39,581 research outputs found

    Rigorously assessing software reliability and safety

    Get PDF
    This paper summarises the state of the art in the assessment of software reliability and safety ("dependability"), and describes some promising developments. A sound demonstration of very high dependability is still impossible before operation of the software; but research is finding ways to make rigorous assessment increasingly feasible. While refined mathematical techniques cannot take the place of factual knowledge, they can allow the decision-maker to draw more accurate conclusions from the knowledge that is available

    The belief noisy-or model applied to network reliability analysis

    Get PDF
    One difficulty faced in knowledge engineering for Bayesian Network (BN) is the quan-tification step where the Conditional Probability Tables (CPTs) are determined. The number of parameters included in CPTs increases exponentially with the number of parent variables. The most common solution is the application of the so-called canonical gates. The Noisy-OR (NOR) gate, which takes advantage of the independence of causal interactions, provides a logarithmic reduction of the number of parameters required to specify a CPT. In this paper, an extension of NOR model based on the theory of belief functions, named Belief Noisy-OR (BNOR), is proposed. BNOR is capable of dealing with both aleatory and epistemic uncertainty of the network. Compared with NOR, more rich information which is of great value for making decisions can be got when the available knowledge is uncertain. Specially, when there is no epistemic uncertainty, BNOR degrades into NOR. Additionally, different structures of BNOR are presented in this paper in order to meet various needs of engineers. The application of BNOR model on the reliability evaluation problem of networked systems demonstrates its effectiveness

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Applying Bayes linear methods to support reliability procurement decisions

    Get PDF
    Bayesian methods are common in reliability and risk assessment, however, such methods often demand a large amount of specification and can be computationally intensive. Because of this, many practitioners are unable to take advantage of many of the benefits found in a Bayesian-based approach. The Bayes linear methodology is similar in spirit to a Bayesian approach but offers an alternative method of making inferences. Bayes linear methods are based on the use of expected values rather than probabilities, and updating is carried out by linear adjustment rather than by Bayes Theorem. The foundations of the method are very strong, based as they are in work of De Finetti and developed further by Goldstein. A Bayes linear model requires less specification than a corresponding probability model and for a given amount of model building effort, one can model a more complex situation quicker. The Bayes linear methodology has the potential to allow us to build ''broad-brush' models that enable us, for example, to explore different test setups or analysis methods and assess the benefits that they can give. The output a Bayes linear model is viewed as an approximation to 'traditional' probabilistic models. The methodology has been applied to support reliability decision making within a current United Kingdom Ministry of Defence (MOD) procurement project. The reliability decision maker had to assess different contractor bids and assess the reliability merit of each bid. Currently the MOD assess reliability programmes subjectively using expert knowledge - for a number of reasons, a quantitative method of assessment in some projects is desirable. The Bayes linear methodology was used to support the decision maker in quantifying his assessment of the reliability of each contractor's bid and determining the effectiveness of each contractor's reliability programme. From this, the decision maker was able to communicate to the project leader and contractors, why a specific contractor was chosen. The methodology has been used in other MOD projects and is considered by those within the MOD as a useful tool to support decision making. The paper will contain the following. The paper will introduce the Bayes linear methodology and briefly discuss some of the philosophical implications of adopting a Bayes linear methodology within the context of a reliability programme analysis. The paper will briefly introduce the reliability domain and the reasons why it is believed that the Bayes linear methodology can offer support to decision makers. An in-depth analysis of the problem will then be given documenting the steps taken in the project and how future decision makers can apply the methodology. A brief summary will then be given as to possible future work for those interested in the Bayes linear methodology

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area
    • 

    corecore