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Adaptive Detection of Distributed Targets in
Compound-Gaussian Noise Without Secondary Data:

A Bayesian Approach
Francesco Bandiera, Member, IEEE, Olivier Besson, Senior Member, IEEE, and

Giuseppe Ricci, Senior Member, IEEE

Abstract—In this paper, we deal with the problem of adaptive
detection of distributed targets embedded in colored noise mod-
eled in terms of a compound-Gaussian process and without as-
suming that a set of secondary data is available. The covariance
matrices of the data under test share a common structure while
having different power levels. A Bayesian approach is proposed
here, where the structure and possibly the power levels are as-
sumed to be random, with appropriate distributions. Within this
framework we propose GLRT-based and ad-hoc detectors. Some
simulation studies are presented to illustrate the performances of
the proposed algorithms. The analysis indicates that the Bayesian
framework could be a viable means to alleviate the need for sec-
ondary data, a critical issue in heterogeneous scenarios.

Index Terms—Adaptive detection, Bayesian detection, com-
pound-Gaussian noise, distributed targets.

I. INTRODUCTION

A DAPTIVE radar detection of multiple point-like or range-
spread targets embedded in Gaussian disturbance has re-

ceived an increasing attention from the radar community in re-
cent years. In fact, the continuous advances of technology have
made it possible to carry out radar systems with increased range
resolution capabilities. In most cases the range resolution is
much higher than the physical dimensions of the target to be de-
tected. As a consequence of this, when a target is present in the
illuminated area, it “appears” in more than one resolution cell.
In addition, the traditional point-like target model can also fail
when a low/medium resolution radar is used and the illuminated
area is occupied, as an example, by a cluster of point-like targets
moving at the same velocity and in spatial proximity to one an-
other. Previously described scenarios require proper detection
strategies taking into account at the design stage the distributed
nature of the targets.

The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Biao Chen.
The work of O. Besson was supported by the Mission pour la Recherche et
l’Innovation Scientifique (MRIS) of the DGA by Grant no. 2009.60.033.

F. Bandiera and G. Ricci are with the Dipartimento di Ingegneria
dell’Innovazione, Università del Salento, 73100 Lecce, Italy (e-mail:
francesco.bandiera@unisalento.it; giuseppe.ricci@unisalento.it).

O. Besson is with the Départment Electronique Optronique Signal, Université
de Toulouse, ISAE, Toulouse Cedex 4, France (e-mail: olivier.besson@isae.fr).

Adaptive detection of distributed targets has been addressed
in [1] and [2]; noise is modeled in terms of independent, com-
plex normal random vectors with a common covariance matrix
up to possibly different power levels. Covariance matrices are
unknown at the receiver and a set of noise-only additional data
(the so-called secondary data) is available for estimation pur-
poses. In [2] detectors based on the generalized likelihood ratio
test (GLRT) and ad hoc decision schemes (relying on the two-
step GLRT-based design procedure) have been proposed for the
case where noise vectors share one and the same covariance ma-
trix (homogeneous scenario) or the same covariance matrix up
to possibly different power levels between primary data, i.e.,
range cells under test, and secondary ones (partially homoge-
neous scenario). Proposed detectors possess the constant false
alarm rate (CFAR) property under the design assumptions. De-
tection of distributed targets, modeled in terms of vectors con-
fined to a known subspace, and embedded in unknown noise
plus deterministic interference, has been considered in [3]–[5].
It is also worth pointing out that several detection algorithms are
encompassed as special cases of the amazingly general frame-
work and derivations in [1]. As to the statistical models for the
noise components, experimental data [6]–[9] as well as phys-
ical and theoretical arguments [10], [11], have demonstrated that
the Gaussian assumption is not always valid; in fact, the clutter
can generally be modeled as a compound-Gaussian process that,
when observed on sufficiently short time intervals, degenerates
into a spherically invariant random process (SIRP) [12]–[14].
Relevant examples of detection algorithms for distributed tar-
gets embedded in non-Gaussian disturbance can be found in
[15] and [16].

