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Knowledge-Aided Covariance Matrix Estimation and
Adaptive Detection in Compound-Gaussian Noise

Francesco Bandiera, Olivier Besson, and Giuseppe Ricci

Abstract—We address the problem of adaptive detection of a signal
of interest embedded in colored noise modeled in terms of a com-
pound-Gaussian process. The covariance matrices of the primary and
the secondary data share a common structure while having different
power levels. A Bayesian approach is proposed here, where both the
power levels and the structure are assumed to be random, with some
appropriate distributions. Within this framework we propose MMSE
and MAP estimators of the covariance structure and their application to
adaptive detection using the NMF test statistic and an optimized GLRT
herein derived. Some results, also in comparison with existing algorithms,
are presented to illustrate the performances of the proposed detectors.
The relevant result is that the solutions presented herein allows to improve
the performance over conventional ones, especially in presence of a small
number of training data.

Index Terms—Adaptive detection, compound-Gaussian clutter, covari-
ance matrix estimation, heterogeneous environments, MAP estimation,
MMSE estimation.

I. INTRODUCTION

Detection of a signal of interest in a background of noise is a fun-
damental task in many applications, including radar, communications
or sonar. This is especially the case for radar systems whose core task
is to detect a target in presence of clutter, thermal noise and possibly
jamming, see [1] for a very good list of publications on this topic. Typ-
ically, the presence of a target, with given space and/or time signature
��� � ���� (� being the complex field), is sought in a (range/doppler)
cell under test (CUT), given an observation vector ��� � ����, the
so-called primary data, that corresponds to the output of an array of
sensors. To be quantitative, the classical problem of detection is often
formulated in terms of the following binary hypothesis test

�� � ��� � ���,
�� � ��� � ���� � ���,

(1)

where � � � is the unknown amplitude of the target (it takes into
account both target and channel effects) and ��� � ���� is the noise
component.

As to the noise component, experimental data [2] as well as phys-
ical and theoretical arguments [3], have demonstrated that the Gaussian
assumption is not always valid; in fact, the clutter can generally be
modeled as a compound-Gaussian process that, when observed on suf-
ficiently short time intervals, degenerates into a spherically invariant
random process (SIRP) [4]. It follows that ��� �

�
����, with ��� a com-

plex normal random vector with covariance matrix ��� (the so-called
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speckle component) and � a positive random variable (rv) independent
of ��� (the so-called texture component).

Optimized detection structures, i.e., solutions designed for a preas-
signed distribution of � , have been proposed and assessed, see for ex-
ample [5]. More importantly, it has been shown in [6] that the normal-
ized matched filter (NMF) is asymptotically optimum1 when the matrix
��� is known and � is an arbitrary (positive) random variable. The NMF
is equivalent to the following decision rule:

���������������
����������������������������

�

�

	 (2)

where 	 is the threshold value that ensures a preassigned probability
of false alarm �
��� and � denotes conjugate transpose. Since the ma-
trix ��� is usually unknown, the NMF cannot be directly implemented
using (2). In general, estimation of ��� is not feasible based upon the
sample ��� only, unless some a priori knowledge or some structure on
��� is assumed. In order to estimate ���, a set of noise-only training sam-
ples ���� � ����, � � �� � � � �  , is commonly used. These training
samples, also referred to as secondary data, are usually obtained from
range cells adjacent to the CUT. In fact, clutter returns can be mod-
eled as ���� �

�
������ , � � �� � � � � � where the ����’s are complex

normal vectors with covariance matrix��� and the ��’s are positive rv’s.
It is customary to assume that ���� ���

�
� � � � � ���� are independent random

vectors while �� ��� � � � � �� are rv’s drawn from a possibly correlated
wide sense stationary random process. In this scenario, the problem of
estimating the covariance matrix is generally intractable. A normalized
sample covariance matrix estimator has been advocated in [7] and [8]
that guarantees the constant false alarm rate (CFAR) property with re-
spect to the texture statistics. Also, considering the ��’s as unknown
deterministic quantities, it was shown that the maximum likelihood es-
timate of ��� obeys an implicit equation, that can be “solved” through
an iterative procedure [9]–[12].

Although the homogeneous assumption is an idealized situation
[13], it is possible to select training samples that are most homoge-
neous with the CUT and use only the retained ones to estimate the
noise covariance matrix. The reader is referred to [14 ] and references
therein for examples of applications of this rationale.

