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One difficulty faced in knowledge engineering for Bayesian Network (BN) is the quan-
tification step where the Conditional Probability Tables (CPTs) are determined. The

number of parameters included in CPTs increases exponentially with the number of par-

ent variables. The most common solution is the application of the so-called canonical
gates. The Noisy-OR (NOR) gate, which takes advantage of the independence of causal

interactions, provides a logarithmic reduction of the number of parameters required to
specify a CPT. In this paper, an extension of NOR model based on the theory of belief

functions, named Belief Noisy-OR (BNOR), is proposed. BNOR is capable of dealing
with both aleatory and epistemic uncertainty of the network. Compared with NOR,
more rich information which is of great value for making decisions can be got when

the available knowledge is uncertain. Specially, when there is no epistemic uncertainty,

BNOR degrades into NOR. Additionally, different structures of BNOR are presented in
this paper in order to meet various needs of engineers. The application of BNOR model

on the reliability evaluation problem of networked systems demonstrates its effectiveness.

Keywords: Evidential network; Belief Noisy-OR; Conditional belief function; Uncer-
tainty; Network reliability
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1. Introduction

Bayesian Network (BN) is a probabilistic graphical model that represents a set of

random variables and their conditional dependencies via a directed acyclic graph

(DAG)1. BN can be used to learn causal relationships and gain understanding of a

problem domain. It allows probabilistic beliefs to be updated automatically when

new information becomes available. BN is also able to represent multi-attribute

correlated variables and to perform relevant simulations or diagnoses. Owing these

advantages, it has been widely applied on the problem of reliability or safety analysis

for both static and dynamic systems2–5.

In BN, Conditional Probability Tables (CPTs) should be defined to measure the

relationships between variables. However, it has been pointed out that it is usually

difficult to quantify the CPTs due to the complexity6. One of the most appropriate

solutions to this problem is the Noisy-OR (NOR) gate, which can be attributed

to Pearl 7 . Traditional NOR can only deal with the binary variables. Srinivas 8

extended NOR for n-ary input and output variables, and arbitrary functions other

than Boolean OR function can be used. But it has not taken into account the

uncertainty on parameters and the state which often exists in practice. Considering

such uncertainty, Fallet et al. 9 proposed the imprecise extensions of Noisy OR

(ImNOR) thereafter. Nevertheless, there are still some problems for ImNOR which

will be discussed in detail later.

The theory of belief functions, also called Dempster–Shafer Theory (DST), of-

fers a mathematical framework for modeling uncertainty and imprecise informa-

tion10. Belief functions are widely employed in various fields, such as data classi-

fication11–13, data clustering14–17, social network analysis18–21 and statistical es-

timation22–24. The concept of evidential networks, which is a combination of be-

lief function theory and Bayesian network, is proposed to model system reliability

with imprecise knowledge25;26. Recently, Yaghlane and Mellouli 27 presented an-

other definition of evidential networks based on Transferable Belief Model (TBM)28,

Dempster-Shafer rule of combination, and binary joint trees.

The objective of this work is to enrich the existing NOR structures by integrating

several types of uncertainty. Under the framework of belief functions, the Belief

Noisy-OR (BNOR) model is put forward. The uncertainty of variable states can be

expressed by the power set of discernment frame. The uncertainty of parameters is

described by probability intervals based on which the basic belief assignments are

determined. The model can model causal connections among variables as well as

taking random and epistemic uncertainty into account. The proposed BNOR model

can be implemented in evidential networks26, and belief reasoning is proceeded

through evoking junction tree inference algorithms25;26.

The remainder of this paper is organized as follows. In Section 2, the basic

knowledge about Noisy-OR gate and Dempster–Shafer theory is briefly introduced.

The BNOR model is presented in detail in Section 3. In order to show the effec-

tiveness of BNOR in real practice, Section 4 discusses about how to apply BNOR
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on the problem of network reliability evaluation. Conclusions are drawn in the final

section.

2. Background

In this section some related preliminary knowledge will be presented. The definition

of Noisy-OR gate will be described first, then some basis of belief function theory

will be recalled.

2.1. Noisy-OR model

The Noisy-OR structure was introduced by Pearl 7 to reduce the elicitation effort in

building a Bayesian network. The general properties of the Noisy-OR function and

its generalizations were captured by Heckerman and Breese 29 in their definition of

causal independence.

1
X

i
X

n
X... ...

Y

OR

a. causal connections b. Noisy-OR model

Fig. 1. The causal connections network.

Let us consider a binary variable Y with n binary parent variables Xi (see Fig-

ure 1-a). These variables can be either “True” (T ) or “False” (F ). Each Xi exerts

its influence on Y independently. To build a Bayesian network, X must be associ-

ated with a probability distribution p(Y |X1, · · · , Xn). The number of independent

parameters included in the complete specification of p(Y |X1, · · · , Xn) is 2n. The

Noisy-OR function is an attractive way where we can use fewer parameters to spec-

ify p(Y |X1, · · · , Xn). The idea is to start with n probability values pi, which is the

probability that {Y = T} conditional on {Xi = T} and {Xj = F} for j 6= i, i.e.,

pi = p
{
Y = T

∣∣∣Xi = T, {Xj = F}nj=1,j 6=i

}
. (1)
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Probability pi is often called “link probability” and illustrates the fact that the

causal dependency between Xi and Y can be inhibited. If the state of variable Xi

is T , then there is chance 1−pi that it is flipped to F ; If Xi is F , then it stays with