A fundamental assumption that all of the above papers share
is that a set of secondary data, namely returns free of signals
components, but sharing some characteristics with the data
under test, is available. Such secondary data are usually used
to come up with fully adaptive detection schemes. However, it
has been evidenced that the homogeneous assumption for the
secondary data is an idealized situation [17], [18], and that non-
homogeneous environments are more commonly encountered.
In order to mitigate the effects of nonhomogeneity, it is possible
to select training samples that are most homogeneous with the
cell under test and use only the retained ones to estimate the
noise covariance matrix. The reader is referred to [19]–[23]
for examples of applications of this rationale. These selection
strategies result in significant performance improvement. How-
ever, they may require a large number of initial samples. The
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assumption of secondary has been removed in [24] by using the
“method of sieves,” namely a modification of the GLRT. Such
detector does not guarantee the CFAR property with respect
to the covariance matrix of the noise vectors. CFAR detectors
without assignment of a distinct set of secondary data have
been recently proposed in [25] and [26], although at the price
of a certain performance loss with respect to [24]. Another
way to avoid the necessity of secondary data is to assume more
structure on the noise. Examples of this modeling can be found
in [27] and [28], where the noise is modeled as an autoregres-
sive process and [29] where a more general state-space model
is used for the noise.

Recently, the so-called knowledge-aided space-time adaptive
processing (KA-STAP) has been recognized as one of the
potentially most efficient way to handle heterogeneities [30].
KA-STAP improves the performance of adaptive detection
schemes using additional (a priori) information, such as digital
elevation and terrain data, synthetic aperture radar imagery, etc.,
[31], [32]. The reader is also referred to [33]–[39] for examples
of application of such a rationale. Alternatively, a Bayesian
approach can be advocated, as it is a relevant framework to
handle uncertainties and to include a priori information. This
framework allows to obtain a general and flexible, yet simple,
model of nonhomogeneous environments, without very re-
strictive assumptions. Examples of this modeling can be found
in [40]–[45]. The aforementioned works still assume that the
secondary data samples are homogeneous with themselves;
relevant exceptions are papers [44], [45]; more in detail, [44]
extends the results of [43] to the case of heterogeneous samples
assuming that the secondary data can be clustered in groups
each one containing a certain number of snapshots with a
common covariance matrix while [45] considers detection and
estimation in a heterogeneous environment where secondary
data have a common covariance structure and different power
levels from one cell to another.

In this paper, using a Bayesian approach, we present detection
algorithms for distributed targets embedded in non-Gaussian
disturbance and without assuming that a set of secondary data is
available. At the design stage we assume that a certain number
of range cells is under test. Noise components in such cells are
modeled as random vectors with a common structure and dif-
ferent power levels; both the structure and the power levels are
modeled as random parameters with appropriate distributions.
Within this framework we propose GLRT-based and ad-hoc de-
tectors. Interestingly, some already proposed detectors can be
envisaged as special cases of those herein derived. Finally, it is
worth observing that some of the algorithms herein presented
for the case of point-like targets have already been presented in
[46].

The reminder of the paper is organized as follows: next sec-
tion is devoted to the problem formulation and description of the
data model while detector designs are the object of Section III.
A performance assessment is presented in Section IV. Finally,
some concluding remarks are given in Section V.

II. PROBLEM FORMULATION

Assume that an array of antennas senses range cells and
that each antenna collects samples from each cell. Denote by

, the -dimensional complex vector
containing returns from the th cell, with and
being the complex field. We want to test whether or not the
contain useful signals backscattered from a range-spread target.
The detection problem based upon such can be formulated
in terms of the following binary hypothesis test

(1)

where
• is the known nominal steering vector;
• the are unknown deterministic complex scalars ac-

counting for both channel and target effects;
• is the additive noise term relative to the th

cell, .
As to the , we use herein some variations on the well-known
compound-Gaussian model. To be quantitative, recall that, in
the compound-Gaussian case, the can be written as

(2)

where, for each , is a complex normal random vector (the
so-called speckle component) with zero mean and positive def-
inite covariance matrix and is a positive random variable
(the so-called texture component). Moreover, we assume that
the and the are each other independent. Based upon pre-
vious assumptions, it follows that, conditionally to the and

, the are independent, zero-mean complex normal random
vectors with covariance matrix , in symbols

(3)

Furthermore, in this paper we assume that is a random quan-
tity, too, independent of the . More precisely, we assume that

is drawn from a complex inverse Wishart distribution, with
known mean and degrees of freedom, i.e.