More recently, the so-called knowledge-aided space-time adaptive
processing (KA-STAP) has been recognized as one of the potentially
most efficient way to handle heterogeneities [15]. KA-STAP improves
the performance of adaptive detection schemes using additional (a
priori) information, such as digital elevation and terrain data, synthetic
aperture radar imagery, etc. The reader is referred to [16] and [17]
and references therein, just to give some examples. Alternatively, the
Bayesian approach can be advocated. The basic idea of the Bayesian
modeling is to assume that the quantities � , ���, and �� , � � �� � � � �  ,
are random with some preassigned a priori distribution. Examples
of this modeling can be found in [18]–[21] where secondary data
samples are homogeneous and [22] that extends the results of [21] to
the heterogeneous case.

In this correspondence, we consider a “knowledge-aided scheme”
for solving problem (1) and estimating the covariance matrix ���.
Specifically, we assume that � and ��� are random quantities and
that2 ����� , ��� � ������ �����. ��� has known mean, ��� say, that
can be obtained, as an example, from the general clutter covariance
matrix model of [23]. Additionally, the secondary samples ����’s

1Optimality in this case means that the NMF tends to coincide to the gener-
alized likelihood ratio test (GLRT) as the number of integrated pulses diverges.

2We will use throughout the correspondence the following notation ��� �

�� ��������� to denote that the vector ��� � � is ruled by the complex
normal distribution with mean ��� and covariance matrix ���.
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change their distribution on a cell-to-cell basis according to �������,
��� � ������ ������, ��’s being rv’s. Within this framework, we
consider optimal, i.e., MMSE and maximum a posteriori probability
(MAP) estimation of both ��� � ��� � � � �� � and ���. Subsequently,
we propose ad hoc detectors obtained replacing the true ��� with its
estimates. To this end, we consider two test statistics: the NMF (2) and
the GLRT for random � and known ���.

The reminder of the correspondence is organized as follows: next
section is devoted to the description of the data model while the esti-
mation is the object of Section III. In Section IV we attack the detection
problem and a performance assessment is presented in Section V. Fi-
nally, some concluding remarks are given in Section VI.

II. DATA MODEL

In this section, we provide the assumptions about our model. As
stated previously, we assume that the � vectors ���� � ����, con-
ditioned on �� and ���, are independent, zero-mean complex normal
random vectors with covariance matrix ����� (in symbols ������� , ��� �
������ ������), i.e.,

�������������� �
�

����� �	
�����
	�� �

���
�

����
��
����

��
(3)

where �	
��� stands for the determinant of the matrix argument. Now,
since ��� and ��� are random quantities, one needs to assign prior distri-
butions for them. On one hand, if one wishes to make the least possible
assumptions on the random variables, a non-informative, e.g., Jeffreys,
prior can be the solution [24]. However, this approach more or less
corresponds to maximum likelihood estimation as almost no prior in-
formation about the unknown variables is available. When prior infor-
mation is to be included in the model, a tradeoff must be made be-
tween plausibility, relevance of the prior distributions and mathemat-
ical tractability [25]. In our case, we propose to choose for ��� and ���

conjugate priors [24, p. 41]; moreover, we assume that ��� and��� are in-
dependent. More precisely, we assume that��� is drawn from a complex
inverse Wishart distribution, with mean ��� (an Hermitian and positive
definite matrix) and � �	 
  �� degrees of freedom [21], i.e.,

������ �
�	
 �� �
����

�

����� �	
��������
	
� ��� �
��������� (4)

where 	
���� stands for the exponential of the trace of the matrix argu-
ment and ����� is given by

����� � �
��������

�

���

��� � � �� (5)

with ���� being, in turn, the Eulerian Gamma function. We denote it
as ��� � ������� � 
����� ��. ��� is the expected value of ��� while �
sets the “distance” between��� and���; in fact, as � increases��� is closer
to ��� (in the sense that the variance of ��� decreases). In order to have
a conjugate prior for �� , we assume that the ��’s are independent and
distributed according to an inverse Gamma distribution with parame-
ters � and �� [24], i.e.,

������
�
�
�

�����
� ��
�

	�� �
��

��
� ��	�� �	�� ��	� (6)

which we denote as �� � 
���� ���. For what concerns, instead, the
primary data ���, we assume that, under the �� hypothesis, � � 0, 1,
������, � , ��� � ��� ������� �����. In addition, the a priori distribution of
� is � � 
��� �� with � independent of both ��� and ��� .