F . Denote the result of flipping (or not) Xi by ξi, i = 1, 2, · · · , n (see Figure 1-b),

then

p(Y = α|X1,X2, · · · , Xn) =
∑

α1∨···∨αn=α

p(ξ1 = α1|X1) · · · p(ξn = αn|Xn), (2)

where the values of α, αi are either T or F . A Noisy-OR function is thus a disjunc-

tion of “noisy” versions of Xi
30. Let XT be the set of Xi whose state is “True”,

and XF be the set of Xi which are “False”. The distribution of Y conditional on

X1, X2, · · · , Xn is

p (Y = T |X1, X2, · · · , Xn) = 1−
∏

i:Xi∈XT

(1− pi). (3)

We can see the number of independent parameters required for the conditional

probability function is reduced from 2n to 2n31. The following example shows how

to create CPTs by the use of NOR gate.

Example 1. Let us consider the Alarm System (see Figure 2). Both a burglar (B)

and an earthquake (E) can set the alarm (A) off but neither always do so. The

mechanism of the burglar and earthquake is different, thus they can be regarded as

independent causes. Variable B
′

(respectively, E
′
) describes the result after flipping

(or not) of B (respectively, E). Assume all variables are binary with values {T, F},
where T represents the corresponding event happens, while F means not.

Apparently, A is F only if both the occurrence of burglar and earthquake do

not evoke the alarm due to inhibition. Using the Noisy-OR model, we can get,

p(A = F |B,E) =
∏
i∈XT

(1− pi), (4)

The conditional probability on {A = T} can be obtained easily:

p(A = T |B,E) = 1−
∏
i∈XT

(1− pi). (5)

The following CPT can be got using Eqs. (4) and (5).

2.2. Belief function theory

To apply the theory of belief functions, we consider a set of q mutually exclusive &

exhaustive elements, called the frame of discernment, defined by

Θ = {θ1, θ2, · · · , θq}. (6)
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Table 1. The conditional probability table.

B E A = T A = F

T T 1− (1− p1)(1− p2) (1− p1)(1− p2)

T F p1 1− p1

F T p2 1− p2

F F 0 1

B

B’ E’

A

EBurglar Earthquake

Alarm

  Burglar Trigger   Earthquake Trigger

OR

1p
2p

'

1( | ) 0.8p B T B T p  

'

1( | ) 0.9p E T E T p  

Fig. 2. The alarm network.

Let X be a variable taking values in Θ. The function m : 2Θ → [0, 1] is said to be

the basic belief assignment (bba) on 2Θ, if it satisfies:

∑
A⊆Θ

m(A) = 1, (7)

and

m(∅) = 0. (8)

The constraint on ∅ defined by Eq. (8) is not mandatory. It assumes that one

and only one element in Θ is true (closed-world assumption). In the case where

m(∅) 6= 0, the model accepts that none of the elements could be true (open-world

assumption)28. The closed-world assumption is accepted hereafter. Every A ∈ 2Θ

such that m(A) > 0 is called a focal element. Uncertain and imprecision knowledge

about the actual value of X can be represented by a bba distributed on 2Θ:

MX = [m (A1) ,m (A2) , · · · ,m (A2q−1)] , (9)

where A1, A2, · · · , A2q−1 are the elements of 2Θ arranged by natural order.

The credibility and plausibility functions are derived from a bbam as in Eqs. (10)

and (11).

Bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Θ, (10)
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Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Θ. (11)

Bel(A) measures the minimal belief on A justified by available information on

B(B ⊆ A) , while Pl(A) is the maximal belief on A justified by information on B

which are not contradictory with A (A ∩ B 6= ∅). The bba can be recovered from

credibility functions through the fast Möbius transformations32:

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B),∀A ⊆ Θ (12)

The relations between Bel and Pl can be established as follows:

Bel(A) = 1− Pl(A) , P l(A) = 1−Bel(A), (13)

where A denotes the complementary set of A. Bel(A) is often called the doubt in

A. Let Pr(A) denote the probability of the hypothesis A, it is easy to get:

Bel(A) ≤ Pr(A) ≤ Pl(A). (14)

Probability Pr(A) belongs to the interval [Bel(A), P l(A)] but its exact value re-

mains unknown. The bounding property (14) has been well defined in the work of

Shafer10.

Ferson et al. 33 argued that each Dempster-Shafer structure specifies a unique

probability-box (p-box), and that each p-box specifies an equivalent class of

Dempster-Shafer structure26. P-boxes are sometimes considered as a granular ap-

proach of imprecise probabilities34, which are arbitrarily sets of probability distri-

butions. Probability interval [P (A), P (A)], which is the restricted case of p-box26,

can also be used to describe the imprecision of a probability measure. The relation

between a probability interval and a bba can be directly obtained26:

[P (A), P (A)] = [Bel(A), P l(A)]. (15)

Belief functions can be transformed into probability distribution functions by

Smets method36, where each mass of belief m(A) is equally distributed among the

elements of A. This leads to the concept of pignistic probability, BetP . For all

θi ∈ Θ, we have

BetP (θi) =
∑

A⊆Θ|θi∈A

m(A)

|A|(1−m(∅))
, (16)

where |A| is the cardinality of set A (number of elements of Θ in A). Pignistic

probabilities can help us make a decision.