(4)

where is the determinant of the matrix argument,
stands for the exponential of the trace of the matrix argument,
and is given by

(5)

with being, in turn, the Eulerian Gamma function. We de-
note as this distribution. It is worth
highlighting the role of the parameters of the distribution. In
fact, represents the expected value of while sets the “dis-
tance” between and ; as increases is closer to (in
the sense that the variance of decreases). The role of can
be interpreted as the a priori knowledge about the average co-
variance matrix. In practice, it can be obtained from the general
clutter model introduced in [47], or by using some sample esti-
mate of the covariance matrix from a very large window of data.
As to the , we use in this paper two different models

• the are unknown deterministic parameters;



• the are independent random variables ruled by the
Gamma distribution, i.e.,

(6)

which we denote as . Notice that, con-
ditioned on , the clutter is K-distributed if the s are
Gamma distributed. It is also important to highlight the
role of the (several) parameters of the model that eventu-
ally will enter the structure of the detectors. To this end,
assume that the expected value of is equal to one, i.e.,

, which implies that . Hence, the
distribution of depends only on ; since, the smaller

, the larger the variance of , the s can be used to fit
the adopted model (and hence the detector’s parameters) to
the level of heterogeneity of the actual clutter data. Similar
considerations apply to the choice of .

Some remarks about the chosen models are now in order.
First, observe that a high resolution radar resolves an extended
target in a certain number of scattering centers with unknown
location. As a simplifying hypothesis, we have assumed that
each cell contains a scatterer; the performance assessment (see
Section V) will show that this approach provides good perfor-
mances even under mismatched conditions. Second, the choice
of an inverse Wishart for the distribution of is mainly due to
the fact that, since it is a conjugate prior, it is mathematically
tractable. However, it is worth observing that such a choice is
not completely far-fetched. Indeed, the inverse Wishart has al-
ready been used in other radar applications [41], [43] and it has
provided good results also with real radar data [41]. It has also
provided a rigorous and technically sound interpretation of the
colored diagonal loading [48], [49] according to a Bayesian phi-
losophy. Finally, the choice of a Gamma distribution for the
is widely accepted and verified, see, for instance, [6] and [8].

III. DETECTOR DESIGNS

For notational convenience, let us define the following arrays

(7)

(8)

(9)

where the superscript denotes transpose.

A. Deterministic

The GLRT in this case can be written as

(10)

where denotes the probability density function
(pdf) of under the hypothesis, , and is a proper
threshold that ensures a preassigned probability of false alarm

. Based upon the models in force, it is readily verified that,
for

(11)

where means “proportional to”, the superscript denotes con-
jugate transpose, is a diagonal matrix whose di-
agonal entries are , and .

Integration over is easily accomplished using the fact that
the inverse Wishart distribution is a conjugate prior. Thus, we
have (12), shown at the bottom of the page. After some straight-
forward manipulations, the GLRT given by (10) can be rewritten
as (13), shown at the bottom of the page. Optimization over

(12)

(13)
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is well known (see [1] or [2], for instance) and the maximizer is
given by

(14)

Substituting (14) into the GLRT (13) we get

(15)
where, for

(16)

In order to solve the optimization problems over , we can,
equivalently, solve the problem of maximizing the functions

(17)
By setting to zero the derivative of with respect to

, we get

(18)

where the notation stands for the th element of the
matrix argument. From (18) we have the following implicit
equation in :

(19)

In order to solve (19), it is possible to advocate an iterative pro-
cedure. In practice, since we have found that , we
can start with an initial value (with positive entries) and
compute until a preassigned stopping
criterion is met, see also [50]–[53], for discussions about con-
vergence of such procedures. Observe also that the iterations
have to be applied twice: for and . Finally, it is
important to highlight that the estimate provided by (19) is al-
ways real and positive; in fact, recall that and that the
diagonal entries of the inverse of a positive definite Hermitian
matrix are real and positive. Let us denote by the diagonal
matrix whose diagonal elements are the results of the iterative
procedures, for ; the GLRT is thus given by

(20)

Since detector (20) has been obtained for the case of determin-
istic , it will be referred to in the following as GLRT.

