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SUMMARY

In recent years, neural network models have been widely used in the Civil Engineering field. Interesting
enhancements may be obtained by re-examining this model from the Bayesian probability logic viewpoint.
Using this approach, it will be shown that the conventional regularized learning approach can be derived as
a particular approximation of the Bayesian framework. Network training is only a first level where
Bayesian inference can be applied to neural networks. It can also be utilized in another three levels in a
hierarchical fashion: for the optimization of the regularization terms, for data-based model selection, and
to evaluate the relative importance of different inputs. In this paper, after a historical overview of the
probability logic approach and its application in the field of neural network models, the existing literature
is revisited and reorganized according to the enunciated four levels. Then, this framework is applied to
develop a two-step strategy for the assessment of the integrity of a long-suspension bridge under ambient
vibrations. In the first step of the proposed strategy, the occurrence of damage is detected and the damaged
portion of the bridge is identified. In the second step, the specific damaged element is recognized and the
intensity of damage is evaluated. The Bayesian framework is applied in both steps and the improvements in
the results are discussed. Copyright r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Complex structural systems, such as long bridges, tall buildings or offshore platforms, are
exposed to various external loads during their service life and they may deteriorate and degrade
with time; this may lead to structural failures and possibly loss of human lives. To ensure safety
and to minimize financial loss, early detection of damage becomes important so that preventive
and remedial works can be carried out as early as possible [1,2]. Consequently, an effective
structural integrity monitoring system can play a key role in the maintenance scheduling of the
structures [3–5]. A great deal of research in the past 30 years has been aimed at establishing
effective local and global methods for integrity monitoring in civil structures. An extensive
survey of global methods is presented in Doebling et al. [6] and in an update by Sohn et al. [7].

Large structures, like long-span bridges for example, are often affected by environmental and
traffic loads that cannot easily be controlled or measured. In such cases, it is possible to assess
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the structural integrity and performance by measuring and analyzing the structural responses.
As such responses are usually small in amplitude and often corrupted by noise, for monitoring
efficiency, it is important to develop practical techniques for extracting useful information from
the measured data.

Conventional methods may encounter difficulties for dealing with these data, whereas
adaptive models, like the neural networks applied in this work, represent a useful modeling tool.
Such models are robust and fault tolerant and can effectively deal with qualitative, uncertain
and incomplete information, making them highly promising for smart monitoring of civil
structures [8–14]. For example, Wu et al. [15] discussed the use of neural network models for
detecting damage in a multistory frame with rigid floor. Elkordy et al. [16] proposed a neural
network method by using displacements and strain mode shapes; Pandey and Barai [17]
described the use of neural networks for damage detection of steel-truss bridge structures; Masri
et al. [18] proposed a neural network approach to detect changes in the structural parameters.
Kim et al. [19] described a two-stage procedure where, in the first stage, traditional sensitivity
analysis is used to rank and select critical members, and in the second stage, the results of the
sensitivity analysis and a neural network are used to identify the optimal number and locations
of monitoring sensors. This method is applied to two-dimensional trusses and multistory
frames. Ni et al. [20] discussed the relevance of the right construction of the input vector.
Ko et al. [21] proposed a multi-stage method for the monitoring of the cable-stayed bridge
Kap Shui Mun Bridge in Hong Kong. Xu and Humar [22] proposed a two-step algorithm that
uses the modal energy-based index to locate the damage and a neural network model to
determine the extent.

To improve the performance of neural network models, it is interesting to consider their
framework from the probability logic viewpoint [23]: in fact, for the task of inferring a best
estimate of the model parameters, the so-called learning phase, the traditional and the Bayesian
approach can be made mathematically equivalent, if Laplace asymptotic approximation is used
[24], but the potential enhancements that can be obtained by applying Bayesian inference at
further levels in a hierarchical fashion are often not appreciated. These various levels can be
summarized as follows:

� Level 1—Model fitting: task of inferring appropriate values for the model parameters,
given the model and the data.

� Level 2—Optimization of the regularization terms that make Level 1 a better conditioned
inverse problem.

� Level 3—Model class selection: the Bayesian approach allows a data-based comparison
between models using alternative network architectures.

