Moho depth predictions of network I for exact (left) and

noisy (right) dispersion curves are plotted against the true Moho

depth of the underlying models. Obviously generalization perfor-

mance of the network to synthetic dispersion curves is very good
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Figure 8. Network Moho depth predictions for 10 000 synthetic dispersion curves against the Moho depth of the underlying Models. The network was trained

on exact noiseless data, minimizing the least-square error measure. (left) network predictions for noiseless data; (right) network predictions for noisy data.
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Figure 9. Network Moho depth predictions for 10 000 synthetic dispersion curves against the Moho depth of the underlying Models. The network was trained

on noisy data, minimizing the least-square error measure. (left) Network predictions for noiseless data; (right) network predictions for noisy data.

as indicated by the linear correlation. If we simulate the measure-

ment errors and add uncorrelated Gaussian noise to the dispersion

curves the network predictions become very poor and no obvious

correlation is visible anymore. This indicates that a network trained

on synthetic data approximates the exact inverse mapping well but

performs badly on data corrupted by noise. Network I falsely inter-

prets noise as coming from variations in the model parameters and

hence the unrealistic network predictions in Fig. 8 (right). Without

making assumptions about the measurement uncertainties or with-

out any form of regularization a network trained on noiseless data

will never be able to predict Moho depth for a real data set which is

obviously corrupted by noise.

In Fig. 9 the predictions of network II (trained on noisy input

curves) for the same test curves as before ((left) synthetic; (right)

noisy) are plotted against the Moho depth of the true underlying

model. As opposed to network I, network II predicts the correct

Moho depth even if the dispersion curves are corrupted by noise.

Through the addition of noise to the training data, network II is able

to invert noisy dispersion curves.

In Fig. 10 the predictions of network III are plotted against the

True Moho depth. As for network II, the performance for noisy

data is very good. We thus showed that adding noise to the input

data leads to an implicit regularization which has the same effect
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Figure 10. Network Moho depth predictions for 10 000 synthetic dispersion curves against the Moho depth of the underlying Models. The network was trained

on exact data, minimizing the regularized error measure. (left) Network predictions for noiseless data; (right) network predictions for noisy data.
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Figure 11. Learning curves for three different networks, network I (solid),

network II (dashed) and network III (dotted).

as the explicit regularization in eq. (17). The regularization term in

eq. (17) constrains the network mapping to be less sensitive to small

variations in the dispersion curves, where the amount of regulariza-

tion depends on the noise variance. As a consequence the network

mapping becomes insensitive to variations in the dispersion curves

which are within the measurement uncertainties as described by the

standard deviations σ i .

Another interesting feature can be observed by looking at the

learning curves of the three different networks (Fig. 11). The solid

line corresponds to the error of network I, the dashed line corre-

sponds to network II and the dotted line to network III. Network I

has the worst generalization performance of all the three networks

even though the error is smallest. Even after 1000 iterations the

error still decreases, this indicates that the network starts to fit the

training data below the noise level. Network II and III on the other

hand are characterized by learning curves which converge after 600

iterations for network II and already after 200 iterations for network

III. Even though network III requires fewer iterations till conver-

gence, it is more efficient to train network II from a computational

point of view, because the computation of the derivatives of the reg-

ularization term in eq. (17) with respect to the network parameters

is very expensive. Ten iterations for network II take 17 s on a AMD

Opteron(tm) Processor 242 whereas ten iterations for network III

on the same machine take 13 min. In what follows all the networks

considered are trained on noisy dispersion curves.

5 R E S U LT S

We present global Moho depth maps with corresponding uncertain-

ties inverted from phase and group velocities of Rayleigh and Love

waves. The data set consists of azimuthally averaged global phase

(Trampert & Woodhouse 2003) and group velocity (Ritzwoller et al.
2002) maps. From these maps we constructed dispersion curves at

