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∗Università del Salento, Dipartimento di Ingegneria dell’Innovazione, Lecce, Italy.
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ABSTRACT

We address the problem of estimating a covariance matrix R using

K samples zk whose covariance matrices are τkR, where τk are

random variables. This problem naturally arises in radar applica-

tions in the case of compound-Gaussian clutter. In contrast to the

conventional approach which consists in considering R as a deter-

ministic quantity, a knowledge-aided (KA) approach is advocated

here, where R is assumed to be a random matrix with some prior

distribution. The posterior distribution ofR is derived. Since it does

not lead to a closed-form expression for the minimum mean-square

error (MMSE) estimate of R, both R and τk are estimated using a

Gibbs-sampling strategy. The maximum a posteriori (MAP) estima-

tor ofR is also derived. It is shown that it obeys an implicit equation

which can be solved through an iterative procedure, similarly to the

case of deterministic τks, except that KA is now introduced in the

iterative scheme. The new estimators are shown to improve over

conventional estimators, especially in small sample support.

Index Terms— Covariance matrix, estimation, radar.

1. INTRODUCTION AND PROBLEM STATEMENT

An ubiquitous task of most radar systems is to detect the presence

of a target, in a given range cell, in the presence of clutter and ther-

mal noise, whose underlying statistics are generally unknown. In the

Gaussian case and when the noise covariance matrix is known, the

optimal detector depends directly on the latter, and therefore, when

it is unknown, most of the adaptive detection schemes proposed in

the literature depend either explicitly or implicitly on an estimate of

the covariance matrix. Indeed, this is how the adaptive matched filter

[1] or the adaptive normalized matched filter [2, 3] proceed, replac-

ing the true covariance matrix by an estimate in the optimal detector.

The estimate of the noise covariance matrix is usually constructed

from a set of secondary data samples zk, k = 1, · · · ,K -obtained

from range cells close to the cell under test- that, ideally, would share

the same statistical properties (or at least the same covariance matrix)

as the data in the cell under test. Unfortunately, most real environ-

ments are heterogeneous, i.e. there exists some mismatch between

the noise statistics in the primary data and in the secondary data.

While modeling of heterogeneous environments is a highly debat-

able topic, a widely used and physically motivated model for non-

homogeneous clutter is the compound-Gaussian model [4], whose

validity has been assessed on real data, see e.g. [5]. It enables one

to model local clutter power fluctuations along the range cells and is

deemed reasonable, especially for high range resolution radars. The
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clutter returns are modeled as zk =
√
τkgk where gk is a Gaus-

sian vector with covariance matrix R and τk is a positive random

variable, independent of gk. Various distributions for τk have been

proposed in the literature but, for most of them, they do not result

in a closed-form expression for the optimal detector. Accordingly,

covariance matrix estimation is generally intractable. In order to get

round this difficulty, use of a normalized sample covariance matrix

has been advocated in [6]. Also, considering τk as an unknown de-

terministic quantity, it was shown that the maximum likelihood esti-

mate ofR obeys an implicit equation, that can be solved through an

iterative procedure [7, 8] and the latter is guaranteed to converge [9].

In this paper, we consider a knowledge-aided scheme for esti-

mating the covariance matrix R, see e.g. [10] for a good review

of the principles and of the rationale of such approaches. Briefly

stated, we assume that some rough knowledge ofR, viz R̄, is avail-

able: it can be obtained, e.g. from the general clutter covariance

matrix model of [11]. However, R̄ cannot predict the local behav-

ior of the clutter and hence only samples zk|τk ∼ CN (0, τkR) are
available, τks being random variables. Additionally, similarly to the

framework introduced in [12, 13], we assume thatR is random, with

some prior distribution that depends on R̄. Within this framework,

we consider optimal i.e. minimum mean-square error (MMSE) esti-

mation of both τ =
[

τ1 τ2 · · · τK
]T

andR, and maximum a

posteriori (MAP) estimation ofR.

2. DATAMODEL

In this section, we provide the assumptions about our model. As

stated previously, we assume that the K vectors zk ∈ C
N are, con-

ditionally to τk andR, independent, zero-mean Gaussian distributed

with covariance matrix τkR, i.e.

f(zk|τk,R) = π
−N |R|−1

τ
−N
k exp

{

−τ
−1
k z

H
k R

−1
zk

}

. (1)

Now, since τk and R are random variables, which we assume to be

independent, one needs to assign prior distributions for them. On

one hand, if one wishes to make the least possible assumptions on

the random variables, a non-informative, e.g. Jeffreys, prior can be

the solution of choice [14]. However, this approach more or less

corresponds to maximum likelihood estimation as almost no prior

information about the unknown variables is available. When prior

information is to be included in the model, a tradeoff must be made

between plausibility, relevance of the prior distributions and math-

ematical tractability [15]. In our case, we propose to choose for τ

andR conjugate priors. More precisely, we assume thatR is drawn

from a complex inverse Wishart distribution, with mean R̄ and ν



(> N ) degrees of freedom, i.e.

f(R) =
|(ν −N)R̄|ν |R|−(ν+N)