� Level 4—Automatic relevance determination (ARD): the relative importance of different
inputs can be determined by using separate regularization coefficients.

In this work, after a historical overview of the probability logic approach and its application
in the field of neural network models, the existing literature is revisited and reorganized
according to the enunciated four levels. Then, this framework is applied in a multi-step strategy
for the identification and quantification of damage in a long-suspension bridge. In the first step
of the proposed strategy, the occurrence of damage is detected and the damaged portion of the
bridge is identified. In the second step, using a pattern recognition approach, the specific
damaged element is recognized and the intensity of damage is evaluated. The hierarchical
Bayesian framework is applied in both steps and the improvements in the results are discussed.

2. TRADITIONAL NETWORK TRAINING AND PROBABILITY LOGIC
INTERPRETATION

The neural network concept has its origins in attempts to find mathematical representations of
information processing in biological systems. A neural network can also be viewed as a way of
constructing a powerful statistical model for non-linear regression. It can be described by a
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series of functional transformations working in different correlated layers [25]:

ykðx;wÞ ¼ h
XH

j¼1

wð2Þkj g
XD

i¼1

wð1Þji xi1wð1Þj0

 !
1wð2Þk0

 !
ð1Þ

where yk is the kth neural network output; x is the vector of the D variables in the input layer; w
consists of the adaptive weight parameters, wð1Þji and wð2Þkj , and the biases, wð1Þj0 and wð2Þk0 ; H is the
number of units in the hidden layer; and the quantities in the brackets are known as activations:
each of them is transformed using a non-linear activation function (h and g) [26]. Input–output
data pairs from a system are used to train the network by ‘learning’ or ‘estimating’ the weight
parameters and biases.

In the traditional training approach, the values of the components of w are estimated from
the training data by minimizing a proper error function, e.g. the sum of squared errors with
weight decay regularization [27]:
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where yk is the kth neural network output corresponding to xn, the nth input in the training
data; tn

k is the corresponding nth target output in the training data; N is the number of
input–output pairs in the target data set; No is the number of output variables; W is the number
of parameters in w; and a is a regularization parameter. The first term ED represents the error
between the data and the approximation by the neural network and the second term EW is a
decay regularization that penalizes large weight parameters.

Neural network learning can be framed as Bayesian inference, where probability is treated as
a multi-valued logic that may be used to perform plausible inference [23]. Although the roots of
this probability logic approach originated long ago in the work of Bayes [28], Laplace [29],
Jeffreys [30] and Cox [31], the practical application of Bayesian methods was for a long time
severely limited by the computational difficulties in carrying through the full Bayesian
procedure. The recent development of approximate methods, especially stochastic sampling
methods, along with dramatic improvements in the power of computers, has opened the door to
the practical use of Bayesian techniques in an impressive range of applications across all
disciplines. In recent years, in civil engineering, for example, the probability logic approach has
been successfully applied to system identification problems and structural health monitoring
(e.g. [32–36]) using the Bayesian probabilistic framework presented in Beck [37] and Beck and
Katafygiotis [38,39]) for dynamic systems.

Starting from the early works of MacKay [24] and Buntine and Weigend [40], there has been
a growing interest for the application of this Bayesian framework in the field of neural networks
[41–43]. Several relevant textbooks have been published: for example, Neal [44] proposed a
detailed full Bayesian approach to neural networks; Lee [45] dealt with neural networks within
the context of nonparametric regression and classification; Nabney [46] developed software to
complement the key reference books of Bishop [25].

To pose the neural network model within the Bayesian framework, the learning process needs
to be interpreted probabilistically. First, it can be considered that the network output represents
the mean output conditional on the input [27]. Second, as a neural network gives an
empirical model, it is not expected to make perfect predictions (in fact, if it could match the data
exactly, one would suspect over-fitting due to an excessive number of parameters), so the
prediction error e ¼ t� yðx;wÞ between the target vector t and the network output vector y
needs to be interpreted probabilistically using an appropriate prediction-error probability
model, such as independent and identically distributed (i.i.d.) Gaussian PDFs (probability
density functions) with mean zero and variance s2D ¼ 1=b whose choice is supported by the
principle of maximum differential entropy [23]. Thus, the likelihood function for a training data
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set D5 xn,tn: n5 1,y,N is given by
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whereM denotes the Bayesian model class that specifies the form of the likelihood function here
and also the prior probability distribution discussed next.