Equations (3), (4), and (6) form the model which will be used in the
subsequent sections for estimation and detection purposes.

III. ESTIMATION

In this section, we will derive different estimators based upon MMSE
and MAP criteria and possible modifications.

A. Posterior Distributions

In order to pursue our goals we need to find the posterior distribu-
tion ����������, where ��� � ����� � � � ���� � � ���� is the secondary data
matrix. Ignoring irrelevant constants, the joint posterior distribution of
��� and ��� can be written as follows:

����� ������������������� �����������������

�
�

�	
����������
	
� ��� �
���������


�

���

�

�
� ����
�

	�� �
��  ���

�

����
��
����

��
(7)

where � means “proportional to.” Integration over ��� provides

���������� � ����� �������������

�
�

�	
����������
	
� ��� �
���������


�

���

�

�
� ����
�

	�� �
��  ���

�

����
��
����

��
���

�
�

�	
����������
	
� ��� �
���������


�

���

��  ���
�

����
��
����

��� ���

(8)

where we have used the fact that (6) is a density and hence it integrates
to one.

B. MMSE Estimation

The MMSE estimate of ��� is given by the posterior mean

������	 � ���������� � ������������������ (9)

Unfortunately, previous integral cannot be obtained in closed form.
Furthermore, distribution (8) is not a classical one; as a consequence,
it is not possible to investigate generating samples drawn from it and
averaging them to approximate the MMSE estimator. In contrast, as
we shall see next, the conditional posterior distributions ��������� ����� and
����� ��������� are not only easy to obtain but also belong to familiar classes
of distributions. As a matter of fact, from (7) it is easy to see that

����� ��������� �
�

���

�

�
� ����
�

	�� �
��  ���

�

����
��
����

��
(10)

and hence

���������� � 
� � 
� ��  ���
�

����
��
���� � (11)
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TABLE I
GIBBS SAMPLER TO APPROXIMATE THE MMSE ESTIMATOR OF ���

Using (7) again, we have also that

��������� ����� �
�

�������������

���� ������ �� �������

�

���

�������
�

�

��
(12)

which implies that

������� ���� � ���� �� �������

�

���

�������
�

�

��
� � �	 
 (13)

Consequently, it is quite standard to generate samples drawn from
��������� ����� and ����� ���������. This suggests the use of a Gibbs-sampler
[20], [24], whose procedure is reported in Table I, where ��� stands
for the number of burn-in iterations and �� is the number of samples
which are effectively averaged. Some statistically sound criteria, such
as the potential scale reduction factor [24], are available to select the
values of ��� and �� that ensure convergence of the Gibbs sampler.
The latter is known to generate random variables which are asymp-
totically distributed according to the posterior distributions ����������
and ����� �����, and therefore a natural way to approximate the MMSE
estimator is to average the �� last values generated by the sampler,
i.e.,

������� �
�

��

� ��

��� ��

���
���


 (14)

C. MAP Estimation

As an alternative to MMSE estimation, one can consider the MAP
estimate of ���. The marginal MAP estimator of ��� is obtained as fol-
lows:

������	
 	 
���

			

���������� (15)

where the subscript M-MAP stands for marginal MAP. As an alterna-
tive, one can obtain the joint MAP estimate of both ��� and��� by solving
the following problem:

�������	
�������	
� 	 
���




�			

����� ��������� (16)

where the subscript J-MAP stands for joint MAP.

The M-MAP estimator of ��� can be obtained by setting to zero the
derivative3 of �� ����������. It can be shown that this is equivalent to solve
the following matrix equation:

� �� ����������

����
	 � �� �	 �������� � �� ����������������

�

�

���

��� ���
���
��
�������

�

����
��

� � ���
�

����
��
����

	�
 (17)

It follows that the M-MAP estimator of ��� can be obtained solving

�� �	 ������ 	 �� �������

�

���

��� ����������
�

�

� � ���
�

����
��
����


 (18)

On the other hand, the J-MAP estimates can be obtained through the
following procedure: first, for a given ���, ����� ��������� is maximized an-
alytically, i.e., a closed-form expression for the value of ��� that max-
imizes ����� ��������� is obtained. Plugging this value in ����� ���������, one
is left with a maximization problem with respect to ��� only, that can
be still accomplished by setting to zero the derivative of the resulting
function. To be analytical, observe that the distribution in (7) can be
easily maximized separately with respect to each of the �� and the cor-
responding maximizer is given by