a 2◦ × 2◦ grid globally. We considered phase velocities at discrete

periods of 35, 45, . . . , 145 s; Rayleigh group velocities at discrete

periods of 18, 20, 25, 30, 35, 45, . . . , 145 s and Love group ve-

locities at discrete periods of 25, 30, 35, 45, . . . , 145 s. For all our

simulations we used MDN’s with three Gaussian kernels, resulting

in nine output units. For the phase velocity inversion the networks

had 24 input units, 50 hidden units and 9 output units; for the group

velocity inversion the networks had 30 input units, 50 hidden units,

9 output units; for the joint inversion the networks had 54 input

units, 100 hidden units and 9 output units. We found that the num-

ber of hidden units is not a crucial parameter and networks with

different number of hidden units give similar results. By choosing

three Gaussian kernels we allow the posterior Moho depth distribu-

tions to have up to three distinct maxima. In all our simulations we

found that the resulting Moho depth distributions are characterized

by a single well-defined maximum. Using more Gaussian kernels

than the expected number of different maxima has little effect, since

the network always has the option either to ‘switch off’ redundant

kernels by setting the corresponding mixing coefficients to small

values, or to ‘combine’ kernels by giving them similar mean and

variance (Bishop 1995). This indicates that our results do not de-

pend crucially on the inversion method; using a different amount

of hidden units and/or Gaussian kernels will give results consis-

tent with those presented. In order to avoid being stuck in a local

minimum during the network training, we trained independent net-

works from different starting points. Again, the different networks

produced very similar results and we chose the network with the

smallest error.
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Figure 12. Global Moho depth map as a result of the joint inversion. (top)

mean Moho depth [km]; (bottom) standard deviation σ [km], both extracted

from the output of a MDN network.

5.1 Global map of crustal thickness

We used a MDN network to perform a joint inversion of phase and

group velocities together. From the obtained Moho depth distribu-

tions mean Moho depths and standard deviations are computed. In

Fig. 12, mean Moho depths and the corresponding standard devi-

ations σ obtained from the joint inversion of phase and group ve-

locities are plotted. Note how well the obtained mean Moho depth

follows the topography. All the major features such as the contrast of

continental and oceanic crust as well as thick continental roots be-

neath the main mountain ranges are retrieved. Fig. 12 (top) indicates

that crustal thickness increases away from the mid-ocean ridges and

hence with increasing age. Evidence for such an age signal in the

oceanic crust is obtained by looking at the cumulative probability

distribution of global oceanic crustal thickness belonging to four

different age windows (Fig. 13). Mean Moho depth estimates above

70◦N were excluded in this analysis. For instance, 22 per cent of

global oceanic crust younger than 40 Myr is thicker than 10 km,

whereas 50 per cent of the global oceanic crust between 120–

150 Myr is thicker than 10 km. Age dependence of oceanic crustal

thickness is generally considered to be weak or non-existent. How-

ever, there exist other studies which found evidence for an age signal

in oceanic crustal thickness (Tanimoto 1995).

In Fig. 14 a histogram of all the standard deviations is shown;

(left) for oceanic and (right) for continental regions. For oceanic

regions all standard deviations are smaller than 5 km, whereas for

continental regions, standard deviations up to 7 km are observed.

The standard deviations depend on the prior information over the
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Figure 13. Cumulative probability distribution of mean Moho depth be-

longing to four different age windows; 0–40 [Myr] (blue), 40–80 [Myr]

(red), 80–120 [Myr] (green), 120–150 [Myr] (magenta).

data space (i.e. the assumed uncertainties of the phase and group

velocity maps) as well as the prior information over the model space.

Increasing σ in eq. (11) leads to more homogeneous but on aver-

age higher standard deviations, since less importance is given to the

data or more regularization is applied. Using a broader prior over

the model space has a similar effect, since potentially more models

might explain the data. We thus conclude that, given the prior infor-

mation, defined in Section 3.1, fundamental mode surface waves in

the period range considered constrain Moho depth with an average

standard deviation of ±3 km. An observed feature are small-scale

variations of lower and higher standard deviations, indicating that

the phase and group velocity maps are not everywhere in equally

good agreement. However, on a global scale the presented results

are in very good agreement with common knowledge about crustal

thickness, indicating that overall the used data sets are reliable. Al-

though we used a 2◦ × 2◦ grid for convenient comparison with other

crustal models, the lateral resolution of our Moho depth map is that

of the combined resolution of the input phase and group velocity

maps ranging between 500 and 1000 km. As a consequence the pre-

sented Moho depths and the corresponding standard deviations are

averaged estimates over an area determined by the lateral resolution

of the phase and group velocity maps and do not represent point

estimates.