We have already said that matrix represents a sort of prior
knowledge on the disturbance characteristics. Another way to
incorporate such a knowledge into a decision statistic is to use
a two-step design procedure. Specifically, we first assume that
the true covariance matrix is known and derive the GLRT,
subsequently we substitute with . The GLRT for known
and deterministic , which is formally given by

(21)

has already been derived in [15] and [16] and the corresponding
decision rule is

(22)

As aforementioned, the detector incorporating prior knowledge
on is obtained replacing with . The resulting test, that will
be referred to in the following as GLRT- , of course is given by

(23)

It is instructive to study detectors (20) and (23) when only one
range cell is under test, i.e., when . From (15) we have

(24)

where, for ,

(25)

Observe also that, since we are working with , we have
dropped any dependence on the range-cell index . Using the
fact that maxima over in (24) are achieved for ,
it follows that the GLRT is equivalent to

(26)

which, in turn, is equivalent to

(27)

Equation (27) is recognized as the normalized matched filter
(NMF) [54] with substituted for the a priori matrix . Ob-
serve now that starting from (23) and assuming we get



again detector (27). We thus conclude that for detection of a
point-like target (i.e., ) the two approaches coincide.

B. Random

In this section, we study the case where the are indepen-
dent random variables ruled by the Gamma distribution. In prin-
ciple, the GLRT would be

(28)

where is the joint pdf of , i.e.

(29)

Unfortunately, such detector cannot be obtained in closed form,
but for the special case that will be presented later in this
section. For this reason, we propose a detector based upon the
MAP estimate of . To be quantitative, the proposed decision
rule can be written as follows:

(30)

Since does not depend on and we can carry out in-
tegration over and maximization over by gathering results
obtained in previous section. In symbols, the problem becomes

(31)

where is given by (14). Using also (15) and (29), detector (31)
can be explicitly written as

(32)

Ignoring irrelevant constants and writing in an explicit
form, we come up with the following rule:

(33)
Maxima over in (33) can be obtained (as we have done in
previous section) defining the functions

(34)

and setting to zero their derivatives for

(35)

This provides the following set of implicit equations:

(36)

that can be solved using again an iterative procedure. To come
up with a final expression for the detector, let us denote by

the diagonal matrix whose diagonal elements, say,
are the results of the iterative procedures, for ; the de-
tector is thus given by

(37)

Since detector (37) has been obtained for the case of random
and MAP estimation, it will be referred to in the following as
MAP-GLRT.

Let us turn now on the derivation of the detector for known
. In this case it is possible to solve the GLRT

(38)

The first step is again optimization over . Following the lead
of [2], we have that

(39)

Observe that (39) and (14) are similar but not identical. In fact,
they differ for the fact that (14) uses while (39) uses . Sub-
stituting (39) into the right-hand side (RHS) of the pdf (11) we
get

(40)

where

(41)

Integration over is obtained as follows: [see (42) at
the bottom of the next page], where denotes the
modified Bessel function of order [55, par. 3.471].
Ignoring irrelevant constants and computing the ratio we get



BANDIERA et al.: ADAPTIVE DETECTION OF DISTRIBUTED TARGETS

(43), shown at the bottom of the page. Finally, we replace the
true matrix with into (43); the result is of course given by
(44) at the bottom of the page, where , has
to be computed with in place of , i.e.,

(45)

Detector (44) will be referred to in the following as GLRT-
-r. It can be viewed as a generalization of a previously derived
scheme designed to detect point-like targets. In fact, when we
consider the case of a single cell under test , we get
(46) at the bottom of the page, which has already been derived
in [56].

