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Abstract—The adaptive coherence estimator (ACE) is known to
be the generalized likelihood ratio test (GLRT) in partially homo-
geneous environments, i.e., when the covariance matrix of the
secondary data is proportional to the covariance matrix of
the vector under test (or = ). In this letter, we show
that ACE is indeed the GLRT for a broader class of nonhomoge-
neous environments, more precisely when is a random matrix,
with inverse complex Wishart prior distribution whose mean only
is proportional to . Furthermore, we prove that, for this class
of heterogeneous environments, the ACE detector satisfies the con-
stant false alarm rate (CFAR) property with respect to and .

Index Terms—Adaptive coherence estimator, adaptive detection,
generalized likelihood ratio test, nonhomogeneous environments.

I. INTRODUCTION

I N many applications such as sonar and radar, it is desired
to detect the presence of a signal of interest embedded in

colored noise. The standard detection problem is formulated as
a binary hypothesis test

(1a)

(1b)

where and stand for the amplitude and signature of the
target in the cell under test, respectively. In (1),
denotes the complex normal distribution of a -dimensional
vector with mean and covariance matrix , and is the pri-
mary data vector with covariance matrix . The training sam-
ples are assumed to be independent with covari-
ance matrix . The primary data vector is also independent
from the training samples.

When the signature and the structure of the covariance ma-
trix are both known (i.e., is known up to a scaling
factor), the generalized likelihood ratio test (GLRT) was shown
to be the constant false alarm rate (CFAR) matched subspace
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detector [1], [2]. The detector makes no use of the secondary
data but requires prior knowledge on the noise statistics. To
circumvent this drawback, an adaptive version of the detector
was introduced in [3] and referred to as the adaptive coherence
estimator. It consists in replacing the primary covariance ma-
trix of the CFAR matched subspace detector by the estimate

, which is the sample covariance matrix (SCM), and
. The detection test then reduces to

(2)

The test (2) appeared to be very attractive for radar, sonar, and
communication applications as it is invariant to data scaling.
Later the adaptive coherence estimator (ACE) was shown to
be the GLRT in a partially homogeneous environment [4], i.e.,
when the secondary covariance matrix is proportional to the pri-
mary covariance matrix

(3)

with and unknown. Additionally, in [5], the authors
proved the ACE to be the uniformly most powerful in-
variant (UMPI) detection test. References [6]–[8] provide
a performance analysis of the ACE under homogeneous
and nonhomogeneous environment. The ACE test was also
presented independently for detecting targets embedded in
compound-Gaussian clutter [9]. It emerges naturally as the
adaptive counterpart of an asymptotic approximation of the
GLRT when the structure of the clutter covariance matrix is
known.

However, real-world environments lead to a large amount
of heterogeneities which cannot be all embraced by the model
(3). In the context of space time adaptive processing, Melvin
proposed in [10] models of amplitude and spectral clutter het-
erogeneities (e.g., due to clutter edges or intrinsic clutter mo-
tion) that cause profound structural mismatches between pri-
mary and secondary covariance matrices. In a previous work
[11], we proposed a new model of heterogeneous environments
in a Bayesian framework. Our aim was to have a model that
allows one to keep around while having mathemat-
ical tractability to derive new detectors. More precisely, the sec-
ondary covariance matrix was assumed to be a random ma-
trix distributed according to a complex inverse Wishart distribu-
tion with mean , i.e.,

(4)

This model ensures that with probability one. Fur-
thermore, the parameter scales the distance between and

: the larger , the more homogeneous the environment [11].
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We now extend this Bayesian model by introducing a power
scaling factor

(5)

In this way, the heterogeneity level is increased compared to (4).
However, on average, we recognize the partially homogenous
deterministic environment

(6)

In this letter, we show that the GLRT for the detection problem
of (1) with the environment described by (5) is also the ACE.
The test is shown to be independent of the primary covariance
matrix and the power ratio and hence possesses the CFAR
property.

II. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we show that the GLRT for the partially ho-
mogeneous Bayesian environment described by (5) is the ACE.
The GLRT is classically defined as follows:

(7)

where stands for the joint distribution of and under
hypothesis , .