3. Belief Noisy-OR model

We start with the discussion of the uncertainty problem in NOR model. One of the

existing approaches to express the uncertain information in NOR is the ImNOR

model proposed by Fallet et al. 9 . We will analyze the drawbacks of ImNOR and

present a new NOR gate using the theory of belief functions.
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3.1. The uncertainty problem in NOR structure

From an industrial point of view, it is classically accepted that observations made

on the system are partially realized35. For example, it is difficult to determine

whether an earthquake has happened, especially when the magnitude is small and

the hypo-center is deep. In such a case, there is some uncertainty on the state of

boolean parent variables and it is intuitive for experts to give a positive belief on the

ignorant modality {T, F}. Simon and Weber 26 have investigated a solution based

on evidential network and the theory of belief functions to take into account the

uncertainty on the state of binary parent variables in AND/OR gates. Simon et al. 25

combined belief function theory with Bayesian reasoning to deal with this type of

epistemic uncertainty. Based on Simon and Weber’s modelling formalization, Fallet

et al. 9 proposed imprecise extensions of the Noisy-OR (ImNOR) structure to deal

with the uncertainty on the state of variables and link probabilities.

ImNOR describes the uncertainty on variable state and link probabilities sepa-

rately by calculating the lower bounds of the conditional probability P (X|Pa(X)),

where Pa(X) denotes the parent nodes of X. Consider the causal network shown in

Figure 1-a. As before, the discernment frame of each variable is {T, F}, and each

Xi is interpreted as an independent “cause” of Y . We can express our epistemic

uncertainty on variables’ state by assigning the basic belief to ignorant modality

{T, F}. This modality indicates that the variable is exclusively in {T} or {F} state

without distinguishing exactly in which state it is9. Different from Noisy-OR model,

in ImNOR, each active Xi can evoke Y with unknown probability pi ∈ [piL, piU ],

where piU − piL measures the degree of uncertainty on our knowledge of inhibition.

Fallet provided us the formulas (see Eqs. (17)–(19)) to calculate the conditional

belief mass functions1:

m(Y = {T}|X1, X2, · · · , Xn) = 1−
∏

{i:Xi={T}}

(1− piL), (17)

m(Y = {F}|X1, X2, · · · , Xn) =
∏

{i:Xi={T}}

(1− piU )
∏

{i:Xi={T, F} }

(1− piU ), (18)

m(Y = {T, F} |X1, X2, · · · , Xn) =
∏

{i:Xi={T}}

(1−piL)−
∏

{i:Xi={T}}

(1−piU )
∏

{i:Xi={T, F} }

(1−piU ).

(19)

From Eq. (17), we can get:

m (Y = {T}|X1 · · ·Xk = {T, F} · · ·Xn) = 1−
∏

{i:Xi={T},i∈{1,2,··· ,k−1,k+1,··· ,n}}

(1−piL),

(20)

1As the belief functions are defined on the power set of discernment frame, we use {T} ({F})
instead of T (F ) to denote variable state here.
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and

m (Y = {T}|X1 · · ·Xk = {F} · · ·Xn) = 1−
∏

{i:Xi={T},i∈{1,2,··· ,k−1,k+1,··· ,n}}

(1−piL).

(21)

It can be seen that the belief on the proposition that “variable Y is {T}” does not

change when some prior precise information about the parent variables becomes

available (The state of Xk changes from {T, F} to {T}):

m(Y = {T}|X1, · · · , Xi = {T, F}, · · ·Xn) = m(Y = {T}|X1, · · · , Xi = {F}, · · · , Xn).

(22)

Besides, there is another defect for the above method when calculating the belief

mass on the conditional events where there is no working components (Xi 6= T, i =

1, 2, · · · , n). For example, when we want to know

m(Y |Xi = {F}, i = 1, 2, · · · , n− 1, Xn = {T, F}),

the following conditional belief mass functions can be got by Eq. (18):

m(Y = {F}|Xi = {F}, i = 1, 2, · · · , n− 1, Xn = {T, F}) = 1− PnU , (23)

m(Y = {F}|Xi = {T,F}, i = 1, 2, · · · , n− 1, Xn = {T, F}) = PnU . (24)

As can be seen, the lower bound of probability pn, pnL, has no effect on the final

results. That is to say, the conditional belief mass assignment remains unchanged

once the upper bound of pn is fixed no matter how long the uncertain interval is.

This is against our common sense. Since the length of the interval measures the

degree of uncertainty on the available information, the longer the interval is, more

mass value should be given to the ignorant state {T, F}.

3.2. Belief Noisy-OR structure

We introduce here the Belief Noisy-OR structure to express the epistemic uncer-

tainty on the state of the variables and link probabilities at the same time. Consider

the causal network where Xi, i = 1, 2, · · · , n are the parents of Y (Figure 1-a).

Let us first discuss the uncertainty on link probability pi. This parametric un-

certainty can be modeled by an interval [piL, piU ], with 0 ≤ piL ≤ pi ≤ piU ≤ 1.

Thus the inhibition probability interval of Xi is [1−piU , 1−piL]. In order to use evi-

dential reasoning, the probability intervals should be transformed to belief function

structures. For convenience, n auxiliary variables, X
′

i , i = 1, 2, · · · , n are introduced

to represent the result of flipping or not Xi. From the boundary property of belief

functions (Eq. (14)), we can get

Bel(X
′

i = {T}|Xi = {T}) = piL, (25)

Pl(X
′

i = {T}|Xi = {T}) = piU , (26)
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The associated belief mass distribution can be easily determined by Eq. (12).