Let us now turn back to test (28) and solve it for the special
case of :

(47)

Based upon the assumptions made on , , and , it is promptly
verified that, for

(48)

Integration over can be easily accomplished and we obtain
(49) at the bottom of the page. The GLRT at this intermediate

(42)

(43)

(44)

(46)

(49)



stage can thus be written as

(50)

Maximization over is straightforward and it leads to

(51)

Define now the quantity

,

.
(52)

Under both hypotheses we are left with the integral

(53)

which can be computed using [55, p. 365] and the result is

(54)

where , and
is a hypergeometric function [57, p. 504]. Using [57, par. 13.1.7,
pag. 504] we have

(55)

and the GLRT is finally given by

(56)

IV. PERFORMANCE ASSESSMENT

In this section, we use standard Monte Carlo counting tech-
niques to evaluate the performance of the proposed algorithms.
Specifically, the analysis is carried out in two parts: we first an-
alyze the detectors under the design assumptions; second, we
conduct a study to quantify their sensitivity to possible mis-
matches between nominal and operating conditions.

A. Analysis Under Matched Conditions

In this section, we show that detectors derived modeling the
structure of the covariance matrix in terms of an inverse Wishart

Fig. 1. � versus SNR for the considered detectors: � � �, � � �, � � ��,
� � � � ���, � � �� .

distribution (i.e., GLRT and MAP-GLRT detectors) can out-
perform those obtained incorporating an average matrix (i.e.,
GLRT- and GLRT- -r). Towards this end, we evaluate the
probability of detection , i.e., the probability to decide for

when it is actually in force, given . Data are generated ac-
cording to the model described is Section II. More specifically,
we set , , ,

, . As to , we assume an exponentially correlated co-
variance matrix with one-lag correlation coefficient ,
i.e., the th element of is given by . Moreover, we
set to 3 the number of iterations used by the estimators of and
we use the following values

(57)

as the starting points for the iterations. Finally, we assume that,
under the hypothesis, all of the cells under test contain a
target scatterer with the same amplitude .

The overall signal-to-noise ratio (SNR) is defined as

(58)

i.e., as the overall SNR after a whitening transformation. The
is set to and the corresponding thresholds are evalu-

ated over independent runs, while the s are computed on
independent runs.

Figs. 1–3 refer to and equal to 2, 8, 16, respec-
tively, while Figs. 4 and 5 show results for and equal to
8 and 16, respectively. For the sake of comparison, the perfor-
mances of the GLRTs derived assuming that is known (de-
noted by GLRT- and GLRT- -r) are also given. All of the
figures show that:

• GLRT and MAP-GLRT outperform GLRT- and
GLRT- -r, thus proving that information brought by the
data can be efficiently combined with the prior information
(on ) in order to come up with better performance;

• the gain increases as increases; the fact that the gain re-
duces as decreases is not completely surprising since,
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Fig. 2. � versus SNR for the considered detectors: � � �, � � �, � � ��,
� � � � ���, � � �� .

Fig. 3. � versus SNR for the considered detectors:� � �,� � ��, � � ��,
� � � � ���, � � �� .

as demonstrated in [46] for , the proposed clutter
model is equivalent to a plain compound-Gaussian model
with different pdf for the texture and nonrandom covari-
ance matrix.

Notice also that GLRT and MAP-GLRT (GLRT- and
GLRT- -r as well) are practically equivalent for .
On the other hand, Figs. 4 and 5 show that for the
MAP-GLRT is slightly better than the GLRT (for values of
greater than 0.5).

B. Sensitivity Analysis

We present in the sequel some sensitivity studies. To begin
with, recall (see Section II) that a high resolution radar resolves
an extended target in a certain number of scattering centers that
are usually not contiguous along range while we have assumed
at the design stage that all of the cells contain a scatterer.
For this reason, it is important to quantify the collapsing loss
resulting from a sparse target. To this end, in Figs. 6 and 7 we

Fig. 4. � versus SNR for the considered detectors: � � �, � � �, � � ��,
� � � � �, � � �� .