Although the likelihood function does take into account the uncertain prediction error, it
does not quantify the uncertainty in the values of the parameters w. In the Bayesian framework,
this can be represented by a prior PDF pðwjMÞ which expresses the relative plausibility of each
value of the parameter vector w [23]. Since generally there is a little idea of what the values
should be, it is usual to select the prior as a rather broad distribution expressing a large amount
of uncertainty. Under the constraints of specified zero mean and the same variance s2W ¼ 1=a for
each component of vector w, the principle of maximum differential entropy leads to a Gaussian
prior PDF of the form:

pðwja;MÞ ¼
a
2p

� �W =2
exp �

a
2

wk k2
� �

ð4Þ

where wk k2 is the Euclidean norm as in the last term of Equation (2). Other choices for the prior
pðwja;MÞ for neural networks have been investigated [45,47].

Using available data, Bayes’ Theorem updates the prior PDF pðwja;MÞ to give the posterior
PDF:

pðwjD; a;b;MÞ ¼
pðDjw;b;MÞpðw a;Mj Þ

pðD a;b;Mj Þ
ð5Þ

This posterior distribution is always more compact than the prior distribution if the data
informs the model, as indicated schematically in Figure 1, expressing the fact that something has
been learned; it gives a measure of the relative plausibility that the model’s parameters should

Figure 1. Learning as inference.
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have a specified value w based on the data and the prior information. Therefore, by maximizing
the posterior, the most plausible (maximum a posteriori—MAP) values wMAP of the parameters
can be found.

Instead of finding a maximum of the posterior probability in Equation (5), one can seek
instead a minimum of its negative logarithm. As shown in Figure 1, for the chosen prior
distribution and likelihood function, the negative log posterior probability is just the usual
regularized sum of squares function in Equation (2). Therefore, the conventional learning
approach can be derived as a particular approximation of the Bayesian framework where only
the MAP parameter values are utilized and so the post-data uncertainty in w is ignored.

3. BAYESIAN ENHANCEMENTS FOR NEURAL NETWORKS

3.1. First level of inference: model fitting

In Figure 2, the steps for the practical application of this first level of inference are schematized.
First, network input and output are selected and a data set is collected or created. Usually, the
data need to be pre-processed to reduce their complexity. Then, a suitable network architecture
is selected and the probability model is defined. At this point, network training starts: it consists

Figure 2. Level 1 inference: flow chart of model fitting using neural networks.
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of utilization of input–output data by maximizing the posterior probability of the model
specified by w. At the end of training, if the level of learning and generalization is considered
sufficient, the iterative network optimization process is stopped and predictions can be made
using the trained network. If the result is not satisfactory, one or more of the previous steps is
repeated.

3.2. Second level of inference: evaluating the hyperparameters

In the first level of inference, it has been assumed that the hyperparameters a and b are known.
To select the appropriate values of the hyperparameters, Bayes’ Theorem can be applied at a
second level [41] as follows:

pða; b D;MÞj ¼
pðDja;b;MÞpða;bjMÞ

pðDjMÞ
ð6Þ

The correct Bayesian treatment to evaluate these parameters will be, in general,
computationally expensive. Different computational methods can be used [44]. In this work,
an iterative method based on Laplace’s asymptotic approximation, which leads to Gaussian
approximations of the posterior PDF, has been used [24,39,44]. This method, known as the
evidence procedure in the neural network field [24], is not a full Bayesian approach because it
searches for optimal hyperparameters instead of integrating them out using, for example,
stochastic simulation methods. Nevertheless, it has given good results for many applications
(e.g. [48]) and is considerably less computationally demanding than the full Bayesian procedure.
Applying this method, the hyperparameters are estimated at the same time as the parameters w.