The corresponding conditional bba in 2Θ can be defined as:

m(X
′

i = {T}|Xi = {T}) = Bel(X
′

i = {T}|Xi = {T}) = piL, (27)

m(X
′

i = {F}|Xi = {T}) = Bel(X
′

i = {F}|Xi = {T}) (28)

= 1− Pl(X
′

i = {T}|Xi = {T}) (29)

= 1− piU , (30)

and

m(X
′

i = {T, F} |Xi = {T}) = piU − piL, (31)

where Eq. (29) is obtained by the relation between Bel and Pl. Eqs. (27)–(31)

express the uncertain knowledge of link probabilities and variable states together

in the form of belief mass distributions.

When Xi = {F}, Y is sure to stay in state {F} . Thus the bba conditioned

Xi = {F} is easy to determine:

m(X
′

i = {T}|Xi = {F}) = 0, (32)

m(X
′

i = {F}|Xi = {F}) = 1, (33)

m(X
′

i = {T,F}|Xi = {F}) = 0. (34)

However, the bba on the condition Xi = {T,F} is more complicated. The following

equations with unknown parameters α, β, γ (α+β+γ = 1) are first given, and then

the methods for designing the three parameters will be discussed later.

m(X
′

i = {T}|Xi = {T, F}) = α, (35)

m(X
′

i = {F}|Xi = {T, F}) = β, (36)

m(X
′

i = {T, F}|Xi = {T, F}) = γ. (37)

Eqs. (35)–(37) show that in BNOR, the belief on the uncertain state Xi = {T, F}
may be flipped into all the possible states by different ratios. Parameters α, β, γ are

adjustable.

Generally, the values of α, β, γ can be given by the proportions of belief mass

on Xi = {T, F} which may be transferred to Xi = {T} (noted by λ1, 0 ≤ λ1 ≤ 1),
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Xi = {F} (noted by λ2, 0 ≤ λ2 ≤ 1) and Xi = {T, F} (noted by λ3, 0 ≤ λ3 ≤ 1)

(λ1 + λ2 + λ3 = 1) respectively:

α = λ1m(X
′

i = {T}|Xi = {T}) = λ1piL, (38)

β = λ1m(X
′

i = {F}|Xi = {T}) + λ2 = λ1(1− piU ) + λ2, (39)

γ = λ1m(X
′

i = {T, F}|Xi = {T}) + λ3 = λ1(piU − piL) + λ3. (40)

Parameter λ3 in Eq. (40) indicates the uncertainty on the state of Xi, and it should

be in direct proportion to m(Xi = {T, F}) , η. It is easy to know that if η 6= 0,

λ3 6= 0. For simplicity, let λ3 = η and λ1 = λ, λ2 = 1− λ− η, then,

α = λm(X
′

i = {T}|Xi = {T}) = λpiL, (41)

β = λm(X
′

i = {F}|Xi = {T}) + (1− λ− η) = λ(1− piU ) + (1− λ− η), (42)

γ = λm(X
′

i = {T, F}|Xi = {T}) + η = λ(piU − piL) + η. (43)

This is similar to the optimistic coefficient method in the decision theory. So we call

this general approach Optimistic coefficient-BNOR (OCBNOR), where λ (0 ≤ λ ≤
1) is the optimistic coefficient.

Note that Eqs. (41)–(43) propagate the uncertainty on variable state and link

probabilities simultaneously. The ignorant modality Θ = {T, F} represents the

uncertainty on the state and the belief mass assignment m(X
′

i |Xi) deals with the

uncertain information of link probabilities.

Different λ values can be set to obtain results under various requirements. For

instance, if we want to make an optimistic decision, the belief to Xi = {T, F} could

transferred to X
′

i = {T} as most as possible. Let λ = 1, then

α = piL, β = 1− piU − η, γ = piU − piL + η. (44)

This structure is called Optimistic Belief Noisy-OR (OBNOR). By contrary, when

a pessimistic decision is required, all the belief on Xi = {T, F} could transferred to

the child state X
′

i = {F}, thus

α = 0, β = 1− η, γ = η, (45)

we call this model Pessimistic Belief Noisy-OR (PBNOR).

The decision-makers can make a compromise between optimism and pessimism.

According to the idea of pignistic probability transformation36, the belief on the

subsets of the discernment framework should be given to the single elements equally.

Then we can get:
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α =
1

2
m(X

′

i = {T}|Xi = {T}) =
1

2
piL, (46)

β =
1

2
m(X

′

i = {F}|Xi = {T}) +
1

2
− η =

1

2
(1− piU ) +

1

2
− η, (47)

γ =
1

2
m(X

′

i = {T, F}|Xi = {T}) + η =
1

2
(piU − piL) + η. (48)

BNOR with the above α, β, γ is called Temperate Belief Noisy-OR (TBNOR) model.

It is easy to see that OBNOR, PBNOR and TBNOR are special cases of OCBNOR.

Least Committed Belief Noisy-OR (LC-BNOR), just as the name implies, sug-

gests us that the least committed belief mass function should be selected holding

the view that one should never give more belief than justified. It satisfies a form

of skepticism, of noncommitment, of conservatism in the allocation of the beliefs37.