5.2 Moho depth distribution

To illustrate how well the different data sets constrain Moho depth

it is instructive to look at the Moho depth distribution at specific

locations. We chose four locations in Eurasia, one location near the

Mid-Atlantic ridge and another location in the Pacific near the west

coast of central America. In Fig. 15 the Moho depth distribution ob-

tained by inverting phase (top) and group (middle) velocities alone

and by inverting phase and group velocities together (bottom) are

plotted. The broadness of the Moho depth distribution is mainly due

to trade offs with all the other parameters. Generally group veloc-

ities constrain Moho depth better than phase velocities; the same

was already observed by comparing the sensitivities of phase and

group velocities to variations in Moho depth (Fig. 7). Additionally

the group velocity data set includes lower periods which are more

sensitive to crustal structure. In Central Tibet and to a lesser extent in
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Figure 14. Histogram of all the standard deviations extracted from the joint MDN network inversion; (left) oceans, (right) continents.

the Tarim Basin the difference between the phase and group velocity

inversion is large, indicating that the two data sets in this region are

inconsistent. This observed discrepancy is further evidence for spe-

cial structural features in the Tibetan region and might be explained

by crustal anisotropy as proposed by Shapiro et al. (2004), but not

included in our training set.

At locations in India and the Caspian/Aral region it is nicely visi-

ble that even though crustal thickness is mainly constrained by group

velocities, phase velocities do contribute additional information, re-

sulting in a tighter Moho depth distribution for the joint inversion.

The same can be observed for the two locations in the oceans, at the

Mid-ocean ridge and near the Pacific coast of central America.

Using the samples we trained the network on, we can construct

a histogram of the Moho depth distribution according to eq. (13)

by comparing the observed dispersion curve with each synthetic

dispersion curve of the training data (referred to as Monte Carlo

inversion here). The histograms for all three different inversions

are superimposed on the Moho depth distribution obtained with the

MDN (Fig. 15). Note that using the MDN network, consistent results

are obtained compared to the Monte Carlo inversion. This indicates

that the MDN network and Monte Carlo methods provides similar

probabilistic information on the solution.

Compared with the results obtained by Devilee et al. (1999) who

inverted two different phase and group velocity data sets at the same

locations, our results are characterized by smaller uncertainties. This

can be explained by the more recent and complete data set used in

this study.

5.3 Comparison with other crustal models

We compared our crustal thickness estimates with the current knowl-

edge about crustal thickness as in CRUST2.0 (Bassin et al. 2000).

Additionally we compared our result with the model CUB2 from

Shapiro & Ritzwoller (2002), who inverted a similar data set for

crustal thickness using a Monte Carlo approach. In Fig. 16 the three

crustal models, CRUST2.0, CUB2 and our own MDN model are

compared. (top) MDN model is plotted against CRUST2.0; (mid-

dle) MDN model is plotted against CUB2; and (bottom) CUB2

is plotted against CRUST2.0. Note the linear correlation in all

the three plots indicating overall agreement between the three

models.

Interestingly, the agreement of our MDN model with CUB2 is

better than with CRUST2.0. Shapiro & Ritzwoller (2002) restricted

the model search to a small region ±5 km around CRUST5.1, hence

its better agreement with CRUST2.0. Keeping in mind that the al-

lowed Moho depth variation in this study is between 0 and 110 km

for continental regions and between 0 and 40 km for oceanic re-

gions, some discrepancy between our MDN model and CUB2 has

to be expected, still the same trend of deviation form CRUST2.0 is

observed.

In Fig. 17 the difference between CRUST2.0 and our MDN model

(top) and the difference between CUB2 and our MDN model (bot-

tom) divided by the standard deviation of our MDN model are plot-

ted. This allows to localize specific regions where the disagreement

with CRUST2.0 and/or CUB2 is bigger than ±1σ . Almost every-

where our estimates are within ±1σ of the two other models; how-

ever, in specific regions such as central Africa, the backarc of the

Rocky Mountains, west Australia and underneath the Himalayas

as well as the Andes according to our model the crust seems thin-

ner than proposed by CRUST2.0 and CUB2. This can be explained

partly because, due to the limited lateral resolution of the data set

used, the really thick crust under the Himalayas and the Andes is

not captured. In central Africa, the backarc of the Rocky Moun-

tains and west Australia, there seems to be strong evidence that

crustal thickness inferred from surface wave data is thinner than pro-

posed by CRUST2.0. It is interesting to see that disagreement with

CRUST2.0 and CUB2 coincidences geographically and that within

these regions the disagreement with CUB2 is smaller than with

CRUST2.0. This indicates that due to the tighter constraints CUB2

stays closer to CRUST2.0 than our MDN model, but the disagree-

ment of both models with respect to CRUST2.0 has the same sign.