As shown in Figure 3, initial values for a and b are chosen and the related values of w are
obtained by maximizing their posterior probability. Then, the hyperparameters are re-estimated
using the following relations [27] which are their MAP values, based on a uniform prior for a

Figure 3. Level 2 inference: implementation of the evidence procedure.
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and b, that is, these values maximize the evidence p(D|a,b,M) in Equation (6):

anew ¼
g

2EW
ð7Þ

bnew ¼
N � g
2ED

ð8Þ

where EW and ED, already discussed in the previous section, indicate the part of the error
function related to the prior and likelihood for the parameters, respectively, and N is the number
of available sample input-output pairs in the data set. The parameter g measures the effective
number of parameters whose values are controlled by the data rather than by the prior, i.e. the
number of well-determined parameters. It is computed using the following equation, obtained
by differentiating the expression of the evidence based on Laplace’s asymptotic approximation
and setting the derivative to zero [24]:

g ¼ W � aTraceA�1 ¼ W �
XW
a¼1

a
la1a

¼
XW
a¼1

la
la1a

ð9Þ

where W is the total number of parameters in w. The relation has been written in terms of the
eigenvalues of the matrix A, which is the Hessian of the total error function (given by the sum of
ED and EW). Each eigenvalue measures how strongly one parameter is determined by the data,
while ameasures how strongly the parameters are determined by the prior. Each term ga 5 la/(la
1a) is a number between 0 and 1, which measures the strengths of the data relative to the prior
in direction a. A direction in parameter space for which la is small compared with a does not
contribute to the number of good parameter measurements.

The iterative estimation of the hyperparameters is repeated until convergence is achieved.
According to Bishop [27], it is possible to consider that the algorithm converges when g is close
to the total number of parameters (gffiW).

3.3. Third level of inference: model class selection

Although it is a crucial aspect in neural network applications, very few publications deal with
the choice of the optimal model complexity: for example, how many hidden nodes should be
included in a layer? It is not correct to choose simply the model that fits the data better: more
complex models will always fit the data better but they may be over-parameterized and so
generalize poorly by making poor predictions for new cases. Therefore, in model class selection,
it is necessary to penalize models that are more complicated.

In the fourteenth century, William of Ockham proposed: ‘Frustra fit per plura quod fieri
potest per pauciora’, now known as Ockham’s razor, which can be translated as ‘It is vain to do
with more what can be done with fewer’ [49]. In the present context, this philosophy implies a
principle of model parsimony that simpler models should be preferred over unnecessarily
complicated ones that offer only slight improvements in the fit to the data. This point was
recognized by Jeffreys [30], who pointed out the need for a simplicity postulate that would give a
quantitative expression of Ockham’s razor. Akaike [50], for example, introduced the AIC, which
combines a measure of the data fit with a term penalizing a larger number of uncertain
parameters but the form of the penalty term was determined in a somewhat ad-hoc manner. In
recent years, there has been a growing interest in the application of the Bayesian approach to
model class selection, which has been shown to automatically enforce a quantitative expression
of Ockham’s razor without the introduction of ad-hoc penalty terms [34,41,49].

The selection of the appropriate model class is the third inference task where Bayesian
techniques can be successfully applied to neural network models. It can lead to significant
improvements in the neural network model performance; in fact, many heuristic methods are
suggested in the literature to determine the optimal network architecture (see, for example,
[51,52]) but most of them are lacking a rigorous basis or, like the widely used early stopping
technique, need the data set to be portioned into a training set and a validation set. On the
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contrary, the Bayesian approach permits an objective comparison between different models and
allows all of the available data to be used for training [53].

In Bayesian model selection, the most plausible model class among a set M of NM candidate
ones is obtained by applying Bayes’ Theorem as follows:

pðMjjD;MÞ / pðDjMjÞpðMjjMÞ ð10Þ

The factor p(D|Mj) is known as the evidence for the model class Mj provided by the data D.
The user’s judgment about the initial plausibility of each neural network model class is expressed
by the prior probability p(Mj|M ) over the set of model classes Mj for j5 1,y,NM where:XNM

j¼1

pðMjjMÞ ¼ 1 ð11Þ

Equation (10) shows that the most plausible model class is the one that maximizes p(D|Mj)
p(Mj|M) with respect to j. If there is no particular reason a priori to prefer one model over
another, they can be treated as equally plausible a priori and a non-informative prior, i.e.
p(Mj|M)5 1/NM, can be assigned, then different models can be compared just by evaluating
their evidence [24].