At this time,

α = 0, β = 0, γ = 1. (49)

3.3. From Bayesian Networks to Evidential Networks

In order to apply BNOR structure, it is important to find a relevant model to

encode and to propagate the causal relations included in BNOR. Here the evidential

network model proposed by Simon and Weber 26 is taken as a solution to implement

BNOR. Similar to BN, evidential networks allow dealing with a lot of variables and

modeling the dependencies between variables. From BNOR, the conditional mass

distribution

m(Y = {T}|Xi), m(Y = {F}|Xi), m(Y = {T, F}|Xi)

can be established, which plays a similar role as CPTs in Bayesian networks. If the

prior belief mass values of the parent nodes X1, · · · , Xn are given, then the junction

tree inference algorithm can be evoked to calculate the marginal mass distribution

of the child node Y . Once the bba of Y is got, the belief and plausibility functions

of Y can be obtained accordingly.

3.4. The Pignistic probability and decision making

The transferable belief model (TBM)36 is an interpretation of the Dempster-Shafer

theory of evidence, where beliefs can be held at two levels — credal level and pig-

nistic level. When an agent has to select an optimal action among an exhaustive

set of actions, rationality principles lead to the use of a probability measure. There-

fore, when a decision has to be made, the bba obtained by BNOR model must be
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transformed into a probability measure38. One of the most commonly used trans-

formation approaches is Smets method shown in Eq. (16). In our cases, Θ = {T, F}.
If the following bba is got,

m(X = {T}) = m1,m(X = {F}) = m2,m(X = {T,F}) = m3, (50)

we can get the following pignistic probability:

BetP (X = T ) = m1 +
m3

2
, BetP (X = F ) = m2 +

m3

2
. (51)

If the conditional belief mass functions is obtained,

m(Y = {T}|X) = mX
1 ,m(Y = {F}|X) = mX

2 ,m(Y = {T,F}|X) = mX
3 , (52)

the conditional pignistic probability can be got as follows:

BetP (Y = T |X) = mX
1 +

mX
3

2
, BetP (Y = F |X) = mX

2 +
mX

3

2
. (53)

Example 2. Here we use the example of Alarm System again to illustrate the be-

havior of different BNOR models and ImNOR. The intervals of the link probabilities

of burglar and earthquake are p1 ∈ (0.6, 0.8) and p2 ∈ (0.7, 0.9) respectively. The

prior distribution of B and E are given:

m(B = {T}) = 0.4,m(B = {F}) = 0.6,m(B = {T, F}) = 0,

m(E = {T}) = 0.3,m(E = {F}) = 0.6,m(E = {T, F}) = 0.1.

The corresponding BNOR model is shown in Figure 3. The conditional mass func-

tion m(A|B,E) based on different BNOR models and ImOR are displayed in Ta-

bles 2–4. Figure 4 illustrates the value of m(A|B = {T}, E = {T,F}) by dif-

ferent schemes. It can be seen that, ImNOR provides a pessimistic decision for

m(A = {T}|·), but an optimistic one for m(A = {F}|·). This is counter-intuitive as

ImNOR holds opposite attitudes towards one event.

B

B’ E’

EBurglar Earthquake

Alarm

 Burglar Trigger

  Earthquake Trigger

A

1 1 1( , )
L U

p p p 2 2 2( , )
L U

p p p

Fig. 3. The Belief Noisy-OR structure for Alarm System.
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From Table 2 we can see, by the use of ImNOR,

m(A = {F}|B = {T}, E = {T}) = m(A = {F}|B = {T}, E = {T, F}), (54)

but by BNOR,

m(A = {F}|B = {T}, E = {T}) < m(A = {F}|B = {T}, E = {T, F}). (55)

Eq. (55) fits with our common sense. As soon as we know the earthquake has

happened for sure, the less belief should be holding for the proposition the alarm

has not gone.

Let the link probability of earthquake be p2 ∈ (0.7, 0.9), while the link probabil-

ity of burglar is set to be p1 ∈ (α, 0.8). When α→ 0.8, the uncertainty on p1 becomes

less. Consequently the uncertainty on the state of Alarm should also decrease. How-

ever, as shown in Figure 5, the values of m(A = {T, F}|B = {T, F}, E = {F}) and

m(A = {T, F}|B = {T, F}, E = {T, F}) by ImNOR remain unchanged although

the information for p1 becomes more precise. The corresponding results using BNOR

show that the belief mass assigned to the uncertainty state of A decreases with the

increasing precision of the information on p1. Specially, if there is no epistemic un-

certainty on p2, and the uncertainty on p1 declines to 0 (α = 0.8), the belief mass

given to A = {T, F} also becomes zero (see Figure 5-a).
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Fig. 4. The different BNOR structures for m(A|B = T,E = {T,F}).
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Fig. 5. The uncertainty of the state of the alarm.

Table 2. The conditional mass distribution for P (A|B = T,E) by ImNOR and different BNORs.