In Fig. 18 Moho depth of the MDN model (blue) with correspond-

ing uncertainties (dashed), of CRUST2.0 (red) and of CUB2 (green)

is shown along five different profiles, whose locations are indicated

in Fig. 19 . Along profile AA′ crossing North America eastwards,

Moho depth seems to be thinner as predicted by CRUST2.0. The

difference increases towards the East coast. As already mentioned

CUB2 shows the same trend but to a lesser extent. Along profile

BB′ eastwards across Eurasia, all three models are generally in good

agreement and show the same crustal thickness patterns. Profile CC′

runs across the Himalayas in northward direction, thickening of the

crust beneath the Himalayas is the most dominant feature of this

profile. Note the thinning of the crust underneath Tibet around 40N,
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Figure 15. Moho depth distribution at six different locations. Each Fig. shows the Moho depth distribution obtained by phase velocity inversion (top); group

velocity inversion (middle); joint inversion (bottom). (solid) Output of a MDN network; (histogram) result of a Monte Carlo inversion (see text).

which is not apparent in CRUST2.0 but visible in CUB2 to a lesser

extent. At two locations along this profile the Moho depth distribu-

tion is shown in Fig. 15. The observed results along the two profiles

BB′ and CC′ are consistent with the crustal thickness map across

Eurasia obtained by Devilee et al. (1999). Along profile DD′ cross-

ing Africa northwards, we observe a thinner crust than the other two

models through most of the continent. Interestingly we observe a

thickening of the crust beneath the Hellenic Arc between 35◦–45◦N,
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Figure 16. Scatter plot of three different global crustal models. (top) MDN

versus CRUST2.0; (middle) MDN versus CUB2; (bottom) CUB2 versus

CRUST2.0.
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Figure 17. The difference between CRUST2.0 (top); CUB2 (bottom) and

our MDN Moho depth estimates divided by the standard deviations.

whereas the other two models show a thinning of the crust in this

region. Along profile EE′ through the Atlantic Ocean, crossing the

Mid-ocean ridge, the three models are in good agreement.

6 C O N C L U D I N G R E M A R K S

We presented a global crustal thickness model with corresponding

uncertainties. The results were obtained using a neural network ap-

proach, the MDN, which allows one to model the posterior Moho

depth probability distribution as a mixture of Gaussians. The whole

procedure involves no linearization.

Generally non-linear inverse problems are solved using sam-

pling based techniques. We have demonstrated that the MDN inver-

sion has the following advantages over sampling based techniques:

(1) if many repeated inversions are required the MDN inversion can

be extremely efficient, inverting a dispersion curve using a trained

network takes only a fraction of a second; (2) since the neural net-

work interpolates between samples, far wider bounds on the model

parameter values can be used, resulting in less biased results and

(3) a continuous representation of the posterior model parameter

probability distribution is obtained.

A large part of this work focused on the important concept

of regularization. We made the link between regularization and

measurement accuracy. The more exact a measurement is, the less

regularization is required. All variations in the data in the order of

the measurement noise provide no information. Without knowing

the measurement error, noise will be falsely interpreted as variations

in the model parameters. In our approach the assumed noise model

determines the amount of regularization, which is either implicit
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Figure 18. Five different Moho depth profiles. (blue) MDN Moho depth with corresponding uncertainties (dashed); (red) CRUST2.0 Moho depth; (green)

Moho depth from CUB2.

through the addition of the noise to the synthetic training data, or

explicit through the addition of a penalty term to the error measure

to be minimized. Without any form of regularization the neural net-

work approximation to the inverse mapping will not generalize well

to observed data points which are corrupted by noise. This fits well

with the theory of sampling based inversion techniques where prior

assumptions have to be made in order to infer model parameters

from noisy measurements.
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Figure 19. Map showing the location of five different profiles.

Finally we compared our model with current knowledge about

crustal structure as represented by CRUST2.0 and CUB2 a recent

model from Shapiro & Ritzwoller (2002). The overall agreement of

±1σ with this two models is very good, where agreement is generally

better with CUB2. The observed difference can be explained by

different constraints applied to Moho depth variations. (Shapiro &

Ritzwoller 2002, constrains Moho depth to vary ±5 km around

CRUST5.1 while we constrain Moho depth a priori to vary between

0 and 110 km for continental regions and between 0 and 40 km

for oceanic regions). Our model shows generally the same trend as

CUB2 with respect to differences from CRUST2.0. A notable new

finding is that we see evidence for thickening of oceanic crust with

increasing age.
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