3.4. Fourth level of inference: automatic relevance determination of inputs

Once the optimal architecture has been determined, the last issue that should be considered is
the relative importance of each input variable. Using data from real systems, it could be difficult
to separate the relevant variables from the redundant ones. In the Bayesian framework, this
problem can be addressed by the Automatic Relevance Determination (ARD) method,
proposed by Mackay [41] and Neal [44].

To use this technique, a separate hyperparameter ai is associated with each input variable, which
represents the inverse variance of the prior distribution of that input parameter. In this way, every
hyperparameter explicitly represents the relevance of one input: a small value means that a large
weight parameter value is allowed and the corresponding input is important; on the contrary, a
large value of ai means that the corresponding weight parameter is constrained near zero, and
hence the corresponding input is less important. Therefore, the ARD allows a fourth level of
inference to be added in which the hyperparameters ai are chosen by maximizing the evidence for
the model class defined by these hyperparameters. Once the architecture of the model is defined, the
importance of every input is evaluated: if some hyperparameter is very large, the related input will
be dropped from the model and the optimal architecture for the new model will be re-estimated.

The four levels are summarized in the flow chart in Figure 4. Starting from the simple process
in Figure 2, further steps have been added to include the other three levels of inference:
evaluation of the hyperparameters, model class selection, and ARD. For the model class
selection, it has been assumed that the evidence will have a single peak, so the optimal model is
selected in an iterative way considering models of increasing complexity: in Figure 4, the index i,
which represents the number of units in the internal layers, gets larger at every loop and the
process continues until the increasing of the the complexity corresponds to a decreasing of the
evidence p(D|Mj).

4. STRATEGY FOR INTEGRITY ASSESSMENT OF A LONG-SUSPENSION BRIDGE

The theoretical framework developed in the previous sections is applied in a multi-step strategy
for the assessment of the integrity of the bridge in Figure 5 (Arangio, [54]). It is a long-span
suspension bridge whose construction has been recently re-proposed for crossing the Strait of
Messina in Italy. A finite element model based on a preliminary design scheme has been
considered for numerical calculations. It has a main span of 3300m; the towers are 383m high
and the bridge suspension system relies on two pairs of steel cables, each with a diameter of
1.24m. The secondary suspension system consists of 121 pairs of rope hangers. The cross-
section of the deck is composed of three box elements supported every 30m by transversal
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beams; the deck carries six road lanes in the external box girder and two railway tracks in the
central one. Bontempi [55] gives more detailed information about the bridge design.

A multi-step damage identification strategy has been followed because it has been shown that
it is more effective to consider independently the tasks of damage detection, location and
quantification [21,56]. In the first step of the strategy, the occurrence of anomalies or damage in
the bridge is detected, and the damaged portion of the structure is identified. If some damage is
detected, the second step of the procedure is initiated using a pattern recognition approach,
where the location of the specific damaged member within the whole area is identified, and the
extent of damage is evaluated. The two steps are illustrated in more detail in the following.

4.1. Step 1: damage detection

In the first step of the proposed strategy, the response of the structure is monitored at various
measurement points located in a group of three (A, B, C in Figure 5) every 30m along the bridge

Figure 4. Hierarchical Bayesian framework for neural networks.
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deck; correspondingly, different neural networks are trained, one for each intermediate point B. The
neural network models are built and trained using the time-histories of the response of the structure
subjected to wind actions and traffic loads (due to the passage of a train) in the undamaged situation.

The procedure for network training is showed in Figure 6. The time-history of a response
parameter f is sampled at regular intervals, generating series of discrete values ft. A set d of such
values: ft-d11,y, ft is used as input of the network model, while the next value ft11 is used as the
target output. By stepping along the time axis, a training data set consisting of many sets of

Figure 5. Scheme of the damage identification strategy.

Figure 6. Procedure for network training.
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input vectors with the corresponding output values is built, and the network models are trained.
The trained models are then tested with a set of observed values ft1n-d,y, ft1n, to predict the
value of ft1n11, according to the procedure of one step ahead prediction [27].

Then, new input patterns, corresponding to both undamaged and damaged situations, are
tested on the trained models. For each pattern, the next value is predicted and compared with
the target output. If the error in the prediction is negligible, the structure is considered as
undamaged; if the error is large, the presence of an anomaly is detected.