A (B,E) of ImNOR (B,E) of LC-BNOR

(T ,T ) (T ,F ) (T ,{T, F}) (T ,T ) (T ,F ) (T ,{T, F})
T 0.8800 0.6000 0.6000 0.8800 0.6000 0.6000

F 0.0200 0.2000 0.0200 0.0200 0.2000 0.0000

{T, F} 0.0200 0.2000 0.3800 0.0200 0.2000 0.4000

(B,E) of PBNOR (B,E) of OBNOR

(T ,T ) (T ,F ) (T ,{T, F}) (T ,T ) (T ,F ) (T ,{T, F})
T 0.8800 0.6000 0.6000 0.8800 0.6000 0.8800

F 0.0200 0.2000 0.1800 0.0200 0.2000 0.0000

{T, F} 0.0200 0.2000 0.2200 0.0200 0.2000 0.1200

(B,E) of TBNOR (B,E) of OCBNOR(λ=0.6)

(T ,T ) (T ,F ) (T ,{T, F}) (T ,T ) (T ,F ) (T ,{T, F})
T 0.8800 0.6000 0.7400 0.8800 0.6000 0.7680

F 0.0200 0.2000 0.0900 0.0200 0.2000 0.0720

{T, F} 0.0200 0.2000 0.1700 0.0200 0.2000 0.1600

Marginal mass m(A) can be obtained by ImNOR and different BNORs, and

the results are shown in Table 5 and Figure 6. It is shown that OBNOR provides

optimistic results while PBNOR produces a pessimistic one. In order to make a

compromise, we can adjust the optimistic coefficient (λ). Also the contradiction at-

titudes of ImNOR can be found here. Thus the BNOR methods are more reasonable

and informative.

Using Eqs. (51) and (53), the (conditional) belief mass functions can be trans-

ferred to (conditional) pignistic probabilities. The results of

BetP (A|B = {T}, E = {T,F})

and BetP (A) are displayed in Figure 7. It can be seen that BNOR can provide us
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Table 3. The conditional mass distribution for P (A|B = F,E) by ImNOR and different BNORs.

A (B,E) of ImNOR (B,E) of LC-BNOR

(F ,T ) (F ,F ) (F ,{T ,F}) (F ,T ) (F ,F ) (F ,{T ,F})
T 0.7000 0.0000 0.0000 0.7000 0.0000 0.0000

F 0.1000 1.0000 0.1000 0.1000 1.0000 0.0000

{T ,F} 0.1000 0.0000 0.9000 0.1000 0.0000 1.0000

(B,E) of PBNOR (B,E) of OBNOR

(F ,T ) (F ,F ) (F ,{T ,F}) (F ,T ) (F ,F ) (F ,{T ,F})
T 0.7000 0.0000 0.0000 0.7000 0.0000 0.7000

F 0.1000 1.0000 0.9000 0.1000 1.0000 0.0000

{T ,F} 0.1000 0.0000 0.1000 0.1000 0.0000 0.3000

(B,E) of TBNOR (B,E) of OCBNOR(λ=0.6)

(F ,T ) (F ,F ) (F ,{T ,F}) (F ,T ) (F ,F ) (F ,{T ,F})
T 0.7000 0.0000 0.3500 0.7000 0.0000 0.4200

F 0.1000 1.0000 0.4500 0.1000 1.0000 0.3600

{T ,F} 0.1000 0.0000 0.2000 0.1000 0.0000 0.2200

Table 4. The conditional mass distribution for P (A|B = {T, F} , Θ, E) by ImNOR and different
BNORs.

A (B,E) of ImNOR (B,E) of LC-BNOR

(Θ,T ) (Θ,F ) (Θ,Θ) (Θ,T ) (Θ,F ) (Θ,Θ)

T 0.7000 0.0000 0.0000 0.7000 0.0000 0.0000

F 0.0200 0.2000 0.0200 0.0000 0.0000 0.0000

{T ,F} 0.0200 0.8000 0.9800 0.0000 1.0000 1.0000

(B,E) of PBNOR (B,E) of OBNOR

(Θ,T ) (Θ,F ) (Θ,Θ) (Θ,T ) (Θ,F ) (Θ,Θ)

T 0.7000 0.0000 0.0000 0.8800 0.6000 0.8800

F 0.1000 1.0000 0.9000 0.0200 0.2000 0.0000

{T ,F} 0.1000 0.0000 0.1000 0.0200 0.2000 0.1200

(B,E) of TBNOR (B,E) of OCBNOR(λ=0.6)

(Θ,T ) (Θ,F ) (Θ,Θ) (Θ,T ) (Θ,F ) (Θ,Θ)

T 0.7900 0.3000 0.5450 0.8080 0.3600 0.6288

F 0.0600 0.6000 0.2700 0.0520 0.5200 0.1872

{T ,F} 0.0600 0.1000 0.1850 0.0520 0.1200 0.1840

abundant information for decisions with different special requirements. By compar-

ison, ImNOR is more temperate. This is due to the fact that ImNOR assigns more

mass values to the vague state {T, F}. However, if we want to hold the principle

that more belief should be given to the uncertain state, LC-BNOR is a better choice

(see Figures 4-b and 6-b).



June 8, 2016 14:55 WSPC/INSTRUCTION FILE BeliefNoisyOr

16 Authors’ Names

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

 

P
(A

=
T

(F
))

ImNOR for A=T

PBNOR for A=T

OBNOR for A=T

OCBNOR for A=T

ImNOR for A=F

PBNOR for A=F

OBNOR for A=F

OCBNOR for A=F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

 

P
(A
=
{T
,F
}

ImNOR

PBNOR

OBNOR

OCBNOR

LC-BNOR

a. m(A = {T (F )}) b. m(A = {T, F})

Fig. 6. The different BNOR structures for m(A).