A. Distributions

This section derives the distributions required in (7). Let us
denote the centered primary snapshot. Since
and are independent, the joint distribution of is

(8)

The density of conditional to and was set to
and thus can be written as

(9)

where and stand for the determinant and the exponen-
tial of the trace of a matrix, respectively. In order to derive the
density of conditioned on and , note that

(10)

Using the independence of the ’s, the conditional density of
is given by

(11)

The conditional distribution of given is defined by
the heterogeneity model (5), i.e.,

(12)

with

(13)

Using (11) and (12), the distribution of can thus be expressed
as (see [11] for similar derivations)

(14)
Finally, the joint distribution of conditioned on ,
is given by

(15)

B. Maximum Likelihood Estimate (MLE) of

Differentiating the logarithm of (15) and setting the derivative
to zero implies that the MLE of verifies

(16)

By multiplying this equation by on the left-hand
side and by on the right-hand side, one recognizes a
quadratic matrix equation

(17)

with

(18)

(19)

We proceed as in [11] to solve (17). Note that the matrix is
Hermitian positive definite. Consider one of its eigenvectors
associated with the eigenvalue . Multiplying (17) by ,
we obtain

(20)

Hence, is necessarily an eigenvector of , and
is an eigenvalue

of associated with . As is a rank one Hermitian
positive matrix, there exists a unitary matrix such that

(21)

Thus, has two different eigenvalues, and verifies one of
the following equations:

(22)
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The first equation yields a value of proportional to :

(23)

The second equation is a second-order polynomial equation

(24)

where and . This equa-
tion has a unique real positive solution whose explicit form is
not required for our analysis. The remaining derivations will use
(24) only.

The solution of the quadratic matrix equation (17) is thus
given by

(25)

with

(26)

Finally, using (19) and (25), the MLE of is shown to depend
on only through the matrix

(27)

C. MLE of

Let us denote

(28)

Using the previous expressions (27) and (15), one obtains

(29)
Then noticing that does not depend on [use (23) and
(26)], the above expression can be simplified to

(30)

Differentiating the logarithm of and equating the derivative to
zero implies that the MLE of verifies

(31)

Then, gathering the terms which depend on and multi-
plying by , one obtains

(32)

Using (24), we observe that the coefficient of is equal to
zero. So the MLEs of and are proportional

(33)

Plugging (33) in (24), we obtain the following expression for
the MLE of :

(34)

D. MLE of

Noticing that is proportional to , see (33), and that the
product is constant [cf (34)], we have

(35)

The MLE of under amounts to minimizing the quantity

(36)

The minimum is well known to be achieved for [12]

(37)

and is equal to

(38)

E. GLRT Statistic

The th root of the GLR can be expressed as

(39)

and hence the GLRT is the ACE defined in (2).

III. DETECTOR PERFORMANCES

A. CFAR Behavior

We show in this section that under , the distribution of the
test statistic (2) is independent of and , and hence that
ACE has the enjoyable CFAR property. We proceed as in [12]
and consider the unitary matrix such that

(40)

(41)

Let us define

(42)

(43)

(44)

Then the test statistic can be rewritten as

(45)

Under , has a complex normal distribution

(46)
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Fig. 1. Probability of detection versus SNR—Influence of � .

Conditioned on , , and , the matrix has a complex
Wishart distribution with degrees of freedom

(47)

Therefore, the distribution of given is

(48)

which is recognized as a multivariate -distribution.
We first observe that in (41) is a fixed vector. Moreover,

and are independent —since and are independent— and
the distributions of in (46) and in (48) are parameter free.
Since the test statistic in (45) depends only on , , and , it
follows that its distribution under does not depend on
or , which proves that ACE is CFAR.

B. Numerical Simulations

In this section, we study the influence of on the detector
performances. The dimension of the observation space is set
to , and training samples are available. The
probability of false alarm is set to . The detector
threshold is computed from Monte Carlo runs, with a
different value of at each run, drawn from the conditional
distribution in (12). The signal-to-noise ratio (SNR) is defined

as SNR . Fig. 1 displays the probability of de-
tection , obtained from runs, versus SNR for different
values of .

From inspection of this figure, we observe that, as expected,
the more homogenous the environment (i.e., the larger ), the
better the detector performances. There is almost 3 dB differ-
ence between the case and the case
which corresponds to the partially homogeneous model (3). This
shows that the Bayesian environment (5) models a larger de-
gree of heterogeneity than the deterministic environment. Fur-
thermore, the figure shows that the heterogeneity level does not
depend linearly on . Indeed when is small, a slight variation
in results in a large variation of the homogeneity level. The
trend is inverted for larger values of .

IV. CONCLUSIONS

The adaptive coherence estimator is a well-known detection
scheme which has proved to be effective in a number of non-
homogeneous environments. It is the UMPI test in partially ho-
mogeneous environments and is known to perform well also in
compound-Gaussian clutter with fully correlated texture. In this
letter, we showed that it is also the GLRT in nonhomogeneous
environments such that the conditional distribution of
is a complex inverse Wishart distribution with .
This seems to indicate that ACE is (close to) optimum for a large
class of nonhomogeneous environments, at least it is rather ro-
bust to covariance mismatches characterized by scaling ambi-
guities. This is to be contrasted with the marked selectivity of
ACE with respect to steering vector mismatches. Indeed, ACE is
known to possess strong rejection capabilities for signals whose
signatures differ from the presumed ones.
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