Fig. 5. � versus SNR for the considered detectors:� � �,� � ��, � � ��,
� � � � �, � � �� .

plot the performance of the detectors when the actual number
of cells occupied by the extended target, say , is less than ;
specifically, we set equal to 2,4, and the remaining parame-
ters as in Fig. 4. From the comparison of Figs. 4, 6, and 7, it is
seen that a certain loss is experienced by all of the reported de-
tectors; remarkably, the proposed detectors (i.e., those marked
with “o” in the curves) generally experience a reduced loss with
respect to detectors using in place of the true (i.e., those
marked with “x” in the curves).

We have also assessed the influence on the actual of pos-
sible mismatches between nominal and actual values of the pa-
rameters that rule the a priori distributions of and the , i.e.,

and , respectively. Figs. 8 and 9 assume , , and a
nominal value of equal to ; the number of Monte Carlo
runs is . In Fig. 8 we plot the , obtained using the thresh-
olds estimated assuming a nominal value of , versus the
actual . In Fig. 9, instead, we plot the , obtained using the
thresholds estimated assuming a nominal value of , versus



Fig. 6. � versus SNR for the considered detectors: � � �,� � �,� � �,
� � ��, � � � � �, � � �� .

Fig. 7. � versus SNR for the considered detectors: � � �,� � �,� � �,
� � ��, � � � � �, � � �� .

the actual . Inspection of the figures highlights that the sen-
sitivity with respect to of the proposed detectors (i.e., those
marked with “o”) remains less than one order of magnitude; as
to the sensitivity with respect to , it is evident from the figure
that such a parameter basically does not affect the actual .

Finally, we have also studied the effect on the performance of
an imperfect knowledge of the average matrix . To this end,
we have assumed that is estimated from a window of
heterogeneous independent data, say . Specifically,
we have considered two different statistical models for the

• Model A: the , given the and , are in-
dependent , with ,

, and the and
independent random quantities;

• Model B: the , given the , are independent
, with , and

the independent random matrices,

Fig. 8. � versus � for the considered detectors:� � �,� � �, � � � � �,
thresholds set assuming � � ��, � � �� .

Fig. 9. � versus � for the considered detectors: � � �, � � �, � � ��,
thresholds set assuming � � � � �, � � �� .

and set

In Figs. 10 and 11, we present results of versus SNR for
Model A and Model B, respectively, with ; as to the
remaining parameters, we have chosen , , ,

, . Moreover, thresholds have been
estimated according to the selected (either A or B) Model. From
Fig. 10 it is seen that the gain of GLRT and MAP-GLRT with
respect to GLRT- -r and GLRT- is reduced to about 1 dB.
In Fig. 11, instead, we can see that GLRT and MAP-GLRT still
guarantee a significant gain with respect to their competitors, as
observed in Fig. 4.

Summarizing, the proposed detectors are rather robust to mis-
matches between nominal and operating conditions, at least for
the considered parameters values.
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Fig. 10. � versus SNR for the considered detectors:� � �,� � �, � � ��,
� � � � �, ���� estimated according to Model A, � � ��, � � �� .

Fig. 11. � versus SNR for the considered detectors:� � �,� � �, � � ��,
� � � � �, ���� estimated according to Model B, � � ��, � � �� .

V. CONCLUSION

In this paper, we have dealt with adaptive detection of dis-
tributed targets embedded in colored noise modeled in terms of
a compound-Gaussian process and without assuming that a set
of secondary data is available. The covariance matrices of the
data under test share a common structure while having different
power levels. A Bayesian approach has been pursued where the
structure of the clutter covariance matrix and possibly the power
levels are assumed to be random, with appropriate distributions.
Within this framework GLRT-based and ad-hoc detectors have
been designed. Some simulation studies have been presented
to illustrate the performances of the proposed algorithms. The
analysis indicates that the Bayesian framework could be a viable
means to get rid of secondary data in heterogeneous scenarios.
In particular, it is shown that GLRT and MAP-GLRT can out-
perform GLRT- and GLRT- -r detectors and that, in presence
of an informative pdf for the texture, MAP-GLRT has better per-
formance than the GLRT.
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