�� 	
� � ���

�

����
��
����

�� �� � �
� � 	 �� � � � � 	
 (19)

Substituting the ��’s into ����� ��������� we get

����� ��������� �
�

�������������
��� ��� �����������

�

�

���

�� �� � �

� � ���
�

����
��
����

� ����

�
��� �����


 (20)

Setting to zero the derivative of �� ����� ��������� with respect to ��� is
equivalent to the following equation:

� �� ����� ���������

����
	 � �� �	 �������� � �� ����������������

�

�

���

��� �� � ��
���
��
�������

�

����
��

� � ���
�

����
��
����

	� (21)

which, in turn, produces the following implicit equation in ���:

�� �	 ������ 	 �� �������

�

���

��� �� � ���������
�

�

� � ���
�

����
��
����


 (22)

Some remarks are now in order.
• It is instructive to note that (18) and (22) are very similar to that ob-

tained via maximum likelihood estimation assuming that the ��’s
are unknown deterministic [9]. However, in the present scheme,
we have introduced the a priori knowledge��� that counterbalances
the influence of the snapshots. Indeed, the estimator is somehow
a weighted combination of ��� and the (properly compensated)
sample covariance matrices of the snapshots. It can also be viewed
as a kind of colored loading. Note also that introducing diagonal

3We make use of the following definition for the derivative of a real function
������ with respect to a complex variable:

�������

��
�

�

�

�������

��
� �

�������

��

where � � � � �� is the ��� 	�th entry of the Hermitian matrix ��� ,
� 
 	; see [26] for further details.
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loading in the iterative scheme of [9] has been proposed in [27].
Herein, this loading technique emerges naturally as the MAP es-
timator in a Bayesian setting.

• In order to solve (18) or (22), one can advocate an iterative pro-
cedure. In practice, since we have that ��� � ����������, one starts
with an initial value ������ and computes �������� � ��������� ����
until a preassigned convergence criterion is met, see also [9]–[12]
for discussions about convergence of such procedures.

IV. DETECTION

In this section, we propose ad hoc detection strategies for solving
test (1). More in detail, we first assume that ��� is known and derive
the GLRT (in the hypothesis that � is an unknown deterministic con-
stant and that ��� is the known target signature). Subsequently, we make
this detector fully adaptive replacing ��� with the estimates introduced
in Section III. In addition, since the NMF is the asymptotic (with re-
spect to� ) approximation of the GLRT for known���, we also consider
adaptive implementations of the NMF.

Assuming that ��� is known the GLRT becomes

���
�

��			��� 
�������
��


��			��� 
� ������
��


�

�

� (23)

where ��			��� 
����� is the probability density function (pdf) of
			��� 
���� under the �� hypothesis,  � 0, 1. Based upon the model
in force for 			, �, 
 , and ��� (see Section II), it is promptly verified that,
for  � 0, 1,

��			��� 
����� �
�

��
� 	
������

� 
�� �
�			 � ������������			 � �����



� (24)

Ignoring irrelevant constants that will simplify computing the ratio
(23), integration over 
 can be easily accomplished and we obtain

��			��������
�


 �����

� 
�� �
�  �			 � ������������			 � �����



�


� �  �			 � ������������			 � �����
������

� (25)

The GLRT at this intermediate stage can thus be written as

�  			������			

� ���� �			 � ������������			 � �����

�

�

�� (26)

The optimization problem over � is well known and it provides a rule
equivalent to

�			����������
�

��  			������			�������������

�

�

�� (27)

Assuming that a set of training data 			� , � � �� � � � � � , distributed
according to the model described in Section II is available, we can

implement adaptive detectors using both the NMF (2) and the GLRT
(27) statistics, with ��� replaced by the estimates of Section III. We
thus define the following detectors: the MMSE adaptive NMF (MMSE-
ANMF) and the MAP adaptive NMF (MAP-ANMF) as

��������
��
			�
�

��������
��
�����			����

��
			�

�

�

� (28)

and the MMSE adaptive GLRT (MMSE-GLRT) and the MAP adaptive
GLRT (MAP-GLRT) as

��������
��
			�
�

��  			����
��
			���������

��
����

�

�

� (29)

where��� represents either the MAP or the MMSE estimators according
to the acronyms. The above detectors incorporate a rough knowledge
of���, but would require knowledge of � , �� ��� � � � � �� , �� ��� � � � � �� .
However, in realistic scenarios such quantities are not known. A viable
approach is to assume that ��
 � � ��
�� � � � � � ��
� � � � and
� � �� � � � � � �� ; this, in turn, implies that � � �� � � � � �
�� � � � �. As a consequence, the variance of 
� �
� decreases to
zero as �� ��� increases to infinity.4 We can thus use the two design
parameters � and � to tune the detectors according to the expected level
of heterogeneities of the scenario.