Table 5. The belief mass distribution of the child node A.

A ImNOR LC-BNOR PBNOR OBNOR TBNOR OCBNOR(λ = 0.6)

T 0.3996 0.3996 0.3996 0.4528 0.4262 0.4315

F 0.4352 0.4284 0.4896 0.4284 0.4590 0.4529

{T ,F} 0.1652 0.1720 0.1108 0.1188 0.1148 0.1156
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Fig. 7. The (conditional) pignistic probabilities.

4. Network reliability analysis

In this section we will discuss the application of BNOR on the problem of network

reliability analysis. The definition of network reliability and the traditional Bayesian

solution are first recalled. Then the reliability evaluation strategy using BNOR

model will be described in detail.
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4.1. Network reliability and Bayesian network solution

The network reliability considered here is two-terminal reliability, defined as the

probability that there is an operative path between source nodes n1 and sink nodes

nN in the network. Nodes are assumed to be operational at all times, and edge

failures are assume to be statistically independent.

Let graph G(N,E) represent a network, where N denotes the set of nodes and

E is the set of links. For the network shown in Figure 8-a, N = {n1, n2, n3, n4},
E = {e1,e2, e3, e4}. Define |N | new variables, Ni, i = 1, 2, · · · , |N | , indicat-

ing whether the communication between n1 and ni is successful. Let N+(ni) =

{nj | < nj , ni >∈ E}, for every element of which sets, nj , there is a path from nj
to ni. And let E+(ni) = {ek =< nj , ni > |nj ∈ N+(ni)} denote the sets of edges

directed to node ni.

Zhen et al. 39 presented a method for reliability evaluating of networks based on

BN. The nodes and edges of BN can be created according to G(N,E):

(1) The root nodes of BN are N1 and the edges in E.

(2) The non-root nodes of BN are Ni, i 6= 1. And

Pa(Ni) =
{
Nj |nj ∈ N+(ni)

}
∪
{
ek|ek ∈ E+(ni)

}
. (56)

Bayesian networks’ inference algorithms can be evoked then to calculate the network

reliability P (Ns). The BN framework for the network described in Figure 8-a can

be seen in Figure 8-b.

e1 e2

e3 e4

n3

n2

n1
n4

N1

N2 N3

N4

e1

e2

e3

e4

a. Directed network b. BN solution

Fig. 8. An example of directed network and its BN solution.

4.2. Reliability evaluation using BNOR

For the network shown in Figure 9, its reliability can be defined by the probability

that there is a working path connected from n1 to n5. The network is operating if
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the two terminal nodes n1 and n5 are connected by operational edges. Let S denote

the state of the network. It has binary states with T (working) or F (fail). The

values for failure rates of each edge are

λe1 = λe3 = λe5 = 1.5 ∗ 10−3 h−1, λe2 = λe4 = λe6 = 1.8 ∗ 10−3 h−1.

 

n1

n2

n3

n4

n5

e1 e2

e3 e4

e5 e6

Fig. 9. The network with 5 nodes.

Consider the mission time t = 200 h. The probability distribution of each edge is

given in Table 6.

Table 6. The probability distribution of each edge of the network

e1 e2 e3 e4 e5 e6

T 0.8025 0.6977 0.8025 0.6977 0.8025 0.6977

F 0.1975 0.3023 0.1975 0.3023 0.1975 0.3023

The traditional Bayesian network approach is first adopted to calculate the reli-

ability. Using the method described in Section 4.1, we can create a Bayesian network

solution model (see Figure 10). By applying the Junction Tree (JT) inference algo-

rithm, we can obtain the exact value of the network reliability p(S = T ) = 0.9148.

In the next two subsections, different BNOR structures (PBNOR, OBNOR, TB-

NOR, OCBNOR and LC-BNOR) will be applied to estimate the network reliability.

The BNOR model for this network is shown in Figure 11. The fail of edge ei can be

regarded as an inhibition. For example, in the network displayed in Figure 9, even

if N2 is in the working state T , N5 may not in state T due to the fail of e2. The

inhibition can be measured by link probabilities pei , i = 1, 2, · · · , 5.
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Fig. 10. The BN network solution.
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Fig. 11. The BNOR model for network reliability.

4.3. BNOR model, case with no epistemic uncertainty

If there is no epistemic uncertainty, neither on the variable state or on link proba-

bilities, i.e.,

m(N1 = {T, F}) = 0,

and

piL = piU = p(ei = T ), i = 1, 2, · · · , 6,

the same results can be obtained by the use of all BNORs and ImNOR:

m(S = {T}) = 0.9148, m(S = {F}) = 0.0852, m(S = {T, F}) = 0.

It can be seen that, if there is no epistemic uncertainty introduced, the reliability

estimation results previously obtained by traditional BN method can be recovered.

This fact indicates that BNOR is a general extension of Noisy-OR structure in the
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framework of belief functions, and it is entirely compatible with the probabilistic so-

lution. The Bel and Pl measures can be obtained by Eqs. (10) and (11) respectively.

The following results can be obtained:

Bel(S = {T}) = 0.9148, p(S = T ) = 0.9148, P l(S = {T}) = 0.9148. (57)

4.4. BNOR model, case with an epistemic uncertainty

In this test, the case with some epistemic uncertainty on link probabilities is con-

sidered. The lower and upper probability bounds of link probabilities pei are listed

in Table 7. The results by five BNORs and ImNOR are illustrated in Table 8.