The results of the training and test phases are elaborated as shown in Figure 7. The two plots
show the difference err between the network output value y and the target value t at several time steps
for both training and testing, in undamaged and damaged conditions. It is possible to note that the
mean values of err (indicated by the straight lines) obtained both in training and test are comparable
if the structure remains undamaged. On the contrary, in case of anomalies that may correspond to
damage, there is a difference De between the mean values of err in testing and training.

It has to be noted that the detected anomaly may correspond to a damage state or simply to a
change of the characteristics of the excitation. To distinguish the actual cause of the anomaly,
the intensity of De is checked in different test sections, according to the procedure represented in
the flow chart in Figure 8, where all the aspects related to the first steps are schematized. In the
left side the start-up is shown: given a data set, the optimal neural network model is selected and
trained according to the Bayesian approach. Then, as shown in the right side of Figure 8, the
trained model is tested with new input data sets. At this point, there are three possibilities: if the
difference De between the mean errors in training and test is close to zero, the structure is
considered undamaged; if De is different from zero in several test sections, it can be concluded
that the external actions are probably changed. In this case, the trained neural network models
are unable to represent the time-histories of the response parameters, and they have to be updated
and re-trained according to the modified characteristics of the action. If De is different from
zero only in one or few test sections (Figure 9) and generally decreases with the distance from
the selected section, it can be concluded that the considered section of the structure is

Figure 7. Difference err between output y and target t values for training and testing in undamaged and
damaged conditions in a case example (considered damage: 5% reduction of stiffness in one cable).
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damaged and the second step of the procedure is initiated. ‘Different from zero’ is a concept
whose quantification is left to the experience of the operator, because a critical magnitude of the
error cannot be defined in absolute terms, but it should be related to the specific structural
element; to investigate this correlation and to assess the efficiency of the procedure, different scenarios
of damage are considered in the numerical applications and the corresponding De is evaluated.

Data are simulated by analyzing the dynamic response of the finite element model of the
bridge. Damage is modeled as a reduction of stiffness of a structural element. The following
damage scenarios are considered:

� hangers: reduction of stiffness from 5 to 80%;
� cables: reduction of stiffness from 1 to 10%;
� transverse beam: reduction of stiffness from 5 to 30%.

Figure 8. Flow chart of the procedure for damage detection.

Figure 9. Identification of the damaged portion by considering the errors in the approximation.
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The training data set for every network model includes 1000 time-history samples of the
response parameters that were found to be more sensitive to a stiffness reduction (Arangio and
Petrini, [57]): they are the rotation of the centroid of the deck cross-section about the
longitudinal axis in case of wind actions, and the vertical displacement of the same point in case
of traffic loads.

The number of sampled data is chosen to be 1000 after some trials. The time-histories of the
responses are continuous signals so one can select as many samples as wanted, but beyond 1000
samples it was found that there was no significant improvements in the generalization capacity
of the network.

4.2. Step 2: identification of damage location and intensity

If damage is detected in a portion of the structure, the second step of the procedure is initiated; it
is aimed at identifying the specific damaged element (one of the two cables, the transverse beam,
or one of the two hangers) in the selected area, and at evaluating the damage intensity. A pattern
recognition approach is used. In this step, the mean values of the error err in the prediction of
the response time-histories for all three measurement points (A, B, C) in the considered section
are taken as inputs of the neural network model. As shown in Figure 10, each damage scenario
is described by a vector of five components: each component indicates the state (presence and
intensity) of damage for one of the structural elements in the test section. The data set is
collected by simulating 400 damage scenarios (corresponding to different location and
intensities of damage): 370 of them are used for network training and the other 30 for testing
the generalization performance.

5. RESULTS OF THE BRIDGE INTEGRITY ASSESSMENT STRATEGY

5.1. Step 1: Bayesian model selection for training in an undamaged condition

Various network models were trained using the time-histories of the response of the bridge in an
undamaged condition. The hierarchical Bayesian approach discussed in the previous sections
was applied. Regarding the first two levels of inference, no significant differences between the
traditional and the Bayesian approach were noted. On the other hand, the application of the
other two levels, Bayesian model selection and Automatic Relevance Determination (ARD), led
to some improvements. Only the results related to these two levels are shown here.