V. PERFORMANCE ASSESSMENT

In this section, we use standard Monte Carlo counting techniques to
evaluate the performance of the proposed algorithms. Towards this end,
we evaluate the probability of detection ��	�, i.e., the probability to
decide for�� when it is actually in force, given�
�. Data are generated
according to the model described is Section II. We set � � �, � �
�� � � � � � �� ,� � �� � � � � � �� � ���, and consider two different
scenarios � � � and � � �� (weak a priori knowledge) and � � ��
and � � �� (more precise a priori knowledge). As to ��� we assume
an exponentially correlated covariance matrix with one-lag correlation
coefficient � � ����, i.e., the �� ��th element of ��� is given by ������.
According to [21], we also set �� � �� and �� � ���. Finally, we
set to 3 the number of iterations used by the MAP estimators and we
use the sample covariance matrix (SCM) ��� � ����� �

��� 			�			
�
�

as the starting point for the iterations.
In Figs. 1–4 we plot the �	 versus the signal-to-noise ratio (SNR),

defined as

��� � ����� �����
��������� � ����
�

� � �

�

� ��
�������

��
���� (30)

The�
� is set to ���� and corresponding thresholds are evaluated over
�����
� independent runs, while the �	’s are computed on ��� in-
dependent runs. Each figure contains eight curves: four for the NMF-
based detectors (dashed lines) and four for the GLRT-based detectors
(solid lines). More precisely, we report the performances of NMF,
GLRT (i.e., the detectors that assume exact knowledge of ���), MMSE-

4Remember also that � sets the distance between ��� and ���.
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Fig. 1. � versus SNR, � � �,� � �, � � �, � � ��, and � � �� .

Fig. 2. � versus SNR, � � �, � � �, � � ��, � � ��, and � � �� .

ANMF, MMSE-GLRT, MAP-ANMF, and MAP-GLRT,5 and, for com-
parison purposes, performances of MLE-ANMF and MLE-GLRT, i.e.,
adaptive implementations of NMF and GLRT using the recursive esti-
mate proposed in [9] (initialized with the SCM and performing three
iterations). Inspection of figures highlights the following.

• GLRT-based detectors perform better than NMF-based detectors,
as it could be expected since the GLRT is optimized for the un-
derlying model while the NMF is only asymptotically optimum.

• MMSE and MAP estimators ensure basically the same perfor-
mance; this indicates that the MAP estimator should be preferred
to the MMSE since the former is less computationally intensive.

• MLE recursive estimator is not a viable one when the sample sup-
port is small (� � �, Figs. 1 and 2); for � � �� (Figs. 3 and 4),
instead, the loss of the MLE-based detectors is reduced.

We have also run other simulations (not reported here) in order to study
the sensitivity of the proposed detectors with respect to a wrong choice
of parameters � and �. Results have shown that the relative hierarchy
between the adaptive detectors is not affected by this kind of mismatch.
Moreover, the detectors seem to be more sensitive to � rather than to �.
Summarizing, the performance assessment has shown how the a priori

5Simulation studies not reported here show that M-MAP and J-MAP have the
same performance in terms of � versus SNR; for this reason we only report
that of the M-MAP.

Fig. 3. � versus SNR, � � �, � � ��, � � �, � � ��, and � � �� .

Fig. 4. � versus SNR,� � �,� � ��, � � ��, � � ��, and � � �� .

knowledge introduced in the proposed algorithms can help to outper-
form existing solutions. Obviously, the gain is much higher in the case
of a small number of training data.