Table 7. The probability intervals of the inhibition parameters

pe1 pe2 pe3 pe4 pe5 pe6
PiL 0.7525 0.6477 0.8025 0.6977 0.8025 0.6977

PiU 0.8525 0.7477 0.8025 0.6977 0.8025 0.6977

In Figures 12-a and 12-b, the results of the evaluation of the network system

varying with the optimism coefficient λ are demonstrated. It can be found that when

λ grows from 0 up to 1, the mass on “the system is working” (i.e., m(S = {T}))
increases. On the contrary, m(S = {F}) decreases. This meets with our common

sense of optimistic and pessimistic decisions. However, ImNOR provides opposite

attitudes towards m(S = {T}) and m(S = {F}). The performance of ImNOR

is similar to PBNOR for calculating m(S = {T}), while similar to OBNOR for

calculating m(S = {F}).
Figure 12-c illustrates that the mass assigned to the uncertain state {T, F} by

LC-BNOR is larger than that by the other models. This is due to the principle

LC-BNOR upholds is that one should never give more support than justified to any

subset of the discernment frame.

Let the interval of link probability pe1 be [0.7525, 0.8525] and the corresponding

interval of pe2 be [0.6977, 0.6977]− [α,−α]. The length of the interval, 2α, reflects

the degree of uncertainty to some extend. Figure 12-d depicts the mass assigned

to the uncertain state m(S = {T, F}) varying with α. It can be seen that the

uncertainty on system’s state increases with the increasing of α. LC-BNOR is the

most sensitive to uncertainty variation among the six NOR models.

In this case, the credibility and plausibility measures on S = {T} are not the

same, and they bound the network reliability. For example, if we use OCBNOR

(λ = 0.6), from Table 8 we can see the belief mass assignment of the network state

S:

m(S = {T}) = 0.9082, m(S = {F}) = 0.0741, m(S = {T, F}) = 0.0177. (58)
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The following results can be obtained:

Bel(S = {T}) = 0.9082, p(S = T ) = 0.9148, P l(S = {T}) = 0.9259. (59)

Further decisions can be made based on these uncertainty knowledge.

Table 8. The belief mass distribution of the network system.

S ImNOR LC-BNOR PBNOR OBNOR TBNOR OCBNOR(λ = 0.6)

T 0.9007 0.8818 0.9007 0.9133 0.9070 0.9082

F 0.0702 0.0540 0.0828 0.0683 0.0755 0.0741

{T ,F} 0.0291 0.0642 0.0165 0.0184 0.0175 0.0177
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Fig. 12. The different BNOR structures for m(S).

The information on credal level can be transformed to the pignistic level by

Eq. (51) where the decisions can be made more easily. The probability distributions

by different models are listed in Table 9. As it can be observed in Figure 13, with
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the increasing of λ, the pignistic probability for S = T increases, on the other hand

decreases for S = F . For S = T , OBNOR gives a upper bound and PBNOR gives

a lower bound. While for S = F , OBNOR gives a lower bound and PBNOR gives a

upper bound. This is in accordance with the optimistic and pessimistic principles.

However, the attitude of ImNOR is ambiguous.

Table 9. The probability distribution of the network system.

S ImNOR LC-BNOR PBNOR OBNOR TBNOR OCBNOR(λ = 0.6)

T 0.9152 0.9139 0.9090 0.9225 0.9157 0.9171

F 0.0848 0.0861 0.0910 0.0775 0.0843 0.0829
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Fig. 13. The different BNOR structures for BetP (S).

4.5. Discussion

From the experimental results, it can be concluded that when there is no epistemic

uncertainty in the network, BNOR degrades to the traditional Bayesian method.

However, if there indeed exists imperfect knowledge, BNOR model can provide us

more information in the form of lower bounds (Bel) and upper bounds (Pl). A

pessimistic decision can be made according to the Bel value, which provides us the

worst value of the network reliability. On the contrary, Pl is the maximum degree

of belief that can support the connectivity of the network, from which an optimistic

decision can be made. These measures are of great value when we have to make

a compromise between risks and costs. Also these knowledge on the credal level

can be transformed to the pignistic level through Smets method. Then common

principles in decision theory such as the minimal expected cost (risk) criterion can

be evoked.
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5. Conclusion

In this paper, the BNOR model under the framework of belief functions, as an

extension of the traditional NOR model, is developed to express several kinds of

uncertainty in the independent causal interactions. It is proved that BNOR can be

implemented to propagate uncertain information through employing the Bayesian

networks tools. In practice, BNOR is more flexible than existing NOR models be-

cause it offers a general Bayesian framework that allows us to adopt the exact

inference algorithm in their original form without modification, and then by adjust-

ing necessary parameters to obtain results which satisfy the special requirements of

engineers. Finally, the application on the reliability evaluation problem of networked

systems demonstrates the effectiveness of BNOR model.

BNOR is applicable to systems with binary variables. An extension of BNOR

suitable to multi-value variables should be regarded as a future development. Fur-

thermore, the uncertainty on link probabilities may not be given in the form of

intervals in practice. How to take advantage of the independence of causal interac-

tions with different types of uncertain knowledge is another considerable problem

to be investigated. This paper mainly focuses on theoretical work. Applications of

BNOR on more complex situations will be considered in the future.
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