Γ̃N (ν)
etr

{

−(ν −N)R−1
R̄
}

(2)

where Γ̃N (ν) = πN(N−1)/2 ∏N
n=1 Γ(ν−n+1) and etr {.} stands

for the exponential of the trace of the matrix between braces. We

denote as R ∼ CW−1
(

(ν −N)R̄, ν
)

this distribution. On aver-

age, E {R} = R̄ and ν sets the “distance” between R and R̄: as ν
increases, R is closer to R̄. However, for small ν, R can be quite

different from R̄. In any case, the two matrices are different with

probability one. In order to have a conjugate prior for τk, we assume

that the τks are independent and distributed according to an inverse
Gamma distribution with parameters qk and βk , i.e.

f(τk) =
β
qk
k

Γ(qk)
τ
−(qk+1)
k exp

{

−βkτ
−1
k

}

(3)

which we denote as τk ∼ IG (qk, βk). In the sequel, we assume

that E {τk} = 1 which implies that βk = qk − 1. Hence, the

distribution in (3) depends only on qk: the smaller qk , the larger
the variance of τk. Equations (1)-(3) form the model upon which

we aim at estimating R and possibly τ . In what follows, we let

Z =
[

z1 z2 · · · zK

]T
.

3. COVARIANCEMATRIX ESTIMATION

3.1. Posterior distributions

In order to derive the MMSE estimator of R, the first step is to find

the posterior distribution f(R|Z). The joint posterior distribution
of τ andR can be written as

f(τ ,R|Z) ∝ f(Z|τ ,R)f(τ )f(R)

∝ |R|−(ν+K+N) etr
{

−(ν −N)R−1
R̄
}

×
K
∏

k=1

τ
−(qk+N+1)
k exp

{

−τ
−1
k

[

βk + z
H
k R

−1
zk

]}

(4)

where ∝ means proportional to. Integrating with respect to τ , one

obtains

f(R|Z) =

∫

f(τ ,R|Z)dτ

∝ |R|−(ν+K+N) etr
{

−(ν −N)R−1
R̄
}

×
K
∏

k=1

∫

τ
−(qk+N+1)
k exp

{

−τ
−1
k

[

βk + z
H
k R

−1
zk

]}

dτk

∝ |R|−(ν+K+N) etr
{

−(ν −N)R−1
R̄
}

×
K
∏

k=1

[

βk + z
H
k R

−1
zk

]

−(qk+N)

. (5)

3.2. MMSE estimation

The MMSE estimate ofR is given by the posterior mean

E {R|Z} =

∫

R f(R|Z)dR. (6)

Unfortunately, one does not know how to obtain this integral in an-

alytical form. Furthermore, the distribution in (5) is not a classi-

cal distribution and one cannot either investigate generating samples

drawn from (5) and averaging them to approximate the MMSE es-

timator. In contrast, as we shall see next, the conditional posterior

distributions f(R|τ ,Z) and f(τ |R,Z) are not only easy to obtain
but also belong to familiar classes of distributions. In fact, from (4),

it comes that

f(τ |R,Z) ∝
K
∏

k=1

τ
−(qk+N+1)
k exp

{

−τ
−1
k

[

βk + z
H
k R

−1
zk

]}

(7)

and hence

τk|R,Z ∼ IG
(

qk +N, βk + z
H
k R

−1
zk

)

. (8)

Accordingly,

f(R|τ ,Z) ∝ |R|−(ν+K+N)

× etr

{

−R
−1

[

(ν −N)R̄+
K
∑

k=1

τ
−1
k zkz

H
k

]}

(9)

which implies that

R|τ ,Z ∼ CW−1

(

(ν −N)R̄+

K
∑

k=1

τ
−1
k zkz

H
k , ν +K

)

. (10)

Consequently, it is relatively standard to generate samples drawn

from f(R|τ ,Z) and f(τ |R,Z). This suggests the use of a Gibbs-
sampler [16], which can be summarized by Table 1. Herein Nbi

Table 1. Gibbs sampler

Input: Z

1: generate initial valueR(0)

2: for n = 1, · · · , Nbi +Nr do

3: generate τ (n) according to f(τ |R(n−1),Z) in (8)

4: generate R(n) according to f(R|τ (n),Z) in (10)
5: end for

Output: sequence of random variables τ (n) andR(n)

stands for the number of burn-in iterations and Nr is the number

of samples which are effectively averaged. Some statistically sound

criteria, such as the potential scale reduction factor [16], are avail-

able to select the values of Nbi and Nr that ensure convergence of

the Gibbs sampler. The latter is known to generate random vari-

ables which are asymptotically distributed according to the posterior

distributions f(R|Z) and f(τ |Z), and therefore a natural way to

approximate the MMSE estimator is to average the Nr last values

generated by the sampler, i.e.

