2,507 research outputs found

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Knowledge-aided bayesian detection in heterogeneous environments

    Get PDF
    We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter

    The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments

    Get PDF
    The adaptive coherence estimator (ACE) is known to be the generalized likelihood ratio test (GLRT) in partially homogeneous environments, i.e., when the covariance matrix Ms of the secondary data is proportional to the covariance matrix Mp of the vector under test (or Ms = gamma/Mp). In this letter, we show that ACE is indeed the GLRT for a broader class of nonhomogeneous environments, more precisely when Ms is a random matrix, with inverse complex Wishart prior distribution whose mean only is proportional to Mp. Furthermore, we prove that, for this class of heterogeneous environments, the ACE detector satisfies the constant false alarm rate (CFAR) property with respect to gamma and Mp

    Adaptive processing with signal contaminated training samples

    Get PDF
    We consider the adaptive beamforming or adaptive detection problem in the case of signal contaminated training samples, i.e., when the latter may contain a signal-like component. Since this results in a significant degradation of the signal to interference and noise ratio at the output of the adaptive filter, we investigate a scheme to jointly detect the contaminated samples and subsequently take this information into account for estimation of the disturbance covariance matrix. Towards this end, a Bayesian model is proposed, parameterized by binary variables indicating the presence/absence of signal-like components in the training samples. These variables, together with the signal amplitudes and the disturbance covariance matrix are jointly estimated using a minimum mean-square error (MMSE) approach. Two strategies are proposed to implement the MMSE estimator. First, a stochastic Markov Chain Monte Carlo method is presented based on Gibbs sampling. Then a computationally more efficient scheme based on variational Bayesian analysis is proposed. Numerical simulations attest to the improvement achieved by this method compared to conventional methods such as diagonal loading. A successful application to real radar data is also presented

    Knowledge-aided Bayesian covariance matrix estimation in compound-Gaussian clutter

    Get PDF
    We address the problem of estimating a covariance matrix R using K samples zk whose covariance matrices are kR, where k are random variables. This problem naturally arises in radar applications in the case of compound-Gaussian clutter. In contrast to the conventional approach which consists in considering R as a deterministic quantity, a knowledge-aided (KA) approach is advocated here, where R is assumed to be a random matrix with some prior distribution. The posterior distribution of R is derived. Since it does not lead to a closed-form expression for the minimum mean-square error (MMSE) estimate of R, both R and k are estimated using a Gibbs-sampling strategy. The maximum a posteriori (MAP) estimator ofR is also derived. It is shown that it obeys an implicit equation which can be solved through an iterative procedure, similarly to the case of deterministic ks, except that KA is now introduced in the iterative scheme. The new estimators are shown to improve over conventional estimators, especially in small sample support

    Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

    Get PDF
    In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Cramer-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations

    Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

    Get PDF
    To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training
    corecore