To select the optimal model for damage detection in Step 1, at first a class of models with four
input units, corresponding to the number of previous instants needed to predict the value at the
instant t11, was considered. For this class, different architectures, with an increasing number of
hidden units, were analyzed and compared. Treating all the models as equally plausible a priori,
a non-informative prior p(Mj)5 1/NM over the models was assigned, and so various models
were compared by just evaluating their evidence p(D|Mj). In particular, the logarithm of the
evidence for model class Mj was computed using the following relation based on Laplace’s

Figure 10. Neural network model for the identification of damage location and intensity.
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asymptotic approximation of the evidence integral [27]:

lnpðDjMjÞ ¼ � bMP
j EMP

D 1
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where aMP
j and bMP

j are the MAP values of the hyperparameters for model class Mj discussed in
Section 3.2, gMP

j is the corresponding value of the parameter in Equations (7) and (8), N is the
number of samples in the data set, H MP

j is the number of hidden units of the model class Mj, the
matrix AMP

j is the Hessian of the total error function (given by the sum of ED and EW), and Wj is
the number of parameters in wi.

It is important to note that in this equation it is possible to recognize two kinds of terms:
those in the first row give a measure of the data fit, so they increase as the models get more
complex; they are reported in the first row of the following tables. The sum of the other terms,
which represents the Ockham factor, penalizes more complex models, so it decreases when the
complexity increases. This sum can be viewed as the amount of information extracted from the
data by model class Mj (it is the relative entropy of its posterior PDF with respect to its prior
PDF) [36]. The optimal complexity is given by the model with the best compromise between
these terms, which is produced by maximizing the evidence of the model and hence maximizing
its posterior probability.

In the first row of Table I, some models are presented with increasing complexity (more
hidden units) within the class with four input variables; one can see that the model with the
highest evidence is the simplest one (model 1, one hidden unit). Once the best model within the
model class is identified, the ARD is applied to determine whether this class is the optimal one
or not. In the bottom part of the Model I column, the vector of the hyperparameters aj, where
j5 1,y,I, with I5 number of the inputs, for the model 1, is shown. One can see that the two
smallest values have the same order of magnitude, whereas the other two values are much
higher, suggesting that the latter should be neglected. For this reason, another model class, with
only two input variables, is analyzed.

Table I. Results of the Bayesian model selection and ARD for a model class with four input variables.

Model 1 2 4 8

Parameters W 7 13 25 49

�bEMP
D 1 N

2 ln bMP 11 081 11 081 11 081 11 081

ln Hj!12 ln Hj 2.08 3.99 8.01 17.20

Data fit term 11 083 11 085 11 089 11 098

�aEMP
W � 1

2 ln jAj1
W
2 ln aMP �32 �44 �70 �157

1
2 ln

2
g

� �
1 1

2 ln
2

N�g

� �
�4.0 �4.12 �4.30 4.54

Penalizing term �35.6 �47.7 �73.8 �152.2

Log evidence 11 048 11 037 11 015 10 946

a model 1

121
84
9
6
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In Table II, the results of this selection are shown and once again, the model with the
highest evidence has only one hidden unit. Applying the ARD to this model (bottom part of the
Model 1 column), one can see that, in this case, the values of the hyperparameters are
comparable; thus, the optimized model has 2, 1, and 1 units in the input, hidden and output
layers, respectively.

5.2. Step 1: damage detection

The results of the first step of the procedure are shown in Figure 11(a)–(c), where the differences
between the mean values of the errors De in the damaged and undamaged conditions are shown

Table II. Results of the Bayesian model selection for a model class with two input variables.