VI. CONCLUSION

We have addressed the problem of adaptive detection of a signal
of interest corrupted by correlated noise modeled in terms of a com-
pound-Gaussian process. In order to embed into the design procedure
some a priori knowledge about the noise, a Bayesian approach has
been proposed. We have assumed that the covariance structure ��� is
a random matrix drawn from an inverse complex Wishart distribution
with known mean. As to the power levels, we have considered indepen-
dent rv’s distributed according to the inverse Gamma distribution with
known parameters. We have proposed different algorithms for the esti-
mation of���; the estimators are based upon either the MMSE criterion
or the MAP criterion. In order to obtain fully adaptive detectors, such
estimators have been subsequently used inside an optimized GLRT and
the NMF. The performance assessment has highlighted the effective-
ness of the proposed algorithms also in comparison to existing ones.
Remarkably, due to embedded a priori knowledge about the environ-
ment, it turns out that the proposed solutions are particularly suitable
in case of small estimation samples.



5396 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

REFERENCES

[1] F. Gini, A. Farina, and M. Greco, “Selected list of references on radar
signal processing,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 1,
pp. 329–359, Jan. 2001.

[2] K. D. Ward, C. J. Baker, and S. Watts, “Maritime surveillance radar.
Part 1: Radar scattering from the ocean surface,” Proc. Inst. Electr. Eng.
F, vol. 137, no. 2, pp. 51–62, 1990.

[3] M. Di Bisceglie and C. Galdi, “Random walk based characterization of
radar backscatter from the sea surface,” Proc. Inst. Elect. Eng.—Radar,
Sonar Navig., vol. 145, no. 4, pp. 216–225, 1998.

[4] E. Conte and M. Longo, “Characterisation of radar clutter as a spher-
ically invariant process,” Proc. Inst. Elect. Eng. F, vol. 134, no. 2, pp.
191–197, Apr. 1987.

[5] E. Conte, M. Longo, M. Lops, and S. L. Ullo, “Radar detection of
signals with unknown parameters in K-distributed clutter,” Proc. Inst.
Elect. Eng. F, vol. 138, no. 2, pp. 131–138, 1991.

[6] E. Conte, M. Lops, and G. Ricci, “Asymptotically optimum radar de-
tection in compound-Gaussian clutter,” IEEE Trans. Aerosp. Electron.
Syst., vol. 31, no. 2, pp. 617–625, Apr. 1995.

[7] E. Conte, M. Lops, and G. Ricci, “Adaptive matched filter detection in
spherically invariant noise,” IEEE Signal Process. Lett., vol. 3, no. 8,
pp. 248–250, Aug. 1996.

[8] E. Conte, M. Lops, and G. Ricci, “Adaptive detection schemes in com-
pound-Gaussian clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 34,
no. 4, pp. 1058–1069, Oct. 1998.

[9] E. Conte, A. De Maio, and G. Ricci, “Recursive estimation of the co-
variance matrix of a compound Gaussian process and its application to
adaptive CFAR detection,” IEEE Trans. Signal Process., vol. 50, no. 8,
pp. 1908–1915, Aug. 2002.

[10] M. S. Greco and F. Gini, “Covariance matrix estimation for CFAR de-
tection in correlated heavy tailed clutter,” Signal Process., vol. 82, no.
12, pp. 1847–1859, Dec. 2002.

[11] E. Conte and A. De Maio, “Mitigation techniques for non-Gaussian sea
clutter,” IEEE J. Ocean. Eng., vol. 29, no. 2, pp. 284–302, Apr. 2004.

[12] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal,
“Covariance structure maximum-likelihood estimates in compound
Gaussian noise: Existence and algorithm analysis,” IEEE Trans. Signal
Process., vol. 56, no. 1, pp. 34–48, Jan. 2008.

[13] W. L. Melvin, “Space-time adaptive radar performance in heteroge-
neous clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 2, pp.
621–633, Apr. 2000.

[14] M. Rangaswamy, “Statistical analysis of the nonhomogeneity detector
for non-Gaussian interference backgrounds,” IEEE Trans. Signal
Process., vol. 53, no. 6, pp. 2101–2111, Jun. 2005.

[15] IEEE Signal Process. Mag. (Special Issue on Knowledge-Based Sys-
tems for Adaptive Radar: Detection, Tracking and Classification), vol.
23, no. 1, Jan. 2006.

[16] A. De Maio, A. Farina, and G. Foglia, “Design and experimental val-
idation of knowledge-based constant false alarm rate detectors,” Proc.
Inst. Electr. Eng.—Radar, Sonar, Navig., vol. 1, no. 4, pp. 308–316,
Aug. 2007.