R̂MMSE = N
−1
r

Nbi+Nr
∑

n=Nbi+1

R
(n)

. (11)

3.3. MAP estimation

The (marginal) MAP estimator ofR amounts to maximizing the dis-

tribution in (5), or equivalently its logarithm. Differentiating the lat-

ter with respect toR yields

∂ ln f(R|Z)

∂R
= −(ν +K +N)R−1 + (ν −N)R−1

R̄R
−1

+
K
∑

k=1

(qK +N)
R−1zkz

H
k R−1

βk + zH
k R−1zk

. (12)



It ensues that the MAP estimator of R obeys the following implicit

equation

(ν +K +N)R = (ν −N)R̄ +

K
∑

k=1

(qK +N)zkz
H
k

βk + zH
k R−1zk

. (13)

It is instructive to note that this equation is very similar to that ob-

tained via maximum likelihood estimation assuming that τk is un-

known deterministic [7]. However, in the present scheme, we have

introduced the a priori knowledge R̄ that counterbalances the influ-

ence of the snapshots. Indeed, the estimator is somehow a weighted

combination of R̄ and the (properly compensated) sample covari-

ance matrices of the snapshots. It can also be viewed as a kind of

colored loading. Note that introducing diagonal loading in the iter-

ative scheme of [7] has been proposed in [17]. Herein, this loading

technique emerges naturally as the MAP estimator in a Bayesian set-

ting. In order to solve (13), one can advocate an iterative procedure.

In practice, sinceR = g(R,Z), one starts with an initial valueR(0)

and computesR(n+1) = g(R(n),Z) until convergence is achieved,
see e.g. [7, 9].

Remark 1 An alternative to the above marginal MAP estimator con-

sists in maximizing the joint density f(τ ,R|Z) in (4) with respect
to τ and R. It is straightforward to show that, for a given R,

f(τ ,R|Z) can be maximized analytically, i.e. a closed-form ex-

pression for the value of τ that maximizes f(τ ,R|Z) can be ob-

tained. Plugging this value in f(τ ,R|Z), one is left with a max-
imization problem with respect to R only. Solving the latter leads

to an equation which is very similar to (13), except that the factor

qk + N in the right-hand side of (13) is replaced by qk + N + 1.
Hence, a similar iterative procedure can be employed to obtain the

joint MAP estimator ofR.

4. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we evaluate the performance of the estimators derived

previously. Towards this end, two different criteria will be used. The

first measures a distance between R̂, a generic estimate of R, and

R, and is given by [18]

d
(

R̂,R
)

=

[

N
∑

k=1

(10 log10 λk)
2

]1/2

(14)

where λk are the generalized eigenvalues of the matrix pencil R̂ −
λR. The metric in (14), in contrast to the usual mean-square error

criterion, is the natural metric on the set of covariance matrices, see

[18]. Since we are also interested in beamforming and detection

applications, the second figure of merit will be the signal to noise

ratio (SNR) loss at the output of the filter w ∝ R̂
−1

s, where s is

the signature of the signal of interest (SOI). The SNR loss is defined

as the ratio of the SNR at the output of the filter w to the optimal

SNR obtained whenR is known, viz

SNRloss ,
|wHs|2

(wHRw)
(

sHR−1s
) . (15)

It measures the capability of the filter to suppress noise and to re-

trieve/detect the SOI and serves as a good indicator for the detection

performance. The MAP and MMSE estimators will be evaluated

with respect to these two criteria. For comparison purposes, we also

consider the normalized sample covariance matrix (NSCM) [6]

R̂NSCM =
N

K

K
∑

k=1

zkz
H
k

zH
k zk

(16)

which is commonly used in compound-Gaussian clutter. Accord-

ingly, we consider the estimator R̂ = R̄ in order to evaluate whether

the a priori information alone can provide good performance, and

if there is an interest to use the posterior information. We con-
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Fig. 1. Covariance metric for estimation of R versus number of

snapshots. N = 8, ν = 10 and q = 4.
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Fig. 2. Covariance metric for estimation of R versus number of

snapshots. N = 8, ν = 16 and q = 4.

sider a scenario with N = 8 and q = 4. The value of ν is either

ν = 10 (weak a priori knowledge) and ν = 16 (more precise a pri-
ori knowledge). The number of samples is varied between K = N

and K = 5N . The MAP estimator is initialized with the NSCM

estimate, and the iterative scheme of (13) is run 10 times. Regarding
the MMSE, Nbi = 20 and Nr = 100. The results are displayed in
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Fig. 3. SNR loss versus number of snapshots. N = 8, ν = 10 and
q = 4.

Figures 1 to 4. We first observe that the two criteria result approx-

imately in the same hierarchy between the estimators. The MMSE

estimator provides the best performance for both criteria. The MAP

estimator performs slightly worse in terms of covariance metric but

is equivalent to the MMSE estimator in terms of SNR loss, which is

a very appealing feature since the computational complexity of the

MAP estimator is less than that of the MMSE estimator. Compared

to the NSCM, the MMSE and MAP estimators require a smaller

sample support to achieve the same SNR loss: for instance even for

K = N their SNR loss is below 2dB, while the NSCM requires 2N
snapshots to achieve the optimal SNR up to −3dB. Finally, when R̄
is used as an estimate ofR it results in poor performance (especially

for ν = 10), indicating that the a priori knowledge by itself is not
accurate enough to provide satisfactory results. It shows that R can

be quite different from R̄ and that use of the data, via the posterior

distributions, is helpful in improving MSE or SNR loss.
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