Model 1 2 4 8

Parameters W 5 9 13 17

�bEMP
D 1 N

2 ln bMP 14 554 14 555 14 555 14 554

ln Hj!12 ln Hj 2.08 3.99 5.94 8.01

Data fit term 14 556 14 559 14 561 14 562

�aEMP
W � 1

2 ln jAj1
W
2 ln aMP �32 �57 �62 �65

1
2 ln

2
g

� �
1 1

2 ln
2

N�g

� �
�3.9 �4.08 �4.18 �4.23

Penalizing term �35.8 �61.3 �65.9 �69.3

Log evidence 14 520 14 498 14 495 14 493

a model 1

72
18

Figure 11. Differences between the mean errors De in training and testing for different intensities of
damage in (a) one of the two cables; (b) the transverse beam; and (c) one of the two hangers.
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in the form of histograms for different intensities of damage (that is, of stiffness reduction) to
the cables, the transverse beam, and the hangers, respectively. It can be noted from Figure 11
that the proposed strategy is more effective when responses to high-speed excitations (like traffic
loads) are considered instead of responses to slow-speed excitations (like wind actions). Thus, in
the following step, only the structural response due to the transit of a train is considered.

The possibility of detecting damage is different for the various elements, as expected: in fact,
as shown in Figure 11, a small damage to the cables determines a much higher value of De than
a strong damage to the transverse beam and the hangers. Although the sensitivity of the method
to measurement noise is not fully explored here, past experience shows that the Bayesian
approach is robust against noise as it is explicitly modeled probabilistically [39].

5.3. Step 2: location and quantification of damage

Once a damaged section is detected, the specific damaged element and the intensity of damage
are identified using the pattern recognition approach presented in Section 4.2. The optimal
network model is selected by the Bayesian approach on the base of the 370 patterns considered
for training. The log evidences of the different models are compared in Table III, which shows
that the optimal model (most probable model based on the data) has 11 units in the hidden
layers. Thus, the selected model consists of: three input variables, that is, the errors err evaluated
at A, B, and C; five output variables, that is, the possible locations (coincident with one of the
structural element within the section) and intensities; two hidden layers with 11 units (obtained
by the Bayesian selection process). After the training phase, the network is tested with the 30
patterns not included in the training set. The errors are used as inputs and the corresponding
output vector representing the damage scenarios are calculated. Then, these vectors are
compared with the target ones.

In order to give a global and intuitive representation of the results, two quantities are defined
and evaluated for the 30 test samples: the position, which gives a measure of the error in locating
the damage, and the intensity, which gives a measure of the error in estimating the damage
intensity. These quantities are obtained by comparing the network output vectors yi and the
target vectors ti, where i5 1,y,30, and are expressed as

posðiÞ ¼
ti � yi

jjtijj jjyijj
ð13Þ

intðiÞ ¼
jtij
jyij

ð14Þ

Table III. Results of the Bayesian model class selection for step 2.

Model 4 7 9 10 11 12 13 20

Parameters W 41 68 86 95 104 113 122 185

Log evidence 742 912 939 942 962 956 940 833

Figure 12. Location and intensity of damage using the optimal model for the 30 test samples.
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If these quantities are equal to one, the damage is well localized and its intensity is correctly
estimated.

In Figures 12 and 13, the location and intensity results of the test carried out using the
optimal model with 11 hidden units, and another heuristic-based model obtained using
literature suggestions, which has 20 units, are compared. Using the optimized model, the
location can be detected in 90% of the cases and the intensity in 66% of the cases, whereas for
the heuristic-based model the corresponding cases give 70 and 50%, respectively.

6. CONCLUSIONS

In this paper, the probability logic approach has been applied to neural network models to
develop a two-step Bayesian framework that has been utilized for identification and
quantification of damage in a long-suspension bridge. In the first step of the proposed strategy,
various neural network models have been trained to approximate the time-histories of the
structural response in the undamaged situation. Then, new inputs, corresponding to different
damage scenarios, have been presented to the trained models. Analyzing the increment of the
error in the prediction, the occurrence of damage has been detected. The second step aims at the
identification of the specific damaged element in the structural system and the quantification of
the intensity of such damage. In this step, a pattern recognition approach has been used.

In both the damage detection and assessment steps, Bayesian techniques have been applied
for four levels of inference and in both cases they allow an optimization of the model complexity
and an improvement in its generalization capability. This can be noted especially in the pattern
recognition step, where the choice of the optimal model instead of heuristic-based models leads
to an improvement of 20% in the damage location and 16% in damage quantification.

The presented method can be useful for damage identification of large structural systems
instrumented with monitoring systems that furnish measurements for both damaged and
undamaged situations. Using the Bayesian neural network approach, no information about a
structural model is needed.
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