[17] A. De Maio, S. De Nicola, L. Landi, and A. Farina, “Knowledge-aided
covariance matrix estimation: A MAXDET approach,” Proc. Inst.
Elect. Eng.—Radar, Sonar Navig., vol. 3, no. 4, pp. 341–356, Aug.
2009.

[18] A. De Maio and A. Farina, “Adaptive radar detection: A Bayesian ap-
proach,” in Proc Int. Radar Symp. (IRS) 2006, May 24–26, 2006, pp.
1–4.

[19] A. De Maio, A. Farina, and G. Foglia, “Adaptive radar detection: A
Bayesian approach,” in Proc. IEEE Radar Conf. 2007, Apr. 17–20,
2007, pp. 624–629.

[20] O. Besson, J.-Y. Tourneret, and S. Bidon, “Knowledge-aided bayesian
detection in heterogeneous environments,” IEEE Signal Process. Lett.,
vol. 14, no. 5, pp. 355–358, May 2007.

[21] S. Bidon, O. Besson, and J.-Y. Tourneret, “A Bayesian approach to
adaptive detection in non-homogeneous environments,” IEEE Trans.
Signal Process., vol. 56, no. 1, pp. 205–217, Jan. 2008.

[22] O. Besson, S. Bidon, and J.-Y. Tourneret, “Covariance matrix estima-
tion with heterogeneous samples,” IEEE Trans. Signal Process., vol.
56, no. 3, pp. 909–920, Mar. 2008.

[23] J. Ward, “Space-time adaptive processing for airborne radar,” Lincoln
Lab., Massachusetts Inst. of Technology, Lexington, MA, Tech. Rep.
1015, Dec. 1994.

[24] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis, 2nd ed. New York: Chapman & Hall, 2004.

[25] L. Svensson, “Bayesian inference with unknown noise covariance,”
Ph.D. dissertation, Chalmers Univ. Technology, Göteborg, Nov. 2004.

[26] S. M. Kay, Fundamentals of Statistical Signal Processing. Vol. 1: Es-
timation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[27] Y. I. Abramovich and N. K. Spencer, “Diagonally loaded normalised
sample matrix inversion (LNSMI) for outlier-resistant adaptive fil-
tering,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), Honolulu, HI, Apr. 2007, pp. 1105–1108.

On the Stable Recovery of the Sparsest Overcomplete
Representations in Presence of Noise

Massoud Babaie-Zadeh and Christian Jutten, Fellow, IEEE

Abstract—Let � be a signal to be sparsely decomposed over a redundant
dictionary �, i.e., a sparse coefficient vector � has to be found such that
� � ��. It is known that this problem is inherently unstable against noise,
and to overcome this instability, Donoho, Elad and Temlyakov [“Stable re-
covery of sparse overcomplete representations in the presence of noise,”
IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006] have proposed
to use an “approximate” decomposition, that is, a decomposition satisfying
� �� rather than satisfying the exact equality � � ��.

Then, they have shown that if there is a decomposition with � ���
� 	, where denotes the coherence of the dictionary, this decom-

position would be stable against noise. On the other hand, it is known that
a sparse decomposition with � �� 	�spark��� is unique. In other
words, although a decomposition with � �� 	�spark��� is unique,
its stability against noise has been proved only for highly more restric-
tive decompositions satisfying � �� � � 	, because usually
��� � 	 �� 	�spark���. This limitation maybe had not been
very important before, because � ��� � 	 is also the bound
which guaranties that the sparse decomposition can be found via mini-
mizing the norm, a classic approach for sparse decomposition. However,
with the availability of new algorithms for sparse decomposition, namely
SL0 and robust-SL0, it would be important to know whether or not unique
sparse decompositions with ��� � 	 � �� 	�spark���
are stable. In this correspondence, we show that such decompositions are
indeed stable. In other words, we extend the stability bound from �
��� � 	 to the whole uniqueness range � �� 	�spark���.
In summary, we show that all unique sparse decompositions are stably recov-
erable. Moreover, we see that sparser decompositions are “more stable.”

Index Terms—Compressed sensing, overcomplete dictionaries, sparse
component analysis (SCA), sparse recovery, sparse signal decomposition.

I. INTRODUCTION

Let � be an � � � matrix with � � �, and consider the un-
derdetermined system of linear equations (USLE) �� � �. Such a
linear system has typically infinitely many solutions, but let consider
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